1
|
Schmitz RL, Riendeau JM, Tweed KE, Rehani P, Samimi K, Pham DL, Jones I, Maly EM, Contreras Guzman E, Forsberg MH, Shahi A, Hockerman L, Ayuso JM, Capitini CM, Walsh AJ, Skala MC. Autofluorescence lifetime imaging classifies human B and NK cell activation state. Front Bioeng Biotechnol 2025; 13:1557021. [PMID: 40256783 PMCID: PMC12006760 DOI: 10.3389/fbioe.2025.1557021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
New non-destructive tools with single-cell resolution are needed to reliably assess B cell and NK cell function for applications including adoptive cell therapy and immune profiling. Optical metabolic imaging (OMI) is a label-free method that measures the autofluorescence intensity and lifetime of the metabolic cofactors NAD(P)H and FAD to quantify metabolism at a single-cell level. Here, we demonstrate that OMI can resolve metabolic changes between primary human quiescent and IL-4/anti-CD40 activated B cells and between quiescent and IL-12/IL-15/IL-18 activated NK cells. We found that stimulated B and NK cells had an increased proportion of free compared to protein-bound NAD(P)H, a reduced redox state, and produced more lactate compared to control cells. The NAD(P)H mean fluorescence lifetime decreased in the stimulated B and NK cells compared to control cells. Random forest models classified B cells and NK cells according to activation state (CD69+) based on OMI variables with an accuracy of 93%. Our results show that autofluorescence lifetime imaging can accurately assess B and NK cell activation in a label-free, non-destructive manner.
Collapse
Affiliation(s)
| | - Jeremiah M. Riendeau
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Kelsey E. Tweed
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Peter Rehani
- Morgridge Institute for Research, Madison, WI, United States
| | - Kayvan Samimi
- Morgridge Institute for Research, Madison, WI, United States
| | - Dan L. Pham
- Morgridge Institute for Research, Madison, WI, United States
| | - Isabel Jones
- Morgridge Institute for Research, Madison, WI, United States
| | | | | | - Matthew H. Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ankita Shahi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Lucia Hockerman
- Morgridge Institute for Research, Madison, WI, United States
| | - Jose M. Ayuso
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Alex J. Walsh
- Morgridge Institute for Research, Madison, WI, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
2
|
Belal AA, Santos Jr AH, Kazory A, Koratala A. Providing care for kidney transplant recipients: An overview for generalists. World J Nephrol 2025; 14:99555. [PMID: 40134644 PMCID: PMC11755230 DOI: 10.5527/wjn.v14.i1.99555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Kidney transplantation is the preferred treatment for patients with advanced chronic kidney disease and end-stage kidney disease, offering superior quality of life and survival compared to dialysis. This manuscript provides an updated overview of post-transplant care, highlighting recent advancements and current practices to assist generalists in managing these patients. It covers key areas such as immunosuppression strategies, drug interactions, and the management of transplant-specific acute kidney injury. The focus includes the use of sodium-glucose cotransporter-2 inhibitors and cell-free DNA monitoring for evaluating allograft health and immune-mediated injury. The manuscript reviews the fundamentals of immunosuppression, including both induction and maintenance therapies, and underscores the importance of monitoring kidney function, as well as addressing hypertension, diabetes, and infections. It also provides recommendations for vaccinations and cancer screening tailored to kidney transplant recipients and emphasizes lifestyle management strategies, such as exercise and sodium intake, to reduce post-transplant complications.
Collapse
Affiliation(s)
- Amer A Belal
- Department of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States
| | - Alfonso H Santos Jr
- Department of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States
| | - Amir Kazory
- Department of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States
| | - Abhilash Koratala
- Department of Nephrology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
3
|
Carvajal V, Jorques Molla JV, Luo Y, Zhao Y, Moncunill G, Gascon M. Air pollution and systemic immune biomarkers in early life: A systematic review. ENVIRONMENTAL RESEARCH 2025; 269:120838. [PMID: 39832545 DOI: 10.1016/j.envres.2025.120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Children's rapid development and immature immune systems place them at a higher risk of adverse health outcomes associated with air pollution exposure. However, the specific mechanisms in which air pollution mediates immune dysregulation in youth are poorly understood. Thus, we aimed to systematically review the available epidemiological evidence surrounding the effects of indoor and ambient air pollution exposure on systemic immune biomarkers in early life (from birth to 18 years old). METHODS based on PRISMA guidelines, we developed a systematic search strategy and defined inclusion and exclusion criteria to retrieve publications from PubMed, SCOPUS and Web of Science published up to August 10th, 2024. Quality assessment and evidence evaluation were also performed. Five independent reviewers participated in the process. RESULTS In total, 96 studies were included. We found limited evidence of a causal relationship between prenatal ambient PM2.5 and reduced T-cells (CD3+ and CD8+), as well as between postnatal PM exposure and increased IgE levels or allergic sensitization. For the rest of exposure-outcome combinations we classified the evidence as inadequate, mainly due to the limited number of studies available or the lack of consistency in the results obtained among them. This was particularly the case for indoor air pollution research, for which only 12 studies were available. CONCLUSION the present systematic review highlights the need for further research on the impacts of air pollution on youth's immune system. We provided recommendations for future studies in order to better understand the early subclinical and clinical effects of air pollution and the underlying biological pathways, and identify the dynamics of the innate and adaptive immune responses to environmental threats. Considering the significance of childhood immunity on health outcomes within all stages of life, and the globally extensive burden of air pollution exposure, further research on this topic should be prioritized.
Collapse
Affiliation(s)
- Veronica Carvajal
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Juan Vicente Jorques Molla
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Yana Luo
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Yu Zhao
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Gemma Moncunill
- ISGlobal, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Manresa, Spain.
| |
Collapse
|
4
|
Luo S, Zhang L, Wei C, Guo C, Meng Z, Zeng H, Hou L, Wang L, Liu Z, Du Y, Tan S, Zhang Y, Xu X, Liang L, Zhou Y. TCL1A in naïve B cells as a therapeutic target for type 1 diabetes. EBioMedicine 2025; 113:105593. [PMID: 39946833 PMCID: PMC11872515 DOI: 10.1016/j.ebiom.2025.105593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterised by the attack of pancreatic β cells by "self" immune cells. Although previous studies demonstrated that B cells contribute to T1D through antigen presentation and autoantibody production, the involvement of different populations of B cells, particularly in the early stages of T1D, has not been fully elucidated. METHODS In this study, we employed single-cell RNA sequencing (scRNA-seq) and flow cytometry to investigate immune cell populations in patients with newly diagnosed T1D, their relative controls and age-matched healthy controls. Phosphoprotein microarray analysis was employed to investigate changes in protein phosphorylation in B cells. Furthermore, we developed a siRNA-based nanomedicine and evaluated its therapeutic potential in the NOD mouse. The integration of scRNA-seq, flow cytometry, phosphoprotein microarrays, and functional assays established a robust framework for understanding and targeting B cell-mediated autoimmunity in T1D. FINDINGS Using single-cell RNA sequencing, we discovered that patients with T1D exhibited increased humoural immunity in the early stage of T1D. Specifically, the population of naïve B cells increased in patients with newly diagnosed T1D who expressed elevated levels of the AKT kinase coactivator TCL1A. Using a protein phosphorylation microarray, we confirmed that TCL1A knockdown specifically impaired AKT2 phosphorylation and affected B cell survival and proliferation. Notably, we discovered that the naïve B cell population increased and TCL1A expression was upregulated in NOD mice that developed T1D. Both the levels of naïve B cells and TCL1A were strongly associated with glucose intolerance in T1D mice. Importantly, treatment with a siRNA-based nanomedicine targeting Tcl1a mRNA effectively reduced the number of naïve B cells, prevented the loss of pancreatic β cells, and improved glucose intolerance in T1D mice. INTERPRETATION Using single-cell RNA-seq, we have not only uncovered a naïve B cell specific gene that may contribute to the pathogenesis of T1D but also highlighted the potential of siRNA-based nanomedicine for treating T1D. The clinical translation of these findings offers a new approach for the treatment of T1D. FUNDING See Acknowledgements.
Collapse
Affiliation(s)
- Siweier Luo
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Basic and Translational Medical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Lina Zhang
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Chunfang Wei
- Basic and Translational Medical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Chipeng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Zhe Meng
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Honghui Zeng
- Basic and Translational Medical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Lele Hou
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Le Wang
- Basic and Translational Medical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Zulin Liu
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yufei Du
- Basic and Translational Medical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Shiyu Tan
- Basic and Translational Medical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yating Zhang
- Basic and Translational Medical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaoding Xu
- Basic and Translational Medical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
| | - Liyang Liang
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
| | - Yiming Zhou
- Basic and Translational Medical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
5
|
Tapryal S. Monoclonal antibodies - A repertoire of therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:151-212. [PMID: 39978966 DOI: 10.1016/bs.apcsb.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Antibodies are a class of biomolecules armed with extraordinary diversity, unmatched in the biological world by any other class of molecules. This characteristic feature equips antibodies to recognize, bind, and eliminate an infinite number of pathogens/antigens facilitated by their effector functions. The repertoire of natural binding specificities of antibodies (Abs) is greater than the calculated estimate of ∼1012 in humans, as a naive, single antigen-binding site may bind more than one antigen employing the plasticity in antigen-antibody interactions, potentiating Abs to fight infinite pathogenic insults and restrict the development of cancers. Additionally, advanced technological interventions, by allowing manipulation of the germline and acquired specificities of human/animal immunoglobulins (Ig) have contributed immensely to broaden their existing repertoire and scope of clinical applications. The available natural repertoire of Ig and Ig-like molecules in other animals, e.g., mice, horses, cows, pigs, rabbits, camels, llamas, etc., further diversified the source of unique antigen-binding specificities. The recombinant DNA technology, in association with hybridoma , transgenic, and phage display technologies, has helped create a parallel repertoire of unique antibody molecules [animal Abs, camelid heavy chain Abs (hcAbs), chimeric Abs, chimeric hcAbs, humanized Abs, humanized nanobody (Nb)-hcAbs, human Abs, etc.], monoclonal Ab (mAb) derived fragments [antigen-binding-fragment (Fab), single-chain-variable-fragment (scFv), variable-fragement (Fv), single-variable-domain of hcAbs (VHH), bispecific scFv, diabodies, triabodies, intrabodies, bispecific Fabs, tri-specific Fabs, etc.), and immunoconjugates generated by fusing/conjugating mAb fragments with enzyme, toxin, prodrug etc., molecules. The current chapter provides a detailed description of the natural and engineered antibody repertoires and discusses various strategies using which these molecules are being inducted as novel immunotherapeutics for treating a significant number of human diseases.
