1
|
Xue C, Lv J, Yang B, Mei S, Xu J, Li X, Zhang L, Mao Z. Gene therapy in polycystic kidney disease: A promising future. J Transl Int Med 2024; 12:543-552. [PMID: 39802450 PMCID: PMC11720931 DOI: 10.1515/jtim-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Polycystic kidney disease (PKD) is a genetic disorder marked by numerous cysts in the kidneys, progressively impairing renal function. It is classified into autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), with ADPKD being more common. Current treatments mainly focus on symptom relief and slowing disease progression, without offering a cure. Recent advancements in gene editing technologies, such as CRISPR-Cas9, have introduced new therapeutic possibilities for PKD. These approaches include miR-17 antisense oligonucleotides, adenovirus-mediated gene knockdown, Pkd1 gene or polycystin -1 C-terminal tail enhancement therapy, and 3-UTR miR-17 binding element by CRISPR-Cas9, which have shown potential in animal models and early clinical trials. Specifically for ARPKD, strategies like antisense oligonucleotide therapy targeting c-myc and CRISPR/ Cas9 knockdown of the P2rx7 gene have shown promise. Despite facing challenges such as technological limitations, ethical and legal issues, and high costs, gene therapy presents unprecedented hope for PKD treatment. Future interdisciplinary collaboration and international cooperation are essential for developing more effective treatment strategies for PKD patients.
Collapse
Affiliation(s)
- Cheng Xue
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Jiayi Lv
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Bo Yang
- Internal Medicine III (Nephrology), Naval Medical Center of PLA, Naval Medical University, Shanghai200433, China
| | - Shuqin Mei
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Jing Xu
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Xinming Li
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Liming Zhang
- Department of Nephrology, Zhabei Central Hospital of Jing’an District, Shanghai200120, China
| | - Zhiguo Mao
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| |
Collapse
|
2
|
Gargalionis AN, Adamopoulos C, Vottis CT, Papavassiliou AG, Basdra EK. Runx2 and Polycystins in Bone Mechanotransduction: Challenges for Therapeutic Opportunities. Int J Mol Sci 2024; 25:5291. [PMID: 38791330 PMCID: PMC11121608 DOI: 10.3390/ijms25105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christos T. Vottis
- First Department of Orthopedics, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
3
|
Zheng Q, Reid G, Eccles MR, Stayner C. Non-coding RNAs as potential biomarkers and therapeutic targets in polycystic kidney disease. Front Physiol 2022; 13:1006427. [PMID: 36203940 PMCID: PMC9531119 DOI: 10.3389/fphys.2022.1006427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic kidney disease (PKD) is a significant cause of end-stage kidney failure and there are few effective drugs for treating this inherited condition. Numerous aberrantly expressed non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), may contribute to PKD pathogenesis by participating in multiple intracellular and intercellular functions through post-transcriptional regulation of protein-encoding genes. Insights into the mechanisms of miRNAs and other ncRNAs in the development of PKD may provide novel therapeutic strategies. In this review, we discuss the current knowledge about the roles of dysregulated miRNAs and other ncRNAs in PKD. These roles involve multiple aspects of cellular function including mitochondrial metabolism, proliferation, cell death, fibrosis and cell-to-cell communication. We also summarize the potential application of miRNAs as biomarkers or therapeutic targets in PKD, and briefly describe strategies to overcome the challenges of delivering RNA to the kidney, providing a better understanding of the fundamental advances in utilizing miRNAs and other non-coding RNAs to treat PKD.
Collapse
Affiliation(s)
| | | | | | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Boros É, Hegedűs Z, Kellermayer Z, Balogh P, Nagy I. Global alteration of colonic microRNAome landscape associated with inflammatory bowel disease. Front Immunol 2022; 13:991346. [PMID: 36177008 PMCID: PMC9513375 DOI: 10.3389/fimmu.2022.991346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that associates with, among others, increased risk of colorectal cancer. There is a growing evidence that miRNAs have important roles in pathological processes, such as inflammation or carcinogenesis. Understanding the molecular mechanisms such as alterations in microRNAome upon chronic intestinal inflammation is critical for understanding the exact pathomechanism of IBD. Hence, we conducted a genome wide microRNAome analysis by applying miRNA-Seq in a rat model of experimental colitis, validated the data by QPCR, examined the expression of a selection of precursor and mature miRNAs, performed in depth biological interpretation using Ingenuity Pathway Analysis and tested the obtained results on samples derived from human patients. We identified specific, interdependent expression pattern of activator/repressor transcription factors, miRNAs and their direct targets in the inflamed colon samples. Particularly, decreased expression of the miR-200 family members (miR-200a/b/c,-141, and -429) and miR-27b correlates with the reduced level of their enhancers (HNF1B, E2F1), elevated expression of their repressors (ZEB2, NFKB1) and increased expression of their target genes (ZEB2, RUNX1). Moreover, the marked upregulation of six miR-27b target genes (IFI16, GCA, CYP1B1, RUNX1, MEF2C and MMP13) in the inflamed colon tissues is a possible direct consequence of the lack of repression due to the downregulated miRNA-27b expression. Our data indicate that changes in microRNAome are associated with the pathophysiology of IBD, consequently, microRNAs offer potential targets for the diagnosis, prognosis and treatment of IBD.
Collapse
Affiliation(s)
- Éva Boros
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - István Nagy
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
5
|
Zang L, Gao F, Huang A, Zhang Y, Luo Y, Chen L, Mao N. Icariin inhibits epithelial mesenchymal transition of renal tubular epithelial cells via regulating the miR-122-5p/FOXP2 axis in diabetic nephropathy rats. J Pharmacol Sci 2022; 148:204-213. [PMID: 35063135 DOI: 10.1016/j.jphs.2021.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial mesenchymal transition (EMT) of renal tubular epithelial cells (RTECs) dominates the pathology of diabetic nephropathy (DN). microRNAs (miRNAs) can influence the fate of DN via regulation of EMT. This study aimed to analyze the role of Icariin (ICA) in EMT of RTECs, hoping to provide theoretical basis for DN management. The DN rat model was established using streptozocin, followed by ICA treatment, histopathological observation, and detection of creatinine and blood urea nitrogen. In vitro cell models were established using high glucose (HG), followed by assessment of cell proliferation, apoptosis, and migration, and E-cadherin, α-SMA, miR-122-5p, and FOXP2 expressions. Cells were transfected with miR-122-5p mimics or si-FOXP2 for joint experiments with ICA. The targeting relationship between miR-122-5p and FOXP2 was verified. ICA repaired renal dysfunctions and glomerular structure abnormities of DN rats in a dose-dependent manner. In vitro, ICA improved proliferation while suppressed migration, apoptosis, and EMT of RTECs. miR-122-5p was up-regulated in DN rats and suppressed by ICA, and miR-122-5p targeted FOXP2. miR-122-5p up-regulation or FOXP2 down-regulation reversed the protective effects of ICA on HG-induced RTECs. Overall, our finding ascertained that ICA inhibited miR-122-5p to promote FOXP2 transcription, thereby attenuating EMT of RTECs and renal injury in DN rats.
Collapse
Affiliation(s)
- Li Zang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Fang Gao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Aijing Huang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Yalan Zhang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Yangyan Luo
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Lijia Chen
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Nan Mao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China.
| |
Collapse
|
6
|
Abstract
Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of diabetes. In addition to the characteristic clinical manifestations of proteinuria, it also has a complex pathological process that results from the combined effects of multiple factors involving the whole renal structure such as glomeruli, renal tubules, and blood vessels. Non-coding RNAs (ncRNA) are transcripts with no or low coding potential, among which micro RNA (miRNA) has been widely studied as a functional miRNA involved in regulation and a potential biomarker for disease prediction. The abundance of long coding RNA (lncRNA) in vivo is highly expressed with a certain degree of research progress, but the structural similarity makes the research still challenging. The research of circular RNA (circRNA) is still in its early stages. It is more relevant to the study to provide a more relevant link between diseases in the kidney and other tissues or organs. This classification review mainly summarized the biogenesis characteristics, the pathological mechanism of ncRNA-regulating diseases, the ways of ncRNA in the clinical prediction as a potential biomarker, and the interaction networks of ncRNA.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiuyue Wang
- Department of Endocrinology, the First Hospital Affiliated of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Non-Coding RNAs in Hereditary Kidney Disorders. Int J Mol Sci 2021; 22:ijms22063014. [PMID: 33809516 PMCID: PMC7998154 DOI: 10.3390/ijms22063014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Single-gene defects have been revealed to be the etiologies of many kidney diseases with the recent advances in molecular genetics. Autosomal dominant polycystic kidney disease (ADPKD), as one of the most common inherited kidney diseases, is caused by mutations of PKD1 or PKD2 gene. Due to the complexity of pathophysiology of cyst formation and progression, limited therapeutic options are available. The roles of noncoding RNAs in development and disease have gained widespread attention in recent years. In particular, microRNAs in promoting PKD progression have been highlighted. The dysregulated microRNAs modulate cyst growth through suppressing the expression of PKD genes and regulating cystic renal epithelial cell proliferation, mitochondrial metabolism, apoptosis and autophagy. The antagonists of microRNAs have emerged as potential therapeutic drugs for the treatment of ADPKD. In addition, studies have also focused on microRNAs as potential biomarkers for ADPKD and other common hereditary kidney diseases, including HNF1β-associated kidney disease, Alport syndrome, congenital abnormalities of the kidney and urinary tract (CAKUT), von Hippel-Lindau (VHL) disease, and Fabry disease. This review assembles the current understanding of the non-coding RNAs, including microRNAs and long noncoding RNAs, in polycystic kidney disease and these common monogenic kidney diseases.
