1
|
Zou Y, Yiu WH, Lok SWY, Ma J, Feng Y, Lai KN, Tang SCW. Tubular FoxP2 and Kidney Fibrosis. J Am Soc Nephrol 2025; 36:544-558. [PMID: 39656554 DOI: 10.1681/asn.0000000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/24/2024] [Indexed: 01/23/2025] Open
Abstract
Key Points
FOXP2/Foxp2 is overexpressed in human and in murine unilateral ureteral obstruction and unilateral ischemia-reperfusion models.
Foxp2 overexpression mediates epithelial-to-mesenchymal transition and G2/M cell cycle arrest in kidney tubular cells to promote fibrosis.
Background
Kidney fibrosis is the final common pathway of progressive CKD that leads to kidney failure, for which there are limited therapeutic strategies. The transcription factor, Forkhead box P2 (Foxp2), has been implicated in organ development and tumorigenesis through its association with the epithelial-to-mesenchymal transition (EMT) process. In this study, we uncovered a novel role of Foxp2 in kidney fibrosis.
Methods
Human kidney biopsies were used to assess FOXP2 expression. Tubule-specific Foxp2 knockout mice were generated through LoxP-Cre transgenic manipulation and applied to murine models of progressive CKD, including unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Cultured kidney tubular epithelial cells were used to analyze the underlying cellular mechanisms.
Results
FOXP2 expression was markedly increased in the tubular nuclei of human kidney biopsies of CKD from patients with IgA nephropathy, membranous nephropathy, and diabetic nephropathy. In murine UUO and UIRI models that recapitulate progressive CKD, tubule-specific deletion of Foxp2 attenuated kidney inflammation and tubulointerstitial fibrosis, accompanied by reduction in cell cycle arrest. In mouse tubular epithelial cells, TGF-β upregulated Foxp2 expression through Smad3 signaling while knockdown of Foxp2 suppressed TGF-β-induced EMT and accumulation of extracellular matrix proteins. Mechanistically, overexpression of Foxp2 inhibited tubular cell proliferation with induction of G2/M cell cycle arrest. Using chromatin-immunoprecipitation sequencing, we identified Foxp2 target genes that are enriched in phosphatidylinositol 3-kinase/protein kinase B and TGF-β signaling pathways and further revealed that Foxp2 directly regulated the transcriptional activities of collagen-1, E-cadherin, and p21 that are involved in EMT and cell cycle arrest, thereby promoting the profibrotic process.
Conclusions
Our findings demonstrate a novel role of Foxp2 in promoting kidney fibrosis in murine UUO and UIRI by activating EMT and cell cycle arrest in kidney tubules, contributing to the progression of CKD.
Collapse
Affiliation(s)
- Yixin Zou
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Song J, Chen Y, Chen Y, Qiu M, Xiang W, Ke B, Fang X. Wnt/β-catenin Pathway Aggravates Renal Fibrosis by Activating PUM2 Transcription to Repress YME1L-mediated Mitochondrial Homeostasis. Biochem Genet 2025; 63:1343-1360. [PMID: 38564095 DOI: 10.1007/s10528-024-10756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Chronic kidney disease (CKD) affects more than 10% of people worldwide and is a leading cause of death. However, the pathogenesis of CKD remains elusive. The oxidative stress and mitochondrial membrane potential were detected using Enzyme-linked immunosorbent assay and JC-1 assay. Co-immunoprecipitation, dual-luciferase assay, chromatin IP, RNA IP and RNA pull-down were used to validate the interactions among genes. Exploiting a H2O2-induced fibrosis model in vitro, PUM2 expression was upregulated in Human kidney 2 cell (HK-2) cells, along with reduced cell viability, enhanced oxidative stress, impaired mitochondrial potential, and upregulated expressions of fibrosis-associated proteins. While PUM2 knockdown reversed the H2O2-induced injury in HK-2 cells. Mechanically, Wnt/β-catenin pathway activated PUM2 transcription via TCF4. It was further identified that Wnt/β-catenin pathway inhibited YME1L expression through PUM2-mediated destabilizing of its mRNA. PUM2 aggravated H2O2-induced oxidative stress, mitochondrial dysfunction, and renal fibrosis in HK-2 cell via suppressing YME1L expression. Our study revealed that Wnt/β-catenin aggravated renal fibrosis by activating PUM2 transcription to repress YME1L-mediated mitochondrial homeostasis, providing novel insights and potential therapeutic targets for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Minzi Qiu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenliu Xiang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Sun P, Chen Q, Chen X, Zhou J, Long T, Ma Y, Zhou M, Hu Z, Tian J, Zhu F, Yang Z, Xie L, Wu Q, Nie J. Renal tubular S100A7a impairs fatty acid oxidation and exacerbates renal fibrosis via both intracellular and extracellular pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167656. [PMID: 39778778 DOI: 10.1016/j.bbadis.2025.167656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
A couple of S100 family proteins (S100s) have been reported to exert pro-inflammatory functions in the progression of renal fibrosis. Unlike some S100s which are expressed by both epithelial and stromal inflammatory cells, S100A7 is restricted expressed in epithelium. Persistent S100A7 expression occurs in some invasive carcinomas and is associated with poor prognostic factors. Whereas, whether it is implicated in renal tubular epithelial cell injury and kidney disease remains unexplored. In this study, we demonstrate that S100A7 is highly upregulated in tubular cells of both mouse renal fibrotic lesions and kidney biopsies from patients with chronic kidney disease (CKD). The level of renal S100A7 was associated with both the decline of renal function and the progression of renal fibrosis in CKD patients. Overexpressing S100A7a impaired fatty acid oxidation (FAO) and promoted lipid peroxidation in proximal tubular cells (PTCs). Mechanistically, S100A7a interacts with β-catenin, thereby preventing its ubiquitination and degradation by the β-TrCP-SCF complex, and in turn activated β-catenin signaling, downregulated the expression of PGC-1α. Additionally, S100A7a exacerbated lipid peroxidation via RAGE-p-ERK-NOX2 pathway. Specific deletion of S100a7a in tubular cells enhanced FAO and reduced lipid peroxidation, resulting in improved renal function and alleviation of renal fibrosis induced by unilateral ureteral obstruction and unilateral ischemia-reperfusion injury. Collectively, we delineate a previously unrecognized function of S100A7a in the progression of renal fibrosis.
Collapse
Affiliation(s)
- Pengxiao Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingzhou Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaomei Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tantan Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuanyuan Ma
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianwei Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Yang
- Department of Nephrology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Liling Xie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiaoyuan Wu
- Department of Nephrology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China.
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Peking University, Beijing 100034, China.
| |
Collapse
|
4
|
Perutina I, Kelam N, Maglica M, Racetin A, Rizikalo A, Filipović N, Prusac IK, Bošnjak M, Mišković J, Kablar B, Ghahramani N, Vukojević K. Spatiotemporal distribution of Wnt signaling pathway markers in human congenital anomalies of kidney and urinary tract. Acta Histochem 2025; 127:152235. [PMID: 39908631 DOI: 10.1016/j.acthis.2025.152235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
This study aimed to investigate the spatiotemporal expression patterns of key markers involved in regulating the canonical and non-canonical Wnt pathway during human fetal kidney development, comparing healthy (CTRL) and congenital anomalies of the kidney and urinary tract (CAKUT) affected kidneys. Human fetal kidneys, ranging from the 18th to the 38th developmental weeks, including various CAKUT phenotypes (horseshoe, dysplastic, duplex and hypoplastic), underwent double immunofluorescence microscopy analysis following antibody staining. Immunoreactivity levels were quantified in different kidney structures, and expression dynamics were assessed using linear and nonlinear regression modeling techniques. The study revealed a decrease in the overall protein expression of acetylated α-tubulin during normal kidney development, while the highest percentage of positive cells was observed in the horseshoe kidney (HK), thus disturbing microtubule composition in normal cell division and differentiation. Additionally, a continuous decrease of inversin-positive cells in hypoplastic (HYP) and duplex kidneys (UD), but the exponential growth of DVL-1 expression score in dysplastic kidneys (DYS) with developmental age, result in suppression of final kidney differentiation by continuous canonical Wnt signaling activation, thus supporting the essential role of the switch from canonical to non-canonical Wnt pathway in nephrogenesis. Furthermore β-catenin-positive cells in dysplastic and hypoplastic kidney exhibited the highest percentage of positive signal, with a decline in β-catenin positive cells over time in the control group, indicating disturbances in transition from canonical to non-canonical Wnt pathway in CAKUT-affected kidneys. The findings suggest that the crosstalk between canonical and non-canonical Wnt signaling pathways is crucial for normal nephrogenesis, highlighting their potential roles in normal and dysfunctional kidney development.
Collapse
Affiliation(s)
- Ilija Perutina
- Department of Anatomy, University of Mostar, School of Medicine, Mostar 88000, Bosnia and Herzegovina; Department of Neurosurgery, University Clinical Hospital Mostar, Mostar 88 000, Bosnia and Herzegovina.
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split 21000, Croatia; Center for translational research in biomedicine, University of Split School of Medicine, Split 21000, Croatia.
| | - Mirko Maglica
- Department of Anatomy, University of Mostar, School of Medicine, Mostar 88000, Bosnia and Herzegovina.