Collapse
Affiliation(s)
- Suman Tapryal
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, South Moti Bagh, New Delhi, India.
| |
Collapse
|
6
|
Bonasia CG, Inrueangsri N, Bijma T, Borggrewe M, Post AI, Mennega KP, Abdulahad WH, Rutgers A, Bos NA, Heeringa P. Circulating B cells display differential immune regulatory molecule expression in granulomatosis with polyangiitis. Clin Exp Immunol 2025; 219:uxae096. [PMID: 39435875 PMCID: PMC11773817 DOI: 10.1093/cei/uxae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Granulomatosis with polyangiitis (GPA) is a B-cell-mediated, relapsing, autoimmune disease. There is a need for novel therapeutic approaches and relapse markers to achieve durable remission. B cells express immune regulatory molecules that modulate their activation and maintain tolerance. While recent studies show dysregulation of these molecules in other autoimmune diseases, data on their expression in GPA are limited. This study aimed to map the expression of surface immune regulatory molecules on circulating B-cell subsets in GPA and correlate their expression with clinical parameters. Immune regulatory molecule expression on circulating B-cell subsets was comprehensively examined in active GPA (n = 16), GPA in remission (n = 16), and healthy controls (n = 16) cross-sectionally using a 35-color B-cell-specific spectral flow cytometry panel. Our supervised and unsupervised in-depth analysis revealed differential expression of inhibitory and stimulatory immune molecules on distinct B-cell populations in GPA, with the most notable differences observed in active GPA. These differences include the upregulation of FcγRIIB on nonmature B cells, downregulation of CD21 and upregulation of CD86 on antigen-experienced B cells, and elevated CD22 expression on various populations. Additionally, we found a strong association between FcγRIIB, BTLA, and CD21 expression on specific B-cell populations and disease activity in GPA. Together, these findings provide novel insights into the immune regulatory molecule expression profile of B cells in GPA and could potentially form the foundation for new therapeutic approaches and disease monitoring markers.
Collapse
Affiliation(s)
- Carlo G Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nanthicha Inrueangsri
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Theo Bijma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Aline I Post
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kevin P Mennega
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nicolaas A Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Mamun TI, Ali MA, Hosen MN, Rahman J, Islam MA, Akib MG, Zaman K, Rahman MM, Hossain FMA, Ibenmoussa S, Bourhia M, Dawoud TM. Designing a multi-epitope vaccine candidate against human rhinovirus C utilizing immunoinformatics approach. Front Immunol 2025; 15:1364129. [PMID: 39840071 PMCID: PMC11747413 DOI: 10.3389/fimmu.2024.1364129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C. The sequences of the chosen structural proteins VP1 and VP2, along with the non-structural protein 2C of HRV-C, were downloaded in FASTA format from the NCBI server for further analysis. Through an exhaustive analysis of HRV-C genomic sequences, we identified highly conserved immunogenic regions capable of eliciting a protective immune response. Leveraging advanced immunoinformatics tools, we predicted epitopes for B-cells, Cytotoxic T lymphocytes, and Helper T lymphocytes, ensuring broad coverage across different HRV-C strains. The vaccine candidate was constructed by integrating selected antigens with immunogenic epitopes and adjuvants, employing optimal linkers. Three vaccine constructs were developed, with V2 being the most promising, consisting of 480 amino acids residues. V2 exhibited strong antigenicity, non-allergenicity, and solubility, with a solubility score greater than 0.550, and demonstrated excellent structural stability, with 91.9% of residues in the most favorable regions of the Ramachandran plot. Molecular dynamics and simulation studies revealed a stable Vaccine-TLR8 complex, with a binding energy of -296.15 and consistent RMSD values. Furthermore, in silico cloning and sequence optimization ensured efficient expression in E. coli, with a Codon Adaptation Index of 0.99 and GC content of 54.58%. The minimum free energy of the RNA secondary structure was -494.90 kcal/mol. While our findings suggest the potential effectiveness of the designed vaccine candidate against HRV-C, further in vitro and in vivo investigations are warranted to validate its safety and efficacy.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Ahad Ali
- Department Of Chemistry, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Nazmul Hosen
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jillur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Anwarul Islam
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Golam Akib
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kamruz Zaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Pathology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Dairy Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, France
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Gorbacheva V, Fan R, Gaudette B, Baldwin WM, Fairchild RL, Valujskikh A. Marginal zone B cells are required for optimal humoral responses to allograft. Am J Transplant 2025; 25:48-59. [PMID: 39278625 PMCID: PMC11734443 DOI: 10.1016/j.ajt.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Antibody-mediated rejection (AMR) is among the leading causes of graft failure in solid organ transplantation. However, AMR treatment options are limited by an incomplete understanding of the mechanisms underlying de novo donor-specific antibody (DSA) generation. The development of pathogenic isotype-switched DSA in response to transplanted allografts is typically attributed to follicular B cells undergoing germinal center reaction whereas the contribution of other B cell subsets has not been previously addressed. The current study investigated the role of recipient marginal zone B cells (MZ B cells) in DSA responses using mouse models of heart and renal allotransplantation. MZ B cells rapidly differentiate into antibody-secreting cells in response to allotransplantation. Despite the selective depletion of follicular B cells in heart allograft recipients, MZ B cells are sufficient for T-dependent IgM and early IgG DSA production. Furthermore, the presence of intact MZ B cell subset is required to support the generation of pathogenic isotype-switched DSA in renal allograft recipients containing donor-reactive memory helper T cells. These findings are the first demonstration of the role of MZ B cells in humoral alloimmune responses following solid organ transplantation and identify MZ B cells as a potential therapeutic target for minimizing de novo DSA production and AMR in transplant recipients.
Collapse
Affiliation(s)
- Victoria Gorbacheva
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Gaudette
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
9
|
Sharma T, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS. Targeting Oligodendrocyte Dynamics and Remyelination: Emerging Therapies and Personalized Approaches in Multiple Sclerosis Management. Curr Neurovasc Res 2025; 21:359-417. [PMID: 39219420 DOI: 10.2174/0115672026336440240822063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/01/1970] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system (CNS). This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur. We investigate developing therapeutic options that target remyelination, a fundamental component of MS treatment. Remyelination approaches promote the survival and differentiation of oligodendrocyte precursor cells (OPCs), restoring myelin sheaths. This improves nerve fibre function and may prevent MS from worsening. We examine crucial parameters influencing remyelination success, such as OPC density, ageing, and signalling pathway regulation (e.g., Retinoid X receptor, LINGO-1, Notch). The review also examines existing neuroprotective and antiinflammatory medications being studied to see if they can assist oligodendrocytes in surviving and reducing the severity of MS symptoms. The review focuses on medicines that target the myelin metabolism in oligodendrocytes. Altering oligodendrocyte metabolism has been linked to reversing demyelination and improving MS patient outcomes through various mechanisms. We also explore potential breakthroughs, including innovative antisense technologies, deep brain stimulation, and the impact of gut health and exercise on MS development. The article discusses the possibility of personalized medicine in MS therapy, emphasizing the importance of specific medicines based on individual molecular profiles. The study emphasizes the need for reliable biomarkers and improved imaging tools for monitoring disease progression and therapy response. Finally, this review focuses on the importance of oligodendrocytes in MS and the potential for remyelination therapy. It also underlines the importance of continued research to develop more effective treatment regimens, taking into account the complexities of MS pathology and the different factors that influence disease progression and treatment.