Collapse
|
8
|
Chan SC, Hajarnis SS, Vrba SM, Patel V, Igarashi P. Hepatocyte nuclear factor 1β suppresses canonical Wnt signaling through transcriptional repression of lymphoid enhancer-binding factor 1. J Biol Chem 2020; 295:17560-17572. [PMID: 33453998 DOI: 10.1074/jbc.ra120.015592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is a tissue-specific transcription factor that is required for normal kidney development and renal epithelial differentiation. Mutations of HNF-1β produce congenital kidney abnormalities and inherited renal tubulopathies. Here, we show that ablation of HNF-1β in mIMCD3 renal epithelial cells results in activation of β-catenin and increased expression of lymphoid enhancer-binding factor 1 (LEF1), a downstream effector in the canonical Wnt signaling pathway. Increased expression and nuclear localization of LEF1 are also observed in cystic kidneys from Hnf1b mutant mice. Expression of dominant-negative mutant HNF-1β in mIMCD3 cells produces hyperresponsiveness to exogenous Wnt ligands, which is inhibited by siRNA-mediated knockdown of Lef1. WT HNF-1β binds to two evolutionarily conserved sites located 94 and 30 kb from the mouse Lef1 promoter. Ablation of HNF-1β decreases H3K27 trimethylation repressive marks and increases β-catenin occupancy at a site 4 kb upstream to Lef1. Mechanistically, WT HNF-1β recruits the polycomb-repressive complex 2 that catalyzes H3K27 trimethylation. Deletion of the β-catenin-binding domain of LEF1 in HNF-1β-deficient cells abolishes the increase in Lef1 transcription and decreases the expression of downstream Wnt target genes. The canonical Wnt target gene, Axin2, is also a direct transcriptional target of HNF-1β through binding to negative regulatory elements in the gene promoter. These findings demonstrate that HNF-1β regulates canonical Wnt target genes through long-range effects on histone methylation at Wnt enhancers and reveal a new mode of active transcriptional repression by HNF-1β.
Collapse
Affiliation(s)
- Siu Chiu Chan
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sachin S Hajarnis
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sophia M Vrba
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Vishal Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
9
|
Subramani R, Medel J, Flores K, Perry C, Galvez A, Sandoval M, Rivera S, Pedroza DA, Penner E, Chitti M, Lakshmanaswamy R. Hepatocyte nuclear factor 1 alpha influences pancreatic cancer growth and metastasis. Sci Rep 2020; 10:20225. [PMID: 33214606 PMCID: PMC7678871 DOI: 10.1038/s41598-020-77287-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte nuclear factor 1 homeobox alpha (HNF1α) is a transcription factor involved in endodermal organogenesis and pancreatic precursor cell differentiation and development. Earlier studies have reported a role for HNF1α in pancreatic ductal adenocarcinoma (PDAC) but it is controversial. The mechanism by which it impacts PDAC is yet to be explored in depth. In this study, using the online databases we observed that HNF1α is upregulated in PDAC, which was also confirmed by our immunohistochemical analysis of PDAC tissue microarray. Silencing HNF1α reduced the proliferative, migratory, invasive and colony forming capabilities of pancreatic cancer cells. Key markers involved in these processes (pPI3K, pAKT, pERK, Bcl2, Zeb, Snail, Slug) were significantly changed in response to alterations in HNF1α expression. On the other hand, overexpression of HNF1α did not induce any significant change in the aggressiveness of pancreatic cancer cells. Our results demonstrate that reduced expression of HNF1α leads to inhibition of pancreatic cancer growth and progression, which indicates that it could be a potential oncogene and target for PDAC.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, 79905, USA. .,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.
| | - Joshua Medel
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.,Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kristina Flores
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Courtney Perry
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Adriana Galvez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, 79905, USA
| | - Mayra Sandoval
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Servando Rivera
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Elizabeth Penner
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.,Department of Pathology and Laboratory Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mahika Chitti
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, 79905, USA. .,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.
| |
Collapse
|
10
|
Liu Y, Wang Y, Shen X, Chen C, Ni H, Sheng N, Hua M, Wu Y. Down-regulation of lncRNA PCGEM1 inhibits cervical carcinoma by modulating the miR-642a-5p/LGMN axis. Exp Mol Pathol 2020; 117:104561. [PMID: 33121976 DOI: 10.1016/j.yexmp.2020.104561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
LncRNA PCGEM1 (PCGEM1) has been reported to exert essential effects on the development and progress of various tumors, while the detailed effects and possible mechanisms of PCGEM1 in cervical carcinoma remain unknown. In the present study, PCGEM1 was over-expressed in cervical carcinoma cells as evidenced by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Knockdown of PCGEM1 significantly repressed proliferation, migration, and invasion, while induced G1 arrest in cervical carcinoma cells. In addition, PCGEM1 was predicted to target miR-642a-5p by bioinformatics software, which was further confirmed by luciferase reporter assay. Besides, RT-qPCR assay indicated that miR-642a-5p expression was decreased in cervical carcinoma cells and knockdown of PCGEM1 could accelerate miR-642a-5p expression. Moreover, inhibition of miR-642a-5p partly abolished the functions of PCGEM1 knockdown on proliferation, cell cycle, migration and invasion of cervical carcinoma cells. Furthermore, miR-642a-5p could bind to the 3'-UTR of LGMN, which was over-expressed in the cervical carcinoma cells. Suppression of LGMN partly restored the functions of miR-642a-5p inhibitor on proliferation, cell cycle distribution, migration and invasion in the cervical carcinoma cells treated with the PCGEM1 shRNA. Taken together, our data indicated that knockdown of PCGEM1 inhibited proliferation, migration and invasion in cervical carcinoma by modulating the miR-642a-5p/ LGMN axis.
Collapse
Affiliation(s)
- Yuanlin Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Ye Wang
- Shanghai Hanghua International Shipping Agency Co. LTD, Shanghai, China
| | - Xiang Shen
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chen Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Huihua Ni
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Nan Sheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Minhui Hua
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yanling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
11
|
Chen H, Fan Y, Jing H, Tang S, Zhou J. Emerging role of lncRNAs in renal fibrosis. Arch Biochem Biophys 2020; 692:108530. [PMID: 32768395 DOI: 10.1016/j.abb.2020.108530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final common pathological feature of a wide variety of chronic kidney disease (CKD). However, an understanding of the mechanisms underlying the development of renal fibrosis remains challenging and controversial. As the current focus of molecular research, noncoding RNAs (ncRNAs), mainly microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular noncoding RNAs (circRNAs), have powerful and abundant biological functions, which essentially makes them mediators of the physiological and pathological processes of various system diseases. The role of ncRNAs in renal fibrosis has also received great attention in recent years, but most research has mainly focused on miRNAs. In fact, although a large number of studies of lncRNAs have emerged recently, the role these molecules play in renal fibrosis haven't been fully understood till now. Thus, this review discusses the discovery of lncRNAs and their biological functions in different types of renal fibrosis, as well as the imminent applications of these findings in clinical use. Undoubtedly, in the future, further understanding of the function of all types of lncRNAs will reveal large breakthroughs in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, China
| | - Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province, 511400, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
12
|
Emerging Roles of Long Non-Coding RNAs in Renal Fibrosis. Life (Basel) 2020; 10:life10080131. [PMID: 32752143 PMCID: PMC7460436 DOI: 10.3390/life10080131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is an unavoidable consequence that occurs in nearly all of the nephropathies. It is characterized by a superabundant deposition and accumulation of extracellular matrix (ECM). All compartments in the kidney can be affected, including interstitium, glomeruli, vasculature, and other connective tissue, during the pathogenesis of renal fibrosis. The development of this process eventually causes destruction of renal parenchyma and end-stage renal failure, which is a devastating disease that requires renal replacement therapies. Recently, long non-coding RNAs (lncRNAs) have been emerging as key regulators governing gene expression and affecting various biological processes. These versatile roles include transcriptional regulation, organization of nuclear domains, and the regulation of RNA molecules or proteins. Current evidence proposes the involvement of lncRNAs in the pathologic process of kidney fibrosis. In this review, the biological relevance of lncRNAs in renal fibrosis will be clarified as important novel regulators and potential therapeutic targets. The biology, and subsequently the current understanding, of lncRNAs in renal fibrosis are demonstrated—highlighting the involvement of lncRNAs in kidney cell function, phenotype transition, and vascular damage and rarefaction. Finally, we discuss challenges and future prospects of lncRNAs in diagnostic markers and potential therapeutic targets, hoping to further inspire the management of renal fibrosis.