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split 21000, Croatia; Center for translational research in biomedicine, University of Split School of Medicine, Split 21000, Croatia.
| | - Azer Rizikalo
- Department of Anatomy, University of Mostar, School of Medicine, Mostar 88000, Bosnia and Herzegovina.
| | - Natalija Filipović
- Department of Anatomy, University of Mostar, School of Medicine, Mostar 88000, Bosnia and Herzegovina; Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split 21000, Croatia.
| | - Ivana Kuzmić Prusac
- Department of Pathology, University Hospital Center Split, Split 21000, Croatia.
| | - Marko Bošnjak
- Department of Neurosurgery, University Clinical Hospital Mostar, Mostar 88 000, Bosnia and Herzegovina.
| | - Josip Mišković
- Department of Anatomy, University of Mostar, School of Medicine, Mostar 88000, Bosnia and Herzegovina.
| | - Boris Kablar
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Nasrollah Ghahramani
- Department of Medicine, Division of Nephrology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States.
| | - Katarina Vukojević
- Department of Anatomy, University of Mostar, School of Medicine, Mostar 88000, Bosnia and Herzegovina; Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split 21000, Croatia; Center for translational research in biomedicine, University of Split School of Medicine, Split 21000, Croatia.
| |
Collapse
|
5
|
Yang L, Ma L, Fu P, Nie J. Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions. Front Med 2025:10.1007/s11684-024-1117-z. [PMID: 40011387 DOI: 10.1007/s11684-024-1117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 02/28/2025]
Abstract
Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Lina Yang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jing Nie
- Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing, 100034, China.
| |
Collapse
|
6
|
Zhou Y, Wan Z, Xiong D, Gong Z, Liu F. Nur77 Promotes Inflammation in Cisplatin-Induced Acute Kidney Injury Through Transactivation of SERPINA3 Mediating Wnt/β-Catenin Pathway. Nephrology (Carlton) 2025; 30:e70006. [PMID: 39957271 DOI: 10.1111/nep.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 02/18/2025]
Abstract
AIM Acute kidney injury (AKI) is the most common complication in the treatment of cisplatin, which is a clinically effective and classical anticancer drug. Orphan Nuclear Receptor Nur77 has been found to promote renal ischaemia-reperfusion injury. In this study, we aim to explore the effects of Nur77 on cisplatin-induced AKI (CI-AKI) and its underlying mechanism. METHODS HK-2 cells treated with cisplatin were used to construct the CI-AKI model in vitro. Cell viability and cell proliferation were analysed using CCK-8 and EdU assays, respectively. Cell apoptosis was analysed by flow cytometry. The inflammation release level was detected using ELISA. Molecular abundance was evaluated using qPCR, Western blot and immunofluorescence. The interaction between Nur77 and SERPINA3 was clarified using ChIP and dual-luciferase reporter gene assays. RESULTS Our works demonstrated that Nur77 and SERPINA3 expression were considerably ascended in cisplatin-induced HK-2 cells. The silence of SERPINA3 alleviated cisplatin-stimulated HK-2 cell injury, which was characterised by increased cell viability and proliferation, and decreased apoptosis and inflammatory cytokine release. In addition, Nur77 promotes SERPINA3 transcription by binding to the SERPINA3 promoter region (-182 to -175), thereby upregulating SERPINA3 expression and activating the Wnt/β-catenin pathway. Moreover, HK-2 cell injury induced by cisplatin was notably inhibited by the knockdown of Nur77. Furthermore, the efficacy of Nur77 downregulation on the cell injury in cisplatin-stimulated HK-2 cells was antagonised by SERPINA3 overexpression. CONCLUSION Taken together, our findings revealed that Nur77 knockdown resisted cisplatin-induced HK-2 cells injury through lessening the expression of SERPINA3 mediated by transcriptional regulation and inactivating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ying Zhou
- Hemodialysis Room, The First Hospital of Nanchang, Nanchang, China
| | - Zhen Wan
- Hemodialysis Room, The First Hospital of Nanchang, Nanchang, China
| | - Di Xiong
- Hemodialysis Room, The First Hospital of Nanchang, Nanchang, China
| | - Zhijun Gong
- Hemodialysis Room, The First Hospital of Nanchang, Nanchang, China
| | - Feiyan Liu
- Hemodialysis Room, The First Hospital of Nanchang, Nanchang, China
| |
Collapse
|
7
|
Husain I, Shah H, Jordan CZ, Natesh NR, Fay OK, Chen Y, Privratsky JR, Kitai H, Souma T, Varghese S, Howell DN, Thorp EB, Luo X. Targeting allograft inflammatory factor 1 reprograms kidney macrophages to enhance repair. J Clin Invest 2025; 135:e185146. [PMID: 39836477 PMCID: PMC11870741 DOI: 10.1172/jci185146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
The role of macrophages (MΦs) remains incompletely understood in kidney injury and repair. The plasticity of MΦs offers an opportunity to polarize them toward mediating injury resolution in both native and transplanted kidneys undergoing ischemia and/or rejection. Here, we show that infiltrating kidney MΦs augmented their own allograft inflammatory factor 1 (AIF-1) expression after injury. Aif1 genetic deletion led to MΦ polarization toward a reparative phenotype while halting the development of kidney fibrosis. The enhanced repair was mediated by higher levels of antiinflammatory and proregenerative markers, leading to a reduction in cell death and an increase in proliferation of kidney tubular epithelial cells after ischemia followed by reperfusion injury (I/RI). Adoptive transfer of Aif1-/- MΦs into Aif1+/+ mice conferred protection against I/RI. Conversely, depletion of MΦs reversed the tissue-reparative effects in Aif1-/- mice. We further demonstrated increased expression of AIF-1 in human kidney biopsies from native kidneys with acute kidney injury or chronic kidney disease, as well as in biopsies from kidney allografts undergoing acute or chronic rejection. We conclude that AIF-1 is a MΦ marker of renal inflammation, and its targeting uncouples MΦ reparative functions from profibrotic functions. Thus, therapies inhibiting AIF-1 when ischemic injury is inevitable have the potential to reduce the global burden of kidney disease.
Collapse
Affiliation(s)
- Irma Husain
- Division of Nephrology, Department of Medicine, and
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Holly Shah
- Division of Nephrology, Department of Medicine, and
| | | | - Naveen R. Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | | | | | | | - Hiroki Kitai
- Division of Nephrology, Department of Medicine, and
| | | | - Shyni Varghese
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, and
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | | | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, and
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
8
|
Khater Y, Barakat N, Shokeir A, Hamed M, Samy A, Karrouf G. Synergy of zinc oxide nanoparticles to losartan attenuates kidney injury induced by unilateral ureteral obstruction through modulation of the TNF-α/IL6 and BAX/BCL2 signaling pathways. Int Urol Nephrol 2025:10.1007/s11255-024-04331-y. [PMID: 39810058 DOI: 10.1007/s11255-024-04331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
AIM Although the relief of ureteral obstruction seems to be a radical treatment for obstructive uropathy (OU), progressive kidney damage is the result because of the associated increased apoptosis and fibrosis. Therefore, it is urgent to find a complementary renoprotective therapy against partially obstructed uropathy cascades. Thus, this study investigated the renoprotective effects of both losartan (LOS) and zinc oxide nanoparticles (ZnONPs) in partial unilateral ureteral obstruction (PUUO). MAIN METHODS In controlled (n = 16) and shamed (n = 16) study, 64 healthy male Sprague-Dawley rats, both PUUO and right nephrectomy (RNX) were induced. The rats were equally allocated into four groups according to treatment protocol: (1) PUUO group (no treatment), (2) ZnONPs group, (3) LOS group and (4) ZnONPs/LOS group. Antioxidant status and gene expression were assessed in renal tissues. Moreover, histologic and immunohistochemical examinations were performed. KEY FINDINGS LOS and ZnONPs significantly mitigated the PUUO-induced renal injury, by significant (P < 0.0001) suppressing of oxidative stress (MDA and TOS), upregulating of antioxidant gene (SOD) and antiapoptotic gene (BCL2), and downregulating the expression of inflammatory cytokines (TNF-α, and IL6), apoptotic gene (Bax) and fibrotic marker (β-Catenin). The combination of both agents offered a more powerful renoprotective effect with additional significant upregulation of the antioxidant marker (TAC, P < 0.0001). SIGNIFICANCE Both losartan and ZnONPs and specially their combination have synergistic action in protecting the kidney against PUUO-induced chronic renal cascades through improvement the renal function tests, amelioration of oxidative stress, inhibition of induced apoptosis and fibrosis with marked renal regeneration which highlights the possible application of these drugs as a complementary therapies for different chronic renal degenerative diseases.