Collapse
Affiliation(s)
- Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
10
|
Sah SN, Gupta S, Bhardwaj N, Gautam LK, Capalash N, Sharma P. In silico design and assessment of a multi-epitope peptide vaccine against multidrug-resistant Acinetobacter baumannii. In Silico Pharmacol 2024; 13:7. [PMID: 39726905 PMCID: PMC11668725 DOI: 10.1007/s40203-024-00292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Acinetobacter baumannii, an opportunistic and notorious nosocomial pathogen, is responsible for many infections affecting soft tissues, skin, lungs, bloodstream, and urinary tract, accounting for more than 722,000 cases annually. Despite the numerous advancements in therapeutic options, no approved vaccine is currently available for this particular bacterium. Consequently, this study focused on creating a rational vaccine design using bioinformatics tools. Three outer membrane proteins with immunogenic potential and properties of good vaccine candidates were used to select epitopes based on good antigenic properties, non-allergenicity, high binding scores, and a low IC50 value. A multi-epitope peptide (MEP) construct was created by sequentially linking the epitopes using suitable linkers. ClusPro 2.0 and C-ImmSim web servers were used for docking analysis with TLR2/TLR4 and immune response respectively. The Ramachandran plot showed an accurate model of the MEP with 100% residue in the most favored and allowed regions. The construct was highly antigenic, stable, non-allergenic, non-toxic, and soluble, and showed maximum population coverage. Additionally, molecular docking demonstrated strong binding between the designed MEP vaccine and TLR2/TLR4. In silico immunological simulations showed significant increases in T-cell and B-cell populations. Finally, codon optimization and in silico cloning were conducted using the pET-28a (+) plasmid vector to evaluate the efficiency of the expression of vaccine peptide in the host organism (Escherichia coli). This designed MEP vaccine would support and accelerate the laboratory work to develop a potent vaccine targeting MDR Acinetobacter baumannii. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00292-3.
Collapse
Affiliation(s)
- Shiv Nandan Sah
- Department of Microbiology, Panjab University, Chandigarh, 160014 India
- Department of Microbiology, Central Campus of Technology, Tribhuvan University, Dharan, Nepal
| | - Sumit Gupta
- School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, 110062 India
| | - Neha Bhardwaj
- Department of Microbiology, Panjab University, Chandigarh, 160014 India
| | - Lalit Kumar Gautam
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242 USA
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
11
|
Li SY, Kumar S, Gu X, DeFalco T. Testicular immunity. Mol Aspects Med 2024; 100:101323. [PMID: 39591799 PMCID: PMC11624985 DOI: 10.1016/j.mam.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The testis is a unique environment where immune responses are suppressed to allow the development of sperm that possess autoimmunogenic antigens. There are several contributors responsible for testicular immune privilege, including the blood-testis barrier, testicular immune cells, immunomodulation by Sertoli cells, and high levels of steroid hormones. Despite multiple mechanisms in place to regulate the testicular immune environment, pathogens that disrupt testicular immunity can lead to long-term effects such as infertility. If testicular immunity is disturbed, autoimmune reactions can also occur, leading to aberrant immune cell infiltration and subsequent attack of autoimmunogenic germ cells. Here we discuss cellular and molecular factors underlying testicular immunity and how testicular infection or autoimmunity compromise immune privilege. We also describe infections and autoimmune diseases that impact the testis. Further research into testicular immunity will reveal how male fertility is maintained and will help update therapeutic strategies for infertility and other testicular disorders.
Collapse
Affiliation(s)
- Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sudeep Kumar
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
12
|
Riese J, Kleinwort A, Hannemann M, Hähnel C, Kersting S, Schulze T. Sphingosine-1-phosphate receptor type 4 is critically involved in the regulation of peritoneal B-1 cell trafficking and distribution in vivo. Eur J Immunol 2024; 54:e2350882. [PMID: 39344245 PMCID: PMC11628879 DOI: 10.1002/eji.202350882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
B-1 cells are crucially involved in immune defense and regulation of inflammation and autoimmunity. B-1 cells are predominantly located in the peritoneal and pleural cavities, although body cavity B-1 cells recirculate systemically under steady-state conditions. The chemokines CXCL12 and CXCL13 have been identified as the main regulators of peritoneal B-cell trafficking. In mice deficient for sphingosine-1-phosphate receptor 4 (S1PR4), B-1a and B-1b cell numbers are reduced in the peritoneal cavity by an unknown mechanism. In this study, we show that S1PR4-mediated S1P signaling modifies the chemotactic response of peritoneal B cells to CXCL13 and CXCL12 in vitro. In vivo, S1PR4-mediated S1P signaling affects both immigration into and emigration from the peritoneal cavity. Long-term reconstitution experiments of scid mice with wt or s1pr4 -/- peritoneal B cells revealed a distinct distributional pattern in secondary lymphoid organs. As a functional consequence, both plasmatic and mucosal IgM levels, the main product of B-1a cells, are reduced in mice reconstituted with s1pr4 -/- peritoneal cells. In summary, our data identify S1PR4 as the second S1P receptor (besides S1PR1), which is critically involved in the regulation of peritoneal B-1 cell function.
Collapse
Affiliation(s)
- Janik Riese
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Annabel Kleinwort
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Maurice Hannemann
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Celine Hähnel
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Stephan Kersting
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Tobias Schulze
- Experimental Surgical Research Laboratory, Department of General SurgeryVisceral, Thoracic and Vascular Surgery, Universitätsmedizin GreifswaldGreifswaldGermany
| |
Collapse
|
13
|
Luan Y, Min Q, Zhang R, Wen Z, Meng X, Hu Z, Feng X, Yu M, Dong L, Wang JY. EAF2 deficiency attenuates autoimmune disease in Fas lpr mice by modulating B cell activation and apoptosis. iScience 2024; 27:111220. [PMID: 39555413 PMCID: PMC11565555 DOI: 10.1016/j.isci.2024.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
MRL/lpr mice develop systemic lupus erythematosus-like autoimmunity due to defective FAS-mediated apoptosis. We generated Fas lpr mice deficient in EAF2, a transcription elongation-associated factor known to promote apoptosis in germinal center (GC) B cells and crucial for preventing autoimmunity. Contrary to expectations, EAF2 deficiency significantly reduced lymphadenopathy and splenomegaly, extended lifespan, and alleviated nephritis by decreasing renal immune complex deposition. Additionally, EAF2 deficiency markedly reduced accumulation of activated B cells, GC B cells, plasma cells, and the abnormal B220+CD3+ T cells in Fas lpr mice. Further analysis revealed that Eaf2 -/- Fas lpr B cells showed hyperactivation upon various stimulations, followed by increased death. RNA sequencing of the B220+CD3+ cells revealed a downregulation in survival-promoting genes such as Bcl-2 and Akt and an upregulation of proapoptotic genes. We conclude that the combined deficiency in FAS- and EAF2-mediated apoptotic pathways leads to B cell hyperactivation and subsequent death, thereby ameliorating systemic autoimmunity in this model.
Collapse
Affiliation(s)
- Yingying Luan
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Min
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Runyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zichao Wen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziying Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoqian Feng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| |
Collapse
|
14
|
He T, Chen K, Zhou Q, Cai H, Yang H. Immune repertoire profiling in myasthenia gravis. Immunol Cell Biol 2024; 102:891-906. [PMID: 39396830 DOI: 10.1111/imcb.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Myasthenia gravis (MG) is the most frequent immune-mediated neurological disorder, characterized by fluctuating muscle weakness. Specific recognition of self-antigens by T-cell receptors (TCRs) and B-cell receptors (BCRs), coupled with T-B cell interactions, activates B cells to produce autoantibodies, which are critical for the initiation and perpetuation of MG. The immune repertoire comprises all functionally diverse T and B cells at a specific time point in an individual, reflecting the essence of immune selectivity. By sequencing the nucleotide sequences of TCRs and BCRs, it is possible to track individual T- and B-cell clones. This review delves into the generation of autoreactive TCRs and BCRs in MG and comprehensively examines the applications of immune repertoire sequencing in understanding disease pathogenesis, developing diagnostic and prognostic markers and informing targeted therapies. We also discuss the current limitations and future potential of this approach.
Collapse
MESH Headings
- Myasthenia Gravis/immunology
- Humans
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- B-Lymphocytes/immunology
- Autoantibodies/immunology
- Animals
- Autoantigens/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Ting He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Ma X, Wang WX. Unveiling osmoregulation and immunological adaptations in Eleutheronema tetradactylum gills through high-throughput single-cell transcriptome sequencing. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109878. [PMID: 39245186 DOI: 10.1016/j.fsi.2024.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The fourfinger threadfin fish (Eleutheronema tetradactylum) is an economically significant species renowned for its ability to adapt to varying salinity environments, with gills serving as their primary organs for osmoregulation and immune defense. Previous studies focused on tissue and morphological levels, whereas ignored the cellular heterogeneity and the crucial gene information related to core cell subsets within E. tetradactylum gills. In this study, we utilized high-throughput single-cell RNA sequencing (scRNA-seq) to analyze the gills of E. tetradactylum, characterizing 16 distinct cell types and identifying unique gene markers and enriched functions associated within each cell type. Additionally, we subdivided ionocyte cells into four distinct subpopulations for the first time in E. tetradactylum gills. By employing weighted gene co-expression network analysis (WGCNA), we further investigated the cellular heterogeneity and specific response mechanisms to salinity fluctuant. Our findings revealed the intricate osmoregulation and immune functions of gill cells, highlighting their crucial roles in maintaining homeostasis and adapting to fluctuating salinity levels. This comprehensive cell-type atlas provides valuable insights into the species adaptive strategies, contributing to the conservation and management of this commercially significant fish as well as other euryhaline species.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
16
|
Jagota M, Hsu C, Mazumder T, Sung K, DeWitt WS, Listgarten J, Matsen FA, Ye CJ, Song YS. Learning antibody sequence constraints from allelic inclusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619760. [PMID: 39484623 PMCID: PMC11526943 DOI: 10.1101/2024.10.22.619760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Antibodies and B-cell receptors (BCRs) are produced by B cells, and are built of a heavy chain and a light chain. Although each B cell could express two different heavy chains and four different light chains, usually only a unique pair of heavy chain and light chain is expressed-a phenomenon known as allelic exclusion. However, a small fraction of naive-B cells violate allelic exclusion by expressing two productive light chains, one of which has impaired function; this has been called allelic inclusion. We demonstrate that these B cells can be used to learn constraints on antibody sequence. Using large-scale single-cell sequencing data from humans, we find examples of light chain allelic inclusion in thousands of naive-B cells, which is an order of magnitude larger than existing datasets. We train machine learning models to identify the abnormal sequences in these cells. The resulting models correlate with antibody properties that they were not trained on, including polyreactivity, surface expression, and mutation usage in affinity maturation. These correlations are larger than what is achieved by existing antibody modeling approaches, indicating that allelic inclusion data contains useful new information. We also investigate the impact of similar selection forces on the heavy chain in mouse, and observe that pairing with the surrogate light chain significantly restricts heavy chain diversity.
