Published online May 6, 2015. doi: 10.5527/wjn.v4.i2.230
Peer-review started: August 6, 2014
First decision: October 31, 2014
Revised: December 11, 2014
Accepted: December 18, 2014
Article in press: December 20, 2014
Published online: May 6, 2015
Processing time: 275 Days and 21.7 Hours
Shock wave lithotripsy (SWL) was introduced in 1980, modernizing the treatment of upper urinary tract stones, and quickly became the most commonly utilized technique to treat kidney stones. Over the past 5-10 years, however, use of SWL has been declining because it is not as reliably effective as more modern technology. SWL success rates vary considerably and there is abundant literature predicting outcome based on patient- and stone-specific parameters. Herein we discuss the ways to optimize SWL outcomes by reviewing proper patient selection utilizing stone characteristics and patient features. Stone size, number, location, density, composition, and patient body habitus and renal anatomy are all discussed. We also review the technical parameters during SWL that can be controlled to improve results further, including type of anesthesia, coupling, shock wave rate, focal zones, pressures, and active monitoring. Following these basic principles and selection criteria will help maximize success rate.
Core tip: Shock wave lithotripsy is a commonly utilized technology for kidney stone treatment that has declining efficacy over the past decade. The paper outlines how to optimize outcomes with proper patient selection and control of treatment parameters.