Collapse
Affiliation(s)
- Yomna Khater
- Medical Experimental Research Centre, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Shokeir
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
- Centre of Excellence of Genome and Cancer Research, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Hamed
- Department of Pathology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Alaa Samy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Gamal Karrouf
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
9
|
Xu W, Zhu Y, Wang S, Liu J, Li H. From Adipose to Ailing Kidneys: The Role of Lipid Metabolism in Obesity-Related Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:1540. [PMID: 39765868 PMCID: PMC11727289 DOI: 10.3390/antiox13121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Obesity has emerged as a significant public health crisis, closely linked to the pathogenesis and progression of chronic kidney disease (CKD). This review explores the intricate relationship between obesity-induced lipid metabolism disorders and renal health. We discuss how excessive free fatty acids (FFAs) lead to lipid accumulation in renal tissues, resulting in cellular lipotoxicity, oxidative stress, and inflammation, ultimately contributing to renal injury. Key molecular mechanisms, including the roles of transcriptional regulators like PPARs and SREBP-1, are examined for their implications in lipid metabolism dysregulation. The review also highlights the impact of glomerular and tubular lipid overload on kidney pathology, emphasizing the roles of podocytes and tubular cells in maintaining kidney function. Various therapeutic strategies targeting lipid metabolism, including pharmacological agents such as statins and SGLT2 inhibitors, as well as lifestyle modifications, are discussed for their potential to mitigate CKD progression in obese individuals. Future research directions are suggested to better understand the mechanisms linking lipid metabolism to kidney disease and to develop personalized therapeutic approaches. Ultimately, addressing obesity-related lipid metabolism disorders may enhance kidney health and improve outcomes for individuals suffering from CKD.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Zhu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
11
|
Liu J, Huang S, Hou Y, Fu S, Wang L, Hu J, Liu C, Liu X. FXR promotes clear cell renal cell carcinoma carcinogenesis via MMP-7-regulated EMT pathway. Sci Rep 2024; 14:29411. [PMID: 39592748 PMCID: PMC11599922 DOI: 10.1038/s41598-024-80368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Renal cell carcinoma (RCC) ranks as a prevalent malignant neoplasm, with clear cell renal cell carcinoma (ccRCC, also known as KIRC) accounting for approximately 75% of all RCC cases. The farnesoid X receptor (FXR, encoded by NR1H4), functioning as a nuclear receptor, plays a crucial role in regulating gene transcription. Although the involvement of FXR in tumors of the digestive system and in acute kidney injury has been extensively studied, its specific role in the pathogenesis of ccRCC has yet to be thoroughly investigated. Consequently, the objective of our current investigation is to uncover the functional roles of FXR in ccRCC. In this study, plasmids for the overexpression of FXR were constructed, and small interfering RNA (siRNA) constructs were designed. Dual-luciferase reporter assays confirmed a direct binding interaction between FXR and the promoter of the matrix metalloproteinase 7 (MMP-7) gene. Additionally, a mouse xenograft model elucidated the regulatory effect of FXR on MMP-7 in the context of tumor growth. This study elucidates how FXR regulates the promotion of ccRCC through the MMP-7-mediated EMT pathway. Interestingly, FXR is typically regarded as a tumor suppressor gene that affects gastrointestinal tumors, providing a potential new therapeutic direction for ccRCC.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanguang Hou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shujie Fu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Chen S, Li J, Liang Y, Zhang M, Qiu Z, Liu S, Wang H, Zhu Y, Song S, Hou X, Liu C, Wu Q, Zhu M, Shen W, Miao J, Hou FF, Liu Y, Wang C, Zhou L. β-catenin-inhibited Sumoylation modification of LKB1 and fatty acid metabolism is critical in renal fibrosis. Cell Death Dis 2024; 15:769. [PMID: 39438470 PMCID: PMC11496881 DOI: 10.1038/s41419-024-07154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver kinase B1 (LKB1) is a serine/threonine kinase controlling cell homeostasis. Among post-translational modification, Sumoylation is vital for LKB1 activating adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), the key regulator in energy metabolism. Of note, AMPK-regulated fatty acid metabolism is highly involved in maintaining normal renal function. However, the regulative mechanisms of LKB1 Sumoylation remain elusive. In this study, we demonstrated that β-catenin, a notorious signal in renal fibrosis, inhibited the Sumoylation of LKB1, thereby disrupting fatty acid oxidation in renal tubular cells and triggering renal fibrosis. Mechanically, we found that Sumo3 was the key mediator for LKB1 Sumoylation in renal tubular cells, which was transcriptionally inhibited by β-catenin/Transcription factor 4 (TCF4) signaling. Overexpression of Sumo3, not Sumo1 or Sumo2, restored β-catenin-disrupted fatty acid metabolism, and retarded lipid accumulation and fibrogenesis in the kidney. In vivo, conditional knockout of β-catenin in tubular cells effectively preserved fatty acid oxidation and blocked lipid accumulation by maintaining LKB1 Sumoylation and AMPK activation. Furthermore, ectopic expression of Sumo3 strongly inhibited Wnt1-aggravated lipid accumulation and fibrogenesis in unilateral ischemia-reperfusion mice. In patients with chronic kidney disease, we found a loss of Sumo3 expression, and it was highly related to LKB1 repression. This contributes to fatty acid metabolism disruption and lipid accumulation, resulting in renal fibrosis. Overall, our study revealed a new mechanism in fatty acid metabolism dysfunction and provided a new therapeutic target pathway for regulating Sumo modification in renal fibrosis.
Collapse
Affiliation(s)
- Shuangqin Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meijia Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziqi Qiu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - HaoRan Wang
- Walter Johnson High School, Bethesda, MD, USA
| | - Ye Zhu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiaotao Hou
- Pathology Department, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, China
| | - Canzhen Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingsheng Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Wei S, Wu Q, Cao C, Yang Z, Shi J, Huang J, He H, Lai Y, Li J. A mechanism of action-reflective, dual cell-based bioassay for determining the bioactivity of sclerostin-neutralizing antibodies. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100187. [PMID: 39389544 DOI: 10.1016/j.slasd.2024.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Osteoporosis is a major threat to the elderly worldwide. The Wnt signaling pathway plays a critical role in bone development and homeostasis. Sclerostin, a Wnt ligand inhibitor, competes with Wnt ligands for low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6) on osteoblasts, thereby suppressing bone formation. Sclerostin-neutralizing monoclonal antibodies (mAbs) have emerged as a potential bone-forming therapy for osteoporosis. A cell-based bioassay which determines the relative activity of a product, related to its mechanism of action, is of great importance from drug discovery to quality control and batch release. Currently used cell-based bioassays for sclerostin-neutralizing mAbs usually use Wnt1 or Wnt3a to stimulate the Wnt pathway; sclerostin is a direct inhibitor of Wnt1 but not Wnt3a. Wnt1 is a highly hydrophobic protein that binds to the producing cell membrane and acts in a juxtacrine manner to stimulate the Wnt pathway in neighboring cells. Bioassays for drugs that induce Wnt1 signaling should be performed in a juxtacrine manner. Here, we present a mechanism of action-reflective, dual cell-based reporter gene assay. In this assay, Wnt1 producer cells are co-cultured with cells containing the Wnt reporter genes, Wnt1 on the producer cells activates the Wnt signaling pathway in the reporter cells that are in direct cell-to-cell contact, and sclerostin-neutralizing mAbs specifically and effectively antagonize the sclerostin-mediated Wnt reporter gene suppression. This bioassay demonstrates good specificity, accuracy, linearity, and precision and is suitable for quality control, stability testing, batch release, and biosimilarity assessment of sclerostin-neutralizing mAbs.
Collapse
Affiliation(s)
- Suzhen Wei
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Qiang Wu
- Zhuhai United Laboratories Co., Ltd, 2428 Anji Road, Zhuhai, Guangdong, China
| | - Chunlai Cao
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Zhuoni Yang
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Jianrui Shi
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Jingqun Huang
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Hua He
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Yongjie Lai
- Department of Microbiology and Immunology, Zunyi Medical University (Zhuhai Campus), 368 Golden Coast Avenue, Zhuhai, Guangdong, China.
| | - Jing Li
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China; Zhuhai United Laboratories Co., Ltd, 2428 Anji Road, Zhuhai, Guangdong, China.
| |
Collapse
|
14
|
Kim G, Yoo HJ, Yoo MK, Choi JH, Lee KW. Methylglyoxal-derived hydroimidazolone-1/RAGE axis induces renal oxidative stress and renal fibrosis in vitro and in vivo. Toxicology 2024; 507:153887. [PMID: 39019314 DOI: 10.1016/j.tox.2024.153887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Advanced glycation end products (AGEs) are important contributors to the progression of chronic kidney diseases (CKD), including renal fibrosis. Although the relationship between AGEs and renal fibrosis has been well studied, the mechanisms of individual AGE-induced renal injury remain poorly understood. This study investigated the adverse effect of methylglyoxal-derived hydroimidazolone-1 (MG-H1), a methylglyoxal (MG)-derived AGE generated by the glycation of MG and arginine residues, on kidney damage. We aimed to elucidate the molecular mechanisms of MG-H1-mediated renal injury and fibrosis, focusing on the receptor for AGEs (RAGE) signaling and its effects on the Wnt/β-catenin pathway, MAPK pathway, and inflammatory responses. Our results suggest that the MG-H1/RAGE axis plays a significant role in the pathogenesis of CKD and its downstream events involving MAPK kinase-related factors and inflammatory factors. MG-H1 treatment modulated the expression of inflammatory cytokines (TNF-α, IL-6, and IL-1β) and MAPK proteins (ERK1/2, JNK, and p38).