Collapse
Affiliation(s)
- Milind Jagota
- Computer Science Division, UC Berkeley, Berkeley, CA USA
| | - Chloe Hsu
- Computer Science Division, UC Berkeley, Berkeley, CA USA
| | - Thomas Mazumder
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, CA, USA
- Institute for Human Genetics, UCSF, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Yun S. Song
- Computer Science Division, UC Berkeley, Berkeley, CA USA
- Department of Statistics, UC Berkeley, Berkeley, CA, USA October 23, 2024
| |
Collapse
|
17
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
18
|
Liu JC, Zeng Q, Duan YG, Yeung WSB, Li RHW, Ng EHY, Cheung KW, Zhang Q, Chiu PCN. B cells: roles in physiology and pathology of pregnancy. Front Immunol 2024; 15:1456171. [PMID: 39434884 PMCID: PMC11491347 DOI: 10.3389/fimmu.2024.1456171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
B cells constitute a diverse and adaptable immune cell population with functions that can vary according to the environment and circumstances. The involvement of B cells in pregnancy, as well as the associated molecular pathways, has yet to be investigated. This review consolidates current knowledge on B cell activities and regulation during pregnancy, with a particular focus on the roles of various B cell subsets and the effects of B cell-derived factors on pregnancy outcomes. Moreover, the review examines the significance of B cell-associated autoantibodies, cytokines, and signaling pathways in relation to pregnancy complications such as pregnancy loss, preeclampsia, and preterm birth.
Collapse
Affiliation(s)
- Jin-Chuan Liu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qunxiong Zeng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Raymond H. W. Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ernest H. Y. Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ka-Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qingqing Zhang
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C. N. Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
19
|
Zhang R, Rygelski BT, Kruse LE, Smith JD, Wang X, Allen BN, Kramer JS, Seim GF, Faulkner TJ, Kuang H, Kokkoli E, Schrum AG, Ulery BD. Adjuvant Delivery Method and Nanoparticle Charge Influence Peptide Amphiphile Micelle Vaccine Bioactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598369. [PMID: 38915689 PMCID: PMC11195052 DOI: 10.1101/2024.06.10.598369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Vaccines are an indispensable public health measure that have enabled the eradication, near elimination, and prevention of a variety of pathogens. As research continues and our understanding of immunization strategies develops, subunit vaccines have emerged as exciting alternatives to existing whole vaccine approaches. Unfortunately, subunit vaccines often possess weak antigenicity, requiring delivery devices and adjuvant supplementation to improve their utility. Peptide amphiphile micelles have recently been shown to function as both delivery devices and self-adjuvanting systems that can be readily associated with molecular adjuvants to further improve vaccine-mediated host immunity. While promising, many design rules associated with the plethora of underlying adjustable parameters in the generation of a peptide amphiphile micelle vaccine have yet to be uncovered. This work explores the impact micellar adjuvant complexation method and incorporated antigen type have on their ability to activate dendritic cells and induce antigen specific responses. Interestingly, electrostatic complexation of CpG to micelles resulted in improved in vitro dendritic cell activation over hydrophobic association and antigen|adjuvant co-localization influenced cell-mediated, but not antibody-mediated immune responses. These exciting results complement those previously published to build the framework of a micelle vaccine toolbox that can be leveraged for future disease specific formulations.
Collapse
|
20
|
Ltaief SM, Nour-Eldine W, Manaph NPA, Tan TM, Anuar ND, Bensmail I, George J, Abdesselem HB, Al-Shammari AR. Dysregulated plasma autoantibodies are associated with B cell dysfunction in young Arab children with autism spectrum disorder in Qatar. Autism Res 2024; 17:1974-1993. [PMID: 39315457 DOI: 10.1002/aur.3235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and communication, as well as the occurrence of stereotyped and repetitive behaviors. Previous studies have provided solid evidence of dysregulated immune system in ASD; however, limited studies have investigated autoantibody profiles in individuals with ASD. This study aims to screen plasma autoantibodies in a well-defined cohort of young children with ASD (n = 100) and their matched controls (n = 60) utilizing a high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. We identified differential protein expression of 16 autoantibodies in ASD, which were correlated with differential gene expression of these markers in independent ASD cohorts. Meanwhile, we identified a distinct list of 33 autoantibodies associated with ASD severity; several of which were correlated with maternal age and birth weight in ASD. In addition, we found dysregulated numbers of circulating B cells and activated HLADR+ B cells in ASD, which were correlated with altered levels of several autoantibodies. Further in-depth analysis of B cell subpopulations revealed an increased frequency of activated naïve B cells in ASD, as well as an association of resting naïve B cells and transitional B cells with ASD severity. Pathway enrichment analysis revealed disrupted MAPK signaling in ASD, suggesting a potential relevance of this pathway to altered autoantibodies and B cell dysfunction in ASD. Finally, we found that a combination of eight autoantibodies associated with ASD severity showed an area under the curve (ROC-AUC) of 0.937 (95% CI = 0.890, 0.983; p < 0.001), which demonstrated the diagnostic accuracy of the eight-marker signature in the severity classification of ASD cases. Overall, this study determined dysregulated autoantibody profiles and B cell dysfunction in children with ASD and identified an eight-autoantibody panel for ASD severity classification.
Collapse
Affiliation(s)
- Samia M Ltaief
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Ti-Myen Tan
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Nur Diana Anuar
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jilbin George
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abeer R Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
21
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
22
|
Baridjavadi Z, Mahmoudi M, Abdollahi N, Ebadpour N, Mollazadeh S, Haghmorad D, Esmaeili SA. The humoral immune landscape in Parkinson's disease: Unraveling antibody and B cell changes. Cell Biochem Funct 2024; 42:e4109. [PMID: 39189398 DOI: 10.1002/cbf.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) in the brain and progressive loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Although the role of neuroinflammation and cellular immunity in PD has been extensively studied, the involvement of humoral immunity mediated by antibodies and B cells has received less attention. This article provides a comprehensive review of the current understanding of humoral immunity in PD. Here, we discuss alterations in B cells in PD, including changes in their number and phenotype. Evidence mostly indicates a decrease in the quantity of B cells in PD, accompanied by a shift in the population from naïve to memory cells. Furthermore, the existence of autoantibodies that target several antigens in PD has been investigated (i.e., anti-α-syn autoantibodies, anti-glial-derived antigen antibodies, anti-Tau antibodies, antineuromelanin antibodies, and antibodies against the renin-angiotensin system). Several autoantibodies are generated in PD, which may either provide protection or have harmful effects on disease progression. Furthermore, we have reviewed studies focusing on the utilization of antibodies as a potential treatment for PD, both in animal and clinical trials. This review sheds light on the intricate interplay between antibodies and the pathological processes in PD, including complement system activation.
Collapse
Affiliation(s)
- Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Yang Y, Chen X, Pan J, Ning H, Zhang Y, Bo Y, Ren X, Li J, Qin S, Wang D, Chen MM, Zhang Z. Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes. Cell 2024; 187:4790-4811.e22. [PMID: 39047727 DOI: 10.1016/j.cell.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Characterizing the compositional and phenotypic characteristics of tumor-infiltrating B cells (TIBs) is important for advancing our understanding of their role in cancer development. Here, we establish a comprehensive resource of human B cells by integrating single-cell RNA sequencing data of B cells from 649 patients across 19 major cancer types. We demonstrate substantial heterogeneity in their total abundance and subtype composition and observe immunoglobulin G (IgG)-skewness of antibody-secreting cell isotypes. Moreover, we identify stress-response memory B cells and tumor-associated atypical B cells (TAABs), two tumor-enriched subpopulations with prognostic potential, shared in a pan-cancer manner. In particular, TAABs, characterized by a high clonal expansion level and proliferative capacity as well as by close interactions with activated CD4 T cells in tumors, are predictive of immunotherapy response. Our integrative resource depicts distinct clinically relevant TIB subsets, laying a foundation for further exploration of functional commonality and diversity of B cells in cancer.