Collapse
|
13
|
Zhang L, Li LX, Zhou JX, Harris PC, Calvet JP, Li X. RNA helicase p68 inhibits the transcription and post-transcription of Pkd1 in ADPKD. Am J Cancer Res 2020; 10:8281-8297. [PMID: 32724471 PMCID: PMC7381742 DOI: 10.7150/thno.47315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations of the PKD1 and PKD2 genes. Dysregulation of the expression of PKD genes, the abnormal activation of PKD associated signaling pathways, and the expression and maturation of miRNAs regulates cyst progression. However, the upstream factors regulating these abnormal processes in ADPKD remain elusive. Methods: To investigate the roles of an RNA helicase, p68, in ADPKD, we performed Western blot and qRT-PCR analysis, immunostaining and ChIP assay in cystic renal epithelium cells and tissues. Results: We found that p68 was upregulated in cystic renal epithelial cells and tissues. p68 represses Pkd1 gene expression via transcriptional and posttranscriptional mechanisms in renal epithelial cells, in that 1) p68 binds to the promoter of the Pkd1 gene together with p53 to repress transcription; and 2) p68 promotes the expression and maturation of miR-17, miR-200c and miR-182 and via these miRNAs, post-transcriptionally regulates the expression of Pkd1 mRNA. Drosha is involved in this process by forming a complex with p68. p68 also regulates the phosphorylation and activation of PKD proliferation associated signaling and the expression of fibrotic markers in Pkd1 mutant renal epithelial cells. Silence of p68 delays cyst formation in collecting duct cell mediated 3D cultures. In addition, the expression of p68 is induced by H2O2-dependent oxidative stress and DNA damage which causes downregulation of Pkd1 transcription in cystic renal epithelial cells and tissues. Conclusions: p68 plays a critical role in negatively regulating the expression of the PKD1 gene along with positively regulating the expression and maturation of miRNAs and activation of PKD associated signaling pathways to cause renal cyst progression and fibrosis in ADPKD.
Collapse
|
14
|
Tranilast induces MiR-200c expression through blockade of RelA/p65 activity in leiomyoma smooth muscle cells. Fertil Steril 2020; 113:1308-1318. [PMID: 32199621 DOI: 10.1016/j.fertnstert.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/07/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine the mechanism by which tranilast induces miR-200c expression in leiomyoma smooth muscle cells (LSMCs). DESIGN Experimental study. SETTING Academic research laboratory. PATIENT(S) Women undergoing hysterectomy for leiomyoma. INTERVENTION(S) Blockade of RelA/p65. MAIN OUTCOME MEASURE(S) Effects of tranilast and blockade of RelA/p65 on miR-200c expression. RESULT(S) Tranilast, an inflammation inhibitor, dose-dependently induced miR-200c in LSMCs and myometrium smooth muscle cells (MSMCs), with a more profound effect in LSMCs than in MSMCs. The treatment of LSMCs with Bay 117082, an inhibitor of IκB phosphorylation, further enhanced miR-200c induction by tranilast. The knockdown of RelA/p65 by small interfering RNA also induced miR-200c expression in LSMCs. Although tranilast had no effect on total RelA/p65 protein levels in LSMCs, it significantly induced RelA/p65 phosphorylation at S536 while reducing its activity as well as its nuclear translocation. ChIP assay indicated that tranilast reduces the binding ability of RelA/p65 to miR-200c promoter, resulting in miR-200c induction. Tranilast also inhibited interleukin-8 (IL8) expression in LSMCs. The induction of miR-200c by tranilast partially mediates the inhibitory effect of tranilast on the expression of IL8 and cyclin-dependent kinase 2 in LSMCs. CONCLUSION(S) Induction of miR-200c by tranilast in LSMCs is mediated through a transcriptional mechanism involving inhibition of the nuclear factor κB signaling pathway. These results highlight the significance of inflammation in the pathogenesis of leiomyoma and the potential utility of antiinflammatory drugs for treatment of leiomyomas.
Collapse
|
15
|
Shao A, Chan SC, Igarashi P. Role of transcription factor hepatocyte nuclear factor-1β in polycystic kidney disease. Cell Signal 2020; 71:109568. [PMID: 32068086 DOI: 10.1016/j.cellsig.2020.109568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is a DNA-binding transcription factor that is essential for normal kidney development. Mutations of HNF1B in humans produce cystic kidney diseases, including renal cysts and diabetes, multicystic dysplastic kidneys, glomerulocystic kidney disease, and autosomal dominant tubulointerstitial kidney disease. Expression of HNF1B is reduced in cystic kidneys from humans with ADPKD, and HNF1B has been identified as a modifier gene in PKD. Genome-wide analysis of chromatin binding has revealed that HNF-1β directly regulates the expression of known PKD genes, such as PKHD1 and PKD2, as well as genes involved in PKD pathogenesis, including cAMP-dependent signaling, renal fibrosis, and Wnt signaling. In addition, a role of HNF-1β in regulating the expression of noncoding RNAs (microRNAs and long noncoding RNAs) has been identified. These findings indicate that HNF-1β regulates a transcriptional and post-transcriptional network that plays a central role in renal cystogenesis.
Collapse
Affiliation(s)
- Annie Shao
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Siu Chiu Chan
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Hu Y, Wu F, Liu Y, Zhao Q, Tang H. DNMT1 recruited by EZH2-mediated silencing of miR-484 contributes to the malignancy of cervical cancer cells through MMP14 and HNF1A. Clin Epigenetics 2019; 11:186. [PMID: 31810492 PMCID: PMC6898970 DOI: 10.1186/s13148-019-0786-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Emerging evidence indicates that dysregulation of microRNAs (miRNAs) contributes to cervical cancer (CC) tumorigenesis and development. Previous work showed that miR-484 which regulated the EMT process was obviously downregulated in CC. However, little is known about the precise mechanism. RESULTS We found that the deficiency of EZH2-recruited DNA methyltransferases DNMT1 reduced the CpG methylation of miR-484 promoter and then increased the miR-484 expression. Furthermore, the cell membrane-bound matrix metalloproteinase (MMP14) and the hepatocyte nuclear factor 1A (HNF1A) were found to be downregulated by miR-484. miR-484 repressed the expression of MMP14 and HNF1A inhibiting CC growth and metastasis in vitro and in vivo. Upregulation of MMP14 and HNF1A promotes the CC cell adhesion and EMT, all of which contribute to cell motility and metastasis. Moreover, miR-484 negatively regulates the WNT/MAPK and TNF signaling pathway by downregulating HNF1A and MMP14 respectively. Thus, miR-484, who is downregulated by DNMT1-mediated hypermethylation in its promoter, functions as a tumor suppressor by inhibiting MMP14 and HNF1A expression in CC. CONCLUSION Our finding characterizes miR-484 as a key suppressive regulator in CC metastasis and reveals a DNMT1-mediated epigenetic mechanism for miR-484 silencing, expanding our understanding of the molecular mechanism underlying CC progression and metastasis.
Collapse
Affiliation(s)
- Yang Hu
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Fuxia Wu
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Yankun Liu
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
| | - Qian Zhao
- Department of Cell Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Hua Tang
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China.
| |
Collapse
|
17
|
Hepatocyte nuclear factor-1β regulates Wnt signaling through genome-wide competition with β-catenin/lymphoid enhancer binding factor. Proc Natl Acad Sci U S A 2019; 116:24133-24142. [PMID: 31712448 DOI: 10.1073/pnas.1909452116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is a tissue-specific transcription factor that is essential for normal kidney development and renal tubular function. Mutations of HNF-1β produce cystic kidney disease, a phenotype associated with deregulation of canonical (β-catenin-dependent) Wnt signaling. Here, we show that ablation of HNF-1β in mIMCD3 renal epithelial cells produces hyperresponsiveness to Wnt ligands and increases expression of Wnt target genes, including Axin2, Ccdc80, and Rnf43 Levels of β-catenin and expression of Wnt target genes are also increased in HNF-1β mutant mouse kidneys. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) in wild-type and mutant cells showed that ablation of HNF-1β increases by 6-fold the number of sites on chromatin that are occupied by β-catenin. Remarkably, 50% of the sites that are occupied by β-catenin in HNF-1β mutant cells colocalize with HNF-1β-occupied sites in wild-type cells, indicating widespread reciprocal binding. We found that the Wnt target genes Ccdc80 and Rnf43 contain a composite DNA element comprising a β-catenin/lymphoid enhancer binding factor (LEF) site overlapping with an HNF-1β half-site. HNF-1β and β-catenin/LEF compete for binding to this element, and thereby HNF-1β inhibits β-catenin-dependent transcription. Collectively, these studies reveal a mechanism whereby a transcription factor constrains canonical Wnt signaling through direct inhibition of β-catenin/LEF chromatin binding.