Collapse
Affiliation(s)
- Gyuri Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ki Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hyeong Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
15
|
Romero G, Martin B, Gabris B, Salama G. Relaxin suppresses atrial fibrillation, reverses fibrosis and reduces inflammation in aged hearts. Biochem Pharmacol 2024; 227:116407. [PMID: 38969298 DOI: 10.1016/j.bcp.2024.116407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Healthy aging results in cardiac structural and electrical remodeling that increase susceptibility to cardiovascular diseases. Relaxin has shown broad cardioprotective effects including anti-fibrotic, anti-arrhythmic and anti-inflammatory outcomes in multiple models. This paper focuses on the cardioprotective effects of Relaxin in a rat model of aging. Sustained atrial or ventricular fibrillation are readily induced in the hearts of aged but not young control animals. Treatment with Relaxin suppressed this arrhythmogenic response by increasing conduction velocity, decreasing fibrosis and promoting substantial cardiac remodeling. Relaxin treatment resulted in a significant increase in the levels of: Nav1.5, Cx43, βcatenin and Wnt1 in rat hearts. In isolated cardiomyocytes, Relaxin increased Nav1.5 expression. These effects were mimicked by CHIR 99021, a pharmacological activator of canonical Wnt signaling, but blocked by the canonical Wnt inhibitor Dickkopf1. Relaxin prevented TGF-β-dependent differentiation of cardiac fibroblasts into myofibroblasts while increasing the expression of Wnt1; the effects of Relaxin on cardiac fibroblast differentiation were blocked by Dickkopf1. RNASeq studies demonstrated reduced expression of pro-inflammatory cytokines and an increase in the expression of α- and β-globin in Relaxin-treated aged males. Relaxin reduces arrhythmogenicity in the hearts of aged rats by reduction of fibrosis and increased conduction velocity. These changes are accompanied by substantial remodeling of the cardiac tissue and appear to be mediated by increased canonical Wnt signaling. Relaxin also exerts significant anti-inflammatory and anti-oxidant effects in the hearts of aged rodents. The mechanisms by which Relaxin increases the expression of Wnt ligands, promotes Wnt signaling and reprograms gene expression remain to be determined.
Collapse
Affiliation(s)
- Guillermo Romero
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian Martin
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Beth Gabris
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guy Salama
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Ehleiter H, Miranda J, Boes D, Scheidt U, von Vietinghoff S, Schwab S. Peritoneal and renal DKK3 clearance in peritoneal dialysis. BMC Nephrol 2024; 25:268. [PMID: 39179976 PMCID: PMC11342714 DOI: 10.1186/s12882-024-03715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Urinary Dickkopf 3 (DKK3) excretion is a recently established biomarker of renal functional development. Its excretion into the peritoneal cavity has not been reported. We here studied DKK3 in peritoneal dialysis. METHODS DKK3 was assessed in serum, urine and dialysate in a prevalent adult peritoneal dialysis cohort and its concentration analyzed in relation to creatinine and clinical characteristics. RESULTS Highest DKK3 concentrations were found in serum, followed by urine. Dialysate concentrations were significantly lower. Dialysate DKK3 correlated with both other compartments. Serum, dialysate and urine values were stable during three months of follow-up. Continuous ambulatory dialysis (CAPD) but not cycler-assisted peritoneal dialysis (CCPD) volume-dependently increased peritoneal DKK3 in relation to creatinine. RAAS blockade significantly decreased urinary, but not serum or peritoneal DKK3. CONCLUSION Our data provide a detailed characterization of DKK3 in peritoneal dialysis. They support the notion that the RAAS system is essential for renal DKK3 handling.
Collapse
Affiliation(s)
- Hagen Ehleiter
- Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich- Wilhelms Universität Bonn, Venusberg Campus 1, D-53127, Bonn, Germany
| | - Julia Miranda
- Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich- Wilhelms Universität Bonn, Venusberg Campus 1, D-53127, Bonn, Germany
| | - Dominik Boes
- Kuratorium for Dialysis, KfH Renal Center, Bonn, Germany
| | - Uta Scheidt
- Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich- Wilhelms Universität Bonn, Venusberg Campus 1, D-53127, Bonn, Germany
| | - Sibylle von Vietinghoff
- Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich- Wilhelms Universität Bonn, Venusberg Campus 1, D-53127, Bonn, Germany
| | - Sebastian Schwab
- Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich- Wilhelms Universität Bonn, Venusberg Campus 1, D-53127, Bonn, Germany.
| |
Collapse
|
17
|
Asadi R, Shadpour P, Nakhaei A. Non-dialyzable uremic toxins and renal tubular cell damage in CKD patients: a systems biology approach. Eur J Med Res 2024; 29:412. [PMID: 39123228 PMCID: PMC11311939 DOI: 10.1186/s40001-024-01951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease presents global health challenges, with hemodialysis as a common treatment. However, non-dialyzable uremic toxins demand further investigation for new therapeutic approaches. Renal tubular cells require scrutiny due to their vulnerability to uremic toxins. METHODS In this study, a systems biology approach utilized transcriptomics data from healthy renal tubular cells exposed to healthy and post-dialysis uremic plasma. RESULTS Differential gene expression analysis identified 983 up-regulated genes, including 70 essential proteins in the protein-protein interaction network. Modularity-based clustering revealed six clusters of essential proteins associated with 11 pathological pathways activated in response to non-dialyzable uremic toxins. CONCLUSIONS Notably, WNT1/11, AGT, FGF4/17/22, LMX1B, GATA4, and CXCL12 emerged as promising targets for further exploration in renal tubular pathology related to non-dialyzable uremic toxins. Understanding the molecular players and pathways linked to renal tubular dysfunction opens avenues for novel therapeutic interventions and improved clinical management of chronic kidney disease and its complications.
Collapse
Affiliation(s)
- Roya Asadi
- Industrial Engineering Department, Faculty of Technical and Engineering, University of Science and Culture (USC), Tehran, Iran
| | - Pejman Shadpour
- Hospital Management Research Center (HMRC), Hasheminejad Kidney Center (HKC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Akram Nakhaei
- Computer Engineering Department, Mazandaran University of Science and Technology (MUST), Babol, Iran.
| |
Collapse
|
18
|
Chen Y, Hou S. Targeted treatment of rat AKI induced by rhabdomyolysis using BMSC derived magnetic exosomes and its mechanism. NANOSCALE ADVANCES 2024; 6:4180-4195. [PMID: 39114150 PMCID: PMC11304081 DOI: 10.1039/d4na00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
Introduction: rhabdomyolysis (RM) is a serious syndrome. A large area of muscle injury and dissolution induces acute kidney injury (AKI), which results in a high incidence and mortality rate. Exosomes released by mesenchymal stem cells (MSCs) have been used to treat AKI induced by rhabdomyolysis and have shown regenerative effects. However, the most serious drawbacks of these methods are poor targeting and a low enrichment rate after systemic administration. Methods: in this study, we demonstrated that magnetic exosomes derived from bone marrow mesenchymal stem cells (BMSCs) can directly target damaged muscles rather than kidneys using an external magnetic field. Results: magnetic navigation exosomes reduced the dissolution of damaged muscles, greatly reduced the release of cellular contents, slowed the development of AKI. Discussion: in summary, our proposed method can overcome the shortcomings of poor targeting in traditional exosome therapy. Moreover, in the rhabdomyolysis-induced AKI model, we propose for the first time an exosome therapy mode that directly targets damaged muscles through magnetic navigation.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| |
Collapse
|
19
|
Yanjun S, Yunfen G, Haoyi Y, Zhe W, Jiapei Q. The role of miR-128 and MDFI in cardiac hypertrophy and heart failure: Mechanistic. J Cell Mol Med 2024; 28:e18546. [PMID: 39046458 PMCID: PMC11268151 DOI: 10.1111/jcmm.18546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024] Open
Abstract
Heart failure (HF) prognosis depends on various regulatory factors; microRNA-128 (miR-128) is identified as a regulator of cardiac fibrosis, contributing to HF. MyoD family inhibitor (MDFI), which is reported to be related with Wnt/β-catenin pathway, is supposed to be regulated by miR-128. This study investigates the interaction between miR-128 and MDFI in cardiomyocyte development and elucidates its role in heart injury. Gene expression profiling assessed miR-128's effect on MDFI expression in HF using qPCR and Western blot analysis. Luciferase assays studied the direct interaction between miR-128 and MDFI. MTT, transwell, and immunohistochemistry evaluated the effects of miR-128 and MDFI on myocardial cells in mice HF. Genescan and luciferase assays validated the interaction between miR-128 and MDFI sequences. miR-128 mimics significantly reduced MDFI expression at mRNA and protein levels with decrease rate of 55%. Overexpression of miR-128 promoted apoptosis with the increase rate 65% and attenuated cardiomyocyte proliferation, while MDFI upregulation significantly enhanced proliferation. Elevated miR-128 levels upregulated Wnt1 and β-catenin expression, whereas increased MDFI levels inhibited these expressions. Histological analysis with haematoxylin and eosin staining revealed that miR-128 absorption reduced MDFI expression, hindering cell proliferation and cardiac repair, with echocardiography showing corresponding improvements in cardiac function. Our findings suggest miR-128 interacts with MDFI, playing a crucial role in HF management by modulating the Wnt1/β-catenin pathway. Suppression of miR-128 could promote cardiomyocyte proliferation, highlighting the potential value of the miR-128/MDFI interplay in HF treatment.
Collapse
Affiliation(s)
- Sun Yanjun
- Department of Cardiovascular SurgeryRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gu Yunfen
- Department of Intensive care unit, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yao Haoyi
- Department of Cardiovascular SurgeryRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wang Zhe
- Department of Cardiovascular SurgeryRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiu Jiapei
- Department of Cardiovascular SurgeryRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
20
|
Xiao X, Wang W, Guo C, Wu J, Zhang S, Shi H, Kwon S, Chen J, Dong Z. Hypermethylation leads to the loss of HOXA5, resulting in JAG1 expression and NOTCH signaling contributing to kidney fibrosis. Kidney Int 2024; 106:98-114. [PMID: 38521405 DOI: 10.1016/j.kint.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Epigenetic regulations, including DNA methylation, are critical to the development and progression of kidney fibrosis, but the underlying mechanisms remain elusive. Here, we show that fibrosis of the mouse kidney was associated with the induction of DNA methyltransferases and increases in global DNA methylation and was alleviated by the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza). Genome-wide analysis demonstrated the hypermethylation of 94 genes in mouse unilateral ureteral obstruction kidneys, which was markedly reduced by 5-Aza. Among these genes, Hoxa5 was hypermethylated at its gene promoter, and this hypermethylation was associated with reduced HOXA5 expression in fibrotic mouse kidneys after ureteral obstruction or unilateral ischemia-reperfusion injury. 5-Aza prevented Hoxa5 hypermethylation, restored HOXA5 expression, and suppressed kidney fibrosis. Downregulation of HOXA5 was verified in human kidney biopsies from patients with chronic kidney disease and correlated with the increased kidney fibrosis and DNA methylation. Kidney fibrosis was aggravated by conditional knockout of Hoxa5 and alleviated by conditional knockin of Hoxa5 in kidney proximal tubules of mice. Mechanistically, we found that HOXA5 repressed Jag1 transcription by directly binding to its gene promoter, resulting in the suppression of JAG1-NOTCH signaling during kidney fibrosis. Thus, our results indicate that loss of HOXA5 via DNA methylation contributes to fibrogenesis in kidney diseases by inducing JAG1 and consequent activation of the NOTCH signaling pathway.
