1
|
Cha SG, Rhim WK, Kim JY, Lee EH, Lee SY, Park JM, Lee JE, Yoon H, Park CG, Kim BS, Kwon TG, Lee Y, Lee DR, Han DK. Kidney tissue regeneration using bioactive scaffolds incorporated with differentiating extracellular vesicles and intermediate mesoderm cells. Biomater Res 2023; 27:126. [PMID: 38049879 PMCID: PMC10696796 DOI: 10.1186/s40824-023-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND To overcome the limitations of current alternative therapies for chronic kidney disease (CKD), tissue engineering-mediated regeneration strategies have demonstrated the possibilities for complete kidney tissue regeneration. Given the challenges associated with the reproducibility of renal basal cells, the incorporation of intermediate mesoderm (IM) cells and bioactive materials to control bioactivities of cells with supported scaffolds should be considered as a viable approach to enable the regeneration of the complex kidney structure via renal differentiation. METHODS We developed PMEZ scaffolds by combining crucial bioactive components, such as ricinoleic acid-grafted Mg(OH)2 (M), extracellular matrix (E), and alpha lipoic acid-conjugated ZnO (Z) integrated into biodegradable porous PLGA (P) platform. Additionally, we utilized differentiating extracellular vesicles (dEV) isolated during intermediate mesoderm differentiation into kidney progenitor cells, and IM cells were serially incorporated to facilitate kidney tissue regeneration through their differentiation into kidney progenitor cells in the 3/4 nephrectomy mouse model. RESULTS The use of differentiating extracellular vesicles facilitated IM differentiation into kidney progenitor cells without additional differentiation factors. This led to improvements in various regeneration-related bioactivities including tubule and podocyte regeneration, anti-fibrosis, angiogenesis, and anti-inflammation. Finally, implanting PMEZ/dEV/IM scaffolds in mouse injury model resulted in the restoration of kidney function. CONCLUSIONS Our study has demonstrated that utilizing biodegradable PLGA-based scaffolds, which include multipotent cells capable of differentiating into various kidney progenitor cells along with supporting components, can facilitate kidney tissue regeneration in the mouse model that simulates CKD through 3/4 nephrectomy.
Collapse
Affiliation(s)
- Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jeoung Eun Lee
- Bundang Medical Center, CHA Advanced Research Institute, CHA University, Sungnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Hyeji Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Bum Soo Kim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Urology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Tae Gyun Kwon
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Urology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Youngmi Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
- Bundang Medical Center, CHA Advanced Research Institute, CHA University, Sungnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Kim CS, Shin DM. Improper hydration induces global gene expression changes associated with renal development in infant mice. GENES AND NUTRITION 2016; 11:28. [PMID: 27785155 PMCID: PMC5072351 DOI: 10.1186/s12263-016-0544-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/03/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The kidney is a major organ in which fluid balance and waste excretion is regulated. For the kidney to achieve maturity with functions, normal renal developmental processes need to occur. Comprehensive genetic programs underlying renal development during the prenatal period have been widely studied. However, postnatal renal development, from infancy to the juvenile period, has not been studied yet. Here, we investigated whether structural and functional kidney development was still ongoing in early life by analyzing the renal transcriptional networks of infant (4 weeks old) and juvenile (7 weeks old) mice. We further examined the effects of dehydration on kidney development to unravel the mechanistic bases underlying deteriorative impact of pediatric dehydration on renal development. METHODS 3-week-old infant mice that just finished weaning period were provided limited access to a water for fifteen minutes per day for one week (RES 1W) and four weeks (RES 4W) to induce dehydration while control group consumed water ad libitum with free access to the water bottle. Transcriptome analysis was conducted to understand physiological changes during postnatal renal development and dehydration. RESULTS Kidneys in 4-week- and 7-week-old mice showed significantly distinctive functional gene networks. Gene sets related to cell cycle regulators, fetal kidney patterning molecules, and immature basement membrane integrity were upregulated in infantile kidneys while heightened expressions of genes associated with ion transport and drug metabolism were observed in juvenile kidneys. Dehydration during infancy suppressed renal growth by interrupting the SHH signaling pathway, which targets cell cycle regulators. Importantly, it is likely that disruption of the developmental program ultimately led to a decline in gene expression associated with basement membrane integrity. CONCLUSIONS Altogether, we demonstrate transcriptional events during renal development in infancy and show that the impacts of inadequate water intake in the early postnatal state heavily rely on the impairment of normal renal development. Here, we provide a meaningful perspective of renal development in infancy with a molecular and physiological explanation of why infants are more vulnerable to dehydration than adults. These results provide new insights into the molecular effects of dehydration on renal physiology and indicate that optimal nutritional interventions are necessary for pediatric renal development.