Collapse
|
18
|
Abstract
As one type of the most common endogenous short noncoding RNAs (ncRNAs), microRNAs (miRNAs) act as posttranscriptional regulators of gene expression and have great potential biological functions in the physiological and pathological processes of various diseases. The role of miRNAs in renal fibrosis has also attracted great attention in the previous 20 years, and new therapeutic strategies targeting miRNAs appear to be promising. Some researchers have previously reviewed the roles of miRNA in renal fibrosis disease, but numerous studies have emerged over the recent 5 years. It is necessary to update and summarize research progress in miRNAs in renal fibrosis. Thus, in this review, we summarize progress in miRNA-mediated renal fibrosis over the last 5 years and evaluate the biological functions of some miRNAs in different stages of renal fibrosis. Furthermore, we also expound the recent clinical applications of these miRNAs to provide new insights into the treatment of renal fibrosis disease.
Collapse
Affiliation(s)
- Youling Fan
- Department of Anesthesiology, The First People's Hospital of Kashgar, Xinjiang Province, China.,Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhenxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Jun Zhou
- Department of Anesthesiology, The third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Ferrè S, Igarashi P. New insights into the role of HNF-1β in kidney (patho)physiology. Pediatr Nephrol 2019; 34:1325-1335. [PMID: 29961928 PMCID: PMC6312759 DOI: 10.1007/s00467-018-3990-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is an essential transcription factor that regulates the development and function of epithelia in the kidney, liver, pancreas, and genitourinary tract. Humans who carry HNF1B mutations develop heterogeneous renal abnormalities, including multicystic dysplastic kidneys, glomerulocystic kidney disease, renal agenesis, renal hypoplasia, and renal interstitial fibrosis. In the embryonic kidney, HNF-1β is required for ureteric bud branching, initiation of nephrogenesis, and nephron segmentation. Ablation of mouse Hnf1b in nephron progenitors causes defective tubulogenesis, whereas later inactivation in elongating tubules leads to cyst formation due to downregulation of cystic disease genes, including Umod, Pkhd1, and Pkd2. In the adult kidney, HNF-1β controls the expression of genes required for intrarenal metabolism and solute transport by tubular epithelial cells. Tubular abnormalities observed in HNF-1β nephropathy include hyperuricemia with or without gout, hypokalemia, hypomagnesemia, and polyuria. Recent studies have identified novel post-transcriptional and post-translational regulatory mechanisms that control HNF-1β expression and activity, including the miRNA cluster miR17 ∼ 92 and the interacting proteins PCBD1 and zyxin. Further understanding of the molecular mechanisms upstream and downstream of HNF-1β may lead to the development of new therapeutic approaches in cystic kidney disease and other HNF1B-related renal diseases.
Collapse
Affiliation(s)
- Silvia Ferrè
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Texas, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Medicine, University of Minnesota Medical School, 420 Delaware St. SE, MMC 194, Minneapolis, MN, 55455, USA.
| |
Collapse
|
20
|
Liu Y, Hu Y, Ni D, Liu J, Xia H, Xu L, Zhou Q, Xie Y. miR-194 regulates the proliferation and migration via targeting Hnf1β in mouse metanephric mesenchyme cells. In Vitro Cell Dev Biol Anim 2019; 55:512-521. [PMID: 31144266 DOI: 10.1007/s11626-019-00366-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
Hepatocyte nuclear factor-1β (Hnf1β) is associated with early embryogenesis failure, renal cysts, and/or diabetes. However, factors regulating Hnf1β expression in metanephric mesenchyme cells remain poorly understood. Here, we analyzed the modulation relationship of Hnf1β and miR-194 in mouse metanephric mesenchyme (MM) cells. Bioinformatics analysis, luciferase assay and semi-quantitative real-time (qPCR), western blotting, 5-ethynyl-2'-deoxyuridine cell proliferation assay, wound healing assay, and flow cytometry were employed to detect the function of miR-194 by targeting on Hnf1β in mouse MM cells. Bioinformatic prediction revealed one conserved binding site (CAGTATT) of miR-194 on Hnf1β 3'-UTR and luciferase reporter assay suggested that this is an effective target site of miR-194, and mutating CAGTATT with CGTACTT had no effects on luciferase activity compared with control. Overexpression of miR-194 decreased Hnf1β mRNA and protein level in mouse MM cells. In addition, miR-194-decreased cell proliferation and miR-194-promoted cell apoptosis and migration were reversed by overexpression of Hnf1β coding region. In addition, Hnf1β-upregulated genes were decreased in miR-194 overexpression cells and rescued in miR-194 and Hnf1β CDS region co-overexpression cells. Our findings explored one new regulator of Hnf1β and revealed the function of their regulation in cell proliferation, migration, and apoptosis in mouse metanephric mesenchyme cells. For strict regulation of Hnf1β in kidney development, these findings provide theoretical guidance for kidney development study and kidney disease therapy.
Collapse
Affiliation(s)
- Yamin Liu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yanxia Hu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dongsheng Ni
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianing Liu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hua Xia
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lei Xu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qin Zhou
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yajun Xie
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
21
|
Wei S, Chen H, Dzakah EE, Yu B, Wang X, Fu T, Li J, Liu L, Fang S, Liu W, Shan G. Systematic evaluation of C. elegans lincRNAs with CRISPR knockout mutants. Genome Biol 2019; 20:7. [PMID: 30621757 PMCID: PMC6325887 DOI: 10.1186/s13059-018-1619-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 12/04/2022] Open
Abstract
Background Long intergenic RNAs (lincRNAs) play critical roles in eukaryotic cells, but systematic analyses of the lincRNAs of an animal for phenotypes are lacking. We generate CRISPR knockout strains for Caenorhabditis elegans lincRNAs and evaluate their phenotypes. Results C. elegans lincRNAs demonstrate global features such as shorter length and fewer exons than mRNAs. For the systematic evaluation of C. elegans lincRNAs, we produce CRISPR knockout strains for 155 of the total 170 C. elegans lincRNAs. Mutants of 23 lincRNAs show phenotypes in 6 analyzed traits. We investigate these lincRNAs by phenotype for their gene expression patterns and potential functional mechanisms. Some C. elegans lincRNAs play cis roles to modulate the expression of their neighboring genes, and several lincRNAs play trans roles as ceRNAs against microRNAs. We also examine the regulation of lincRNA expression by transcription factors, and we dissect the pathway by which two transcription factors, UNC-30 and UNC-55, together control the expression of linc-73. Furthermore, linc-73 possesses a cis function to modulate the expression of its neighboring kinesin gene unc-104 and thus plays roles in C. elegans locomotion. Conclusions By using CRISPR/cas9 technology, we generate knockout strains of 155 C. elegans lincRNAs as valuable resources for studies in noncoding RNAs, and we provide biological insights for 23 lincRNAs with the phenotypes identified in this study. Electronic supplementary material The online version of this article (10.1186/s13059-018-1619-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuai Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - He Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Emmanuel Enoch Dzakah
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bin Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,Present address: Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Xiaolin Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Tao Fu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jingxin Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Lei Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Shucheng Fang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Weihong Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Present address: Hanwang Technology Co., Ltd., Haidian District, Beijing, 100193, China
| | - Ge Shan
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China. .,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, CAS, Shanghai, 200031, China.
| |
Collapse
|
22
|
Patil A, Jr WES, Pan CG, Avner ED. Unique interstitial miRNA signature drives fibrosis in a murine model of autosomal dominant polycystic kidney disease. World J Nephrol 2018; 7:108-116. [PMID: 30211029 PMCID: PMC6134266 DOI: 10.5527/wjn.v7.i5.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To delineate changes in miRNA expression localized to the peri-cystic local microenvironment (PLM) in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD) (mcwPkd1(nl/nl)).
METHODS We profiled miRNA expression in the whole kidney and laser captured microdissection (LCM) samples from PLM in mcwPkd1(nl/nl) kidneys with Qiagen miScript 384 HC miRNA PCR arrays. The three times points used are: (1) post-natal (PN) day 21, before the development of trichrome-positive areas; (2) PN28, the earliest sign of trichrome staining; and (3) PN42 following the development of progressive fibrosis. PN21 served as appropriate controls and as the reference time point for comparison of miRNA expression profiles.
RESULTS LCM samples revealed three temporally upregulated miRNAs [2 to 2.75-fold at PN28 and 2.5 to 4-fold (P ≤ 0.05) at PN42] and four temporally downregulated miRNAs [2 to 2.75 fold at PN28 and 2.75 to 5-fold (P ≤ 0.05) at PN42]. Expression of twenty-six miRNAs showed no change until PN42 [six decreased (2.25 to 3.5-fold) (P ≤ 0.05) and 20 increased (2 to 4-fold) (P ≤ 0.05)]. Many critical miRNA changes seen in the LCM samples from PLM were not seen in the contralateral whole kidney.