Collapse
MESH Headings
- Animals
- Jagged-1 Protein/genetics
- Jagged-1 Protein/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Fibrosis
- DNA Methylation
- Signal Transduction
- Humans
- Mice
- Male
- Ureteral Obstruction/complications
- Ureteral Obstruction/pathology
- Ureteral Obstruction/genetics
- Ureteral Obstruction/metabolism
- Receptors, Notch/metabolism
- Receptors, Notch/genetics
- Promoter Regions, Genetic
- Kidney/pathology
- Kidney/metabolism
- Mice, Knockout
- Mice, Inbred C57BL
- Disease Models, Animal
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Epigenesis, Genetic
- Kidney Diseases/pathology
- Kidney Diseases/genetics
- Kidney Diseases/metabolism
- Kidney Diseases/etiology
- Transcription Factors
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.
| | - Wei Wang
- Department of Urology, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, and Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Jiazhu Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Zhang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huidong Shi
- Cancer Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sangho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Jiankang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
21
|
Lv T, Wang C, Zhou J, Feng X, Zhang L, Fan Z. Mechanism and role of nuclear laminin B1 in cell senescence and malignant tumors. Cell Death Discov 2024; 10:269. [PMID: 38824174 PMCID: PMC11144256 DOI: 10.1038/s41420-024-02045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Nuclear lamin B1 (LMNB1) is a member of the nuclear lamin protein family. LMNB1 can maintain and ensure the stability of nuclear structure and influence the process of cell senescence by regulating chromatin distribution, DNA replication and transcription, gene expression, cell cycle, etc. In recent years, several studies have shown that the abnormal expression of LMNB1, a classical biomarker of cell senescence, is highly correlated with the progression of various malignant tumors; LMNB1 is therefore considered a new potential tumor marker and therapeutic target. However, the mechanism of action of LMNB1 is influenced by many factors, which are difficult to clarify at present. This article focuses on the recent progress in understanding the role of LMNB1 in cell senescence and malignant tumors and offers insights that could contribute to elucidating the mechanism of action of LMNB1 to provide a new direction for further research.
Collapse
Affiliation(s)
- Tingcong Lv
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Cong Wang
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Jialin Zhou
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, China.
| | - Lijun Zhang
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
22
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
23
|
Roccatello D, Lan HY, Sciascia S, Sethi S, Fornoni A, Glassock R. From inflammation to renal fibrosis: A one-way road in autoimmunity? Autoimmun Rev 2024; 23:103466. [PMID: 37848157 DOI: 10.1016/j.autrev.2023.103466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Renal fibrosis is now recognized as a main determinant of renal pathology to include chronic kidney disease. Deposition of pathological matrix in the walls of glomerular capillaries, the interstitial space, and around arterioles predicts and contributes to the functional demise of the nephron and its surrounding vasculature. The recent identification of the major cell populations of fibroblast precursors in the kidney interstitium such as pericytes and tissue-resident mesenchymal stem cells, or bone-marrow-derived macrophages, and in the glomerulus such as podocytes, parietal epithelial and mesangial cells, has enabled the study of the fibrogenic process thought the lens of involved immunological pathways. Besides, a growing body of evidence is supporting the role of the lymphatic system in modulating the immunological response potentially leading to inflammation and ultimately renal damage. These notions have moved our understanding of renal fibrosis to be recognized as a clinical entity and new main player in autoimmunity, impacting directly the management of patients.
Collapse
Affiliation(s)
- Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy.
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases,Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Richard Glassock
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
24
|
Hu X, Gan L, Tang Z, Lin R, Liang Z, Li F, Zhu C, Han X, Zheng R, Shen J, Yu J, Luo N, Peng W, Tan J, Li X, Fan J, Wen Q, Wang X, Li J, Zheng X, Liu Q, Guo J, Shi G, Mao H, Chen W, Yin S, Zhou Y. A Natural Small Molecule Mitigates Kidney Fibrosis by Targeting Cdc42-mediated GSK-3β/β-catenin Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307850. [PMID: 38240457 PMCID: PMC10987128 DOI: 10.1002/advs.202307850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Indexed: 04/04/2024]
Abstract
Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3β (p-GSK-3β), thereby promoting β-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic β-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.
Collapse
Affiliation(s)
- Xinrong Hu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Lu Gan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Ziwen Tang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ruoni Lin
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Zhou Liang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Feng Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Changjian Zhu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xu Han
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ruilin Zheng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jiani Shen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jing Yu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ning Luo
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Wenxing Peng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jiaqing Tan
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xiaoyan Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jinjin Fan
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Qiong Wen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xin Wang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jianbo Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xunhua Zheng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jianping Guo
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Guo‐Ping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Haiping Mao
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Sheng Yin
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
25
|
Eassawy MMT, Ismail AFM. Protective effect of chicory and/or artichoke leaves extracts on carbon tetrachloride and gamma-irradiation-induced chronic nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:1666-1681. [PMID: 38031637 DOI: 10.1002/tox.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1β, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-β1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and β-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/β-catenin protein expressions.
Collapse
Affiliation(s)
- Mamdouh M T Eassawy
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
26
|
Gao P, Zhu J, Xiangyun G, Li J, Wu J. GPR97 deficiency suppresses Wnt/β-catenin signaling in hypertensive nephropathy. FASEB J 2024; 38:e23479. [PMID: 38345813 DOI: 10.1096/fj.202302298r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Accumulating evidence shows that renal fibrosis plays a key role in the development of hypertensive nephropathy (HTN). Therefore, a better understanding of the underlying mechanism of renal fibrosis regulation in HTN would be critical for designing rational strategies for therapeutic interventions. In this study, we revealed that GPR97, a novel identified adhesion G coupled receptor, plays an important role in the regulation of Wnt/β-catenin signaling, which is the crucial driver of renal fibrosis in HTN. First, we identified that the expression of GPR97 correlated with the β-catenin expression in renal biopsy from patients with HTN. Moreover, we found that GPR97 deficiency inhibited Wnt/β-catenin signaling in mice with HTN, as evidenced by the reduction of β-catenin expression and downstream target proteins, including MMP7 and Fibronectin. Mechanistically, we found that GPR97 could directly bind with Wnt1 in cultured tubular cells and TGF-β1 treatment enhanced the binding ability of GPR97 and Wnt1. In addition, the gene silencing of GPR97 could decrease the Wnt1-induced fibrotic phenotype of tubular cells and inflammatory responses, suggesting that the binding of GPR97 and Wnt1 promoted Wnt/β-catenin signaling. Collectively, our studies reveal that GPR97 is a regulator of Wnt/β-catenin signaling in HTN, and targeting GPR97 may be a novel therapeutic strategy for HTN treatment.
Collapse
Affiliation(s)
- Ping Gao
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Jinghan Zhu
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Guo Xiangyun
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Jing Li
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Jichao Wu
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
27
|
Zhou S, Ling X, Zhu J, Liang Y, Feng Q, Xie C, Li J, Chen Q, Chen S, Miao J, Zhang M, Li Z, Shen W, Li X, Wu Q, Wang X, Liu R, Wang C, Hou FF, Kong Y, Liu Y, Zhou L. MAGL protects against renal fibrosis through inhibiting tubular cell lipotoxicity. Theranostics 2024; 14:1583-1601. [PMID: 38389852 PMCID: PMC10879875 DOI: 10.7150/thno.92848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Renal fibrosis, with no therapeutic approaches, is a common pathological feature in various chronic kidney diseases (CKD). Tubular cell injury plays a pivotal role in renal fibrosis. Commonly, injured tubular cells exhibit significant lipid accumulation. However, the underlying mechanisms remain poorly understood. Methods: 2-arachidonoylglycerol (2-AG) levels in CKD patients and CKD model specimens were measured using mass spectrometry. 2-AG-loaded nanoparticles were infused into unilateral ureteral obstruction (UUO) mice. Lipid accumulation and renal fibrosis were tested. Furthermore, monoacylglycerol lipase (MAGL), the hydrolyzing enzyme of 2-AG, was assessed in CKD patients and models. Tubular cell-specific MAGL knock-in mice were generated. Moreover, MAGL recombination protein was also administered to unilateral ischemia reperfusion injury (UIRI) mice. Besides, a series of methods including RNA sequencing, metabolomics, primary cell culture, lipid staining, etc. were used. Results: 2-AG was increased in the serum or kidneys from CKD patients and models. Supplement of 2-AG further induced lipid accumulation and fibrogenesis through cannabinoid receptor type 2 (CB2)/β-catenin signaling. β-catenin knockout blocked 2-AG/CB2-induced fatty acid β-oxidation (FAO) deficiency and lipid accumulation. Remarkably, MAGL significantly decreased in CKD, aligning with lipid accumulation and fibrosis. Specific transgene of MAGL in tubular cells significantly preserved FAO, inhibited lipid-mediated toxicity in tubular cells, and finally retarded fibrogenesis. Additionally, supplementation of MAGL in UIRI mice also preserved FAO function, inhibited lipid accumulation, and protected against renal fibrosis. Conclusion: MAGL is a potential diagnostic marker for kidney function decline, and also serves as a new therapeutic target for renal fibrosis through ameliorating lipotoxicity.
