Copyright
©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Nephrol. Sep 7, 2018; 7(5): 108-116
Published online Sep 7, 2018. doi: 10.5527/wjn.v7.i5.108
Published online Sep 7, 2018. doi: 10.5527/wjn.v7.i5.108
Unique interstitial miRNA signature drives fibrosis in a murine model of autosomal dominant polycystic kidney disease
Ameya Patil, William E Sweeney Jr, Cynthia G Pan, Ellis D Avner, Children’s Research Institute; Children’s’ Hospital Health System of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226, United States
Author contributions: Patil A, Sweeney Jr WE, Pan CG and Avner ED all equally contributed to the conception and design of this study, analysis, and interpretation of data; all authors drafted the article and made critical revisions related to the intellectual content of the manuscript, and approved the final version of the article to be published.
Supported by the Children’s Research Institute , the Lillian Goldman Charitable Trust ; Amy P Goldman Foundation ; and Ellsworth Family and Children’s Foundation of Children’s’ Hospital and Health System of Wisconsin .
Institutional animal care and use committee statement: All animal experiments are conducted in accordance with policies of the NIH Guide for the Care and Use of Laboratory Animals and the Institutional Animal Care and Use Committee (IACUC) of the Medical College of Wisconsin. The IACUC at the Medical College of Wisconsin is properly appointed according to PHS policy IV.A.3.a and is qualified through the experience and expertise of its members to oversee the Institution’s animal care and use program. The Animal Welfare Assurance for the Medical College of Wisconsin is A3102-01. Specific protocols used in this study were approved by the Medical College of Wisconsin IACUC (approved protocols are AUA 4278 and AUA 4179).
Conflict-of-interest statement: The authors have no conflict of interest to declare. Conflict of Interest in Research statements is on file with the institution as per Medical College of Wisconsin policy #RS.GN.020.
Data sharing statement: Data sets and statistical methods are available upon request from the corresponding author
ARRIVE guidelines statement: The manuscript was revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Ameya P Patil, MD, Assistant Professor, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s’ Hospital Health System of Wisconsin, Children’s Corporate Center, Suite 510, Mailstop CCC C510, 999 North 92nd Street, Milwaukee, WI 53226, United States. appatil@mcw.edu
Telephone: +1-414-9555773 Fax: +1-414-3377105
Received: April 21, 2018
Peer-review started: April 21, 2018
First decision: May 16, 2018
Revised: May 25, 2018
Accepted: July 31, 2018
Article in press: August 1, 2018
Published online: September 7, 2018
Processing time: 139 Days and 13 Hours
Peer-review started: April 21, 2018
First decision: May 16, 2018
Revised: May 25, 2018
Accepted: July 31, 2018
Article in press: August 1, 2018
Published online: September 7, 2018
Processing time: 139 Days and 13 Hours
Core Tip
Core tip: An essential and consistent histologic feature of progressive autosomal dominant polycystic kidney disease (ADPKD) is interstitial inflammation and fibrosis. This study investigated miRNA expression in local peri-cystic areas between cysts that become fibrotic as the disease progresses. This study identifies a critical limitation to whole organ transcriptomic approaches and demonstrates that laser capture microdissection (LCM) provides a means to overcome the dilutional factor of whole organ miRNA analysis. The precision of LCM provides a unique miRNA signature, which identifies novel molecular and therapeutic targets that initiate and drive interstitial fibrosis in ADPKD.