CONCLUSION Precise sampling with LCM identifies miRNA changes that occur with the initiation and progression of renal interstitial fibrosis (RIF). Identification of the target proteins regulated by these miRNAs will provide new insight into the process of fibrosis and identify unique therapeutic targets to prevent or slow the development and progression of RIF in ADPKD.
Collapse
Affiliation(s)
- Ameya Patil
- Children’s Research Institute; Children’s’ Hospital Health System of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William E Sweeney Jr
- Children’s Research Institute; Children’s’ Hospital Health System of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Cynthia G Pan
- Children’s Research Institute; Children’s’ Hospital Health System of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Ellis D Avner
- Children’s Research Institute; Children’s’ Hospital Health System of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
23
|
Han W, Wu Q, Zhang X, Duan Z. Innovation for hepatotoxicity in vitro research models: A review. J Appl Toxicol 2018; 39:146-162. [PMID: 30182494 DOI: 10.1002/jat.3711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Many categories of drugs can induce hepatotoxicity, so improving the prediction of toxic drugs is important. In vitro models using human hepatocytes are more accurate than in vivo animal models. Good in vitro models require an abundance of metabolic enzyme activities and normal cellular polarity. However, none of the in vitro models can completely simulate hepatocytes in the human body. There are two ways to overcome this limitation: enhancing the metabolic function of hepatocytes and changing the cultural environment. In this review, we summarize the current state of research, including the main characteristics of in vitro models and their limitations, as well as improved technology and developmental prospects. We hope that this review provides some new ideas for hepatotoxicity research.
Collapse
Affiliation(s)
- Weijia Han
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Qiao Wu
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Xiaohui Zhang
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| |
Collapse
|
24
|
Chan SC, Zhang Y, Shao A, Avdulov S, Herrera J, Aboudehen K, Pontoglio M, Igarashi P. Mechanism of Fibrosis in HNF1B-Related Autosomal Dominant Tubulointerstitial Kidney Disease. J Am Soc Nephrol 2018; 29:2493-2509. [PMID: 30097458 DOI: 10.1681/asn.2018040437] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mutation of HNF1B, the gene encoding transcription factor HNF-1β, is one cause of autosomal dominant tubulointerstitial kidney disease, a syndrome characterized by tubular cysts, renal fibrosis, and progressive decline in renal function. HNF-1β has also been implicated in epithelial-mesenchymal transition (EMT) pathways, and sustained EMT is associated with tissue fibrosis. The mechanism whereby mutated HNF1B leads to tubulointerstitial fibrosis is not known. METHODS To explore the mechanism of fibrosis, we created HNF-1β-deficient mIMCD3 renal epithelial cells, used RNA-sequencing analysis to reveal differentially expressed genes in wild-type and HNF-1β-deficient mIMCD3 cells, and performed cell lineage analysis in HNF-1β mutant mice. RESULTS The HNF-1β-deficient cells exhibited properties characteristic of mesenchymal cells such as fibroblasts, including spindle-shaped morphology, loss of contact inhibition, and increased cell migration. These cells also showed upregulation of fibrosis and EMT pathways, including upregulation of Twist2, Snail1, Snail2, and Zeb2, which are key EMT transcription factors. Mechanistically, HNF-1β directly represses Twist2, and ablation of Twist2 partially rescued the fibroblastic phenotype of HNF-1β mutant cells. Kidneys from HNF-1β mutant mice showed increased expression of Twist2 and its downstream target Snai2. Cell lineage analysis indicated that HNF-1β mutant epithelial cells do not transdifferentiate into kidney myofibroblasts. Rather, HNF-1β mutant epithelial cells secrete high levels of TGF-β ligands that activate downstream Smad transcription factors in renal interstitial cells. CONCLUSIONS Ablation of HNF-1β in renal epithelial cells leads to the activation of a Twist2-dependent transcriptional network that induces EMT and aberrant TGF-β signaling, resulting in renal fibrosis through a cell-nonautonomous mechanism.
Collapse
Affiliation(s)
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota; and
| | | | | | | | | | - Marco Pontoglio
- Department of Development, Reproduction and Cancer, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016/Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris-Descartes, Paris, France
| | | |
Collapse
|
25
|
Cumulative evidence for relationships between multiple variants of HNF1B and the risk of prostate and endometrial cancers. BMC MEDICAL GENETICS 2018; 19:128. [PMID: 30053805 PMCID: PMC6062884 DOI: 10.1186/s12881-018-0640-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Background To provide a synopsis of the current understanding of the association between variants of HNF1B and cancer susceptibility, we conducted a comprehensive research synopsis and meta-analysis to evaluate associations between HNF1B variants and prostate and endometrial cancers. Results Eighteen studies totaling 34,937 patients and 55,969 controls were eligible for this meta-analysis. Four variants showed a significant association with the risk of individual cancer. Strong significant associations were found between rs4430796 A and the risk of both prostate cancer (OR = 1.247, p = 2.21 × 10− 77) and endometrial cancer (OR = 1.217, p = 8.98 × 10− 16); the AA, AG genotypes also showed strong significant associations with the risk of prostate cancer (OR1 = 1.517, p = 4.46 × 10− 22; OR2 = 1.180, p = 0.002). There was a strong significant association between rs7501939 G and the risk of prostate cancer (OR = 1.201, p = 9.31 × 10− 31). Strong significant association was found between rs11649743 G (OR = 1.138, p = 1.08 × 10− 12), rs3760511 C (OR = 1.214, p = 1.57 × 10− 19) and the prostate cancer risk;the GG, AG genotypes of rs11649743 also showed strong significant associations with the risk of prostate cancer (OR1 = 1.496, p = 3.32 × 10− 6; OR2 = 1.276, p = 7.82 × 10− 6). All the cumulative epidemiological evidence of associations was graded as strong. Conclusions Our study summarizes the evidence and helps to reveal that common variants of HNF1B are associated with risk of prostate and endometrial cancer.
Collapse
|
26
|
Chen Y, Zhao F, Cui D, Jiang R, Chen J, Huang Q, Shi J. HOXD-AS1/miR-130a sponge regulates glioma development by targeting E2F8. Int J Cancer 2018; 142:2313-2322. [PMID: 29341117 DOI: 10.1002/ijc.31262] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022]
Abstract
Glioma development is an extremely complex process with changes occurring in numerous genes. HOXD antisense growth-associated long noncoding RNA (HOXD-AS1), an important long noncoding RNA (lncRNA), is known to regulate metastasis-related gene expression in bladder cancer, ovarian cancer and neuroblastoma. Here, we elucidated the function and possible molecular mechanisms of lncRNA HOXD-AS1 in human glioma cells. Our results proved that HOXD-AS1 expression was upregulated in glioma tissues and in glioma cell lines. HOXD-AS1 overexpression promoted cell migration and invasion in vitro, whereas knockdown of HOXD-AS1 expression repressed these cellular processes. Mechanistic studies further revealed that HOXD-AS1 could compete with the transcription factor E2F8 to bind with miR-130a, thus affecting E2F8 expression. Additionally, reciprocal repression was observed between HOXD-AS1 and miR-130a, and miR-130a mediated the tumor-suppressive effects of HOXD-AS1 knockdown. Taken together, these results provide a comprehensive analysis of the role of HOXD-AS1 in glioma cells and offer important clues to understand the key roles of competing endogenous RNA (ceRNA) mechanisms in human glioma.
Collapse
Affiliation(s)
- Yinan Chen
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Fengbo Zhao
- Medical School of Nantong University, 19 Qixiu Road, Basic Medical Research Center, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Rui Jiang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Jian Chen
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Qingfeng Huang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, People's Republic of China
| | - Jinlong Shi
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, People's Republic of China
| |
Collapse
|
27
|
Li Q, Zhang J, Zhou J, Yang B, Liu P, Cao L, Jing L, Liu H. lncRNAs are novel biomarkers for differentiating between cisplatin-resistant and cisplatin-sensitive ovarian cancer. Oncol Lett 2018; 15:8363-8370. [PMID: 29805570 PMCID: PMC5950027 DOI: 10.3892/ol.2018.8433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022] Open
Abstract
Cisplatin-resistant ovarian cancer occurs in patients with ovarian cancer treated with cisplatin-based chemotherapy, which results in tumor progression during treatment, or recurrence of the tumor within 6 months of the treatment. It is vital that a novel biomarker for diagnosis, or an efficient therapeutic target of cisplatin-resistant ovarian is identified. Long non-coding (lnc)RNAs were determined to serve critical functions in a variety of distinct types of cancer, including ovarian cancer; however, there is limited knowledge regarding the differential expression levels of lncRNAs in cisplatin-resistant and cisplatin-sensitive ovarian cancer. Therefore, in the present study, the expression levels were determined for these cancer types. The lncRNA expression profile in cisplatin-resistant ovarian cancer was analyzed and compared with the results for cisplatin-sensitive ovarian cancer; gene ontology and pathway analysis demonstrated that the dysregulated lncRNAs participated in important biological processes. Subsequently, it was identified that these dysregulated lncRNAs were present in other ovarian cancer tissues and in SKOV3 ovarian cancer cells, as well as its cisplatin-resistant clone, SKOV3/CDDP. In addition, it was revealed that 8 lncRNAs (Enst0000435726, Enst00000585612, Enst00000566734, Enst00000453783, NR_023915, RP11_697E22.2, uc010jub.1 and tcons_00008505) were associated with cisplatin-resistant ovarian cancer. The present study may assist in improving understanding of the initiation and developmental mechanisms underlying cisplatin-resistant ovarian cancer, which could aid future studies in discovering potential biomarkers for diagnosis or therapeutic targets that may be used in clinical treatment.