Collapse
Affiliation(s)
- Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jielin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Health Care, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ye Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qijian Feng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Xie
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiyan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Shuangqin Chen
- Division of Nephrology, Department of medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyao Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiru Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiyuan Liu
- School of Pharmaceutical Sciences and School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Division of Nephrology, Department of medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaozhong Kong
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Shakour N, Karami S, Iranshahi M, Butler AE, Sahebkar A. Antifibrotic effects of sodium-glucose cotransporter-2 inhibitors: A comprehensive review. Diabetes Metab Syndr 2024; 18:102934. [PMID: 38154403 DOI: 10.1016/j.dsx.2023.102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Karami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Su X, Li S, Zhang Y, Tie X, Feng R, Guo X, Qiao X, Wang L. Overexpression of Corin Ameliorates Kidney Fibrosis through Inhibition of Wnt/β-Catenin Signaling in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:101-120. [PMID: 37827215 DOI: 10.1016/j.ajpath.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
The Wnt/β-catenin pathway represents a promising therapeutic target for mitigating kidney fibrosis. Corin possesses the homologous ligand binding site [Frizzled-cysteine-rich domain (Fz-CRD)] similar to Frizzled proteins, which act as receptors for Wnt. The Fz-CRD has been found in eight different proteins, all of which, except for corin, are known to bind Wnt and regulate its signal transmission. We hypothesized that corin may inhibit the Wnt/β-catenin signaling pathway and thereby reduce fibrogenesis. Reduced expression of corin along with the increased activity of Wnt/β-catenin signaling was found in unilateral ureteral obstruction (UUO) and ureteral ischemia/reperfusion injury (UIRI) models. In vitro, corin bound to the Wnt1 through its Fz-CRDs and inhibit the Wnt1 function responsible for activating β-catenin. Transforming growth factor-β1 inhibited corin expression, accompanied by activation of β-catenin; conversely, overexpression of corin attenuated the fibrotic effects of transforming growth factor-β1. In vivo, adenovirus-mediated overexpression of corin attenuated the progression of fibrosis, which was potentially associated with the inhibition of Wnt/β-catenin signaling and the down-regulation of its target genes after UUO and UIRI. These results suggest that corin acts as an antagonist that protects the kidney from pathogenic Wnt/β-catenin signaling and from fibrosis following UUO and UIRI.
Collapse
Affiliation(s)
- Xiaole Su
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China.
| | - Sijia Li
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Yanru Zhang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Xuan Tie
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Rongrong Feng
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Xiaojiao Guo
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
30
|
Bejoy J, Farry JM, Qian ES, Dearing CH, Ware LB, Bastarache JA, Woodard LE. Ascorbate protects human kidney organoids from damage induced by cell-free hemoglobin. Dis Model Mech 2023; 16:dmm050342. [PMID: 37942584 PMCID: PMC10695115 DOI: 10.1242/dmm.050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
Sepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2. To better model the intact kidney, we cultured human kidney organoids derived from induced pluripotent stem cells. We treated human kidney organoids grown using both three-dimensional and transwell protocols with CFH for 48 h. We found evidence for increased tubular toxicity, oxidative stress, mitochondrial fragmentation, endothelial cell injury and injury-associated transcripts compared to those of the untreated control group. To evaluate the protective effect of clinically available small molecules, we co-treated CFH-injured organoids with ascorbate (vitamin C) or acetaminophen for 48 h. We found significantly decreased toxicity, preservation of endothelial cells and reduced mitochondrial fragmentation in the group receiving ascorbate following CFH treatment. This study provides direct evidence that ascorbate or ascorbic acid protects human kidney cells from CFH-induced damage such as that in sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin M. Farry
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Eddie S. Qian
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Curtis H. Dearing
- Vanderbilt Experimental Research Training Inclusion Community Engagement Skills (VERTICES) program, Vanderbilt University, Nashville, TN 37232, USA
| | - Lorraine B. Ware
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julie A. Bastarache
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| | - Lauren E. Woodard
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| |
Collapse
|
31
|
Zhang Y, Ding X, Guo L, Zhong Y, Xie J, Xu Y, Li H, Zheng D. Comprehensive analysis of the relationship between xanthine oxidoreductase activity and chronic kidney disease. iScience 2023; 26:107332. [PMID: 37927553 PMCID: PMC10622700 DOI: 10.1016/j.isci.2023.107332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 11/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a common disease that seriously endangers human health. However, the potential relationship between xanthine oxidoreductase (XOR) activity and CKD remains unclear. In this study, we used clinical data, CKD datasets from the Gene Expression Omnibus database, and untargeted metabolomics to explain the relationship between XOR activity and CKD. First, XOR activity showed high correlation with the biomarkers of CKD, such as serum creatinine, blood urea nitrogen, uric acid, and estimated glomerular filtration rate. Then, we used least absolute shrinkage and selection operator logical regression algorithm and random forest algorithm to screen CKD molecular markers from differentially expressed genes, and the results of qRT-PCR of XDH, KOX-1, and ROMO1 were in accordance with the results of bioinformatics analyses. In addition, untargeted metabolomics analysis revealed that the purine metabolism pathway was significantly enriched in CKD patients in the simulated models of kidney fibrosis.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xiaobao Ding
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lihao Guo
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yanan Zhong
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Juan Xie
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yong Xu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Hailun Li
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Donghui Zheng
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| |
Collapse
|
32
|
Zhao Y, Hou Y, Ren J, Gao X, Meng L, Liu Y, Xing C, Shen W. Phenotypic characteristics of taurodontism and a novel WNT10A variant in non-syndromic oligodontia family. Arch Oral Biol 2023; 154:105759. [PMID: 37422997 DOI: 10.1016/j.archoralbio.2023.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE Variants in wingless-type MMTV integration site family member 10A (WNT10A) have been proposed to be the most common cause of non-syndromic oligodontia (NSO). The goal of the present study was to identify the novel WNT10A variants in Chinese families with NSO. DESIGN Clinical data were collected from 39 families with oligodontia admitted to the Hospital of Stomatology Hebei Medical University (China) from 2016 to 2022. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify WNT10A variants in three families with non-syndromic oligodontia. Amino acid conservation analysis and protein conformational analysis were conducted for the WNT10A variant. Genotype-phenotype analysis was performed on the previously reported WNT10A variants related to NSO. RESULTS We found a novel heterozygous WNT10A variant c.1127 G>A (p.Cys376Tyr) and two reported heterozygous variants c.460 C>A (p.Leu154Met) and c.511 C>T (p.Arg171Cys). Structural modeling showed that the novel WNT10A variant was located in a highly conserved domain, which led to structural damage of WNT10A protein. In addition, we found that the phenotype of the WNT10A variants affected the maxillary second premolars, followed by the mandibular second premolars, and rarely affected the maxillary central incisor. Herein, it is the first time to report that NSO patients with WNT10A monoallele mutation carry taurodontism phenotype and 6.1% prevalence of taurodontism in WNT10A-related NSO patients. CONCLUSIONS Our results demonstrated that the novel variant c.1127 G>A (p.Cys376Tyr) of WNT10A causes NSO. The present study expanded the known variation spectrum of WNT10A and provided valuable information for genetic counseling of families.
Collapse
Affiliation(s)
- Ya Zhao
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yifei Hou
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiabao Ren
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xuemei Gao
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lingqiang Meng
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ying Liu
- Department of Oral Prevention, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Congcong Xing
- Department of Pediatric Stomatology, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenjing Shen
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
33
|
Sarrand J, Soyfoo MS. Involvement of Epithelial-Mesenchymal Transition (EMT) in Autoimmune Diseases. Int J Mol Sci 2023; 24:14481. [PMID: 37833928 PMCID: PMC10572663 DOI: 10.3390/ijms241914481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex reversible biological process characterized by the loss of epithelial features and the acquisition of mesenchymal features. EMT was initially described in developmental processes and was further associated with pathological conditions including metastatic cascade arising in neoplastic progression and organ fibrosis. Fibrosis is delineated by an excessive number of myofibroblasts, resulting in exuberant production of extracellular matrix (ECM) proteins, thereby compromising organ function and ultimately leading to its failure. It is now well acknowledged that a significant number of myofibroblasts result from the conversion of epithelial cells via EMT. Over the past two decades, evidence has accrued linking fibrosis to many chronic autoimmune and inflammatory diseases, including systemic sclerosis (SSc), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), and inflammatory bowel diseases (IBD). In addition, chronic inflammatory states observed in most autoimmune and inflammatory diseases can act as a potent trigger of EMT, leading to the development of a pathological fibrotic state. In the present review, we aim to describe the current state of knowledge regarding the contribution of EMT to the pathophysiological processes of various rheumatic conditions.