Collapse
Affiliation(s)
- Yu Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jieying Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Huiheng Ning
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiesheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Shishang Qin
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| | - Min-Min Chen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
24
|
Zhang D, Sun D. Current progress in CAR-based therapy for kidney disease. Front Immunol 2024; 15:1408718. [PMID: 39234257 PMCID: PMC11372788 DOI: 10.3389/fimmu.2024.1408718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Despite significant breakthroughs in the understanding of immunological and pathophysiological features for immune-mediated kidney diseases, a proportion of patients exhibit poor responses to current therapies or have been categorized as refractory renal disease. Engineered T cells have emerged as a focal point of interest as a potential treatment strategy for kidney diseases. By genetically modifying T cells and arming them with chimeric antigen receptors (CARs), effectively targeting autoreactive immune cells, such as B cells or antibody-secreting plasma cells, has become feasible. The emergence of CAR T-cell therapy has shown promising potential in directing effector and regulatory T cells (Tregs) to the site of autoimmunity, paving the way for effective migration, proliferation, and execution of suppressive functions. Genetically modified T-cells equipped with artificial receptors have become a novel approach for alleviating autoimmune manifestations and reducing autoinflammatory events in the context of kidney diseases. Here, we review the latest developments in basic, translational, and clinical studies of CAR-based therapies for immune-mediated kidney diseases, highlighting their potential as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
- Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Wu Y, Zhang Z, Chen L, Sun S. Immunoglobulin G glycosylation and its alterations in aging-related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1221-1233. [PMID: 39126246 PMCID: PMC11399422 DOI: 10.3724/abbs.2024137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Immunoglobulin G (IgG) is an important serum glycoprotein and a major component of antibodies. Glycans on IgG affect the binding of IgG to the Fc receptor or complement C1q, which in turn affects the biological activity and biological function of IgG. Altered glycosylation patterns on IgG emerge as important biomarkers in the aging process and age-related diseases. Key aging-related alterations observed in IgG glycosylation include reductions in galactosylation and sialylation, alongside increases in agalactosylation, and bisecting GlcNAc. Understanding the role of IgG glycosylation in aging-related diseases offers insights into disease mechanisms and provides opportunities for the development of diagnostic and therapeutic strategies. This review summarizes five aspects of IgG: an overview of IgG, IgG glycosylation, IgG glycosylation with inflammation mediation, IgG glycan changes with normal aging, as well as the relevance of IgG glycan changes to aging-related diseases. This review provides a reference for further investigation of the regulatory mechanisms of IgG glycosylation in aging-related diseases, as well as for evaluating the potential of IgG glycosylation changes as markers of aging and aging-related diseases.
Collapse
Affiliation(s)
- Yongqi Wu
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Zhida Zhang
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Lin Chen
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Shisheng Sun
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| |
Collapse
|
26
|
Guo J, Wang L. The complex landscape of immune dysregulation in multisystem inflammatory syndrome in children with COVID-19. LIFE MEDICINE 2024; 3:lnae034. [PMID: 39872865 PMCID: PMC11749780 DOI: 10.1093/lifemedi/lnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 01/30/2025]
Abstract
The immune responses following SARS-CoV-2 infection in children are still under investigation. While coronavirus disease 2019 (COVID-19) is usually mild in the paediatric population, some children develop severe clinical manifestations or multisystem inflammatory syndrome in children (MIS-C) after infection. MIS-C, typically emerging 2-6 weeks after SARS-CoV-2 exposure, is characterized by a hyperinflammatory response affecting multiple organs. This review aims to explore the complex landscape of immune dysregulation in MIS-C, focusing on innate, T cell-, and B cell-mediated immunity, and discusses the role of SARS-CoV-2 spike protein as a superantigen in MIS-C pathophysiology. Understanding these mechanisms is crucial for improving the management and outcomes for affected children.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China
| |
Collapse
|
27
|
Gazi I, Reiding KR, Groeneveld A, Bastiaans J, Huppertz T, Heck AJR. LacdiNAc to LacNAc: remodelling of bovine α-lactalbumin N-glycosylation during the transition from colostrum to mature milk. Glycobiology 2024; 34:cwae062. [PMID: 39115362 PMCID: PMC11319639 DOI: 10.1093/glycob/cwae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.
Collapse
Affiliation(s)
- Inge Gazi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - André Groeneveld
- Research and Development, FrieslandCampina, Stationsplein 4, Amersfoort 3818 LE, The Netherlands
| | - Jan Bastiaans
- Research and Development, FrieslandCampina, Stationsplein 4, Amersfoort 3818 LE, The Netherlands
| | - Thom Huppertz
- Research and Development, FrieslandCampina, Stationsplein 4, Amersfoort 3818 LE, The Netherlands
- Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
28
|
Tsai CY, Oo M, Peh JH, Yeo BCM, Aptekmann A, Lee B, Liu JJJ, Tsao WS, Dick T, Fink K, Gengenbacher M. Splenic marginal zone B cells restrict Mycobacterium tuberculosis infection by shaping the cytokine pattern and cell-mediated immunity. Cell Rep 2024; 43:114426. [PMID: 38959109 PMCID: PMC11307145 DOI: 10.1016/j.celrep.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Myo Oo
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Jih Hou Peh
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Benjamin C M Yeo
- Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore
| | - Ariel Aptekmann
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore; Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; A(∗)STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos, Singapore 138648, Singapore
| | - Joe J J Liu
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen-Shan Tsao
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA.
| |
Collapse
|
29
|
Katano A, Sawayanagi S, Minamitani M, Ohira S, Yamashita H. Radiotherapy for Solitary Bony or Extramedullary Plasmacytoma. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:470-474. [PMID: 38962550 PMCID: PMC11215434 DOI: 10.21873/cdp.10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 07/05/2024]
Abstract
Background/Aim This study aimed to determine the oncological outcomes associated with curative radiotherapy for solitary bony or extramedullary plasmacytomas by drawing on clinical data from a single tertiary center. This study aimed to provide a comprehensive understanding of the efficacy of radiotherapeutic interventions and delineate the patterns of disease recurrence. Patients and Methods Eleven consecutive patients diagnosed with solitary bony or extramedullary plasmacytomas and treated between May 2007 and November 2023 were retrospectively screened. Different radiotherapy doses and fractionations were employed, and statistical analyses were performed to assess overall survival (OS) and disease-free survival (DFS). Results Among the 11 patients (9 males and 2 females), primary tumors were located within the bone in seven patients, whereas extramedullary tumors were observed in four patients. The median prescribed radiation dose was 46 Gy. The 5-year OS and DFS were 83.3% and 28.9%, respectively. Progression to multiple myeloma occurred in four patients with primary bony plasmacytoma. Local control rate was 88.9%, and one patient experienced distant metastasis after 32 months. Bony plasmacytoma has a high tendency of leading to multiple myeloma rather than extramedullary plasmacytoma (5-year progression to multiple myeloma-free survival rate, 20.8% vs. 100%, p=0.08). Conclusion Radiotherapy is effective for solitary plasmacytomas with favorable local control and high objective response rates. A comparison with the existing literature supports the role of radiotherapy in the management of these conditions. The differences in outcomes between bony and extramedullary plasmacytomas emphasize the need for personalized treatment approaches.
Collapse
Affiliation(s)
- Atsuto Katano
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Subaru Sawayanagi
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masanari Minamitani
- Department of Comprehensive Radiation Oncology, The University of Tokyo, Tokyo, Japan
| | - Shingo Ohira
- Department of Comprehensive Radiation Oncology, The University of Tokyo, Tokyo, Japan
| | - Hideomi Yamashita
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
30
|
Sauer L, Sato A, Davies HD. Therapeutics Pipeline. Pediatr Clin North Am 2024; 71:481-498. [PMID: 38754937 DOI: 10.1016/j.pcl.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Children have unique physiologic, developmental, and psychosocial needs and unique vulnerabilities, making them a challenging population for which to develop therapeutics. This is particularly apparent in the urgent and chaotic environment of a pandemic or outbreak. Advances in the development of medical countermeasures (MCMs) for pediatric populations have grown substantially over the last decade, and the coronavirus disease 2019 pandemic forced advancements in how we approach pediatric MCM development. Consequently, a MCMs pipeline targeting the pediatric population is essential. This article addresses the challenges inherent in these differences that must be taken into account.
Collapse
Affiliation(s)
- Lauren Sauer
- GCHS, Special Pathogen Research Network, Department of Environmental, Agricultural and Occupational Health, UNMC College of Public Health, 984355 Nebraska Medical Center, Omaha, NE, USA
| | - Alice Sato
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Nebraska Medical Center, 987810, Nebraska Medical Center, Omaha, NE 68198-7810, USA
| | - Herbert Dele Davies
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Nebraska Medical Center, 987810, Nebraska Medical Center, Omaha, NE 68198-7810, USA; Academic Affairs, University of Nebraska Medical Center, 987810 Nebraska Medical Center, Omaha, NE 68198-7810, USA.
| |
Collapse
|
31
|
Figueiredo Galvao HB, Lieu M, Moodley S, Diep H, Jelinic M, Bobik A, Sobey CG, Drummond GR, Vinh A. Depletion of follicular B cell-derived antibody secreting cells does not attenuate angiotensin II-induced hypertension or vascular compliance. Front Cardiovasc Med 2024; 11:1419958. [PMID: 38883991 PMCID: PMC11176447 DOI: 10.3389/fcvm.2024.1419958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Marginal zone and follicular B cells are known to contribute to the development of angiotensin II-induced hypertension in mice, but the effector function(s) mediating this effect (e.g., antigen presentation, antibody secretion and/or cytokine production) are unknown. B cell differentiation into antibody secreting cells (ASCs) requires the transcription factor Blimp-1. Here, we studied mice with a Blimp-1 deficiency in follicular B cells to evaluate whether antibody secretion underlies the pro-hypertensive action of B cells. Methods 10- to 14-week-old male follicular B cell Blimp-1 knockout (FoB-Blimp-1-KO) and floxed control mice were subcutaneously infused with angiotensin II (0.7 mg/kg/d) or vehicle (0.1% acetic acid in saline) for 28 days. BP was measured by tail-cuff plethysmography or radiotelemetry. Pulse wave velocity was measured by ultrasound. Aortic collagen was quantified by Masson's trichrome staining. Cell types and serum antibodies were quantified by flow cytometry and a bead-based multiplex assay, respectively. Results In control mice, angiotensin II modestly increased serum IgG3 levels and markedly increased BP, cardiac hypertrophy, aortic stiffening and fibrosis. FoB-Blimp-1-KO mice exhibited impaired IgG1, IgG2a and IgG3 production despite having comparable numbers of B cells and ASCs to control mice. Nevertheless, FoB-Blimp-1-KO mice still developed hypertension, cardiac hypertrophy, aortic stiffening and fibrosis following angiotensin II infusion. Conclusions Inhibition of follicular B cell differentiation into ASCs did not protect against angiotensin II-induced hypertension or vascular compliance. Follicular B cell functions independent of their differentiation into ASCs and ability to produce high-affinity antibodies, or other B cell subtypes, are likely to be involved in angiotensin II-induced hypertension.
