1
|
Li Y, Zhou B, Liu D, Nie G, Yang F, Chen J, Cheng S, Kang Y, Liu B, Dong B, Liu M. Carbon monoxide gas molecules: Therapeutic mechanisms in radiation-induced lung injury. J Colloid Interface Sci 2025; 688:250-263. [PMID: 40010090 DOI: 10.1016/j.jcis.2025.02.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Radiation therapy (RT) remains an essential treatment modality for lung cancer, yet its effectiveness is frequently hindered by radiation-induced lung injury (RILI), a common outcome of modern therapeutic regimens. With the aim of addressing this challenge, a novel nanocomposite, Au@mSiO2@Mn(CO)5Br (ASMB), was synthesized with Au@mSiO2 as the carrier and Mn(CO)5Br as the functional component. The gold nanorods (Au rods) core generates reactive oxygen species (ROS) under X-ray irradiation, which then activates Mn(CO)5Br to release carbon monoxide (CO) locally within the lung during radiotherapy. The released CO then diffuses to surrounding tissues, inhibiting the excessive accumulation of ROS, thereby preventing damage to normal cells caused by ROS generated in a short period of time. Meanwhile, the released manganese ions (Mnn+) catalyze the conversion of hydrogen peroxide (H2O2) in the microenvironment into oxygen (O2). In vitro experiments demonstrated that the release of CO markedly attenuated radiation-induced ROS production, thereby inhibiting the activation of the NLRP3 inflammasome and reducing the levels of inflammatory cytokines and pyroptosis-related proteins. Moreover, it downregulated the expression of fibrosis-associated proteins, including TGF-β1 and α-SMA. Additionally, CO facilitated DNA damage repair, thereby mitigating radiation-induced tissue injury. In the RILI model, the ASMB NPs-treated lungs exhibited notably reduced pulmonary edema, congestion, and inflammatory cell infiltration, primarily by inhibiting NLRP3 inflammasome-dependent pyroptosis and reducing levels of inflammation and fibrosis markers. The release of O2 further mitigates local tissue hypoxia, enhancing the effectiveness of radiotherapy. Overall, ASMB NPs provide a promising alternative for the treatment of RILI and a potential therapeutic strategy to improve the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Ya'nan Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Bingshuai Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Dajie Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Guodong Nie
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Fan Yang
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Jiajie Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Sen Cheng
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Yahui Kang
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China; Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Bailong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China.
| | - Min Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Liu S, Yu J, Du X, Hao H, Xie X, Ababakri A, Zhang J, Zhang L, Sun J, Xie Y, Jiang W. Discovery of novel transforming growth factor β type 1 receptor inhibitors through structure-based virtual screening, preliminary structure-activity relationship study, and biological evaluation in hepatocellular carcinoma. Bioorg Med Chem 2025; 123:118175. [PMID: 40163974 DOI: 10.1016/j.bmc.2025.118175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The transforming growth factor β (TGF-β) type 1 receptor (ALK5) plays a pivotal role in the tumor microenvironment, making it an attractive target for therapeutic intervention. Small-molecule inhibitors of TGFβR1 offer a promising approach for the treatment of malignant tumors. In this study, a series of 1H-pyrrolo[2,3-b]pyridine derivatives were identified as novel TGFβR1 inhibitors. The most potent candidate, compound 7w, demonstrated inhibition of SMAD2/3 phosphorylation and Hep3B cell viability, with IC50 values of 160.3 nM and 228 μM, respectively. Compound 7w showed a synergistic anti-proliferation and pro-apoptotic effect when combined with sorafenib, highlighting its potential as a promising lead for the development of potential anticancer therapies.
Collapse
MESH Headings
- Humans
- Structure-Activity Relationship
- Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Drug Screening Assays, Antitumor
- Cell Proliferation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Molecular Structure
- Cell Line, Tumor
- Drug Discovery
- Apoptosis/drug effects
- Dose-Response Relationship, Drug
- Molecular Docking Simulation
- Cell Survival/drug effects
- Pyridines/pharmacology
- Pyridines/chemistry
- Pyridines/chemical synthesis
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Siyuan Liu
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| | - Jian Yu
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| | - Xinrao Du
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| | - Haizhou Hao
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| | - Xinyue Xie
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| | - Abdisamat Ababakri
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| | - Junyan Zhang
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| | - Li Zhang
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| | - Jisan Sun
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| | - Yan Xie
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| | - Wentao Jiang
- First Central Clinical School, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China; Liver Transplantation Department, Tianjin First Center Hospital, Tianjin China.
| |
Collapse
|
3
|
Arai M, Hanada M, Taniguchi H, Nakajima F, Ohmoto H, Inoue T, Naka K, Sawa M. Discovery of HM-279, a Potent Inhibitor of ALK5 for Improving Therapeutic Efficacy of Cancer Immunotherapy. J Med Chem 2025; 68:7106-7118. [PMID: 40108955 DOI: 10.1021/acs.jmedchem.4c02293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Activin receptor-like kinase 5 (ALK5) is a type I receptor serine/threonine kinase and responsible for the TGF-β signaling pathway. ALK5 is thought to be a key player in the tumor microenvironment to promote tumor progression by affecting the anticancer immunity. Therefore, ALK5 is an attractive drug target for modulating TGF-β signaling pathways to improve the therapeutic efficacy of cancer immunotherapy. We report the optimization of a series of thiazole analogues starting from lead compound 6, focusing on improving off-target selectivity. Compound 19f (HM-279) was identified as a potent ALK5 inhibitor with an acceptable off-target selectivity and favorable ADME/PK properties. Oral administration of HM-279 demonstrated antitumor activity in a CT26.WT colon carcinoma syngeneic mouse model as a single agent and in combination with the anti-PD-1 antibody through CD8+ T cell immunity.
Collapse
Affiliation(s)
- Mai Arai
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Mitsuharu Hanada
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Haruka Taniguchi
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Fumio Nakajima
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroshi Ohmoto
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
4
|
Floudas CS, Goswami M, Donahue RN, Pastor DM, Redman JM, Brownell I, Turkbey EB, Cordes LM, Steinberg SM, Manu M, Francis DC, Lamping E, Marté JL, Kackley M, Krauss E, Manukyan M, Jochems C, Schlom J, Gulley JL, Strauss J. Novel Combination Immunotherapy and Clinical Activity in Patients With HPV-Associated Cancers: A Nonrandomized Clinical Trial. JAMA Oncol 2025; 11:394-399. [PMID: 39976981 PMCID: PMC11843463 DOI: 10.1001/jamaoncol.2024.6998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/20/2024] [Indexed: 02/23/2025]
Abstract
IMPORTANCE Patients who experience progression of advanced human papillomavirus (HPV)-associated cancers and who have previously received first-line systemic treatment have a poor prognosis and limited therapeutic options. OBJECTIVE To assess the clinical activity of the combination of the HPV type 16 therapeutic vaccine PDS0101, the tumor-targeting interleukin 12 antibody-drug conjugate PDS01ADC, and the bifunctional anti-programmed cell death ligand 1 (PD-L1)/transforming growth factor β (TGF-β) bintrafusp alfa in advanced HPV-associated cancers. DESIGN, Setting, and Participants This nonrandomized clinical trial was phase 1/2 and investigator initiated, and was conducted at a single US cancer research center between June 2020 and July 2022. Patients with advanced or metastatic HPV-associated cancers were eligible, including patients who were both immune checkpoint blockade (ICB) naive and ICB resistant. The cutoff date for data analysis was May 13, 2024. INTERVENTION Patients received 1 mL of PDS0101 subcutaneously every 4 weeks for 6 doses then every 12 weeks for 2 additional doses, PDS01ADC, 16.8 µg/kg, subcutaneously every 4 weeks or PDS01ADC, 8 µg/kg, subcutaneously every 2 weeks, and bintrafusp alfa, 1200 mg, intravenously every 2 weeks. MAIN OUTCOMES AND MEASURES Objective response rate (ORR) by Response Evaluation Criteria in Solid Tumors version 1.1 in ICB-naive patients. RESULTS Of the 50 eligible patients, 26 (52%) were men and the median age was 56 years (range, 28-80 years). The median (IQR) follow-up was 37.7 (30.6-42.0) months. Fourteen patients (28%) were ICB naive, with an ORR of 35.7% (95% CI, 12.8%-64.9%), and median overall survival (OS) 42.4 months (95% CI, 8.3 months-not estimable); in ICB-resistant patients, the ORR was 16.7% (6 of 36 patients; 95% CI, 6.4%-32.8%) and median OS was 15.8 months (95% CI, 9.0-21.3 months). Among patients with HPV-16-positive tumors (37 patients [74%]), in the ICB-naive group (8 patients [21.6%]) the ORR was 62.5% (95% CI, 24.5%-91.5%) and a median OS measure was not reached. Grade 3 and 4 treatment-related adverse events occurred in 26 of 50 patients (52%). There were no treatment-related deaths. CONCLUSIONS AND RELEVANCE In this trial, the combination of PDS0101, PDS01ADC, and bintrafusp alfa showed an acceptable safety profile and promising antitumor activity and improved OS in patients with HPV-16-positive cancers, in both ICB-naive and ICB-resistant patients, warranting further evaluation of the combination of PDS0101 and PDS01ADC with simultaneous PD-L1/TGF-β inhibition in these populations. Trial Registration ClinicalTrials.gov Identifier: NCT04287868.
Collapse
Affiliation(s)
- Charalampos S. Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Meghali Goswami
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Renee N. Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Danielle M. Pastor
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jason M. Redman
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Isaac Brownell
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Evrim B. Turkbey
- Radiology and Imaging Sciences, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa M. Cordes
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michell Manu
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Deneise C. Francis
- Office of Research Nursing, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Lamping
- Office of Research Nursing, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L. Marté
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary Kackley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Krauss
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Manuk Manukyan
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Caroline Jochems
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Julius Strauss
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Sadri S, Aghajani A, Soleimani H, Ghorbani Kalkhajeh S, Nazari H, Brouki Milan P, Peyravian N, Pezeshkian Z, Malekzadeh Kebria M, Shirazi F, Shams E, Naderi Noukabadi F, Nazemalhosseini-Mojarad E, Salehi Z. Exploring the Role of the TGF-β Signaling Pathway in Colorectal Precancerous Polyps Biochemical Genetics. Biochem Genet 2025; 63:1116-1148. [PMID: 39636332 DOI: 10.1007/s10528-024-10988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Colorectal cancer (CRC) is an important public health issue and is the third most common cancer, accounting for approximately 10% of all cancer cases worldwide. CRC results from the accumulation of multiple genetic and epigenetic alterations in the normal epithelial cells of the colon and rectum, leading to the development of colorectal polyps and invasive carcinomas. The transforming growth factor-beta (TGF-β) pathway is regulated in many diseases, such as cancer. This factor can show tumor suppressant function in the early stages in healthy and cancer cells. It can be regulated and affected by different factors, including noncoding RNAs, which are the remarkable regulators for this pathway. The most prominent functions of this factor are cell cycle arrest and apoptosis in cancer cells. However, activating at the final stages of the cell cycle can cause tumor metastasis. Thus, the dual function of TGF-β and the pleiotropic nature of this signaling make it a crucial challenge for cancer treatment. Accurately studying the TGF-β signaling pathway is critical to determine its role. One of the roles of TGF-β signaling is its significant effect on colorectal polyp malignancy and cancer. In this article, we review the published scientific papers regarding the TGF-β signaling pathway, its related genes, and their contribution to precancerous conditions and colorectal cancer progression. The complex interaction of the TGF-β signaling pathway with noncoding RNAs, such as lncRNA TUG1 and miR-21, significantly influences colorectal polyp and cancer progression. Identifying dysregulated TGF-β-related noncoding RNAs offers promising therapeutic avenues for colorectal cancer. Comprehending TGF-β's connection to other molecular mechanisms is crucial for advancing effective therapeutic strategies.