Collapse
Affiliation(s)
- Julie Sarrand
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad S. Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
34
|
Yang Y, Mihajlovic M, Masereeuw R. Protein-Bound Uremic Toxins in Senescence and Kidney Fibrosis. Biomedicines 2023; 11:2408. [PMID: 37760849 PMCID: PMC10525416 DOI: 10.3390/biomedicines11092408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition of kidney dysfunction due to diverse causes of injury. In healthy kidneys, protein-bound uremic toxins (PBUTs) are cleared from the systemic circulation by proximal tubule cells through the concerted action of plasma membrane transporters that facilitate their urinary excretion, but the endogenous metabolites are hardly removed with kidney dysfunction and may contribute to CKD progression. Accumulating evidence suggests that senescence of kidney tubule cells influences kidney fibrosis, the common endpoint for CKD with an excessive accumulation of extracellular matrix (ECM). Senescence is a special state of cells characterized by permanent cell cycle arrest and limitation of proliferation, which promotes fibrosis by releasing senescence-associated secretory phenotype (SASP) factors. The accumulation of PBUTs in CKD causes oxidative stress and increases the production of inflammatory (SASP) factors that could trigger fibrosis. Recent studies gave some clues that PBUTs may also promote senescence in kidney tubular cells. This review provides an overview on how senescence contributes to CKD, the involvement of PBUTs in this process, and how kidney senescence can be studied. Finally, some suggestions for future therapeutic options for CKD while targeting senescence are given.
Collapse
Affiliation(s)
- Yi Yang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Milos Mihajlovic
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
35
|
Yang Q, Huo E, Cai Y, Zhang Z, Dong C, Asara JM, Wei Q. PFKFB3-Mediated Glycolysis Boosts Fibroblast Activation and Subsequent Kidney Fibrosis. Cells 2023; 12:2081. [PMID: 37626891 PMCID: PMC10453197 DOI: 10.3390/cells12162081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Renal fibrosis, a hallmark of chronic kidney diseases, is driven by the activation of renal fibroblasts. Recent studies have highlighted the role of glycolysis in this process. Nevertheless, one critical glycolytic activator, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), remains unexplored in renal fibrosis. Upon reanalyzing the single-cell sequencing data from Dr. Humphreys' lab, we noticed an upregulation of glycolysis, gluconeogenesis, and the TGFβ signaling pathway in myofibroblasts from fibrotic kidneys after unilateral ureter obstruction (UUO) or kidney ischemia/reperfusion. Furthermore, our experiments showed significant induction of PFKFB3 in mouse kidneys following UUO or kidney ischemia/reperfusion. To delve deeper into the role of PFKFB3, we generated mice with Pfkfb3 deficiency, specifically in myofibroblasts (Pfkfb3f/f/PostnMCM). Following UUO or kidney ischemia/reperfusion, a substantial decrease in fibrosis in the injured kidneys of Pfkfb3f/f/PostnMCM mice was identified compared to their wild-type littermates. Additionally, in cultured renal fibroblast NRK-49F cells, PFKFB3 was elevated upon exposure to TGFβ1, accompanied by an increase in α-SMA and fibronectin. Notably, this upregulation was significantly diminished with PFKFB3 knockdown, correlated with glycolysis suppression. Mechanistically, the glycolytic metabolite lactate promoted the fibrotic activation of NRK-49F cells. In conclusion, our study demonstrates the critical role of PFKFB3 in driving fibroblast activation and subsequent renal fibrosis.
Collapse
Affiliation(s)
- Qiuhua Yang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Emily Huo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Augusta Preparatory Day School, 285 Flowing Wells Rd, Martinez, GA 30907, USA
| | - Yongfeng Cai
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhidan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Charles Dong
- Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
36
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
37
|
Zhang Y, Li K, Zhang C, Liao H, Li R. Research Progress of Cordyceps sinensis and Its Fermented Mycelium Products on Ameliorating Renal Fibrosis by Reducing Epithelial-to-Mesenchymal Transition. J Inflamm Res 2023; 16:2817-2830. [PMID: 37440993 PMCID: PMC10335274 DOI: 10.2147/jir.s413374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Renal fibrosis is a hallmark and common outcome of various chronic kidney diseases (CKDs) and manifests pathologically as accumulation and deposition of extracellular matrix (ECM) in the kidney. Epithelial-to-mesenchymal transition (EMT) has been shown to be an important mechanism involved in renal fibrosis. Cordyceps sinensis, a traditional Chinese medicine, has long been used for the treatment of renal fibrosis. As research on the mycelium of C. sinensis progressed, a variety of medicines developed from fermented mycelium were used to treat CKD. However, their efficacies and mechanisms have not been fully summarized. In this review, five medicines developed from fermented mycelium of C. sinensis are presented. The pharmacodynamic effects of C. sinensis on different animal models of renal fibrosis are summarized. The in vitro studies and related mechanisms of C. sinensis on renal cells are detailed. Finally, the application and efficacy of these five commercial medicines that meet national standards in different types of CKD are summarized. From this review, it can be concluded that C. sinensis can alleviate various causes of renal fibrosis to some extent, and its mechanism is related to TGF-β1 dependent signaling, inhibition of inflammation, and improvement of renal function. Further research on rigorously designed, large-sample, clinically randomized controlled trial studies and detailed mechanisms should be conducted.
Collapse
Affiliation(s)
- Yaling Zhang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
- Department of Nephrology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
| | - Kaiyun Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Chao Zhang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Hui Liao
- Department of Pharmacy, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Rongshan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| |
Collapse
|
38
|
Basta MD, Petruk S, Mazo A, Walker JL. Fibrosis-the tale of H3K27 histone methyltransferases and demethylases. Front Cell Dev Biol 2023; 11:1193344. [PMID: 37476157 PMCID: PMC10354294 DOI: 10.3389/fcell.2023.1193344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 (EZH1, EZH2), which are the alternative subunits of the Polycomb Repressive Complex 2 (PRC2) and demethylase (KDM) enzymes, Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and Lysine demethylase 6B (KDM6B), are responsible for regulating methylation status of H3K27me3. In this review, we explore how these key enzymes regulate chromatin structure to alter gene expression in fibrosis, highlighting them as attractive targets for the treatment of fibrosis.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Ophthalmology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
39
|
An J, Jiang T, Qi L, Xie K. Acinar cells and the development of pancreatic fibrosis. Cytokine Growth Factor Rev 2023; 71-72:40-53. [PMID: 37291030 DOI: 10.1016/j.cytogfr.2023.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
Pancreatic fibrosis is caused by excessive deposition of extracellular matrixes of collagen and fibronectin in the pancreatic tissue as a result of repeated injury often seen in patients with chronic pancreatic diseases. The most common causative conditions include inborn errors of metabolism, chemical toxicity and autoimmune disorders. Its pathophysiology is highly complex, including acinar cell injury, acinar stress response, duct dysfunction, pancreatic stellate cell activation, and persistent inflammatory response. However, the specific mechanism remains to be fully clarified. Although the current therapeutic strategies targeting pancreatic stellate cells show good efficacy in cell culture and animal models, they are not satisfactory in the clinic. Without effective intervention, pancreatic fibrosis can promote the transformation from pancreatitis to pancreatic cancer, one of the most lethal malignancies. In the normal pancreas, the acinar component accounts for 82% of the exocrine tissue. Abnormal acinar cells may activate pancreatic stellate cells directly as cellular source of fibrosis or indirectly via releasing various substances and initiate pancreatic fibrosis. A comprehensive understanding of the role of acinar cells in pancreatic fibrosis is critical for designing effective intervention strategies. In this review, we focus on the role of and mechanisms underlying pancreatic acinar injury in pancreatic fibrosis and their potential clinical significance.
Collapse
Affiliation(s)
- Jianhong An
- SCUT-QMPH Joint Laboratory for Pancreatic Cancer Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China; Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Ling Qi
- SCUT-QMPH Joint Laboratory for Pancreatic Cancer Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
40
|
Ganz MJ, Bose K, Herzog C, Bender S, Mertens PR, Scurt FG. Pathomechanismen der chronischen Nierenschädigung bei Diabetes und anderen Begleiterkrankungen. DIE DIABETOLOGIE 2023; 19:251-261. [DOI: 10.1007/s11428-023-01020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 01/03/2025]
|
41
|
Perutina I, Kelam N, Maglica M, Racetin A, Ogorevc M, Filipović N, Katsuyama Y, Mišković J, Vukojević K. Disturbances in Switching between Canonical and Non-Canonical Wnt Signaling Characterize Developing and Postnatal Kidneys of Dab1-/- ( yotari) Mice. Biomedicines 2023; 11:biomedicines11051321. [PMID: 37238991 DOI: 10.3390/biomedicines11051321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
This study aims to determine the protein expression patterns of acetylated α-tubulin, inversin, dishevelled-1, Wnt5a/b, and β-catenin in developing (E13.5 and E15.5) and early postnatal (P4 and P14) kidneys of Dab1-/- (yotari) mice, their role in regulating the Wnt signaling pathway, and the possible relation to congenital anomalies of kidney and urinary tract (CAKUT). The analysis of target protein co-expression, observed in the renal vesicles/immature glomeruli, ampullae/collecting ducts, convoluted tubules, metanephric mesenchyme of developing kidneys, but proximal convoluted tubules, distal convoluted tubules and glomeruli of postnatal kidneys, was performed using double immunofluorescence and semi-quantitative methods. The overall expression of acetylated α-tubulin and inversin during normal kidney development increases with higher expression in yotari mice as the kidney acquires mature morphology. An increase in β-catenin and cytosolic DVL-1 levels, indicating a switch from non-canonical to canonical Wnt signaling, is found in the postnatal kidney of yotari mice. In contrast, healthy mouse kidney expresses inversin and Wnt5a/b in the postnatal period, thus activating non-canonical Wnt signaling. Target protein expression patterns in kidney development and the early postnatal period observed in this study could indicate that switching between canonical and non-canonical Wnt signaling is crucial for normal nephrogenesis, while the defective Dab1 gene product in yotari mice may promote CAKUT due to interfering with this process.