Collapse
Affiliation(s)
- Hericka Bruna Figueiredo Galvao
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Maggie Lieu
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Seyuri Moodley
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Henry Diep
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Alexander Bobik
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Immunology, Monash University, Clayton, VIC, Australia
- Center for Inflammatory Diseases, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Liang Y, Chang Y, Xie Y, Hou Q, Zhao H, Liu G, Chen X, Tian G, Cai J, Jia G. Dietary ethylenediamine dihydroiodide mitigated Escherichia coli O78-induced immune and intestinal damage of ducks via suppression of NF-κB signal. Poult Sci 2024; 103:103610. [PMID: 38489887 PMCID: PMC10952079 DOI: 10.1016/j.psj.2024.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
This study investigated the effect of Ethylenediamine dihydroiodide (EDDI) on growth performance, immune function and intestinal health of meat ducks challenged with Avian pathogenic Escherichia coli (APEC). A total of 360 one-day-old Cherry Valley ducks with similar body weight were randomly allocated to 6 treatments (6 floor cages, 10 birds/cage). A 3 × 2 factor design was used with 3 dietary iodine levels (0, 8, 16 mg/kg in the form EDDI and whether APEC was challenged or not at 7-day-old ducks. The feeding period lasted for 20 d. The results showed that the addition of EDDI reduced APEC-induced decrease of the 20-d weight loss of meat ducks (P < 0.05), and alleviated the inflammatory response of liver tissue induced by APEC challenge in meat ducks. In terms of immune function, EDDI supplementation reduced the immune organ index and increased the immune cell count of meat ducks, reduced the level of endotoxins in the serum of meat ducks (P < 0.05), as well as inhibited the expression levels of liver and spleen inflammatory factors and TLR signaling pathway related genes induced by APEC (P < 0.05). In terms of intestinal health, EDDI inhibited APEC-induced decreases in ZO-3 genes expression and increases in IL-1β and TNF-α expression, increased relative abundance of beneficial bacteria in the cecum and content of metabolites. Pearson correlation analysis showed that there was a significant correlation between liver inflammatory factors and TLR4 signaling pathway genes, and there might be a significant correlation between intestinal microbial flora and other physiological indexes of meat ducks, which indicated that EDDI could reduce the damage to immune function and intestinal health caused by APEC challenge through regulating the structure of intestinal flora. Collectively, our findings suggest that the EDDI can promote growth performance, improve immune function and the intestinal barrier in APEC-challenged meat ducks, which may be related to the suppression of NF-κB signal.
Collapse
Affiliation(s)
- Yanru Liang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yaqi Chang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yueqin Xie
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qinteng Hou
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
33
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
34
|
Stasiłowicz-Krzemień A, Szymanowska D, Szulc P, Cielecka-Piontek J. Antimicrobial, Probiotic, and Immunomodulatory Potential of Cannabis sativa Extract and Delivery Systems. Antibiotics (Basel) 2024; 13:369. [PMID: 38667045 PMCID: PMC11047504 DOI: 10.3390/antibiotics13040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
The compounds present in hemp show multidirectional biological activity. It is related to the presence of secondary metabolites, mainly cannabinoids, terpenes, and flavonoids, and the synergy of their biological activity. The aim of this study was to assess the activity of the Henola Cannabis sativae extract and its combinations with selected carriers (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, magnesium aluminometasilicate, and hydroxypropyl-β-cyclodextrin) in terms of antimicrobial, probiotic, and immunobiological effects. As a result of the conducted research, the antimicrobial activity of the extract was confirmed in relation to the following microorganisms: Clostridium difficile, Listeria monocytogenes, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus pyrogenes, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aereuginosa, and Candida albicans (microorganism count was reduced from ~102 CFU mL-1 to <10 CFU mL-1 in most cases). Additionally, for the system with hydroxypropyl-β-cyclodextrin, a significant probiotic potential against bacterial strains was established for strains Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus, Lactobacillus reuteri, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus fermentum, and Streptococcus thermophilus (microorganism count was increased from ~102 to 104-107). In terms of immunomodulatory properties, it was determined that the tested extract and the systems caused changes in IL-6, IL-8, and TNF-α levels.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Daria Szymanowska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
35
|
Marques AC, Costa PC, Velho S, Amaral MH. Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles. Life (Basel) 2024; 14:489. [PMID: 38672759 PMCID: PMC11051252 DOI: 10.3390/life14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
36
|
Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front Cell Neurosci 2024; 18:1360242. [PMID: 38650657 PMCID: PMC11033448 DOI: 10.3389/fncel.2024.1360242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The immune system has emerged as a key regulator of central nervous system (CNS) function in health and in disease. Importantly, improved understanding of immune contributions to mood disorders has provided novel opportunities for the treatment of debilitating stress-related mental health conditions such as major depressive disorder (MDD). Yet, the impact to, and involvement of, B lymphocytes in the response to stress is not well-understood, leaving a fundamental gap in our knowledge underlying the immune theory of depression. Several emerging clinical and preclinical findings highlight pronounced consequences for B cells in stress and MDD and may indicate key roles for B cells in modulating mood. This review will describe the clinical and foundational observations implicating B cell-psychological stress interactions, discuss potential mechanisms by which B cells may impact brain function in the context of stress and mood disorders, describe research tools that support the investigation of their neurobiological impacts, and highlight remaining research questions. The goal here is for this discussion to illuminate both the scope and limitations of our current understanding regarding the role of B cells, stress, mood, and depression.
Collapse
Affiliation(s)
- Elizabeth Engler-Chiurazzi
- Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
37
|
Sharma T, Khandelwal V. Evaluation of immunomodulatory (humoral as well as cell-mediated) and cytokines (TNF-α & IL-10) regulating potential of Neolamarckia cadamba fruit extract in Wistar albino rats. 3 Biotech 2024; 14:98. [PMID: 38456082 PMCID: PMC10914651 DOI: 10.1007/s13205-024-03947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Current work has been designed to investigate the immunomodulatory efficacy with particular reference to humoral, cell-mediated and cytokine-modulating potential of hot aqueous extract of Neolamarckia cadamba (HAENC) fruits in Wistar albino rats. The effect of different concentrations of HAENC fruits over cell-mediated immune response was assessed using six groups (Gp-I as control, Gp-II with 20 µg/mL, Gp-III with 50 µg/mL, Gp-IV with 100 µg/mL, Gp-V with 250 µg/mL, and Gp-VI with 500 µg/mL) of Wistar albino rats having six animals in each. The amount of tumor necrosis factor-α (TNF-α) and interleukin (IL)-10 was measured by sandwich ELISA with different concentrations of HAENC (50-500 µg/mL) in splenocyte culture supernatant and their expression was determined by qRT-PCR Humoral immune response was determined by measuring the serum antibody titer of Wistar albino rats against Salmonella typhimurium 'O' antigen using four groups containing six animals each (Gp-I as control, Gp II, III & IV were respectively fed orally with 125, 250, and 500 mg/Kg body weight using HAENC fruits). LC-MS analysis suggested the presence of cadambine, chlorogenic acid, cadambagenic acid, stearic acid, octadecanoic acid ethyl ether, and 7-hydroxy-5,2'-4'-trimethoxyflavonon in the extract based on their m/z ratio. The result suggested significant (p < 0.01) dose-dependent proliferation of Concanavalin A (Con A)-treated splenocytes, depicting cell-mediated immunostimulatory potential of HAENC fruits. A dose-dependent significant decrease (p < 0.01) was found in the amount of TNF-α and IL-10 was found to increase significantly (p < 0.01) as extract concentrations increased. TNF-α and IL-10 expressions were confirmed at the molecular level by qRT-PCR analysis of mRNA transcripts of TNF-α and IL-10 genes. Fold expression of TNF-α and IL-10 gene was 0.197 and 3.58 at 250 µg/mL, 0.02 and 20.11 at 500 µg/mL concentrations of HAENC respectively in comparison to control. Serum antibody titer was significantly increased (p < 0.01) in animals fed with different doses of HAENC fruits. The present study suggested the anti-inflammatory effect of HAENC fruits which also influences the networking of cytokines, implying that it may play a role in regulating the activity of the host's immune system and can serve as a potent herbal drug with immuno-stimulatory potential.
