Zhou X. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5? World J Nephrol 2016; 5(1): 20-32 [PMID: 26788461 DOI: 10.5527/wjn.v5.i1.20]
Corresponding Author of This Article
Xiaoming Zhou, PhD, Division of Nephrology, Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States. xiaoming.zhou@usuhs.edu
Research Domain of This Article
Physiology
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Nephrol. Jan 6, 2016; 5(1): 20-32 Published online Jan 6, 2016. doi: 10.5527/wjn.v5.i1.20
How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5?
Xiaoming Zhou
Xiaoming Zhou, Division of Nephrology, Department of Medicine, Uniformed Services University, Bethesda, MD 20814, United States
Author contributions: Zhou X drafted, edited and approved the manuscript.
Conflict-of-interest statement: The author declares no conflict-of-interest for this manuscript.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Xiaoming Zhou, PhD, Division of Nephrology, Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States. xiaoming.zhou@usuhs.edu
Telephone: +1-301-2959604 Fax: +1-301-2953557
Received: September 5, 2015 Peer-review started: September 8, 2015 First decision: September 29, 2015 Revised: October 19, 2015 Accepted: December 9, 2015 Article in press: December 11, 2015 Published online: January 6, 2016 Processing time: 123 Days and 22.7 Hours
Core Tip
Core tip: NFAT5 is critical for kidney functions. Its dis-regulation results in or is associated with the renal diseases and disorders. More than a dozen of kinases have been identified to contribute to tonicity-dependent regulation of NFAT5. The present review is focused on how these kinases regulate NFAT5 activity under the context of hypertonicity or hypotonicity. Understanding these regulatory mechanisms will have therapeutic implications. A precedent example is that recognition of the cyclosporine immunosuppressive effect resulted from inhibition of the phosphatase calcineurin-dependent activation of NFAT1 allows combination use of cyclosporine with other mechanistically different immunosuppressants to improve their therapeutic efficacy and reduce their side effects.