Collapse
Affiliation(s)
- Qing Li
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Juan Zhang
- Department of Pathology, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Zhou
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Binglie Yang
- Department of Gynecology and Obstetrics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Pingping Liu
- Department of Gynecology and Obstetrics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Lei Cao
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Lei Jing
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Hua Liu
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| |
Collapse
|
28
|
Larson NB, McDonnell SK, Fogarty Z, Larson MC, Cheville J, Riska S, Baheti S, Weber AM, Nair AA, Wang L, O’Brien D, Davila J, Schaid DJ, Thibodeau SN. Network-directed cis-mediator analysis of normal prostate tissue expression profiles reveals downstream regulatory associations of prostate cancer susceptibility loci. Oncotarget 2017; 8:85896-85908. [PMID: 29156765 PMCID: PMC5689655 DOI: 10.18632/oncotarget.20717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/29/2017] [Indexed: 12/19/2022] Open
Abstract
Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis-acting associations due to study limitations. While trans-eQTL scans suffer from high testing dimensionality, recent evidence indicates most trans-eQTL associations are mediated by cis-regulated genes, such as transcription factors. Leveraging a data-driven gene co-expression network, we conducted a comprehensive cis-mediator analysis using RNA-Seq data from 471 normal prostate tissue samples to identify downstream regulatory associations of previously identified prostate cancer risk variants. We discovered multiple trans-eQTL associations that were significantly mediated by cis-regulated transcripts, four of which involved risk locus 17q12, proximal transcription factor HNF1B, and target trans-genes with known HNF response elements (MIA2, SRC, SEMA6A, KIF12). We additionally identified evidence of cis-acting down-regulation of MSMB via rs10993994 corresponding to reduced co-expression of NDRG1. The majority of these cis-mediator relationships demonstrated trans-eQTL replicability in 87 prostate tissue samples from the Gene-Tissue Expression Project. These findings provide further biological context to known risk loci and outline new hypotheses for investigation into the etiology of prostate cancer.
Collapse
Affiliation(s)
- Nicholas B. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Shannon K. McDonnell
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zach Fogarty
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - John Cheville
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shaun Riska
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Alexandra M. Weber
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Asha A. Nair
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel O’Brien
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jaime Davila
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Daniel J. Schaid
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stephen N. Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
Hajarnis S, Yheskel M, Williams D, Brefort T, Glaudemans B, Debaix H, Baum M, Devuyst O, Patel V. Suppression of microRNA Activity in Kidney Collecting Ducts Induces Partial Loss of Epithelial Phenotype and Renal Fibrosis. J Am Soc Nephrol 2017; 29:518-531. [PMID: 29021386 DOI: 10.1681/asn.2017030334] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022] Open
Abstract
microRNAs (miRNAs) are sequence-specific inhibitors of post-transcriptional gene expression. The physiologic function of these noncoding RNAs in postnatal renal tubules still remains unclear. Surprisingly, they appear to be dispensable for mammalian proximal tubule (PT) function. Here, we examined the effects of miRNA suppression in collecting ducts (CDs). To conclusively evaluate the role of miRNAs, we generated three mouse models with CD-specific inactivation of key miRNA pathway genes Dicer, Dgcr8, and the entire Argonaute gene family (Ago1, 2, 3, and 4). Characterization of these three mouse models revealed that inhibition of miRNAs in CDs spontaneously evokes a renal tubule injury-like response, which culminates in progressive tubulointerstitial fibrosis (TIF) and renal failure. Global miRNA profiling of microdissected renal tubules showed that miRNAs exhibit segmental distribution along the nephron and CDs. In particular, the expression of miR-200c is nearly 70-fold higher in CDs compared with PTs. Accordingly, miR-200s are downregulated in Dicer-KO CDs, its direct target genes Zeb1, Zeb2, and Snail2 are upregulated, and miRNA-depleted CDs undergo partial epithelial-to-mesenchymal transition (EMT). Thus, miRNAs are essential for CD homeostasis. Downregulation of CD-enriched miRNAs and the subsequent induction of partial EMT may be a new mechanism for TIF progression.
Collapse
Affiliation(s)
- Sachin Hajarnis
- Division of Nephrology, Department of Internal Medicine, and
| | - Matanel Yheskel
- Division of Nephrology, Department of Internal Medicine, and
| | - Darren Williams
- Division of Nephrology, Department of Internal Medicine, and
| | - Thomas Brefort
- Comprehensive Biomarker Center, Heidelberg, Germany; and
| | - Bob Glaudemans
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Huguette Debaix
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Michel Baum
- Division of Nephrology, Department of Internal Medicine, and.,Division of Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Vishal Patel
- Division of Nephrology, Department of Internal Medicine, and
| |
Collapse
|
30
|
Long non-coding RNAs-towards precision medicine in diabetic kidney disease? Clin Sci (Lond) 2017; 130:1599-602. [PMID: 27503944 DOI: 10.1042/cs20160261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022]
Abstract
Diabetic kidney disease (DKD) is escalating and is the major cause of end stage kidney failure. There is increasing evidence to support the role of epigenetic factors and metabolic memory in linking the environmental and genetic causes of this disease. Although our understanding of this disease has improved, there has been no significant efficacious therapeutic translation in the last decade. Current sequencing technology has allowed interrogation of the human transcriptome. It is evident that although approximately 80% of the genome is transcribed, only 1-2% is read and coded into protein. The remaining non-coding RNA, historically assumed to be 'junk', is now known to have key roles in regulating gene function and orchestrate how and when coding genes are expressed. This largest subset of non-coding RNAs called long non-coding RNAs (LNCRNAs) drives epigenetic changes and has functional relevance best characterized in cancers and cardiovascular disease. This understanding, coupled with the availability and affordability of RNA sequencing, has shifted our therapeutic strategies towards genomic therapy in DKD. The role of LNCRNAs with respect to DKD is only just emerging. In this review we summarize the role of LNCRNAs in DKD and the existing antisense oligonucleotide therapy that may provide precise and targeted medicine to treat DKD in this postgenomic era.
Collapse
|
31
|
The Functions of MicroRNA-200 Family in Ovarian Cancer: Beyond Epithelial-Mesenchymal Transition. Int J Mol Sci 2017. [PMID: 28587302 DOI: 10.3390/ijms18061207] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The majority of studies on microRNA-200 family members (miR-200s) in human cancers are based on the premise that miR-200s maintain epithelial cell integrity by suppressing epithelial-mesenchymal transition (EMT) through direct inhibition of mesenchymal transcription factors zinc finger E-box-binding homeobox 1/2 (ZEB1/ZEB2) and transforming growth factor-β (TGF-β), a potent inducer of EMT. Hence, downregulation of miR-200 in cancer cells promotes EMT and cancer metastasis. Yet, miR-200s are highly expressed in ovarian cancer, and ovarian cancer metastasizes primarily by dissemination within the pelvic cavity. In this review, we will refocus the epithelial property of ovarian cancer cells and the role of miR-200s in safeguarding this property, as well as the diverse roles of miR-200s in inclusion cyst formation, cancer cell growth, collective movement, angiogenesis, exosome-mediated cell communication, and chemoresponse. Taken together, miR-200s play a significant role in the initiation, progression and metastasis of ovarian cancer and may serve as diagnostic biomarkers and a target in therapeutic development.
Collapse
|
32
|
The Functions of MicroRNA-200 Family in Ovarian Cancer: Beyond Epithelial-Mesenchymal Transition. Int J Mol Sci 2017. [PMID: 28587302 DOI: 10.3390/ijms18061207]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The majority of studies on microRNA-200 family members (miR-200s) in human cancers are based on the premise that miR-200s maintain epithelial cell integrity by suppressing epithelial-mesenchymal transition (EMT) through direct inhibition of mesenchymal transcription factors zinc finger E-box-binding homeobox 1/2 (ZEB1/ZEB2) and transforming growth factor-β (TGF-β), a potent inducer of EMT. Hence, downregulation of miR-200 in cancer cells promotes EMT and cancer metastasis. Yet, miR-200s are highly expressed in ovarian cancer, and ovarian cancer metastasizes primarily by dissemination within the pelvic cavity. In this review, we will refocus the epithelial property of ovarian cancer cells and the role of miR-200s in safeguarding this property, as well as the diverse roles of miR-200s in inclusion cyst formation, cancer cell growth, collective movement, angiogenesis, exosome-mediated cell communication, and chemoresponse. Taken together, miR-200s play a significant role in the initiation, progression and metastasis of ovarian cancer and may serve as diagnostic biomarkers and a target in therapeutic development.