Collapse
Affiliation(s)
- Tarubala Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, NH2 Mathura-Delhi Highway, Chaumuhan, Mathura, 281406 India
| | - Vishal Khandelwal
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, NH2 Mathura-Delhi Highway, Chaumuhan, Mathura, 281406 India
| |
Collapse
|
38
|
Lee H, Shin K, Lee Y, Lee S, Lee S, Lee E, Kim SW, Shin HY, Kim JH, Chung J, Kwon S. Identification of B cell subsets based on antigen receptor sequences using deep learning. Front Immunol 2024; 15:1342285. [PMID: 38576618 PMCID: PMC10991714 DOI: 10.3389/fimmu.2024.1342285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
B cell receptors (BCRs) denote antigen specificity, while corresponding cell subsets indicate B cell functionality. Since each B cell uniquely encodes this combination, physical isolation and subsequent processing of individual B cells become indispensable to identify both attributes. However, this approach accompanies high costs and inevitable information loss, hindering high-throughput investigation of B cell populations. Here, we present BCR-SORT, a deep learning model that predicts cell subsets from their corresponding BCR sequences by leveraging B cell activation and maturation signatures encoded within BCR sequences. Subsequently, BCR-SORT is demonstrated to improve reconstruction of BCR phylogenetic trees, and reproduce results consistent with those verified using physical isolation-based methods or prior knowledge. Notably, when applied to BCR sequences from COVID-19 vaccine recipients, it revealed inter-individual heterogeneity of evolutionary trajectories towards Omicron-binding memory B cells. Overall, BCR-SORT offers great potential to improve our understanding of B cell responses.
Collapse
Affiliation(s)
- Hyunho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kyoungseob Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yongju Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Soobin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seungyoun Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunjae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Escoe B, Fogleman BM, Sherertz R. Epiglottitis Strikes Twice: A Case of Adult Recurrent Epiglottitis. Cureus 2024; 16:e56940. [PMID: 38665746 PMCID: PMC11044190 DOI: 10.7759/cureus.56940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Epiglottitis is an uncommon condition in adults, and recurrent episodes are rare. We report a 58-year-old male who had a second episode of epiglottitis nine years after his first. Our patient's immunologic profile obtained during his hospitalization revealed a significantly low absolute cluster of differentiation 4+ (CD4+) T lymphocyte count of 77 cells/mcL and a low immunoglobulin G (IgG) level of 635 mg/dL. Our patient was successfully managed with broad-spectrum antibiotics and corticosteroids. Given the known ability of short-term corticosteroids and acute inflammation's effect on lymphocyte populations, the significance of these laboratory values remains unclear due to our patient's unwillingness to undergo further diagnostic testing following discharge from our facility. We have considered multiple underlying etiologies for our patient's predisposition to developing this rare, recurrent, infectious manifestation; however, the exact cause is yet to be fully elucidated.
Collapse
Affiliation(s)
- Brooke Escoe
- Department of Internal Medicine, Grand Strand Regional Medical Center, Myrtle Beach, USA
| | - Brody M Fogleman
- Department of Internal Medicine, Edward Via College of Osteopathic Medicine - Carolinas, Spartanburg, USA
| | - Robert Sherertz
- Department of Internal Medicine, Grand Strand Regional Medical Center, Myrtle Beach, USA
| |
Collapse
|
40
|
Mandal G, Pradhan S. B cell responses and antibody-based therapeutic perspectives in human cancers. Cancer Rep (Hoboken) 2024; 7:e2056. [PMID: 38522010 PMCID: PMC10961090 DOI: 10.1002/cnr2.2056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Immuno-oncology has been focused on T cell-centric approaches until the field recently started appreciating the importance of tumor-reactive antibody production by tumor-infiltrating plasma B cells, and the necessity of developing novel therapeutic antibodies for the treatment of different cancers. RECENT FINDINGS B lymphocytes often infiltrate solid tumors and the extent of B cell infiltration normally correlates with stronger T cell responses while generating humoral responses against malignant progression by producing tumor antigens-reactive antibodies that bind and coat the tumor cells and promote cytotoxic effector mechanisms, reiterating the fact that the adaptive immune system works by coordinated humoral and cellular immune responses. Isotypes, magnitude, and the effector functions of antibodies produced by the B cells within the tumor environment differ among cancer types. Interestingly, apart from binding with specific tumor antigens, antibodies produced by tumor-infiltrating B cells could bind to some non-specific receptors, peculiarly expressed by cancer cells. Antibody-based immunotherapies have revolutionized the modalities of cancer treatment across the world but are still limited against hematological malignancies and a few types of solid tumor cancers with a restricted number of targets, which necessitates the expansion of the field to have newer effective targeted antibody therapeutics. CONCLUSION Here, we discuss about recent understanding of the protective spontaneous antitumor humoral responses in human cancers, with an emphasis on the advancement and future perspectives of antibody-based immunotherapies in cancer.
Collapse
Affiliation(s)
- Gunjan Mandal
- Division of Cancer BiologyDBT‐Institute of Life SciencesBhubaneswarIndia
| | - Suchismita Pradhan
- Division of Cancer BiologyDBT‐Institute of Life SciencesBhubaneswarIndia
| |
Collapse
|
41
|
Chandnani N, Gupta I, Mandal A, Sarkar K. Participation of B cell in immunotherapy of cancer. Pathol Res Pract 2024; 255:155169. [PMID: 38330617 DOI: 10.1016/j.prp.2024.155169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Even though their effector roles extend beyond conventional humoral immunity, B and plasma cells may exhibit antitumor effects through antibody-dependent cell cytotoxicity (ADCC) and activation of the complement cascade. Depending on whether they are positioned in immature or mature compartments termed tertiary lymphoid structures (TLS), which include T cells, B cells are believed to play numerous functions in modulating the immune system's capacity to destroy cancer cells. These formations represent a process of lymphoid neogenesis that takes place in peripheral tissues in response to prolonged exposure to inflammatory signals. Activated in the germinal centres of tertiary lymphoid structures, B cells may directly present tumor-associated antigens to T cells, make antibodies that enhance antigen presentation to T cells, or kill tumour cells, resulting in a favourable therapeutic effect. Immune complexes may also enhance inflammation, angiogenesis, and immunosuppression via the activation of macrophages and complement, resulting in detrimental effects. The functional variety of B-cell subsets includes professional antigen-presenting cells, regulatory cells, memory populations, and plasma cells that produce antibodies. Importantly, antibodies may independently generate innate immune responses and the cancer immunity cycle. B cells and B-cell-mediated antibody responses constitute the largely underestimated second arm of the adaptive immune system and unquestionably need more consideration in cancer. This article reviews the known roles of B lymphocytes in the tumour microenvironment, their contribution to anticancer activity of immunotherapies, and their significance in overall survival of cancer patients. In addition to producing antibodies, B cells regulate the immune system and serve as effective antigen-presenting cells.
Collapse
Affiliation(s)
- Nikhil Chandnani
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ishika Gupta
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ayush Mandal
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
42
|
Sengupta S, Goswami D, Chakraborty B, Chaudhuri SJ, Ghosh MK, Chatterjee M. Status of B-Lymphocyte Subsets and Their Homing Markers in Patients With Post-Kala-Azar Dermal Leishmaniasis. Parasite Immunol 2024; 46:e13031. [PMID: 38527908 DOI: 10.1111/pim.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
In visceral leishmaniasis, the Type II helper T cell predominance results in B cell modulation and enhancement of anti-leishmanial IgG. However, information regarding its dermal sequel, post-kala-azar dermal leishmaniasis (PKDL), remains limited. Accordingly, this study aimed to elucidate the B cell-mediated antibody-dependent/independent immune profiles of PKDL patients. In the peripheral blood of PKDL patients, immunophenotyping of B cell subsets was performed by flow cytometry and by immunohistochemistry at lesional sites. The functionality of B cells was assessed in terms of skin IgG by immunofluorescence, while the circulating levels of B cell chemoattractants (CCL20, CXCL13, CCL17, CCL22, CCL19, CCL27, CXCL9, CXCL10 and CXCL11) were evaluated by a multiplex assay. In patients with PKDL as compared with healthy controls, there was a significant decrease in pan CD19+ B cells. However, within the CD19+ B cell population, there was a significantly raised proportion of switched memory B cells (CD19+IgD-CD27+) and plasma cells (CD19+IgD-CD38+CD27+). This was corroborated at lesional sites where a higher expression of CD20+ B cells and CD138+ plasma cells was evident; they were Ki67 negative and demonstrated a raised IgG. The circulating levels of B cell chemoattractants were raised and correlated positively with lesional CD20+ B cells. The increased levels of B cell homing markers possibly accounted for their enhanced presence at the lesional sites. There was a high proportion of plasma cells, which accounted for the increased presence of IgG that possibly facilitated parasite persistence and disease progression.