Collapse
Affiliation(s)
- Chong-Su Kim
- Department of Food and Nutrition, Seoul National University, Seoul, 08826 South Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University, Seoul, 08826 South Korea ; Research Institute of Human Ecology, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
3
|
Soranno DE, Rodell CB, Altmann C, Duplantis J, Andres-Hernando A, Burdick JA, Faubel S. Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice. Am J Physiol Renal Physiol 2016; 311:F362-72. [PMID: 26962109 DOI: 10.1152/ajprenal.00579.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/02/2016] [Indexed: 01/08/2023] Open
Abstract
Injectable hydrogels can be used to deliver drugs in situ over a sustained period of time. We hypothesized that sustained delivery of interleukin-10 (IL-10) following acute kidney injury (AKI) would mitigate the local and systemic proinflammatory cascade induced by AKI and reduce subsequent fibrosis. Wild-type C57BL/6 mice underwent ischemia-reperfusion AKI with avertin anesthesia. Three days later, mice were treated with either hyaluronic acid injectable hydrogel with or without IL-10, or IL-10 suspended in saline, injected under the capsule of the left kidney, or hydrogel with IL-10 injected subcutaneously. Untreated AKI served as controls. Serial in vivo optical imaging tracked the location and degradation of the hydrogel over time. Kidney function was assessed serially. Animals were killed 28 days following AKI and the following were evaluated: serum IL-6, lung inflammation, urine neutrophil gelatinase-associated lipocalin, and renal histology for fibroblast activity, collagen type III deposition and fibrosis via Picrosirius Red staining and second harmonic imaging. Our model shows persistent systemic inflammation, and renal inflammation and fibrosis 28 days following AKI. The hydrogels are biocompatible and reduced serum IL-6 and renal collagen type III 28 days following AKI even when delivered without IL-10. Treatment with IL-10 reduced renal and systemic inflammation, regardless of whether the IL-10 was delivered in a sustained manner via the injectable hydrogel under the left kidney capsule, as a bolus injection via saline under the left kidney capsule, or via the injectable hydrogel subcutaneously. Injectable hydrogels are suitable for local drug delivery following renal injury, are biocompatible, and help mitigate local and systemic inflammation.
Collapse
Affiliation(s)
- Danielle E Soranno
- Departments of Pediatrics and Bioengineering, University of Colorado, Aurora, Colorado;
| | - Christopher B Rodell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | | | - Jane Duplantis
- Departments of Pediatrics and Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Sarah Faubel
- Department of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
4
|
Dong L, Pietsch S, Englert C. Towards an understanding of kidney diseases associated with WT1 mutations. Kidney Int 2015; 88:684-90. [PMID: 26154924 PMCID: PMC4687464 DOI: 10.1038/ki.2015.198] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/12/2015] [Indexed: 12/23/2022]
Abstract
Mutations in Wilms' tumor 1 (WT1) cause a wide spectrum of renal manifestations, eventually leading to end-stage kidney failure. Insufficient understanding of WT1's molecular functions in kidney development has hampered efficient therapeutic applications for WT1-associated diseases. Recently, the generation and characterization of mouse models and application of multiple state-of-the-art approaches have significantly expanded our understanding of the molecular mechanisms of how WT1 mutations lead to kidney failure. Here, we discuss the WT1 binding consensus and illustrate the major roles of WT1 in different cell populations in kidney biology. WT1 controls metanephric mesenchyme (MM) self-renewal and proliferation mainly by regulating FGF and BMP-pSMAD signaling pathways as well as Sall1 and Pax2, encoding key transcription factors; WT1 drives MM differentiation and mesenchyme–epithelial transition by targeting Fgf8 and Wnt4; WT1 defines podocyte identity by activation of other podocyte-specific transcription factors, including Mafb, Lmx1b, FoxC2, and Tcf21. These factors potentially cooperate with WT1 regulating the expression of components and regulators of the cytoskeleton for establishing podocyte polarity, slit diaphragm structure, and focal adhesion to the glomerular basement membrane. Understanding of WT1's function in kidney biology including WT1-regulated pathways will give insights that will eventually help therapeutic applications.
Collapse
Affiliation(s)
- Lihua Dong
- Molecular Genetics, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Stefan Pietsch
- Molecular Genetics, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Christoph Englert
- Molecular Genetics, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
5
|
Loomis WF. Genetic control of morphogenesis in Dictyostelium. Dev Biol 2015; 402:146-61. [PMID: 25872182 PMCID: PMC4464777 DOI: 10.1016/j.ydbio.2015.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Cells grow, move, expand, shrink and die in the process of generating the characteristic shapes of organisms. Although the structures generated during development of the social amoeba Dictyostelium discoideum look nothing like the structures seen in metazoan embryogenesis, some of the morphogenetic processes used in their making are surprisingly similar. Recent advances in understanding the molecular basis for directed cell migration, cell type specific sorting, differential adhesion, secretion of matrix components, pattern formation, regulation and terminal differentiation are reviewed. Genes involved in Dictyostelium aggregation, slug formation, and culmination of fruiting bodies are discussed.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
6
|
Lin X, Huang J, Shi Y, Liu W. Tissue Engineering and Regenerative Medicine in Applied Research: A Year in Review of 2014. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:177-86. [PMID: 25588683 DOI: 10.1089/ten.teb.2015.0004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xunxun Lin
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Jia Huang
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Yuan Shi
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Wei Liu
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| |
Collapse
|
7
|
Scaffolds from surgically removed kidneys as a potential source of organ transplantation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:325029. [PMID: 25756044 PMCID: PMC4338377 DOI: 10.1155/2015/325029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/18/2015] [Accepted: 01/18/2015] [Indexed: 01/07/2023]
Abstract
End stage renal disease (ESRD) is a common disease, which relates to nearly 600 million people in the total population. What is more, it seems to be a crucial problem from the epidemiological point of view. These facts lead to a further necessity of renal replacement therapy development connected with rising expenditures for the health care system. The aim of kidney tissue engineering is to develop and innovate methods of obtaining renal extracellular matrix (ECM) scaffolds derived from kidney decellularization. Recently, progress has been made towards developing a functional kidney graft in vitro on demand. In fact, decellularized tissues constitute ideal natural scaffolds, due to the preservation of native ECM architecture, as well as of cell-ECM binding domains critical in promoting cell attachment, migration, and proliferation. One of the potential sources of the natural scaffolds is the kidney, which cannot be transplanted immediately after excision.