Collapse
Affiliation(s)
- Shadi Sadri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Ali Aghajani
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hiva Soleimani
- Department of General Biology, Faculty of Fundamental Science, Islamic Azad University of Shahr-E Qods, Tehran, 37515-374, Iran
| | - Sourena Ghorbani Kalkhajeh
- Department of Radiologic Technology, School of Allied Medical Sciences, Ahvaz Jundi-Shapour University of Medical Sciences, Ahvaz, Iran
| | - Haniyeh Nazari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, 19395-1495, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Pezeshkian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Malekzadeh Kebria
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Shirazi
- Division of Genetics, Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, 817467344, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Fatemeh Naderi Noukabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, 14114, Iran.
| |
Collapse
|
6
|
Yong C, Liang Y, Wang M, Jin W, Fan X, Wang Z, Cao K, Wu T, Li Q, Chang C. Alternative splicing: A key regulator in T cell response and cancer immunotherapy. Pharmacol Res 2025; 215:107713. [PMID: 40147681 DOI: 10.1016/j.phrs.2025.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Alternative splicing (AS), a key post-transcriptional regulatory mechanism, is frequently dysregulated in cancer, driving both tumor progression and immune modulation. Aberrant AS influences antigen presentation, T cell activation, immune checkpoint regulation, and cytokine signaling, contributing to immune evasion but also presenting unique therapeutic vulnerabilities. Targeting AS has emerged as a promising strategy in cancer immunotherapy. Splicing-derived neoantigens have been identified as potent inducers of CD8⁺ T cell responses, offering potential for personalized treatment. AS modulators such as PRMT5 inhibitor GSK3326595 enhance immunotherapy efficacy by upregulating MHC class II expression and promoting T cell infiltration, while RBM39 inhibitor indisulam induces tumor-specific neoantigens. Furthermore, combining AS-targeting drugs with immune checkpoint inhibitors (ICIs) has demonstrated synergistic effects, improved response rates and overcoming resistance in preclinical models. Despite these advances, challenges remain in optimizing drug specificity and minimizing toxicity. Future efforts should focus on refining AS-targeting therapies, identifying predictive biomarkers, and integrating these approaches into clinical applications. This review highlights the therapeutic potential of AS modulation in cancer immunotherapy and its implications for advancing precision oncology.
Collapse
Affiliation(s)
- Caiyu Yong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yexin Liang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Minmin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Weiwei Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xuefei Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhengwen Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Kui Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Tong Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qian Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Cunjie Chang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
7
|
Marrapu S, Kumar R. Transition from acute kidney injury to chronic kidney disease in liver cirrhosis patients: Current perspective. World J Nephrol 2025; 14:102381. [PMID: 40134649 PMCID: PMC11755238 DOI: 10.5527/wjn.v14.i1.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/22/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
In liver cirrhosis patients, acute kidney injury (AKI) is a common and severe complication associated with significant morbidity and mortality, often leading to chronic kidney disease (CKD). This progression reflects a complex interplay of renal and hepatic pathophysiology, with AKI acting as an initiator through maladaptive repair mechanisms. These mechanisms-such as tubular cell cycle arrest, inflammatory cascades, and fibrotic processes-are exacerbated by the hemodynamic and neurohormonal disturbances characteristic of cirrhosis. Following AKI episodes, persistent kidney dysfunction or acute kidney disease (AKD) often serves as a bridge to CKD. AKD represents a critical phase in renal deterioration, characterized by prolonged kidney injury that does not fully meet CKD criteria but exceeds the temporal scope of AKI. The progression from AKD to CKD is further influenced by recurrent AKI episodes, impaired renal autoregulation, and systemic comorbidities such as diabetes and metabolic dysfunction-associated steatotic liver disease, which compound kidney damage. The clinical management of AKI and CKD in cirrhotic patients requires a multidimensional approach that includes early identification of kidney injury, the application of novel biomarkers, and precision interventions. Recent evidence underscores the inadequacy of traditional biomarkers in predicting the AKI-to-CKD progression, necessitating novel biomarkers for early detection and intervention.
Collapse
Affiliation(s)
- Sudheer Marrapu
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, India
| | - Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, India
| |
Collapse
|
8
|
Quan T, Li R, Gao T. The Intestinal Macrophage-Intestinal Stem Cell Axis in Inflammatory Bowel Diseases: From Pathogenesis to Therapy. Int J Mol Sci 2025; 26:2855. [PMID: 40243444 PMCID: PMC11988290 DOI: 10.3390/ijms26072855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The gut plays a crucial role in digestion and immunity, so its balance is essential to overall health. This balance relies on dynamic interactions between intestinal epithelial cells, immune cells, and crypt stem cells. Inflammatory bowel disease (IBD), which consists of ulcerative colitis and Crohn's disease, is a chronic relapsing inflammatory disease of the gastrointestinal tract closely related to immune dysfunction. Stem cells, known for their ability to self-renew and differentiate, play an important role in repairing damaged intestinal epithelium and maintaining homeostasis in vivo. Macrophages are key gatekeepers of intestinal immune homeostasis and have a significant impact on IBD. Current research has focused on the link between epithelial cells and stem cells, but interactions with macrophages, which have been recognized as attractive targets for the development of new therapeutic approaches to disease, have been less explored. Recently, the developing field of immunometabolism has reinforced that metabolic reprogramming is a key determinant of macrophage function and subsequent disease progression. The aim of this review is to explore the role of the macrophage-stem cell axis in the maintenance of intestinal homeostasis and to summarize potential approaches to treating IBD by manipulating the cellular metabolism of macrophages, as well as the main opportunities and challenges faced. In summary, our overview provides a framework for understanding the critical role of macrophage immunometabolism in maintaining gut health and potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (T.Q.); (R.L.)
| |
Collapse
|
9
|
Liu Q. Role of exercise on the reduction of cancer development: a mechanistic review from the lncRNA point of view. Clin Exp Med 2025; 25:77. [PMID: 40063304 PMCID: PMC11893680 DOI: 10.1007/s10238-025-01618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
More research has been done on the correlation between exercise and cancer, which has revealed several ways that physical activity decreases the risk of developing the disease. The developing function of lncRNAs as an important molecular link between exercise and cancer suppression is the main topic of this review. According to recent research, regular physical exercise also alters the expression levels of several lncRNAs, which are generally elevated in cancer. A complex network of interactions that may provide protective effects against carcinogenesis is suggested by the contribution of these lncRNAs in various cellular processes, such as epigenetic alterations, proliferation, and apoptosis regulation. We offer a comprehensive summary of the existing information regarding specific lncRNAs that are influenced by physical activity and could potentially impact cancer-related processes. We also go over the difficulties in interpreting these alterations, taking into account the fact that several lncRNAs have a dual function in promoting and preventing cancer in various physiological settings. To understand the complex impacts of exercise-induced lncRNA regulation in cancer biology, more study is required. The critique strongly highlights the possibility of lncRNAs serving as both indicators and treatment prospects for cancer-preventive strategies.
Collapse
Affiliation(s)
- Qi Liu
- Nanchang Institute of Technology, Nanchang, 330044, China.
| |
Collapse
|
10
|
Huang W, Fu B, Xu H. β-elemene inhibits tumor-promoting in small cell lung cancer by affecting M2 macrophages and TGF-β. BMC Pulm Med 2025; 25:97. [PMID: 40022030 PMCID: PMC11869473 DOI: 10.1186/s12890-025-03533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE M2 macrophages have been implicated in promoting tumor growth and metastasis in various cancers, including small cell lung cancer (SCLC). This study investigated the role of M2 macrophages in SCLC progression and explored the therapeutic potential of β-elemene, a natural compound, in modulating M2 macrophage-mediated tumor promotion. METHODS We differentiated THP-1 monocytes into M2 macrophages using PMA (phorbol 12-myristate 13-acetate), IL-4 (interleukin-4), and IL-13 (interleukin-13). M2 macrophages were co-cultured with the SCLC cell line NCI-H209, and CCK-8, Transwell, and flow cytometry assays were performed. TGF-β expression levels were detected by ELISA. M2 macrophages and NCI-H209 co-cultured cells were treated with β-elemene, or M2 macrophages were transfected with TGF-β shRNA lentivirus, and then co-cultured with NCI-H209 cells. Flow cytometry was used to analyze cell apoptosis. Immunofluorescence staining was performed to assess TGF-β expression. RESULTS Our findings demonstrate that M2 macrophages significantly enhance the viability, proliferation, and migration of SCLC cells, and this effect is associated with increased TGF-β expression in SCLC cells co-cultured with M2 macrophages. Furthermore, β-elemene treatment significantly reduced the migration and viability of SCLC cells co-cultured with M2 macrophages. Silencing TGF-β expression in M2 macrophages also suppressed SCLC cell proliferation and migration, suggesting that β-elemene may inhibit the pro-tumorigenic effects of M2 macrophages in SCLC by modulating TGF-β signaling. Immunofluorescence staining revealed that β-elemene treatment significantly reduced TGF-β levels in SCLC cells co-cultured with M2 macrophages, supporting the hypothesis that β-elemene exerts its antitumor activity by modulating the TGF-β pathway. CONCLUSIONS Our results suggest that β-elemene has the potential to suppress SCLC development by modulating M2 macrophages and the TGF-β, offering a new therapeutic avenue and potential drug candidate for SCLC treatment.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bing Fu
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haoran Xu
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Inderberg EM, Singh N, Miller R, Arbe-Barnes S, Eriksen HK, Lversen B, Juul HV, Eriksen JA, Handeland KR. Generation of frameshift-mutated TGFβR2-specific T cells in healthy subjects following administration with cancer vaccine candidate FMPV-1/GM-CSF in a phase 1 study. Cancer Immunol Immunother 2025; 74:115. [PMID: 39998682 PMCID: PMC11861775 DOI: 10.1007/s00262-025-03969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
FMPV-1 is a component of FMPV-3, an investigational cancer-specific vaccine and being developed to activate anti-cancer T cell responses targeting frameshift mutations of MSI-H cancers. FMPV-1 is designed to activate T cell responses against transforming growth factor β receptor 2 (TGFβR2) frameshift mutation. Microsatellite instability high (MSI-H) gastrointestinal cancers frequently harbour TGFβR2 frameshift mutations. This first-in-human, phase 1, single centre, open-label study included 16 healthy male subjects who received FMPV-1 (0.15 mg/injection) plus granulocyte-macrophage colony-stimulating factor (GM-CSF) (0.03 mg/injection) as two separate, co-located, injections on Days 1, 8, 15, 29 and 43. All subjects were followed to Day 365. A FMPV-1-specific delayed type hypersensitivity (DTH) skin reactivity test was performed with FMPV-1 (without GM-CSF) on Days 1, 29 and 43 with assessment after 2 days. All subjects were DTH negative at baseline, 8/16 were positive on Day 31 and 15/16 were positive on Day 45. Furthermore, the FMPV-1/GM-CSF induced frameshift mutant TGFβR2-specific T cells after the short vaccination period, and specific T cells were still detectable after 6 and 12 months indicating induction of frameshift mutant TGFβR2-specific T memory cells. Adverse events were limited to mild injection site reactions with no evidence of related systemic signs or symptoms. No other clinically important changes to vital signs, electrocardiograms, haematological, coagulation or laboratory measures related to treatment were observed. FMPV-1/GM-CSF was well tolerated and generated vaccine-specific T cell immune responses in healthy subjects. These findings support clinical studies in patients with, or at risk of, cancers carrying TGFβR2 frameshift mutations.Clinical trial identification: ClinicalTrials.gov: NCT05238558. EudraCT: 2020-004363-80.