Collapse
|
33
|
Choi PW, Ng SW. The Functions of MicroRNA-200 Family in Ovarian Cancer: Beyond Epithelial-Mesenchymal Transition. Int J Mol Sci 2017; 18:ijms18061207. [PMID: 28587302 PMCID: PMC5486030 DOI: 10.3390/ijms18061207] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
The majority of studies on microRNA-200 family members (miR-200s) in human cancers are based on the premise that miR-200s maintain epithelial cell integrity by suppressing epithelial-mesenchymal transition (EMT) through direct inhibition of mesenchymal transcription factors zinc finger E-box-binding homeobox 1/2 (ZEB1/ZEB2) and transforming growth factor-β (TGF-β), a potent inducer of EMT. Hence, downregulation of miR-200 in cancer cells promotes EMT and cancer metastasis. Yet, miR-200s are highly expressed in ovarian cancer, and ovarian cancer metastasizes primarily by dissemination within the pelvic cavity. In this review, we will refocus the epithelial property of ovarian cancer cells and the role of miR-200s in safeguarding this property, as well as the diverse roles of miR-200s in inclusion cyst formation, cancer cell growth, collective movement, angiogenesis, exosome-mediated cell communication, and chemoresponse. Taken together, miR-200s play a significant role in the initiation, progression and metastasis of ovarian cancer and may serve as diagnostic biomarkers and a target in therapeutic development.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Shu-Wing Ng
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Aboudehen K, Noureddine L, Cobo-Stark P, Avdulov S, Farahani S, Gearhart MD, Bichet DG, Pontoglio M, Patel V, Igarashi P. Hepatocyte Nuclear Factor-1 β Regulates Urinary Concentration and Response to Hypertonicity. J Am Soc Nephrol 2017; 28:2887-2900. [PMID: 28507058 DOI: 10.1681/asn.2016101095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
The transcription factor hepatocyte nuclear factor-1β (HNF-1β) is essential for normal kidney development and function. Inactivation of HNF-1β in mouse kidney tubules leads to early-onset cyst formation and postnatal lethality. Here, we used Pkhd1/Cre mice to delete HNF-1β specifically in renal collecting ducts (CDs). CD-specific HNF-1β mutant mice survived long term and developed slowly progressive cystic kidney disease, renal fibrosis, and hydronephrosis. Compared with wild-type littermates, HNF-1β mutant mice exhibited polyuria and polydipsia. Before the development of significant renal structural abnormalities, mutant mice exhibited low urine osmolality at baseline and after water restriction and administration of desmopressin. However, mutant and wild-type mice had similar plasma vasopressin and solute excretion levels. HNF-1β mutant kidneys showed increased expression of aquaporin-2 mRNA but mislocalized expression of aquaporin-2 protein in the cytoplasm of CD cells. Mutant kidneys also had decreased expression of the UT-A urea transporter and collectrin, which is involved in apical membrane vesicle trafficking. Treatment of HNF-1β mutant mIMCD3 cells with hypertonic NaCl inhibited the induction of osmoregulated genes, including Nr1h4, which encodes the transcription factor FXR that is required for maximal urinary concentration. Chromatin immunoprecipitation and sequencing experiments revealed HNF-1β binding to the Nr1h4 promoter in wild-type kidneys, and immunoblot analysis revealed downregulated expression of FXR in HNF-1β mutant kidneys. These findings reveal a novel role of HNF-1β in osmoregulation and identify multiple mechanisms, whereby mutations of HNF-1β produce defects in urinary concentration.
Collapse
Affiliation(s)
- Karam Aboudehen
- Departments of Medicine and.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lama Noureddine
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Patricia Cobo-Stark
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Micah D Gearhart
- Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Daniel G Bichet
- Departments of Medicine and.,Molecular and Integrative Physiology, Université de Montréal, Montreal, Quebec, Canada; and
| | - Marco Pontoglio
- Department of Development, Reproduction and Cancer, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016/Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris-Descartes, Paris, France
| | - Vishal Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peter Igarashi
- Departments of Medicine and .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
35
|
Leti F, Morrison E, DiStefano JK. Long noncoding RNAs in the pathogenesis of diabetic kidney disease: implications for novel therapeutic strategies. Per Med 2017; 14:271-278. [DOI: 10.2217/pme-2016-0107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetic kidney disease is a progressive disorder that develops secondary to diabetes. Current strategies for the clinical management of the disease can delay its onset and prevent progression, yet a significant proportion of patients still develop renal failure. The need for more advanced pharmaceuticals is therefore critical for improved treatment strategies. Recent studies support a role for long noncoding RNAs (lncRNAs) in the pathogenesis of human disease. Here we review recent experimental results linking lncRNAs with diabetic kidney disease. A better understanding of the regulatory role that lncRNAs play in the development of diabetic kidney disease may lead to identification of novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fatjon Leti
- Center for Genes, Environment, & Health, Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Evan Morrison
- Center for Genes, Environment, & Health, Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Johanna K DiStefano
- Center for Genes, Environment, & Health, Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
36
|
He D, Wang J, Lu Y, Deng Y, Zhao C, Xu L, Chen Y, Hu YC, Zhou W, Lu QR. lncRNA Functional Networks in Oligodendrocytes Reveal Stage-Specific Myelination Control by an lncOL1/Suz12 Complex in the CNS. Neuron 2016; 93:362-378. [PMID: 28041882 DOI: 10.1016/j.neuron.2016.11.044] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/09/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators of cellular functions, but their roles in oligodendrocyte myelination remain undefined. Through de novo transcriptome reconstruction, we establish dynamic expression profiles of lncRNAs at different stages of oligodendrocyte development and uncover a cohort of stage-specific oligodendrocyte-restricted lncRNAs, including a conserved chromatin-associated lncOL1. Co-expression network analyses further define the association of distinct oligodendrocyte-expressing lncRNA clusters with protein-coding genes and predict lncRNA functions in oligodendrocyte myelination. Overexpression of lncOL1 promotes precocious oligodendrocyte differentiation in the developing brain, whereas genetic inactivation of lncOL1 causes defects in CNS myelination and remyelination following injury. Functional analyses illustrate that lncOL1 interacts with Suz12, a component of polycomb repressive complex 2, to promote oligodendrocyte maturation, in part, through Suz12-mediated repression of a differentiation inhibitory network that maintains the precursor state. Together, our findings reveal a key lncRNA epigenetic circuitry through interaction with chromatin-modifying complexes in control of CNS myelination and myelin repair.
Collapse
Affiliation(s)
- Danyang He
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Integrative Biology Graduate Training Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jincheng Wang
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Yulan Lu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Yaqi Deng
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chuntao Zhao
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lingli Xu
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Yinhuai Chen
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Q Richard Lu
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Integrative Biology Graduate Training Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 201102 Shanghai, China.
| |
Collapse
|
37
|
Oh HJ, Kato M, Deshpande S, Zhang E, Das S, Lanting L, Wang M, Natarajan R. Inhibition of the processing of miR-25 by HIPK2-Phosphorylated-MeCP2 induces NOX4 in early diabetic nephropathy. Sci Rep 2016; 6:38789. [PMID: 27941951 PMCID: PMC5150532 DOI: 10.1038/srep38789] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022] Open
Abstract
Phosphorylated methyl-CpG binding protein2 (p-MeCP2) suppresses the processing of several microRNAs (miRNAs). Homeo-domain interacting protein kinase2 (HIPK2) phosphorylates MeCP2, a known transcriptional repressor. However, it is not known if MeCP2 and HIPK2 are involved in processing of miRNAs implicated in diabetic nephropathy. p-MeCP2 and HIPK2 levels were significantly increased, but Seven in Absentia Homolog1 (SIAH1), which mediates proteasomal degradation of HIPK2, was decreased in the glomeruli of streptozotocin injected diabetic mice. Among several miRNAs, miR-25 and its precursor were significantly decreased in diabetic mice, whereas primary miR-25 levels were significantly increased. NADPH oxidase4 (NOX4), a target of miR-25, was significantly increased in diabetic mice. Protein levels of p-MeCP2, HIPK2, and NOX4 were increased in high glucose (HG)- or TGF-β-treated mouse glomerular mesangial cells (MMCs). miR-25 (primary, precursor, and mature) and mRNA levels of genes indicated in the in vivo study showed similar trends of regulation in MMCs treated with HG or TGF-β. The HG- or TGF-β-induced upregulation of p-MeCP2, NOX4 and primary miR-25, but downregulation of precursor and mature miR-25, were attenuated by Hipk2 siRNA. These results demonstrate a novel role for the SIAH1/HIPK2/MeCP2 axis in suppressing miR-25 processing and thereby upregulating NOX4 in early diabetic nephropathy.