Collapse
|
8
|
Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 2014; 9:2329-40. [PMID: 25188634 DOI: 10.1038/nprot.2014.158] [Citation(s) in RCA: 1097] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human brain development exhibits several unique aspects, such as increased complexity and expansion of neuronal output, that have proven difficult to study in model organisms. As a result, in vitro approaches to model human brain development and disease are an intense area of research. Here we describe a recently established protocol for generating 3D brain tissue, so-called cerebral organoids, which closely mimics the endogenous developmental program. This method can easily be implemented in a standard tissue culture room and can give rise to developing cerebral cortex, ventral telencephalon, choroid plexus and retinal identities, among others, within 1-2 months. This straightforward protocol can be applied to developmental studies, as well as to the study of a variety of human brain diseases. Furthermore, as organoids can be maintained for more than 1 year in long-term culture, they also have the potential to model later events such as neuronal maturation and survival.
Collapse
Affiliation(s)
- Madeline A Lancaster
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| |
Collapse
|
9
|
Zambon JP, Magalhaes RS, Ko I, Ross CL, Orlando G, Peloso A, Atala A, Yoo JJ. Kidney regeneration: Where we are and future perspectives. World J Nephrol 2014; 3:24-30. [PMID: 25332894 PMCID: PMC4202490 DOI: 10.5527/wjn.v3.i3.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/27/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
In 2012, about 16487 people received kidney transplants in the United States, whereas 95022 candidates were on the waiting list by the end of the year. Despite advances in renal transplant immunology, approximately 40% of recipients will die or lose graft within 10 years. The limitations of current therapies for renal failure have led researchers to explore the development of modalities that could improve, restore, or replace the renal function. The aim of this paper is to describe a reasonable approach for kidney regeneration and review the current literature regarding cell sources and mechanisms to develop a bioengineering kidney. Due to kidneys peculiar anatomy, extracellular matrix based scaffolds are rational starting point for their regeneration. The perfusion of detergents through the kidney vasculature is an efficient method for delivering decellularizing agents to cells and for removing of cellular material from the tissue. Many efforts have focused on the search of a reliable cell source to provide enrichment for achieving stable renal cell systems. For an efficient bioengineered kidney, these cells must be attached to the organ and then maturated into the bioractors, which simulates the human body environment. A functional bioengineered kidney is still a big challenge for scientists. In the last ten years we have got many improvements on the field of solid organ regeneration; however, we are still far away from the main target. Currently, regenerative centers worldwide have been striving to find feasible strategies to develop bioengineered kidneys. Cell-scaffold technology gives hope to end-stage renal disease patients who struggle with morbidity and mortality due to extended periods on dialysis or immunosupression. The potential of bioengineered organ is to provide a reliable source of organs, which can be refunctionalized and transplanted.
Collapse
|
10
|
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 2014; 345:1247125. [PMID: 25035496 DOI: 10.1126/science.1247125] [Citation(s) in RCA: 1879] [Impact Index Per Article: 170.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Classical experiments performed half a century ago demonstrated the immense self-organizing capacity of vertebrate cells. Even after complete dissociation, cells can reaggregate and reconstruct the original architecture of an organ. More recently, this outstanding feature was used to rebuild organ parts or even complete organs from tissue or embryonic stem cells. Such stem cell-derived three-dimensional cultures are called organoids. Because organoids can be grown from human stem cells and from patient-derived induced pluripotent stem cells, they have the potential to model human development and disease. Furthermore, they have potential for drug testing and even future organ replacement strategies. Here, we summarize this rapidly evolving field and outline the potential of organoid technology for future biomedical research.
Collapse
Affiliation(s)
- Madeline A Lancaster
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science Vienna 1030, Austria
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science Vienna 1030, Austria.
| |
Collapse
|
11
|
Affiliation(s)
- Benjamin D Humphreys
- Brigham and Women's Hospital Dana Farber Cancer Institute Harvard Stem Cell Institute Boston, MA
| |
Collapse
|
12
|
Kamei CN, Drummond IA. Zebrafish as a Model for Studying Kidney Regeneration. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0044-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Humphreys BD. Erratum: Kidney structures differentiated from stem cells. Nat Cell Biol 2014. [DOI: 10.1038/ncb2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|