Collapse
Affiliation(s)
- Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital - Radiumhospitalet, Oslo, Norway
| | - Nand Singh
- Medical Department, Quotient Sciences, Nottingham, UK
| | | | | | | | | | - Hedvig Vidarsdotter Juul
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital - Radiumhospitalet, Oslo, Norway
| | | | | |
Collapse
|
12
|
Guo S, Qi X, Zhang L, Lu K, Li X, Zhu J, Lian F. Plumbagin improves myocardial fibrosis after myocardial infarction by inhibiting the AKT/mTOR pathway to upregulate autophagy levels. Int Immunopharmacol 2025; 148:114086. [PMID: 39827666 DOI: 10.1016/j.intimp.2025.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Cardiac fibrosis is a chronic inflammatory response that considerably impacts cardiac function following myocardial infarction (MI). Although Plumbagin, a natural compound, has been shown to have anti-fibrotic effects by suppresses the ROS and NF-κB pathways in liver fibrosis, its role in regulating cardiac function and cardiac fibrosis post-MI remains unknown. In this study, we demonstrate that Plumbagin effectively inhibits TGF-β1-induced myocardial fibroblast fibrosis and promotes autophagy activation by suppressing the AKT/mTOR pathway. Consistent results were obtained from MI mouse model, which demonstrated that Plumbagin improved cardiac function in mice after MI, reduced the myocardial scar area, and downregulated the expression of fibrosis-related genes. These findings align with our in vitro results, as Plumbagin also inhibited AKT/mTOR activity and increased autophagy levels. Furthermore, we artificially elevated p-mTOR expression in vitro using an mTOR agonist, which reversed the therapeutic effects of Plumbagin, as evidenced by decreased autophagy levels and increased expression of fibrosis-related genes. Our results show that Plumbagin can partially reduce cardiac fibrosis by activating autophagy through modulation of the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Suxiang Guo
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Xiaohui Qi
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Luzheng Zhang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Kongli Lu
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Xueqing Li
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jun Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai 200241, People's Republic of China.
| | - Feng Lian
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
13
|
Vishwanath R, Biswas A, Modi U, Gupta S, Bhatia D, Solanki R. Programmable short peptides for modulating stem cell fate in tissue engineering and regenerative medicine. J Mater Chem B 2025; 13:2573-2591. [PMID: 39871657 DOI: 10.1039/d4tb02102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Recent advancements in tissue engineering and regenerative medicine have introduced promising strategies to address tissue and organ deficiencies. This review highlights the critical role of short peptides, particularly their ability to self-assemble into matrices that mimic the extracellular matrix (ECM). These low molecular weight peptides exhibit target-specific activities, modulate gene expression, and influence cell differentiation pathways. They are stable, programmable, non-cytotoxic, biocompatible, biodegradable, capable of crossing the cell membrane and easy to synthesize. This review underscores the importance of peptide structure and concentration in directing stem cell differentiation and explores their diverse biomedical applications. Peptides such as Aβ1-40, Aβ1-42, RADA16, A13 and KEDW are discussed for their roles in modulating stem cell differentiation into neuronal, glial, myocardial, osteogenic, hepatocyte and pancreatic lineages. Furthermore, this review delves into the underlying signaling mechanisms, the chemistry and design of short peptides and their potential for engineering biocompatible materials that mimic stem cell microenvironments. Short peptide-based biomaterials and scaffolds represent a promising avenue in stem cell therapy, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Rohan Vishwanath
- School of Life Science, Central University of Gujarat, Gandhinagar-382030, India
| | - Abhijit Biswas
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Sharad Gupta
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
14
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
15
|
Zhou A, Chen F, Chen Z. CUEDC1 promotes the growth, migration, epithelial-mesenchymal transition and inhibits apoptosis of hepatocellular carcinoma cells via the TGF-β/Smad signaling pathway. Mutat Res 2025; 830:111900. [PMID: 39951906 DOI: 10.1016/j.mrfmmm.2025.111900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE To explore the precise molecular by which CUEDC1, a 42 kDa protein containing a CUE domain located on chromosome 17q22, contributes to liver cancer metastasis. METHOD CUEDC1 protein expression levels were determined in liver cancer cells using Western blot analysis. The expression of CUEDC1 in these cells was silenced through siRNA transfection Cell viability was assessed using the Cell Counting Kit-8 (CCK-8) assay. Cell invasion and migration capabilities were evaluated using Transwell assays. The expression of transforming growth factor-beta (TGF-β)/ small mother against decapentaplegic (Smad) pathway, N-cadherin, alpha -smooth muscle actin (α-SMA), and E-cadherin was detected using Western blot. RESULT CUEDC1 expression was found to be elevated in liver cancer cells. Knockdown of CUEDC1 reduced the expression of TGF-β, p-Smad2, and p-Smad3, key components of the TGF-β/Smad pathway. Additionally, CUEDC1 knockdown significantly decreased cell survival, migration, invasion, and the EMT process in liver cancer cells. CONCLUSION CUEDC1 knockdown markedly reduces EMT and liver cancer cell metastasis by suppressing the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Angjian Zhou
- Department of Hepatobiliary Surgery, Yongkang First People's Hospital, Yongkang, Zhejiang 321300, China
| | - Fuyu Chen
- Department of Orthopedics, Yongkang First People's Hospital, Yongkang, Zhejiang 321300, China
| | - Zhongchao Chen
- Department of Hepatobiliary Surgery, Yongkang First People's Hospital, Yongkang, Zhejiang 321300, China.
| |
Collapse
|
16
|
Li DL, Liu MX, Zheng YJ, Qin Y, Ma R, Liang G, Pan CW. The Relationship Between Serum Biochemical Variables and Corneal Biomechanics Measured by Corvis ST Among Healthy Young Adults. Transl Vis Sci Technol 2025; 14:19. [PMID: 39951304 PMCID: PMC11824503 DOI: 10.1167/tvst.14.2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/08/2025] [Indexed: 02/19/2025] Open
Abstract
Purpose To investigate the relationship between serum biochemical variables and corneal biomechanics in healthy young adults. Methods A total of 1645 healthy university students were included. Every student underwent an ophthalmologic examination by Corvis ST to measure the corneal biomechanics and a blood examination to evaluate the alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine, and uric acid (UA) levels. Canonical correlation analysis (CCA) was conducted to assess their relationship. Results A significant relationship between serum biochemical variables and corneal biomechanics was found in both men and women. For men, the canonical correlation identified an association between the time of the first applanation (A1t), time of the second applanation (A2t), time of the highest concavity (HC-t), deflection amplitude of the highest concavity (HC-DeflA), and biomechanically corrected intraocular pressure (bIOP) with ALT, AST, urea, and UA (r = 0.235, P = 0.03). For women, a significant relationship between A1t, A2t, and bIOP with ALT and UA was found (r = 0.187, P < 0.01). Conclusions Elevated levels of ALT and UA were associated with softer corneas with greater elasticity and viscidity. The study provides novel evidence for the relationship between serum biochemical variables and ocular changes. Translational Relevance These findings may help clinicians perform adequate preoperative evaluations when performing corneal surgery on patients with liver or kidney disorders, as well as helping public health practitioners understand serum biochemical variables of corneal changes in healthy people.
Collapse
Affiliation(s)
- Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Min-Xin Liu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ya-Jie Zheng
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Yu Qin
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Rong Ma
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Gang Liang
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Fang W, Wang Y, Zhang K, Yang M, Liu M, Jin Y, Xiu X, Wang Y, Yu Z, Yang R, Fu Q. An Integrated Whole-Process Repair System with Programmed Regulation of Healing Performance Facilitates Urethral Wound Restoration and Scarless Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409930. [PMID: 39691071 PMCID: PMC11809434 DOI: 10.1002/advs.202409930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Indexed: 12/19/2024]
Abstract
The harsh microenvironment of the urethral injury often carries high risks of early undesirable healing as well as late scar tissue formation. Indeed, the infection and inflammatory response in the early stages as well as blood vessel formation and tissue regeneration in the later stages fundamentally impact the outcomes of urethral wound healing. Innovatively, an integrated whole-process repair hydrogel (APF/C/L@dECM) is designed. After rigorous testing, it is found that hydrogels formed by hydrophobic association and double cross-linking of amide bonds can procedurally regulate wound healing in all phases to match the repair process. In rabbit models of urethral wound, APF/C/L@dECM hydrogel can achieve scarless reconstruction with significantly better results than other hydrogels. Noteworthily, multi-stage mechanistic explorations reveal the expression profiles of inflammation, vascularization, and extracellular matrix secretion-related genes in wound tissue at different times. In summary, this study develops an overall treatment for urethral injury through a whole-process repair system that promotes healthy healing of urethral wounds and prevents the formation of scar tissue.
Collapse
Affiliation(s)
- Wenzhuo Fang
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| | - Ying Wang
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| | - Kaile Zhang
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| | - Ming Yang
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| | - Meng Liu
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| | - Yangwang Jin
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| | - Xianjie Xiu
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| | - Yuhui Wang
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| | - Zhenwei Yu
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| | - Ranxing Yang
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| | - Qiang Fu
- Department of UrologyAffiliated Sixth People's HospitalShanghai Jiaotong University School of MedicineNo. 600 Yi‐Shan RoadShanghai200233P. R. China
| |
Collapse
|
18
|
Zheng H, Zhong ZJ, Wang YC, Sun YB, Li FF. Downregulation of interleukin 11 regulates the transforming growth factor-β/ERK1/2 signaling pathway to inhibit articular capsule fibrosis and alleviate post-traumatic articular capsule contracture. J Shoulder Elbow Surg 2025; 34:584-594. [PMID: 39089417 DOI: 10.1016/j.jse.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Post-traumatic capsular contracture is a common complication of joint injury and surgery. Post-traumatic capsular contracture is associated with fibrosis characterized by excessive differentiation and proliferation of myofibroblasts and abnormal secretion and accumulation of extracellular matrix. Previous studies have suggested that interleukin 11 (IL11) plays a role in myocardial fibrosis. We thus hypothesized that IL11 may play a fibrotic role during capsular contracture, in order to discover new targets for preventing joint capsule contracture. METHODS We constructed a post-traumatic contracture model by excessively extending the knee joint and fixing the joint in the flexion position, and a post-traumatic joint capsule contracture model was constructed in the wild-type, IL11-/-, IL11 R -/-, α-SMA-cre-IL11fl/fl, α-SMA-cre-IL11Rfl/fl mouse strain, with wild-type mice without any treatment of the knee joint as the control group. Fibrotic markers and the expression of IL11 and IL11 R in knee joint tissue were detected in each group of mice. The NIH3T3 cell line was used for in vitro analyses. The expression of fibrosis markers, IL11, transforming growth factor-β, and ERK1/2 were detected by western blot, enzyme-linked immunosorbent assay, and real time quantitative polymerase chain reaction. RESULTS Inhibition of IL11 inhibited ERK1/2 phosphorylation, reduced the secretion of collagen in the joint capsule, and inhibited the excessive differentiation and proliferation of myofibroblasts in the post-traumatic joint capsule contracture, thus alleviating the joint capsule contracture and obtaining better joint mobility. CONCLUSION Downregulation of IL11 in traumatic joint capsule contracture inhibits ERK1/2 phosphorylation, thus significantly relieving joint capsule contracture. Our findings indicate the transforming growth factor-β/IL11/ERK1/2 axis is an important pathway for the differentiation of fibroblasts into myofibroblasts. Anti-IL11 treatment is an effective means to prevent traumatic joint capsule contracture.