Collapse
Affiliation(s)
- Hyung Jung Oh
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA.,Ewha Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, South Korea
| | - Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Supriya Deshpande
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Erli Zhang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA.,Tsingua University, Beijing, China
| | - Sadhan Das
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
38
|
Kato M, Wang M, Chen Z, Bhatt K, Oh HJ, Lanting L, Deshpande S, Jia Y, Lai JYC, O'Connor CL, Wu Y, Hodgin JB, Nelson RG, Bitzer M, Natarajan R. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat Commun 2016; 7:12864. [PMID: 27686049 PMCID: PMC5553130 DOI: 10.1038/ncomms12864] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
It is important to find better treatments for diabetic nephropathy (DN), a debilitating renal complication. Targeting early features of DN, including renal extracellular matrix accumulation (ECM) and glomerular hypertrophy, can prevent disease progression. Here we show that a megacluster of nearly 40 microRNAs and their host long non-coding RNA transcript (lnc-MGC) are coordinately increased in the glomeruli of mouse models of DN, and mesangial cells treated with transforming growth factor-β1 (TGF- β1) or high glucose. Lnc-MGC is regulated by an endoplasmic reticulum (ER) stress-related transcription factor, CHOP. Cluster microRNAs and lnc-MGC are decreased in diabetic Chop-/- mice that showed protection from DN. Target genes of megacluster microRNAs have functions related to protein synthesis and ER stress. A chemically modified oligonucleotide targeting lnc-MGC inhibits cluster microRNAs, glomerular ECM and hypertrophy in diabetic mice. Relevance to human DN is also demonstrated. These results demonstrate the translational implications of targeting lnc-MGC for controlling DN progression.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Kirti Bhatt
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Hyung Jung Oh
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Supriya Deshpande
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Ye Jia
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Jennifer Y C Lai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - YiFan Wu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert G Nelson
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85014, USA
| | - Markus Bitzer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| |
Collapse
|
39
|
Rasouly HM, Kumar S, Chan S, Pisarek-Horowitz A, Sharma R, Xi QJ, Nishizaki Y, Higashi Y, Salant DJ, Maas RL, Lu W. Loss of Zeb2 in mesenchyme-derived nephrons causes primary glomerulocystic disease. Kidney Int 2016; 90:1262-1273. [PMID: 27591083 DOI: 10.1016/j.kint.2016.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 06/18/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022]
Abstract
Primary glomerulocystic kidney disease is a special form of renal cystic disorder characterized by Bowman's space dilatation in the absence of tubular cysts. ZEB2 is a SMAD-interacting transcription factor involved in Mowat-Wilson syndrome, a congenital disorder with an increased risk for kidney anomalies. Here we show that deletion of Zeb2 in mesenchyme-derived nephrons with either Pax2-cre or Six2-cre causes primary glomerulocystic kidney disease without tubular cysts in mice. Glomerulotubular junction analysis revealed many atubular glomeruli in the kidneys of Zeb2 knockout mice, which explains the presence of glomerular cysts in the absence of tubular dilatation. Gene expression analysis showed decreased expression of early proximal tubular markers in the kidneys of Zeb2 knockout mice preceding glomerular cyst formation, suggesting that defects in proximal tubule development during early nephrogenesis contribute to the formation of congenital atubular glomeruli. At the molecular level, Zeb2 deletion caused aberrant expression of Pkd1, Hnf1β, and Glis3, three genes causing glomerular cysts. Thus, Zeb2 regulates the morphogenesis of mesenchyme-derived nephrons and is required for proximal tubule development and glomerulotubular junction formation. Our findings also suggest that ZEB2 might be a novel disease gene in patients with primary glomerular cystic disease.
Collapse
Affiliation(s)
- Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA; Graduate Program in Genomics and Genetics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sudhir Kumar
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Stefanie Chan
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Anna Pisarek-Horowitz
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Richa Sharma
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Qiongchao J Xi
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuriko Nishizaki
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Yujiro Higashi
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - David J Salant
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Richard L Maas
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA; Graduate Program in Genomics and Genetics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
40
|
Fendler W, Madzio J, Kozinski K, Patel K, Janikiewicz J, Szopa M, Tracz A, Borowiec M, Jarosz-Chobot P, Mysliwiec M, Szadkowska A, Hattersley AT, Ellard S, Malecki MT, Dobrzyn A, Mlynarski W. Differential regulation of serum microRNA expression by HNF1β and HNF1α transcription factors. Diabetologia 2016; 59:1463-1473. [PMID: 27059371 PMCID: PMC4901123 DOI: 10.1007/s00125-016-3945-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/10/2016] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS We aimed to identify microRNAs (miRNAs) under transcriptional control of the HNF1β transcription factor, and investigate whether its effect manifests in serum. METHODS The Polish cohort (N = 60) consisted of 11 patients with HNF1B-MODY, 17 with HNF1A-MODY, 13 with GCK-MODY, an HbA1c-matched type 1 diabetic group (n = 9) and ten healthy controls. Replication was performed in 61 clinically-matched British patients mirroring the groups in the Polish cohort. The Polish cohort underwent miRNA serum level profiling with quantitative real-time PCR (qPCR) arrays to identify differentially expressed miRNAs. Validation was performed using qPCR. To determine whether serum content reflects alterations at a cellular level, we quantified miRNA levels in a human hepatocyte cell line (HepG2) with small interfering RNA knockdowns of HNF1α or HNF1β. RESULTS Significant differences (adjusted p < 0.05) were noted for 11 miRNAs. Five of them differed between HNF1A-MODY and HNF1B-MODY, and, amongst those, four (miR-24, miR-27b, miR-223 and miR-199a) showed HNF1B-MODY-specific expression levels in the replication group. In all four cases the miRNA expression level was lower in HNF1B-MODY than in all other tested groups. Areas under the receiver operating characteristic curves ranged from 0.79 to 0.86, with sensitivity and specificity reaching 91.7% (miR-24) and 82.1% (miR-199a), respectively. The cellular expression pattern of miRNA was consistent with serum levels, as all were significantly higher in HNF1α- than in HNF1β-deficient HepG2 cells. CONCLUSIONS/INTERPRETATION We have shown that expression of specific miRNAs depends on HNF1β function. The impact of HNF1β deficiency was evidenced at serum level, making HNF1β-dependent miRNAs potentially applicable in the diagnosis of HNF1B-MODY.
Collapse
Affiliation(s)
- Wojciech Fendler
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland.
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 36/50 Sporna Str., 91-738, Lodz, Poland.
| | - Joanna Madzio
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
- Studies in Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Kamil Kozinski
- Laboratory of Cell Signalling and Metabolic Disorders, Nencki Institute of Experimental Medicine, Polish Academy of Sciences, Warsaw, Poland
| | - Kashyap Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Justyna Janikiewicz
- Laboratory of Cell Signalling and Metabolic Disorders, Nencki Institute of Experimental Medicine, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital, Krakow, Poland
| | - Adam Tracz
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | | | - Malgorzata Mysliwiec
- Department of Paediatrics, Diabetology and Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Szadkowska
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital, Krakow, Poland
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signalling and Metabolic Disorders, Nencki Institute of Experimental Medicine, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Mlynarski
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
41
|
Wang M, Wang S, Yao D, Yan Q, Lu W. A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy. Mol Cell Endocrinol 2016; 426:136-45. [PMID: 26923441 DOI: 10.1016/j.mce.2016.02.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/10/2023]
Abstract
Diabetic nephropathy is an important microvascular complication of diabetes, and the incidence of end-stage renal disease caused by it are rising annually. Long non-coding RNAs (lncRNAs) are widely regarded to associate with the occurrence and development of various diseases; however, the relationship between lncRNAs and diabetic nephropathy remains largely unknown. This work studied the effect of lncRNAs on diabetic nephropathy pathogenesis. LncRNA microarrays were initially used to detect lncRNAs with altered expression in three cases of kidney tissue from db/db mice with diabetic nephropathy. LncRNAs with differential expression (>2-fold) could be considered candidates. Particularly, CYP4B1-PS1-001 was significantly downregulated in response to early diabetic nephropathy in vitro and in vivo, while overexpression of CYP4B1-PS1-001 inhibited proliferation and fibrosis of mesangial cells. Overall, our data indicate the potential role of CYP4B1-PS1-001 in the proliferation and fibrosis of mice mesangial cells as the prominent features during early stage of diabetic nephropathy, which extend the relationship between lncRNAs and diabetic nephropathy, and may provide a potential therapeutic target and molecular biomarker for the disease.
Collapse
Affiliation(s)
- Min Wang
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, PR China
| | - Suyu Wang
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, PR China
| | - Di Yao
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, PR China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing 210029, PR China.
| | - Weiping Lu
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, PR China.
| |
Collapse
|