Collapse
Affiliation(s)
- Shilpa Sengupta
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Deep Goswami
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Bidhan Chakraborty
- Multidisciplinary Research Unit (MRU), Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Surya Jyati Chaudhuri
- Department of Microbiology, Sarat Chandra Chattopadhyay Govt. Medical College and Hospital, Uluberia, Howrah, India
| | - Manab K Ghosh
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| |
Collapse
|
43
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Why death and aging ? All memories are imperfect. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:21-35. [PMID: 38316274 DOI: 10.1016/j.pbiomolbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Recent papers have emphasized the primary role of cellular information management in biological and evolutionary development. In this framework, intelligent cells collectively measure environmental cues to improve informational validity to support natural cellular engineering as collaborative decision-making and problem-solving in confrontation with environmental stresses. These collective actions are crucially dependent on cell-based memories as acquired patterns of response to environmental stressors. Notably, in a cellular self-referential framework, all biological information is ambiguous. This conditional requirement imposes a previously unexplored derivative. All cellular memories are imperfect. From this atypical background, a novel theory of aging and death is proposed. Since cellular decision-making is memory-dependent and biology is a continuous natural learning system, the accumulation of previously acquired imperfect memories eventually overwhelms the flexibility cells require to react adroitly to contemporaneous stresses to support continued cellular homeorhetic balance. The result is a gradual breakdown of the critical ability to efficiently measure environmental information and effect cell-cell communication. This age-dependent accretion governs senescence, ultimately ending in death as an organism-wide failure of cellular networking. This approach to aging and death is compatible with all prior theories. Each earlier approach illuminates different pertinent cellular signatures of this ongoing, obliged, living process.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
44
|
Lin YC, Gau TS, Jiang ZH, Chen KY, Tsai YT, Lin KY, Tung HN, Chang FC. Targeted therapy in glomerular diseases. J Formos Med Assoc 2024; 123:149-158. [PMID: 37442744 DOI: 10.1016/j.jfma.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/14/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Targeted therapy has emerged as a more precise approach to treat glomerular diseases, focusing on specific molecular or cellular processes that contribute to disease development or progression. This approach complements or replaces traditional immunosuppressive therapy, optimizes supportive care, and provides a more personalized treatment strategy. In this review, we summarize the evolving understanding of pathogenic mechanisms in immune-mediated glomerular diseases and the developing targeted therapies based on these mechanisms. We begin by discussing pan-B-cell depletion, anti-CD20 rituximab, and targeting B-cell survival signaling through the BAFF/APRIL pathway. We also exam specific plasma cell depletion with anti-CD38 antibody. We then shift our focus to complement activation in glomerular diseases, which is involved in antibody-mediated glomerular diseases, such as IgA nephropathy, membranous nephropathy, ANCA-associated vasculitis, and lupus nephritis. Non-antibody-mediated complement activation occurs in glomerular diseases, including C3 glomerulopathy, complement-mediated atypical hemolytic uremic syndrome, and focal segmental glomerulosclerosis. We discuss specific inhibition of terminal, lectin, and alternative pathways in different glomerular diseases. Finally, we summarize current clinical trials targeting the final pathways of various glomerular diseases, including kidney fibrosis. We conclude that targeted therapy based on individualized pathogenesis should be the future of treating glomerular diseases.
Collapse
Affiliation(s)
- Yi-Chan Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tyng-Shiuan Gau
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Zheng-Hong Jiang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ting Tsai
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Lin
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hung-Ning Tung
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
45
|
Fu R, Zhao L, Guo Y, Qin X, Xu W, Cheng X, Zhang Y, Xu S. AIM2 inflammasome: A potential therapeutic target in ischemic stroke. Clin Immunol 2024; 259:109881. [PMID: 38142900 DOI: 10.1016/j.clim.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ischemic stroke (IS) is a significant global public health issue with a high incidence, disability, and mortality rate. A robust inflammatory cascade with complex and wide-ranging mechanisms occurs following ischemic brain injury. Inflammasomes are multiprotein complexes in the cytoplasm that modulate the inflammatory response by releasing pro-inflammatory cytokines and inducing cellular pyroptosis. Among these inflammasomes, the Absent in Melanoma 2 (AIM2) inflammasome shows the ability to detect a wide range of pathogen DNAs, thereby triggering an inflammatory response. Recent studies have indicated that the aberrant expression of AIM2 inflammasome in various cells is closely associated with the pathological processes of ischemic brain injury. This paper summarizes the expression and regulatory role of AIM2 in CNS and peripheral immune cells and discusses current therapeutic approaches targeting AIM2 inflammasome. These findings aim to serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoli Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhe Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
46
|
Yildirim EA, Laptev GY, Tiurina DG, Gorfunkel EP, Ilina LA, Filippova VA, Dubrovin AV, Brazhnik EA, Novikova NI, Melikidi VK, Kalitkina KA, Ponomareva ES, Griffin DK, Romanov MN. Investigating adverse effects of chronic dietary exposure to herbicide glyphosate on zootechnical characteristics and clinical, biochemical and immunological blood parameters in broiler chickens. Vet Res Commun 2024; 48:153-164. [PMID: 37594698 PMCID: PMC10810961 DOI: 10.1007/s11259-023-10195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Although the herbicide glyphosate is widely used globally and considered safe, more evidence of its adverse effects on animals and humans is accumulating. The present investigation was aimed at evaluating the impact of different glyphosate concentrations on zootechnical characteristics and clinical, biochemical and immunological blood parameters in Ross 308 broiler chickens. Four groups were employed, including untreated control and three experimental groups fed diets enriched with glyphosate at doses of 10, 20 and 100 ppm that conformed to 0.5, 1 and 5 maximum residue limits, respectively. The results showed that glyphosate is a stress factor triggering a multifaceted effect on important blood parameters (e.g., white blood cell and phagocytic counts), which was shown for the first time in the experiments involving productive meat-type poultry. It was first revealed that glyphosate-induced changes in blood parameters may be related to a negative impact on the zootechnical characteristics including the digestive tract organ development and body weight gain. The study findings suggested that exposure to glyphosate in the feedstuffs can adversely affect the physiological condition and productivity of broilers.
Collapse
Affiliation(s)
- Elena A Yildirim
- BIOTROF+ Ltd, Pushkin, St. Petersburg, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia
| | - Georgi Yu Laptev
- BIOTROF+ Ltd, Pushkin, St. Petersburg, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia
| | | | | | - Larisa A Ilina
- BIOTROF+ Ltd, Pushkin, St. Petersburg, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia
| | - Valentina A Filippova
- BIOTROF+ Ltd, Pushkin, St. Petersburg, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia
| | | | | | | | | | - Kseniya A Kalitkina
- BIOTROF+ Ltd, Pushkin, St. Petersburg, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia
| | | | | | - Michael N Romanov
- School of Biosciences, University of Kent, Canterbury, UK.
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Oblast, Russia.
| |
Collapse
|
47
|
Guntermann A, Marcus K, May C. The good or the bad: an overview of autoantibodies in traumatic spinal cord injury. Biol Chem 2024; 405:79-89. [PMID: 37786927 DOI: 10.1515/hsz-2023-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Infections remain the most common cause of death after traumatic spinal cord injury, likely due to a developing immune deficiency syndrome. This, together with a somewhat contradictory development of autoimmunity in many patients, are two major components of the maladaptive systemic immune response. Although the local non-resolving inflammation in the lesioned spinal cord may lead to an antibody formation against autoantigens of the injured spinal cord tissue, there are also natural (pre-existing) autoantibodies independent of the injury. The way in which these autoantibodies with different origins affect the neuronal and functional outcome of spinal cord-injured patients is still controversial.
Collapse
Affiliation(s)
- Annika Guntermann
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| | - Katrin Marcus
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| | - Caroline May
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| |
Collapse
|
48
|
Tyler SR, Lozano-Ojalvo D, Guccione E, Schadt EE. Anti-correlated feature selection prevents false discovery of subpopulations in scRNAseq. Nat Commun 2024; 15:699. [PMID: 38267438 PMCID: PMC10808220 DOI: 10.1038/s41467-023-43406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/07/2023] [Indexed: 01/26/2024] Open
Abstract
While sub-clustering cell-populations has become popular in single cell-omics, negative controls for this process are lacking. Popular feature-selection/clustering algorithms fail the null-dataset problem, allowing erroneous subdivisions of homogenous clusters until nearly each cell is called its own cluster. Using real and synthetic datasets, we find that anti-correlated gene selection reduces or eliminates erroneous subdivisions, increases marker-gene selection efficacy, and efficiently scales to millions of cells.
Collapse
Affiliation(s)
- Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Daniel Lozano-Ojalvo
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
49
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
50
|
Faber E, van Schalkwyk A, Ivy Tshilwane S, Van Kleef M, Pretorius A. Identification of T cell and linear B cell epitopes on African horse sickness virus serotype 4 proteins VP1-1, VP2, VP4, VP7 and NS3. Vaccine 2024; 42:136-145. [PMID: 38097459 DOI: 10.1016/j.vaccine.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/01/2024]
Abstract
The viral proteins VP1-1, VP2, VP4, VP7 and NS3, of African horse sickness virus serotype 4 (AHSV4), have previously been identified to contain CD8+ T cell epitopes. In this study, overlapping peptides spanning the entire sequences of these AHSV4 proteins were synthesized and used to map epitopes. Peripheral blood mononuclear cells (PBMC) isolated from five horses immunized with an attenuated AHSV4 were stimulated in vitro with the synthesized peptides. Various memory immune assays were used to identify the individual peptides that contain CD8+ T cell epitopes, CD4+ T cell epitopes and linear B cell epitopes. The newly discovered individual peptides of AHSV4 proteins VP1-1, VP4, VP7 and/or NS3 that contain CD8+ T cell, CD4+ T cell or linear B cell epitopes could contribute to the design and development of new generation AHS peptide-based vaccines and therapeutics.
Collapse
Affiliation(s)
- Erika Faber
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa.
| | - Antoinette van Schalkwyk
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Biotechnology, University of the Western Cape, Robert Sobukwe road, Bellville 7535, South Africa
| | - Selaelo Ivy Tshilwane
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Mirinda Van Kleef
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Alri Pretorius
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|