Collapse
Affiliation(s)
- Heng Zheng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zhen-Jia Zhong
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi-Chong Wang
- The 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yang-Bai Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng-Feng Li
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
19
|
Li Y, Li G, Feng J, Li S, Liu N. Advances in Research on Marine Natural Products for Modulating the Inflammatory Microenvironment. Phytother Res 2025; 39:1238-1258. [PMID: 39844461 DOI: 10.1002/ptr.8418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
In recent years, marine natural products (MNPs) have emerged as crucial sources of lead compounds for the advancement of anti-inflammatory drugs due to their abundant diversity, complexity, and distinctiveness. Inflammatory microenvironments (IMEs) are pervasive pathological features in the etiology of various chronic diseases, referring to the localized milieu or ecosystem where inflammatory responses occur, and they play a pivotal role in the onset and progression of inflammatory diseases. Uncontrolled IMEs can lead to dysregulation of inflammatory mediators within signaling pathways, thereby exerting detrimental effects on human health and even contributing to the development of inflammatory diseases such as cancer. Currently, inflammation treatment predominantly relies on chemical drugs. Nevertheless, these existing therapies are constrained by their numerous side effects and slow remission of symptoms. Consequently, there is an urgent need for the discovery and development of new drugs that exhibit minimal side effects while exerting potent anti-inflammatory effects. This article extensively explored the activities and mechanisms of MNPs (covering studies from 2010 to 2024) regulating key signaling pathways and inflammatory mediators in the IME, which establishes a theoretical basis for the further development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yuru Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangjie Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingwen Feng
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Ning Liu
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
20
|
Wu Z, Song B, Peng F, Zhang Q, Wu S. Zangsiwei prevents particulate matter-induced lung inflammation and fibrosis by inhibiting the TGF-β/SMAD pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118752. [PMID: 39232997 DOI: 10.1016/j.jep.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zangsiwei(ZSW) is a traditional Tibetan medicine from China consisting of extracts of Rhododendron anthopogonoides Maxim, Gentiana Tourn, Corydalis hendersonii Hemsl and Berberis kansuensis C.K.Schneid. Traditionally, ZSW has been used by Tibetan physicians to treat chronic respiratory diseases. The role of ZSW in particulate matter-induced lung inflammation and fibrosis remains unclear. AIM OF THE STUDY Combining non-targeted metabolomics, network pharmacology, and molecular docking to explore the mechanism of ZSW in the treatment of particulate matter-induced lung inflammation and fibrosis, and validated by in vivo and in vitro experiments. MATERIALS AND METHODS The serum metabolite profile post-ZSW administration was first identified utilizing non-targeted metabolomics. Network pharmacology and molecular docking were employed to predict potential bioactive components and their corresponding targets. The in silico predictions were subsequently validated through in vivo studies in mice exposed to PM2.5 and silica dust, as well as in vitro studies utilizing human lung epithelial cells (A549) and lung fibroblasts (MRC5). RESULTS Metabolomic analysis identified specific serum metabolites that were associated with ZSW treatment. Network pharmacology and molecular docking identified key targets involved in the Transforming growth factor-β (TGF-β)/SMAD pathway, which were subsequently validated through in vivo experiments demonstrating a reduction in lung inflammation and fibrosis in ZSW-treated mice. In vitro studies demonstrated that ZSW exerts protective effects against PM2.5-induced cytotoxicity and modulates fibrotic markers in a dose-dependent manner. This is consistent with the inhibition of the TGF-β/SMAD pathway. CONCLUSION Our integrated approach, which combines non-targeted metabolomics, network pharmacology, and molecular docking, followed by rigorous in vivo and in vitro validation, establishes ZSW as a potential therapeutic agent for particulate matter-induced lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Zhijian Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Boyang Song
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Fei Peng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Quan Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Shangjie Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China.
| |
Collapse
|
21
|
Alkhathami AG, Alshahrani MY, Alshehri SA, Nasir N, Wahab S. Curcumin as a potential inhibitor of TGFβ3 computational insights for breast cancer therapy. Sci Rep 2025; 15:2871. [PMID: 39843618 PMCID: PMC11754452 DOI: 10.1038/s41598-025-86289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Previous research indicates that Transforming growth factor beta-3 (TGFβ3) expression levels correlate with breast cancer metastasis, and elevated TGFβ3 levels have been linked with poor overall survival in breast cancer patients. The study used computational methods to examine curcumin's effects on TGFβ3, a chemical with antiviral and anticancer characteristics. The curcumin has low Molecular Weight 368.130 (MW) and follows Lipinski Rule, Pfizer Rule, GSK Rule, Golden Triangle, BMS Rule, zero PAINS alert and Acute Toxicity Rule with zero alert. Any drug-like contender must follow these qualities. Through molecular docking analyses, curcumin displayed favourable binding affinities at the TGFβ3 binding pocket, forming key interactions such as hydrogen bonds with residues like ASP323, ARG325, VAL333, HIS334, PRO336, LYS337, GLY393, and ARG394. 500 ns molecular dynamic simulations examined docking interactions. Molecular dynamics (MD) simulations trajectories analysis, by calculating lower structural deviation, minimal residual fluctuations, structural compactness assessment by calculating radius of gyration, surface area calculation which interact with solvent, role of hydrogen bonding, and secondary structural analyses. Furthermore, principal component, Gibbs free energy landscape and MMPBSA analysis, signifying system stability. These data suggest curcumin may inhibit TGFβ3, providing a framework for developing new compounds targeting this protein.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of applied medical sciences, King khalid University, Khamis Mushait, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia.
| |
Collapse
|
22
|
Liu D, Liu L, Che X, Wu G. Discovery of paradoxical genes: reevaluating the prognostic impact of overexpressed genes in cancer. Front Cell Dev Biol 2025; 13:1525345. [PMID: 39911323 PMCID: PMC11794808 DOI: 10.3389/fcell.2025.1525345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Oncogenes are typically overexpressed in tumor tissues and often linked to poor prognosis. However, recent advancements in bioinformatics have revealed that many highly expressed genes in tumors are associated with better patient outcomes. These genes, which act as tumor suppressors, are referred to as "paradoxical genes." Analyzing The Cancer Genome Atlas (TCGA) confirmed the widespread presence of paradoxical genes, and KEGG analysis revealed their role in regulating tumor metabolism. Mechanistically, discrepancies between gene and protein expression-affected by pre- and post-transcriptional modifications-may drive this phenomenon. Mechanisms like upstream open reading frames and alternative splicing contribute to these inconsistencies. Many paradoxical genes modulate the tumor immune microenvironment, exerting tumor-suppressive effects. Further analysis shows that the stage- and tumor-specific expression of these genes, along with their environmental sensitivity, influence their dual roles in various signaling pathways. These findings highlight the importance of paradoxical genes in resisting tumor progression and maintaining cellular homeostasis, offering new avenues for targeted cancer therapy.
Collapse
Affiliation(s)
| | | | - Xiangyu Che
- *Correspondence: Guangzhen Wu, ; Xiangyu Che,
| | | |
Collapse
|
23
|
Jiang Y, Jia P, Feng X, Zhang D. Marfan syndrome: insights from animal models. Front Genet 2025; 15:1463318. [PMID: 39834548 PMCID: PMC11743488 DOI: 10.3389/fgene.2024.1463318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Marfan syndrome (MFS) is an inherited disorder that affects the connective tissues and mainly presents in the bones, eyes, and cardiovascular system, etc. Aortic pathology is the leading cause of death in patients with Marfan syndrome. The fibrillin-1 gene (FBN1) is a major gene involved in the pathogenesis of MFS. It has been shown that the aortic pathogenesis of MFS is associated with the imbalances of the transforming growth factor-beta (TGF-β) signaling pathway. However, the exact molecular mechanism of MFS is unclear. Animal models may partially mimic MFS and are vital to the study of MFS. Several species of animals have been used for MFS studies, including chicks, cattle, mice, pigs, zebrafishes, Caenorhabditis elegans, and rabbits. These models were developed spontaneously or in combination with genetic engineering techniques. This review is to describe the TGF-β signaling pathway in MFS and the potential application of animal models to provide new therapeutic strategies for patients with MFS.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Marfan Research Group, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Jia
- Department of Neurosurgery Nursing, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoying Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
Zhang F, Fu Y, Jimenez-Cyrus D, Zhao T, Shen Y, Sun Y, Zhang Z, Wang Q, Kawaguchi R, Geschwind DH, He C, Ming GL, Song H. m 6A/YTHDF2-mediated mRNA decay targets TGF-β signaling to suppress the quiescence acquisition of early postnatal mouse hippocampal NSCs. Cell Stem Cell 2025; 32:144-156.e8. [PMID: 39476834 PMCID: PMC11698649 DOI: 10.1016/j.stem.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/26/2024] [Accepted: 10/02/2024] [Indexed: 01/06/2025]
Abstract
Quiescence acquisition of proliferating neural stem cells (NSCs) is required to establish the adult NSC pool. The underlying molecular mechanisms are not well understood. Here, we showed that conditional deletion of the m6A reader Ythdf2, which promotes mRNA decay, in proliferating NSCs in the early postnatal mouse hippocampus elevated quiescence acquisition in a cell-autonomous fashion with decreased neurogenesis. Multimodal profiling of m6A modification, YTHDF2 binding, and mRNA decay in hippocampal NSCs identified shared targets in multiple transforming growth factor β (TGF-β)-signaling-pathway components, including TGF-β ligands, maturation factors, receptors, transcription regulators, and signaling regulators. Functionally, Ythdf2 deletion led to TGF-β-signaling activation in NSCs, suppression of which rescued elevated quiescence acquisition of proliferating hippocampal NSCs. Our study reveals the dynamic nature and critical roles of mRNA decay in establishing the quiescent adult hippocampal NSC pool and uncovers a distinct mode of epitranscriptomic control via co-regulation of multiple components of the same signaling pathway.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Life Sciences, Nanjing University, Nanjing, PRC
| | - Yao Fu
- Department of Biology, School of Art and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennisse Jimenez-Cyrus
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yachen Shen
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yusha Sun
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qing Wang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA; The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Guo C, Sun H, Du Y, Dai X, Pang Y, Han Z, Xiong X, Li S, Zhang J, Zheng Q, Gui X. Specifically blocking αvβ8-mediated TGF-β signaling to reverse immunosuppression by modulating macrophage polarization. J Exp Clin Cancer Res 2025; 44:1. [PMID: 39743547 PMCID: PMC11697059 DOI: 10.1186/s13046-024-03250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Targeting the TGF-β pathway in tumor therapy has proven challenging due to the highly context-dependent functions of TGF-β. Integrin αvβ8, a pivotal activator of TGF-β, has been implicated in TGF-β signaling within tumors, as demonstrated by the significant anti-tumor effects of anti-αvβ8 antibodies. Nevertheless, the expression profile of αvβ8 remains a subject of debate, and the precise mechanisms underlying the anti-tumor effects of anti-αvβ8 antibodies are not yet fully elucidated. METHODS We utilized single-cell RNA sequencing to assess αvβ8 expression across various human tumors. An anti-αvβ8 antibody was developed and characterized for its binding and blocking properties in vitro. Cryo-EM single-particle analysis was employed to study the detailed interaction between αvβ8 and the antibody Fab fragment. The anti-tumor efficacy of the antibody was evaluated in syngeneic mouse models with varying levels of αvβ8 expression, both as a monotherapy and in combination with PD-1 antibodies. Human PBMCs were isolated to investigate αvβ8 expression in myeloid cells, and macrophages were exposed to the antibody to study its impact on macrophage polarization. Pharmacokinetic studies of the αvβ8 antibody were conducted in cynomolgus monkeys. RESULTS Integrin αvβ8 is notably expressed in certain tumor types and tumor-infiltrating macrophages. The specific αvβ8 antibody 130H2 demonstrated high affinity, specificity, and blocking potency in vitro. Cryo-EM analysis further revealed that 130H2 interacts exclusively with the β8 subunit, without binding to the αv subunit. In vivo studies showed that this antibody significantly inhibited tumor growth and alleviated immunosuppression by promoting immune cell infiltration. Furthermore, combining the antibody with PD-1 inhibition produced a synergistic anti-tumor effect. In human PBMCs, monocytes exhibited high αvβ8 expression, and the antibody directly modulated macrophage polarization. Tumors with elevated αvβ8 expression were particularly responsive to 130H2 treatment. Additionally, favorable pharmacokinetic properties were observed in cynomolgus monkeys. CONCLUSIONS In summary, integrin αvβ8 is highly expressed in certain tumors and tumor-infiltrating macrophages. Targeting αvβ8 with a blocking antibody significantly inhibits tumor growth by modulating macrophage polarization and enhancing immune cell infiltration. Combining αvβ8 targeting with PD-1 treatment markedly increases the sensitivity of immune-excluded tumors. These results support further clinical evaluation of αvβ8 antibodies.
Collapse
Affiliation(s)
- Cuicui Guo
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Hui Sun
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Yulei Du
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xiaodong Dai
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Yu Pang
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Zhen Han
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xinhui Xiong
- Nanjing Novoacine Biotechnology Co., Ltd, Nanjing, 210032, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Junhua Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, China.
| | - Xun Gui
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| |
Collapse
|
26
|
Guo Y, Liu F, Chi M, Qian H, Zhang Y, Yuan Y, Hou S, Chen X, Ma L. Design and synthesis of JNK1-targeted PROTACs and research on the activity. Bioorg Chem 2025; 154:108044. [PMID: 39700830 DOI: 10.1016/j.bioorg.2024.108044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Kinase dysregulation is greatly associated with cell growth, proliferation, differentiation and apoptosis, which indicates their great potential as therapeutic targets for treatment of numerous progressive disorders, including inflammatory, metabolic and autoimmune disorders, organ fibrosis and cancer. The c‑Jun N‑Terminal Kinase (JNK), as a member of MAPK family, is proved to be a potential target for the treatment of pulmonary fibrosis, which is the most common progressive and fatal fibrotic lung disease. As a new strategy, small-molecule-mediated targeted protein degradation pathway has the advantages of catalytic properties, overcoming drug resistance and expanding target space, which can circumvent the limitations associated with kinase inhibitors. Proteolysis targeting chimeras (PROTAC) contains a linker to concatenate a ligand of E3 ubiquitin ligase and a ligand for a protein of interest (POI). We developed a total of 20 JNK1-targeted PROTACs that induce proteasomal degradation of JNK1 components. The most active PROTAC molecule PA2 was then investigated by JNK1 enzyme assay and protein degradation assay, which suggested that PA2 had an anti-JNK1 ability and provided insights for the future use of JNK1-targeted PROTAC as treatment drugs for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yue Guo
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengling Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Man Chi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hewen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ye Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
27
|
Gao Y, Ye F, Dong Y, Wang T, Xiong L, Chen T, Wang Y, Liu X, Zhang Y, Qiu Z, Jiang J, Liu X, Hu Q, Zhang C. Salvianic acid A ameliorates atherosclerosis through metabolic-dependent anti-EndMT pathway and repression of TGF-β/ALK5 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156307. [PMID: 39740380 DOI: 10.1016/j.phymed.2024.156307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) has been identified as a key factor to the initiation and progression of the pathogenesis of atherosclerosis (AS). Salvianic acid A (SAAS) is the primary water-soluble bioactive ingredient found in Salvia miltiorrhiza, is renowned for its therapeutic effects on cardiovascular diseases. However, the efficacy and mechanisms of SAAS in treating EndMT-induced AS remain underexplored. PURPOSE This study aimed to investigate the role SAAS in reversing EndMT process to impede AS development. METHODS We used a murine model of cholesterol-rich and high-fat diet-induced AS in ApoE-/- mice to evaluate the effect of SAAS on EndMT during AS progression in vivo. The biological effects of SAAS on EndMT-induced HUVEC cells were also detected by transcriptome sequencing (RNA-seq). Mechanistic exploration was carried out using omics data mining and screening, gene knockout experiments, gene expression, protein expression, and localization of key gene expression in animal lesion areas. RESULTS We found that SAAS treatment significantly alleviated EndMT injury in the AS mice model and also improved aortic root lesions and dyslipidemia. Furthermore, pre-treatment with SAAS effectively inhibited the EndMT in HUVEC cells, as evidenced by maintained endothelial cell morphology and reduced cell migration ability, as well as elevated CD31 and decreased α-SMA. RNA sequencing data indicated that key differentially expressed genes were mainly enriched in metabolism-related and TGF-β receptor signaling pathways. The metabolic regulator PDK4 and profibrotic TGF-β receptor ALK5 were identified specifically. Subsequently, RT-qPCR and western blot results demonstrated that SAAS notably increased metabolic regulator PDK4 and decreased profibrotic TGF-β receptor ALK5 in EndMT-induced HUVEC cells. Moreover, siRNA-directed PDK4 inhibition resulted in EndMT induction and SAAS mediated the suppression of EndMT in a PDK4-dependent manner. Additionally, SAAS partially reduced the TGF-β receptor ALK5 expression. Furthermore, ApoE-/- AS mice with SAAS treatment displayed downregulation of ALK5 and upregulation of PDK4 with reduced EndMT during AS. CONCLUSION This investigation demonstrated that SAAS improved AS through metabolic-dependent anti-EndMT pathway and repression of profibrotic TGF-β receptor signaling, thereby providing SAAS as a promising therapeutic candidate for managing AS and EndMT-related disorders.
Collapse
Affiliation(s)
- Yijun Gao
- Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Fei Ye
- Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Yafen Dong
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, PR China
| | - Tingfang Wang
- Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Liyan Xiong
- Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Ting Chen
- Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Yun Wang
- Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Xiaoyan Liu
- Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Yunan Zhang
- Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Zheng Qiu
- Shenzhen Medicines and Health Products IMP. & EXP. Co., Ltd, Shenzhen, PR China
| | - Jianfang Jiang
- Department of Infection Control, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, West Lake Rd 38, Hangzhou, 310009, PR China.
| | - Xijun Liu
- Shanghai 411 Hospital, Shanghai, 200081, PR China.
| | - Qingxun Hu
- Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China; Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, PR China.
| | - Chuan Zhang
- Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
28
|
Gan L, Jiang Q, Huang D, Wu X, Zhu X, Wang L, Xie W, Huang J, Fan R, Jing Y, Tang G, Li XD, Guo J, Yin S. A natural small molecule alleviates liver fibrosis by targeting apolipoprotein L2. Nat Chem Biol 2025; 21:80-90. [PMID: 39103634 DOI: 10.1038/s41589-024-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Liver fibrosis is an urgent clinical problem without effective therapies. Here we conducted a high-content screening on a natural Euphorbiaceae diterpenoid library to identify a potent anti-liver fibrosis lead, 12-deoxyphorbol 13-palmitate (DP). Leveraging a photo-affinity labeling approach, apolipoprotein L2 (APOL2), an endoplasmic reticulum (ER)-rich protein, was identified as the direct target of DP. Mechanistically, APOL2 is induced in activated hepatic stellate cells upon transforming growth factor-β1 (TGF-β1) stimulation, which then binds to sarcoplasmic/ER calcium ATPase 2 (SERCA2) to trigger ER stress and elevate its downstream protein kinase R-like ER kinase (PERK)-hairy and enhancer of split 1 (HES1) axis, ultimately promoting liver fibrosis. As a result, targeting APOL2 by DP or ablation of APOL2 significantly impairs APOL2-SERCA2-PERK-HES1 signaling and mitigates fibrosis progression. Our findings not only define APOL2 as a novel therapeutic target for liver fibrosis but also highlight DP as a promising lead for treatment of this symptom.
Collapse
Affiliation(s)
- Lu Gan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinying Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jialuo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Runzhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
| | - Guihua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang David Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
29
|
Wang S, Wang P, Song X, Ma X, Wei L, Zheng Y, Yu R, Zhang C. Site-specific dimerization of interleukin-11 alleviates bleomycin-induced pulmonary fibrosis in mice. Eur J Pharm Sci 2025; 204:106953. [PMID: 39489187 DOI: 10.1016/j.ejps.2024.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Interleukin-11 (IL-11) has recently been identified as a critical profibrotic cytokine, and IL-11 signaling pathway via IL-11Rα and GP130 receptors has been shown to be a promising therapeutic target for the treatment of fibrotic diseases. Herein, we devised two kinds of IL-11 dimer with receptor-biased binding ability through site-specific crosslinking at the interface involving GP130 binding and signaling, aiming to explore their therapeutic potentials for bleomycin-induced pulmonary fibrosis in mice. A single cysteine mutation at site W147 of human IL-11 (IL-11 W147C) was conducted for site-specific crosslinking. The ability of GP130 to bind to IL-11 W147C dimer was substantially weakened by cysteine-based dimerization, while the ability of IL-11 W147C dimer to bind to IL-11Rα was almost entirely preserved or even enhanced. The IL-11 W147C dimer potently inhibited TF-1 cell proliferation and TGF-β1-induced human lung fibroblast differentiation into myofibroblasts. We also showed that dimerization substantially extended the circulation time of IL-11 W147C dimer in healthy rats. Subcutaneous administration of IL-11 W147C dimer significantly reduced extracellular matrix deposition, preserved alveolar architecture and alleviated pulmonary fibrosis development in mice. The findings of this study may provide a general strategy for the design of cytokine-based receptor-biased antagonists and agonists targeting these multifaceted signaling pathways.
Collapse
Affiliation(s)
- Sa Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Pengyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaotong Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Long Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yongxiang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rong Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Hartmann L, Kristofori P, Li C, Becker K, Hexemer L, Bohn S, Lenhardt S, Weiss S, Voss B, Loewer A, Legewie S. Transcriptional regulators ensuring specific gene expression and decision-making at high TGFβ doses. Life Sci Alliance 2025; 8:e202402859. [PMID: 39542693 PMCID: PMC11565188 DOI: 10.26508/lsa.202402859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
TGFβ-signaling regulates cancer progression by controlling cell division, migration, and death. These outcomes are mediated by gene expression changes, but the mechanisms of decision-making toward specific fates remain unclear. Here, we combine SMAD transcription factor imaging, genome-wide RNA sequencing, and morphological assays to quantitatively link signaling, gene expression, and fate decisions in mammary epithelial cells. Fitting genome-wide kinetic models to our time-resolved data, we find that most of the TGFβ target genes can be explained as direct targets of SMAD transcription factors, whereas the remainder show signs of complex regulation, involving delayed regulation and strong amplification at high TGFβ doses. Knockdown experiments followed by global RNA sequencing revealed transcription factors interacting with SMADs in feedforward loops to control delayed and dose-discriminating target genes, thereby reinforcing the specific epithelial-to-mesenchymal transition at high TGFβ doses. We identified early repressors, preventing premature activation, and a late activator, boosting gene expression responses for a sufficiently strong TGFβ stimulus. Taken together, we present a global view of TGFβ-dependent gene regulation and describe specificity mechanisms reinforcing cellular decision-making.
Collapse
Affiliation(s)
- Laura Hartmann
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Panajot Kristofori
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Congxin Li
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Kolja Becker
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
| | - Lorenz Hexemer
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Stefan Bohn
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sonja Lenhardt
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sylvia Weiss
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Björn Voss
- Department of RNA-Biology & Bioinformatics, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
| | - Alexander Loewer
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
31
|
Wang S, Wang P, Zhang M, Song X, Wei L, Ma X, Yao X, Zhang S, Chen Z, Zheng Y, Yu R, Zhang C. Blocking GP130 binding in interleukin-11 through site-specific PEGylation attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Pharm 2024; 667:124916. [PMID: 39528144 DOI: 10.1016/j.ijpharm.2024.124916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent insights have identified interleukin-11 (IL-11) as a pivotal profibrotic cytokine, with its signaling through IL-11Rα and GP130 receptors emerging as a promising therapeutic target for fibrotic diseases. Herein, we developed receptor-biased IL-11 via site-specific PEGylation at the GP130 binding interface, aiming to explore its therapeutic potential for bleomycin-induced pulmonary fibrosis in mice. By conducting single site-directed cysteine mutagenesis at site II or site III of IL-11, we refined the conjugation site, demonstrating that mutation at site III exhibits heightened sensitivity to GP130 binding and signaling. Cysteine-based PEGylation substantially attenuated the ability of GP130 to bind to IL-11 W147C, while almost entirely preserving its IL-11Rα binding ability. These PEGylated IL-11 W147C analogs showed potent inhibition of TF-1 cell proliferation and significant antagonism to TGF-β1-induced human lung fibroblasts (HLFs) differentiation into myofibroblasts. Moreover, PEGylation significantly prolonged the half-life of IL-11 W147C in healthy rats. Subcutaneous administration of PEGylated analogs, particularly PEG20/40 k-IL-11 W147C, effectively mitigated extracellular matrix deposition, preserved alveolar architecture, and attenuated the progression of pulmonary fibrosis in mice. The finding of this study not only underscores the therapeutic potential of IL-11 modulation, but also provides a general strategy for the design of cytokine-based biased antagonists and agonists targeting these multifaceted signaling pathways.
Collapse
Affiliation(s)
- Sa Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pengyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Minhui Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaotong Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Long Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinyuan Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuwen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zijie Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongxiang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
32
|
Penninger P, Brezovec H, Tsymala I, Teufl M, Phan-Canh T, Bitencourt T, Brinkmann M, Glaser W, Ellmeier W, Bonelli M, Kuchler K. HDAC1 fine-tunes Th17 polarization in vivo to restrain tissue damage in fungal infections. Cell Rep 2024; 43:114993. [PMID: 39580799 DOI: 10.1016/j.celrep.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Histone deacetylases (HDACs) contribute to shaping many aspects of T cell lineage functions in anti-infective surveillance; however, their role in fungus-specific immune responses remains poorly understood. Using a T cell-specific deletion of HDAC1, we uncover its critical role in limiting polarization toward Th17 by restricting expression of the cytokine receptors gp130 and transforming growth factor β receptor 2 (TGF-βRII) in a fungus-specific manner, thus limiting Stat3 and Smad2/3 signaling. Controlled release of interleukin-17A (IL-17A) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is vital to minimize apoptotic processes in renal tubular epithelial cells in vitro and in vivo. Consequently, animals harboring excess Th17-polarized HDCA1-deficient CD4+ T cells develop increased kidney pathology upon invasive Candida albicans infection. Importantly, pharmacological inhibition of class I HDACs similarly increased IL-17A release by both mouse and human CD4+ T cells. Collectively, this work shows that HDAC1 controls T cell polarization, thus playing a critical role in the antifungal immune defense and infection outcomes.
Collapse
Affiliation(s)
- Philipp Penninger
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Helena Brezovec
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Magdalena Teufl
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Trinh Phan-Canh
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Tamires Bitencourt
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Marie Brinkmann
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Walter Glaser
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, 1090 Vienna, Austria
| | - Michael Bonelli
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
33
|
Gu Z, Liu X, Qi Z, Fang Z, Jiang Y, Huang Y, Wang Y, Wu L, Yang Y. An antioxidant nanozyme for targeted cardiac fibrosis therapy post myocardial infarction. J Nanobiotechnology 2024; 22:760. [PMID: 39696342 PMCID: PMC11656654 DOI: 10.1186/s12951-024-03047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
The excessive release of reactive oxygen species (ROS) after myocardial infarction (MI) disrupts the natural healing process, leading to cardiac fibrosis and compromising patient prognosis. However, the clinical application of many antioxidant drugs for MI treatment is hindered by their poor antioxidant efficacy and inability to specifically target the heart. Here we developed a tannic acid-modified MnO2 nanozyme (named MnO2@TA), which can achieve cardiac targeting to inhibit post-MI fibrosis and enhance cardiac function. Specifically, the MnO2@TA nanozyme, endowed with superoxide dismutase (SOD) and catalase (CAT) activities, effectively scavenges ROS, suppressing fibroblast activation and mitigating cardiac fibrosis without affecting cardiac repair. Notably, the incorporation of TA improves the nanozyme's affinity for the elastin and collagen-rich extracellular matrix in cardiac tissues, significantly increasing its retention and uptake within the heart and thereby enhancing its anti-fibrotic efficacy. In a murine myocardial infarction model, MnO2@TA demonstrates remarkable cardiac protection and safety, significantly improving cardiac function while attenuating cardiac fibrosis. This study presents a valuable reference for clinical research aimed at inhibiting cardiac fibrosis and advancing myocardial infarction treatments.
Collapse
Affiliation(s)
- Ziyi Gu
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Punan Branch of Renji Hospital, Shanhai Jiaotong University School of Medicine, Shanghai, 200125, China
| | - Zhen Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhou Fang
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiting Jiang
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuting Huang
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongyi Wang
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lianming Wu
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
34
|
Feng X, Cao F, Wu X, Xie W, Wang P, Jiang H. Targeting extracellular matrix stiffness for cancer therapy. Front Immunol 2024; 15:1467602. [PMID: 39697341 PMCID: PMC11653020 DOI: 10.3389/fimmu.2024.1467602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
The physical characteristics of the tumor microenvironment (TME) include solid stress, interstitial fluid pressure, tissue stiffness and microarchitecture. Among them, abnormal changes in tissue stiffness hinder drug delivery, inhibit infiltration of immune killer cells to the tumor site, and contribute to tumor resistance to immunotherapy. Therefore, targeting tissue stiffness to increase the infiltration of drugs and immune cells can offer a powerful support and opportunities to improve the immunotherapy efficacy in solid tumors. In this review, we discuss the mechanical properties of tumors, the impact of a stiff TME on tumor cells and immune cells, and the strategies to modulate tumor mechanics.
Collapse
Affiliation(s)
- Xiuqin Feng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fujun Cao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangji Wu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Xie
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Dabbaghi MM, Soleimani Roudi H, Safaei R, Baradaran Rahimi V, Fadaei MR, Askari VR. Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review. Cardiovasc Toxicol 2024; 24:1467-1509. [PMID: 39306819 DOI: 10.1007/s12012-024-09921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 11/15/2024]
Abstract
Tanshinone, a natural compound found in the roots of Salvia miltiorrhiza, has been shown to possess various pharmacological properties, including anti-inflammatory, antioxidant, and cardiovascular protective effects. This article aims to review the literature on the cardiovascular protective effects of tanshinone and its underlying mechanisms. Tanshinone has been demonstrated to improve cardiac function, reduce oxidative stress, and inhibit inflammation in various animal models of cardiovascular diseases. Additionally, it has been shown to regulate multiple signaling pathways involved in the pathogenesis of cardiovascular diseases, such as the PI3K/AKT, MAPK, and NF-κB pathways. Clinical studies have also suggested that tanshinone may have therapeutic potential for treating cardiovascular diseases. In conclusion, tanshinone has emerged as a promising natural compound with significant cardiovascular protective effects, and further research is warranted to explore its potential clinical applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Dabbaghi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Hesan Soleimani Roudi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Rozhan Safaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
| |
Collapse
|
36
|
Li J, Tang Y, Long F, Tian L, Tang A, Ding L, Chen J, Liu M. Integrating bulk RNA-seq and scRNA-seq analyses revealed the function and clinical value of thrombospondins in colon cancer. Comput Struct Biotechnol J 2024; 23:2251-2266. [PMID: 38827236 PMCID: PMC11140486 DOI: 10.1016/j.csbj.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Background Acting as mediators in cell-matrix and cell-cell communication, matricellular proteins play a crucial role in cancer progression. Thrombospondins (TSPs), a type of matricellular glycoproteins, are key regulators in cancer biology with multifaceted roles. Although TSPs have been implicated in anti-tumor immunity and epithelial-mesenchymal transition (EMT) in several malignancies, their specific roles to colon cancer remain elusive. Addressing this knowledge gap is essential, as understanding the function of TSPs in colon cancer could identify new therapeutic targets and prognostic markers. Methods Analyzing 1981 samples from 10 high-throughput datasets, including six bulk RNA-seq, three scRNA-seq, and one spatial transcriptome dataset, our study investigated the prognostic relevance, risk stratification value, immune heterogeneity, and cellular origin of TSPs, as well as their influence on cancer-associated fibroblasts (CAFs). Utilizing survival analysis, unsupervised clustering, and functional enrichment, along with multiple correlation analyses of the tumor-microenvironment (TME) via Gene Set Variation Analysis (GSVA), spatial localization, Monocle2, and CellPhoneDB, we provided insights into the clinical and cellular implications of TSPs. Results First, we observed significant upregulation of THBS2 and COMP in colon cancer, both of which displayed significant prognostic value. Additionally, we detected a significant positive correlation between TSPs and immune cells, as well as marker genes of EMT. Second, based on TSPs expression, patients were divided into two clusters with distinct prognoses: the high TSPs expression group (TSPs-H) was characterized by pronounced immune and stromal cell infiltration, and notably elevated T-cell exhaustion scores. Subsequently, we found that THBS2 and COMP may be associated with the differentiation of CAFs into pan-iCAFs and pan-dCAFs, which are known for their heightened matrix remodeling activities. Moreover, THBS2 enhanced CAFs communication with vascular endothelial cells and monocyte-macrophages. CAFs expressing THBS2 (THBS2+ CAFs) demonstrated higher scores across multiple signaling pathways, including angiogenic, EMT, Hedgehog, Notch, Wnt, and TGF-β, when compared to THBS2- CAFs. These observations suggest that THBS2 may be associated with stronger pro-carcinogenic activity in CAFs. Conclusions This study revealed the crucial role of TSPs and the significant correlation between THBS2 and CAFs interactions in colon cancer progression, providing valuable insights for targeting TSPs to mitigate cancer progression.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - Ying Tang
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
- Medical Laboratory, People's Hospital of Qingbaijiang District, Chengdu 61300, China
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Luyao Tian
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - Ao Tang
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - LiHui Ding
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - Juan Chen
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - Mingwei Liu
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| |
Collapse
|
37
|
Şahin A, Babayev H, Cirigliano L, Preto M, Falcone M, Altıntas E, Gül M. Unveiling the molecular Hallmarks of Peyronie's disease: a comprehensive narrative review. Int J Impot Res 2024; 36:801-808. [PMID: 38454161 DOI: 10.1038/s41443-024-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Peyronie's disease, a fibroinflammatory disorder, detrimentally impacts the sexual well-being of men and their partners. The manifestation of fibrotic plaques within penile tissue, attributed to dysregulated fibrogenesis, is pathognomonic for this condition. The onset of fibrosis hinges on the perturbation of the equilibrium between matrix metalloproteinases (MMPs), crucial enzymes governing the extracellular matrix, and tissue inhibitors of MMPs (TIMPs). In the context of Peyronie's disease, there is an elevation in TIMP levels coupled with a decline in MMP levels, culminating in fibrogenesis. Despite the scant molecular insights into fibrotic pathologies, particularly in the context of Peyronie's disease, a comprehensive literature search spanning 1995 to 2023, utilizing PubMed Library, was conducted to elucidate these mechanisms. The findings underscore the involvement of growth factors such as FGF and PDGF, and cytokines like IL-1 and IL-6, alongside PAI-1, PTX-3, HIF, and IgG4 in the fibrotic cascade. Given the tissue-specific modulation of fibrosis, comprehending the molecular underpinnings of penile fibrosis becomes imperative for the innovation of novel and efficacious therapies targeting Peyronie's disease. This review stands as a valuable resource for researchers and clinicians engaged in investigating the molecular basis of fibrotic diseases, offering guidance for advancements in understanding Peyronie's disease.
Collapse
Affiliation(s)
- Ali Şahin
- Selcuk University School of Medicine, 42250, Konya, Turkey
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265, Davos, Switzerland
| | - Lorenzo Cirigliano
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Mirko Preto
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Marco Falcone
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Emre Altıntas
- Department of Urology, Selcuk University School of Medicine, 42250, Konya, Turkey
| | - Murat Gül
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
- Department of Urology, Selcuk University School of Medicine, 42250, Konya, Turkey.
| |
Collapse
|
38
|
Le Z, Ramos MC, Shou Y, Li RR, Cheng HS, Jang CJ, Liu L, Xue C, Li X, Liu H, Lim CT, Tan NS, White AD, Charles CJ, Chen Y, Liu Z, Tay A. Bioactive sucralfate-based microneedles promote wound healing through reprogramming macrophages and protecting endogenous growth factors. Biomaterials 2024; 311:122700. [PMID: 38996671 DOI: 10.1016/j.biomaterials.2024.122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Impaired wound healing due to insufficient cell proliferation and angiogenesis is a significant physical and psychological burden to patients worldwide. Therapeutic delivery of exogenous growth factors (GFs) at high doses for wound repair is non-ideal as GFs have poor stability in proteolytic wound environments. Here, we present a two-stage strategy using bioactive sucralfate-based microneedle (SUC-MN) for delivering interleukin-4 (IL-4) to accelerate wound healing. In the first stage, SUC-MN synergistically enhanced the effect of IL-4 through more potent reprogramming of pro-regenerative M2-like macrophages via the JAK-STAT pathway to increase endogenous GF production. In the second stage, sucralfate binds to GFs and sterically disfavors protease degradation to increase bioavailability of GFs. The IL-4/SUC-MN technology accelerated wound healing by 56.6 % and 46.5 % in diabetic mice wounds and porcine wounds compared to their respective untreated controls. Overall, our findings highlight the innovative use of molecular simulations to identify bioactive ingredients and their incorporation into microneedles for promoting wound healing through multiple synergistic mechanisms.
Collapse
Affiliation(s)
- Zhicheng Le
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Mayk Caldas Ramos
- Department of Chemical Engineering, University of Rochester, 14627, USA
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Renee R Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, 119228, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Clarisse Jm Jang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Ling Liu
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Chencheng Xue
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hong Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Andrew D White
- Department of Chemical Engineering, University of Rochester, 14627, USA
| | - Christopher John Charles
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, 119228, Singapore; Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore.
| |
Collapse
|
39
|
Liu S, Ren J, Hu Y, Zhou F, Zhang L. TGFβ family signaling in human stem cell self-renewal and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:26. [PMID: 39604763 PMCID: PMC11602941 DOI: 10.1186/s13619-024-00207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Human stem cells are undifferentiated cells with the capacity for self-renewal and differentiation into distinct cell lineages, playing important role in the development and maintenance of diverse tissues and organs. The microenvironment of stem cell provides crucial factors and components that exert significant influence over the determination of cell fate. Among these factors, cytokines from the transforming growth factor β (TGFβ) superfamily, including TGFβ, bone morphogenic protein (BMP), Activin and Nodal, have been identified as important regulators governing stem cell maintenance and differentiation. In this review, we present a comprehensive overview of the pivotal roles played by TGFβ superfamily signaling in governing human embryonic stem cells, somatic stem cells, induced pluripotent stem cells, and cancer stem cells. Furthermore, we summarize the latest research and advancements of TGFβ family in various cancer stem cells and stem cell-based therapy, discussing their potential clinical applications in cancer therapy and regeneration medicine.
Collapse
Affiliation(s)
- Sijia Liu
- International Biomed-X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Ren
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanmei Hu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Long Zhang
- International Biomed-X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
40
|
Zhou Y, Huang S, Yang B, Tan J, Zhang Z, Liu W. Role of anoikis-related gene RAC3 in prognosis, immune microenvironment, and contribution to malignant behavior in vitro and in vivo of bladder urothelial carcinoma. Front Pharmacol 2024; 15:1503623. [PMID: 39659999 PMCID: PMC11628291 DOI: 10.3389/fphar.2024.1503623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Background Anoikis disrupts the normal apoptotic process in cells, leading to abnormal proliferation and migration, thereby promoting tumor formation and development. However, the role of anoikis in bladder urothelial carcinoma (BLCA) still requires further exploration. Methods Anoikis-related genes (ARGs) were retrieved from the GeneCards and Harmonizome databases to distinguish various subtypes of BLCA and develop a predictive model for BLCA. The immune microenvironment and enrichment pathways between various subtypes were also analyzed using consensus clustering. Potential medications were screened by utilizing drug sensitivity analysis. In vitro and vivo, the character of the independent prognostic gene in BLCA was confirmed through cell studies and mouse xenograft models. Results One hundred thirty differentially expressed genes (DEGs) were identified, and nine of them were chosen to construct predictive models that can accurately forecast the prognosis of BLCA patients. K = 2 was correctly identified as the optimal clustering type for BLCA, showing prominent differences in survival rates between the two subgroups. The immune-related functional studies manifested that the two subtypes' immune cell expressions differed. It was verified that RAC3 is an independent prognostic gene for BLCA. RAC3 shows high expression levels in BLCA, as indicated by its consistent mRNA and protein levels across different gene expressions. The functional verification results of RAC3 in BLCA showed that silencing RAC3 can significantly inhibit BLCA cell proliferation, colony formation, and migration. RAC3 knockdown inhibited the growth and migration of BLCA in vivo. SB505124 exhibited a significant inhibitory effect on the proliferation of BLCA cells. Conclusion Based on the predictive model developed in this study, BLCA patients' prognoses can be accurately predicted. SB505124 could become an important drug in the treatment of BLCA patients. RAC3 is essential in prognosis, immune microenvironment, and malignant behavior of BLCA in vitro and in vivo. It will also offer the potential for personalized treatment for BLCA patients and generate new research avenues for clinical investigators.
Collapse
Affiliation(s)
- Yusong Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shiwei Huang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bing Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jing Tan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhun Zhang
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
41
|
Bednarczyk A, Kowalski G, Gawrychowska A, Gawrychowski J. Transforming Growth Factor-Beta (TGF-β) Dynamics in Thyroid Pathologies: A Comprehensive Analysis of Pre- and Post-Surgery Levels in Differentiated Thyroid Cancer and Nodular Goiter. POLISH JOURNAL OF SURGERY 2024; 97:1-4. [PMID: 40247786 DOI: 10.5604/01.3001.0054.8492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
<b>Introduction:</b> In various pathological conditions, including cancer, transforming growth factor-beta (TGF-β) emerges as a pivotal cytokine.<b>Aim:</b> This study sought to evaluate TGF-β concentrations in blood serum samples and explore potential associations between pre- and post-surgery TGF-β levels in patients with differentiated thyroid cancer and forms of nodular goiter.<b>Material and methods:</b> A total of 70 patients were included, aged 26 to 79, undergoing thyroidectomy for: differentiated thyroid cancer (11), neutral nodular goiter (46), and hyperactive nodular goiter (13). Serum TGF-β1 values were assessed using the Bio-Plex Pro™ Human Cytokine Assay from Bio-Rad Laboratories, and data were analyzed with Bio-Plex Manager™ software.<b>Conclusions:</b> This investigation aimed to provide insights into the dynamics of TGF-β concentrations in the context of thyroid pathologies, utilizing a comparative approach before and after surgical intervention.
Collapse
Affiliation(s)
- Adam Bednarczyk
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| | - Grzegorz Kowalski
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| | - Agata Gawrychowska
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| | - Jacek Gawrychowski
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
42
|
Yu EJ, Bell DW. The endometrial cancer A230V-ALK5 (TGFBR1) mutant attenuates TGF-β signaling and exhibits reduced in vitro sensitivity to ALK5 inhibitors. PLoS One 2024; 19:e0312806. [PMID: 39576826 PMCID: PMC11584080 DOI: 10.1371/journal.pone.0312806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
The ALK5 (TGFBR1) receptor serine/threonine kinase transduces TGF-β (Transforming Growth Factor beta) signaling to activate SMAD2/3-dependent and -independent pathways. Here, we aimed to determine the functional consequences of ALK5 mutations in human endometrial cancer (EC). Somatic mutation data were retrieved from publicly available databases. Using seven in silico algorithms, 78.5% (11 of 14) of ALK5 kinase domain mutations in EC, including A230V-ALK5, were predicted to impact protein function. For in vitro studies, we focused on A230V-ALK5 because it was the only mutated residue located within the ATP-binding pocket, which is an important region for both ATP-binding and binding of ATP-competitive inhibitors. Constructs expressing wildtype-, constitutively-active-, kinase-dead-, or mutant A230V-ALK5, were transfected into NIH/3T3 cells. Following TGF-β1 stimulation, transient exogenous expression of A230V-ALK5 resulted in attenuated SMAD2/3 signal transduction and reduced AKT activation. We further showed that the A230V-ALK5 mutant had reduced stability resulting from increased ubiquitin-dependent protein degradation. Our structural modeling predicted that SB-431542, a small molecule ATP-competitive inhibitor of ALK5, binds to the A230V-ALK5 mutant with reduced affinity compared to wildtype-ALK5. We therefore examined the inhibitory effect of SB-431542 and galunisertib on wildtype- and mutant-ALK5 activity using a Smad-binding element (SBE) luciferase reporter assay combined with TGF-β1 stimulation, in NIH/3T3 cells and HEC-265 EC cells. SBE luciferase activity in A230V-ALK5 transfected cells was inhibited less by SB-431542 and galunisertib than in wildtype-ALK5 transfected cells indicating that A230V-ALK5 is less sensitive to inhibition by these agents than wildtype-ALK5, potentially due to changes in SB-431542/A230V-ALK5 binding affinity. Our findings are novel and show that A230V-ALK5 is a partial loss-of-function mutant that attenuates TGF-β1 signal transduction and has reduced sensitivity to ALK5 small molecule inhibitors.
Collapse
Affiliation(s)
- Eun-Jeong Yu
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daphne W Bell
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
43
|
Xu W, Xu J, Li P, Xu D, Cheng H, Zheng H, Zhang L, Liu M, Ye S, Jiang M, Yu W, Wang J, Ding L. Discovery and preclinical evaluation of BPB-101: a novel triple functional bispecific antibody targeting GARP-TGF-β complex/SLC, free TGF-β and PD-L1. Front Immunol 2024; 15:1479399. [PMID: 39635528 PMCID: PMC11615479 DOI: 10.3389/fimmu.2024.1479399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Background In the tumor microenvironment (TME), the transforming growth factor-β (TGF-β) and programmed cell death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) signaling axes are complementary, nonredundant immunosuppressive signaling pathways. Studies have revealed that active TGF-β is mainly released from the glycoprotein A repetitions predominant (GARP)-TGF-β complex on the surface of activated regulatory T cells (Tregs), B cells, natural killer (NK) cells, and tumor cells. The currently available antibodies or fusion proteins that target TGF-β are limited in their abilities to simultaneously block TGF-β release and neutralize active TGF-β in the TME, thus limiting their antitumor effects. Methods We designed and constructed a bispecific, trifunctional antibody, namely, BPB-101, that specifically targets the GARP-TGF-β complex and/or small latent complex (SLC), active TGF-β, and PD-L1. The binding ability of BPB-101 to the different antigens was determined by ELISA, FACS, and biolayer interferometry (BLI). The blocking ability of BPB-101 to the TGF-β and PD-1/PD-L1 signaling axes was determined by reporter gene assay (RGA). The antitumor effect and biosafety of BPB-101 were determined in a transgenic mouse tumor model and cynomolgus monkeys, respectively. Stability assessments, including stability in serum, after exposure to light, after repeated freeze-thaw cycles, and after high-temperature stress tests had been completed to evaluate the stability of BPB-101. Results BPB-101 bound efficiently to different antigenic proteins: the GARP-TGF-β complex and/or SLC, active TGF-β, and PD-L1. Data showed that BPB-101 not only effectively inhibited the release of TGF-β from human Tregs, but also blocked both the TGF-β and PD-1/PD-L1 signaling pathways. In an MC38-hPD-L1 tumor-bearing C57BL/6-hGARP mouse model, BPB-101 at a dose of 5 mg/kg significantly inhibited tumor growth, with a complete elimination rate of 50%. Stability assessments confirmed the robustness of BPB-101. Furthermore, BPB-101 showed a favorable safety profile in nonhuman primate (NHP) toxicity studies. Conclusion BPB-101 is a potentially promising therapeutic candidate that may address unmet clinical needs in cancer immunotherapy, thus, BPB-101 warrants further clinical investigation.
Collapse
Affiliation(s)
- Wenxin Xu
- The R&D Department of Betta Biologic, Betta Pharmaceuticals Co. Ltd, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | - Lieming Ding
- The R&D Department of Betta Biologic, Betta Pharmaceuticals Co. Ltd, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Kao C, Ho CH. Time-course RNA sequencing reveals high similarity in mRNAome between hepatic stellate cells activated by agalactosyl IgG and TGF-β1. Funct Integr Genomics 2024; 24:215. [PMID: 39549087 DOI: 10.1007/s10142-024-01502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Previous studies have demonstrated the clinical relevance of aberrant serum immunoglobulin G (IgG) N-glycomic profiles in liver fibrosis and the pathogenic effects of agalactosyl IgG on activating hepatic stellate cells (HSCs). However, the dynamics of gene expression changes during HSC activation by agalactosyl IgG remain poorly understood. We performed RNA sequencing to analyze the mRNAome of human LX-2 HSCs at multiple time points after treatment with agalactosyl IgG and then compared these results with those obtained after normal IgG and transforming growth factor (TGF)-β1 treatments. Gene expression changes were significantly pronounced on day 5 and subsided by day 11 after HSC activation. A high degree of similarity in gene expression patterns between HSCs treated with agalactosyl IgG and TGF-β1 was observed, of which 1796 and 1785 differentially expressed genes (DEGs) were identified, respectively. Disease ontology analyses revealed that 114 and 105 DEGs in activated HSCs following agalactosyl IgG and TGF-β1 treatments, respectively, were linked to liver cirrhosis, hepatitis, fatty liver disease, hepatitis B, and alcoholic hepatitis, with CCL5 and FAS being the most commonly affected genes. DEGs associated with liver fibrosis or aforementioned liver diseases involved in gene annotation, physiological functions, and signaling pathways regarding secretion of cytokines and chemokines, expression of fibrosis-related growth factors and their receptors, modification of extracellular matrices, and regulation of cell viability in activated HSCs. In conclusion, this study characterized the dynamics of mRNAome and gene networks and identified the liver fibrosis-related DEGs during HSC activation by agalactosyl IgG and TGF-β1.
Collapse
Affiliation(s)
- Chieh Kao
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan.
| |
Collapse
|
45
|
Pala D, Ronchi P, Rescigno D, Bertani B, Capelli AM, Guariento S, Marchini G, Milioli M, Cesari N, Federico G, Grandi A, Stellari FF, Fernandez SX, Pappani A, Venturi L, Biagetti M, Civelli M, Semeraro T, Bianchi F, Trist IML, Remelli R, Armani E, Pizzirani D. Design, Synthesis, and Activity of a Novel Series of Pyridazine-Based ALK5 Inhibitors. ACS Med Chem Lett 2024; 15:1925-1932. [PMID: 39563792 PMCID: PMC11571009 DOI: 10.1021/acsmedchemlett.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
ALK5 inhibitors represent an attractive therapeutic approach for the treatment of a variety of pathologies, including cancer and fibrosis. Herein, we report the design and in vitro characterization of a novel series of ALK5 modulators featuring a 4,6-disubstituted pyridazine core. A knowledge-based scaffold-hopping exploration was initially conducted on a restricted set of heteroaromatic cores using available ligand- and structure-based information. The most potent structurally novel hit compound 2A was subsequently subjected to a preliminary optimization for the inhaled delivery, applying physicochemical criteria aimed at minimizing systemic exposure to limit the risk of adverse side effects. The resulting inhibitors showed a marked boost in potency against ALK5 and in vitro ADME properties, potentially favoring lung retention. The optimized hits 20 and 23 might thus be considered promising starting points for the development of novel inhaled ALK5 inhibitors.
Collapse
Affiliation(s)
- Daniele Pala
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paolo Ronchi
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Donatella Rescigno
- Aptuit, an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Barbara Bertani
- Aptuit, an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Anna Maria Capelli
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Sara Guariento
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gessica Marchini
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Marco Milioli
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Nicola Cesari
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Giuseppina Federico
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Andrea Grandi
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Franco F Stellari
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | | | - Alice Pappani
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Luca Venturi
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Matteo Biagetti
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Teresa Semeraro
- Aptuit, an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Federica Bianchi
- Aptuit, an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Iuni M L Trist
- Aptuit, an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Rosaria Remelli
- Aptuit, an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Elisabetta Armani
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Daniela Pizzirani
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
46
|
Huang G, Cierpicki T, Grembecka J. Thioamides in medicinal chemistry and as small molecule therapeutic agents. Eur J Med Chem 2024; 277:116732. [PMID: 39106658 PMCID: PMC12009601 DOI: 10.1016/j.ejmech.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Thioamides, which are fascinating isosteres of amides, have garnered significant attention in drug discovery and medicinal chemistry programs, spanning peptides and small molecule compounds. This review provides an overview of the various applications of thioamides in small molecule therapeutic agents targeting a range of human diseases, including cancer, microbial infections (e.g., tuberculosis, bacteria, and fungi), viral infections, neurodegenerative conditions, analgesia, and others. Particular focus is given to design strategies of biologically active thioamide-containing compounds and their biological targets, such as kinases and histone methyltransferase ASH1L. Additionally, the review discusses the impact of the thioamide moiety on key properties, including potency, target interactions, physicochemical characteristics, and pharmacokinetics profiles. We hope that this work will offer valuable insights to inspire the future development of novel bioactive thioamide-containing compounds, facilitating their effective use in combating a wide array of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
47
|
Zhang Y, Shi X, Shi M, Li J, Liu Q. Androgens and androgen receptor directly induce the thickening, folding, and vascularization of the seahorse abdominal dermal layer into a placenta-like structure responsible for male pregnancy via multiple signaling pathways. Int J Biol Macromol 2024; 279:135039. [PMID: 39197609 DOI: 10.1016/j.ijbiomac.2024.135039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Seahorses exhibit the unique characteristic of male pregnancy, which incubates numerous embryos in a brood pouch that plays an essential role in enhancing offspring survivability. The pot-belly seahorse (Hippocampus abdominalis) possesses the largest body size among seahorses and is a significant species in Chinese aquaculture. In this study, we revealed the cytological and morphological characteristics, as well as regulatory mechanisms, throughout the entire brood pouch development in H. abdominalis. The brood pouch originated from the abdominal dermis, extending towards the ventral midline. As the dermal layers thicken, the inner epithelium folds, the stroma loosens, and vascularization occurs, culminating in the formation of the brood pouch. Furthermore, through transcriptomic analysis of brood pouches at various developmental stages, 8 key genes (tgfb3, fgf2, wnt7a, pgf, mycn, tln2, jund, ccn4) closely related to the development of brood pouch were identified in the MAPK, Rap1, TGF-β, and Wnt signaling pathways. These genes were highly expressed in the pseudoplacenta and dermal layers at the newly formed stage as examined by in situ hybridization (ISH). The angiogenesis, densification of collagen fibers, and proliferation of fibroblasts and endothelial cells in seahorse brood pouch formation may be regulated by these genes and pathways. Additionally, the expression of the androgen receptor gene (ar) was significantly upregulated during the formation of the brood pouch, and ISH confirmed the expression of the ar gene in the dermis and pseudoplacenta of the brood pouch, highlighting its role in the developmental process. Androgen and flutamide (androgen receptor antagonist) treatments significantly accelerated the formation of the brood pouch and completely inhibited its occurrence respectively, concomitant to the upregulated expression of differentially expressed genes involved above signaling pathways. These findings demonstrated that formation of the brood pouch is determined by androgen and the androgen receptor activates the above signaling pathways in the brood pouch through the regulation of fgf2, tgfb3, pgf, and wnt7a. Interestingly, androgen even induced the formation of the brood pouch in females. We firstly elucidated the formation of the seahorse brood pouch, demonstrating that androgens and their receptors directly induce the thickening, folding, and vascularization of the abdominal dermal layer into a placenta-like structure through multiple signaling pathways. These findings provide foundational insights to further exploring the evolution of male pregnancy and adaptive convergence in viviparity across vertebrates.
Collapse
Affiliation(s)
- Yichao Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuehui Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meilun Shi
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Jun Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Qinghua Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
48
|
Peng Z, Huang W, Xiao Z, Wang J, Zhu Y, Zhang F, Lan D, He F. Immunotherapy in the Fight Against Bone Metastases: A Review of Recent Developments and Challenges. Curr Treat Options Oncol 2024; 25:1374-1389. [PMID: 39436492 PMCID: PMC11541271 DOI: 10.1007/s11864-024-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 10/23/2024]
Abstract
OPINION STATEMENT Bone metastasis, a frequent and detrimental complication of advanced cancers, often triggers bone deterioration events that severely compromise patient quality of life and prognosis. The past few years have witnessed the emergence and continuous advancements in immunotherapy, ushering in innovative therapeutic prospects for bone metastasis. These advancements include not only the use of immune checkpoint inhibitors (ICIs), both as standalone and combined treatments, but also the investigation of novel targets within immune cells residing in bone metastases. These breakthroughs have instilled fresh optimism for effectively managing patients with bone metastasis. This article endeavors to present an exhaustive review of the recent progress made across a spectrum of immunotherapeutic strategies and targeted therapies specifically designed for individuals battling bone metastasis from malignant tumors. By doing so, it seeks to offer insights that can inform clinical practices and guide further medical research in this domain.
Collapse
Affiliation(s)
- Zhonghui Peng
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Huang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Ziyu Xiao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Jinge Wang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yongzhe Zhu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Fudou Zhang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Dongqiang Lan
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Fengjiao He
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China.
| |
Collapse
|
49
|
Qin J, Sun M, Cheng J, Jiang H, Lv M, Jing J, Chen R, Fan Z, Du J. Ultrasound-Responsive Hydrogel Incorporated with TGF-β Mimetic Peptides for Endometrium Recovery to Restore Fertility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57963-57971. [PMID: 39415495 DOI: 10.1021/acsami.4c07290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Unavoidable damage to the basal layer of the endometrium has a huge negative impact on a woman's reproductive health and menstrual cycle. However, it is difficult for medicine to penetrate a series of biological barriers toward the basal layer in the deeper area of the endometrium. To meet this challenge, we developed an ultrasound-responsive hydrogel incorporated with a transforming growth factor-beta (TGF-β) mimetic peptide to enhance pregnancy outcomes by restoring the function of a wounded endometrium due to its deep-tissue-penetration capability. In vitro studies revealed that the TGF-β-mimetic-peptide-loaded hydrogel could achieve 64.35% of cell migration under ultrasound stimulation even in phosphate-buffered saline of pH 6.0. Upon in situ sonication at the uterus, carboxymethyl chitosan can be released from degraded hydrogel to open tight junctions with reduced interstitial pressure by ultrasound to promote deep penetration. Rat studies revealed that the penetration capability of TGF-β-mimetic-peptide-loaded hydrogel with sonication was 1.6 times higher than that of the control group. Besides the rat uterine model, ex vivo human uterine tissue was also collected and imaged, demonstrating up to ∼700 μm of tissue penetration depth. In addition, compared to control groups, effective uterus recovery without intrauterine stenosis and endometrial cavity fluid was observed from rats with severe uterine injury treated by TGF-β-mimetic-peptide-loaded hydrogel. In addition, fertility restoration in the endometrial injury model was observed after treatment with such an ultrasound-responsive hydrogel incorporated with TGF-β mimetic peptides. Overall, this work provides an effective approach to treating endometrial injury for enhanced pregnancy outcomes.
Collapse
Affiliation(s)
- Jinlong Qin
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Min Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jiajing Cheng
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Huici Jiang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianxing Jing
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
50
|
Lara J, Mastela C, Abd M, Pitstick L, Ventrella R. Tail Tales: What We Have Learned About Regeneration from Xenopus Laevis Tadpoles. Int J Mol Sci 2024; 25:11597. [PMID: 39519148 PMCID: PMC11547152 DOI: 10.3390/ijms252111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the regenerative capacity of Xenopus laevis, focusing on tail regeneration, as a model to uncover cellular, molecular, and developmental mechanisms underlying tissue repair. X. laevis tadpoles provide unique insights into regenerative biology due to their regeneration-competent and -incompetent stages and ability to regrow complex structures in the tail, including the spinal cord, muscle, and skin, after amputation. The review delves into the roles of key signaling pathways, such as those involving reactive oxygen species (ROS) and signaling molecules like BMPs and FGFs, in orchestrating cellular responses during regeneration. It also examines how mechanotransduction, epigenetic regulation, and metabolic shifts influence tissue restoration. Comparisons of regenerative capacity with other species shed light on the evolutionary loss of regenerative abilities and underscore X. laevis as an invaluable model for understanding the constraints of tissue repair in higher organisms. This comprehensive review synthesizes recent findings, suggesting future directions for exploring regeneration mechanisms, with potential implications for advancing regenerative medicine.
Collapse
Affiliation(s)
- Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Camilla Mastela
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Magda Abd
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|