Collapse
Affiliation(s)
- Ilija Perutina
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Mirko Maglica
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Josip Mišković
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
42
|
Hsu YC, Chang CC, Hsieh CC, Huang YT, Shih YH, Chang HC, Chang PJ, Lin CL. Dickkopf-1 Acts as a Profibrotic Mediator in Progressive Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24087679. [PMID: 37108841 PMCID: PMC10143456 DOI: 10.3390/ijms24087679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a serious public health problem. Due to a high variability in the speed of CKD progression to end-stage renal disease (ESRD) and the critical involvement of Wnt/β-catenin signaling in CKD, we investigated the role of the Wnt antagonist Dickkopf-1 (DKK1) in CKD progression. Our data revealed that patients with CKD stages 4-5 had higher DKK1 levels in their serum and renal tissues than the control subjects. In an 8-year follow-up, the serum DKK1-high group in the enrolled CKD patients showed a faster progression to ESRD than the serum DKK1-low group. Using a rat model of 5/6 nephrectomy (Nx)-induced CKD, we consistently detected elevated serum levels and renal production of DKK1 in 5/6 Nx rats compared to sham-operated rats. Importantly, the knockdown of the DKK1 levels in the 5/6 Nx rats markedly attenuated the CKD-associated phenotypes. Mechanistically, we demonstrated that the treatment of mouse mesangial cells with recombinant DKK1 protein induced not only the production of multiple fibrogenic proteins, but also the expression of endogenous DKK1. Collectively, our findings suggest that DKK1 acts as a profibrotic mediator in CKD, and elevated levels of serum DKK1 may be an independent predictor of faster disease progression to ESRD in patients with advanced CKD.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Yu-Ting Huang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ya-Hsueh Shih
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Hsiu-Ching Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Pey-Jium Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
43
|
Saliem SS, Bede SY, Abdulkareem AA, Abdullah BH, Milward MR, Cooper PR. Gingival tissue samples from periodontitis patients demonstrate epithelial-mesenchymal transition phenotype. J Periodontal Res 2023; 58:247-255. [PMID: 36575609 DOI: 10.1111/jre.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To determine the expression of key epithelial-mesenchymal transition (EMT) markers in gingival tissue samples collected from patients with periodontitis. BACKGROUND Epithelial-mesenchymal transition is a process responsible for shifting epithelial-phenotype to mesenchymal-phenotype leading to loss of epithelial-barrier function. Thus, EMT could be involved as a pathogenic mechanism in periodontitis as both conditions share common promoters and signalling pathways. MATERIALS AND METHODS Gingival tissue samples were collected from patients with periodontitis (case) and healthy periodontium (control). Periodontal parameters including bleeding on probing, probing pocket depth (PPD), and clinical attachment loss were recorded. Paraffinized tissue samples were processed and immunohistochemically stained to determine the expression of key EMT markers which included E-cadherin, β-catenin, Snail1 and vimentin. RESULTS The majority of cases (n = 65, 72.2%) were diagnosed with periodontitis stage 3 or 4, grade b or c vs 25 (27.8%) subjects with intact healthy periodontium. Discontinuity of epithelium was detected in up to 80.9% of periodontitis cases associated with reduced number of epithelial layers as compared to controls. Immunohistochemical expression of epithelial markers (E-cadherin and β-catenin) was significantly downregulated in periodontitis patients as compared with controls. Periodontitis cases exhibited significant upregulation of Snail1 expression. Furthermore, cytoplasmic vimentin (66.2%) and nuclear β-catenin (27.7%) were solely expressed in periodontally diseased tissues compared with control. Epithelial markers, E-cadherin and β-catenin, were significantly negatively correlated with increasing PPD, while vimentin showed positive correlation with this parameter. CONCLUSION There were marked downregulation of epithelial molecules and upregulation of mesenchymal markers in gingival tissues derived from periodontitis patients, suggesting expression of the EMT phenotype in the pathological epithelial lining of periodontal pockets.
Collapse
Affiliation(s)
- Saif S Saliem
- College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Salwan Y Bede
- College of Dentistry, University of Baghdad, Baghdad, Iraq
| | | | | | | | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
44
|
Tao Y, Wang J, Lyu X, Li N, Lai D, Liu Y, Zhang X, Li P, Cao S, Zhou X, Zhao Y, Ma L, Tao T, Feng Z, Li X, Yang F, Zhou H. Comprehensive Proteomics Analysis Identifies CD38-Mediated NAD + Decline Orchestrating Renal Fibrosis in Pediatric Patients With Obstructive Nephropathy. Mol Cell Proteomics 2023; 22:100510. [PMID: 36804530 PMCID: PMC10025283 DOI: 10.1016/j.mcpro.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Obstructive nephropathy is one of the leading causes of kidney injury and renal fibrosis in pediatric patients. Although considerable advances have been made in understanding the pathophysiology of obstructive nephropathy, most of them were based on animal experiments and a comprehensive understanding of obstructive nephropathy in pediatric patients at the molecular level remains limited. Here, we performed a comparative proteomics analysis of obstructed kidneys from pediatric patients with ureteropelvic junction obstruction and healthy kidney tissues. Intriguingly, the proteomics revealed extensive metabolic reprogramming in kidneys from individuals with ureteropelvic junction obstruction. Moreover, we uncovered the dysregulation of NAD+ metabolism and NAD+-related metabolic pathways, including mitochondrial dysfunction, the Krebs cycle, and tryptophan metabolism, which led to decreased NAD+ levels in obstructed kidneys. Importantly, the major NADase CD38 was strongly induced in human and experimental obstructive nephropathy. Genetic deletion or pharmacological inhibition of CD38 as well as NAD+ supplementation significantly recovered NAD+ levels in obstructed kidneys and reduced obstruction-induced renal fibrosis, partially through the mechanisms of blunting the recruitment of immune cells and NF-κB signaling. Thus, our work not only provides an enriched resource for future investigations of obstructive nephropathy but also establishes CD38-mediated NAD+ decline as a potential therapeutic target for obstruction-induced renal fibrosis.
Collapse
Affiliation(s)
- Yuandong Tao
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Jifeng Wang
- Laboratory of Proteomics & Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuexue Lyu
- Medical School of Chinese PLA, Beijing, China
| | - Na Li
- Laboratory of Proteomics & Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lai
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Liu
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xingyue Zhang
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pin Li
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Shouqing Cao
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China; College of Graduate, Hebei North University, Zhangjiakou, China
| | - Xiaoguang Zhou
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Zhao
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lifei Ma
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tian Tao
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhichun Feng
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Xiubin Li
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Fuquan Yang
- Laboratory of Proteomics & Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Huixia Zhou
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China; Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
45
|
Liu N, Liu D, Cao S, Lei J. Silencing of adipocyte enhancer-binding protein 1 (AEBP1) alleviates renal fibrosis in vivo and in vitro via inhibition of the β-catenin signaling pathway. Hum Cell 2023; 36:972-986. [PMID: 36738398 DOI: 10.1007/s13577-023-00859-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Renal fibrosis is the common final pathway in many renal diseases regardless of the underlying etiology. Adipocyte enhancer-binding protein 1 (AEBP1) was reported to play a vital role in the development of organ fibrosis, but its role in renal fibrosis has not been reported. Thus, the aim of this study was to investigate the possible function of AEBP1 in renal fibrosis and the mechanism associated with the β-catenin signaling pathway. A total of 83 genes upregulated after unilateral ureteral obstruction (UUO) were screened from two Gene Expression Omnibus (GEO) datasets and subjected to Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Among them, AEBP1 was enriched in collagen binding and the regulation of collagen fibril organization and was confirmed to be upregulated in UUO kidneys and TGF-β1-induced cells. Knockdown of AEBP1 ameliorated renal fibrosis via reducing collagen accumulation, inhibiting epithelial-mesenchymal transition and fibroblast transformation, as evidenced by decreases in the expression of collagen I and III, Col1a1, Col3a1, fibronectin, Snail, α-SMA, as well as collagen-specific staining of kidney tissues, whereas the E-cadherin was increased. Besides, AEBP1 silencing inhibited the expression of β-catenin in nucleus and β-catenin downstream proteins (Axin2, Myc, and Ccnd1). Continuously active β-catenin-S33Y further restored the inhibitory effect of AEBP1 silencing on renal fibrosis. These findings indicate that knockdown of AEBP1 could potentially slow down renal fibrosis by blocking the β-catenin signaling pathway, highlighting the potential of AEBP1 as a therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Naiquan Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China
| | - Dajun Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China.
| | - Shiyu Cao
- Department of Clinical Medicine, Class of 2018, China Medical University, Shenyang, China
| | - Jing Lei
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China
| |
Collapse
|
46
|
Song D, Shang J, Long Y, Zhong M, Li L, Chen J, Xiang Y, Tan H, Zhu H, Hong X, Hou FF, Fu H, Liu Y. Insulin-like growth factor 2 mRNA-binding protein 3 promotes kidney injury by regulating β-catenin signaling. JCI Insight 2023; 8:162060. [PMID: 36520532 PMCID: PMC9977311 DOI: 10.1172/jci.insight.162060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Wnt/β-catenin is a developmental signaling pathway that plays a crucial role in driving kidney fibrosis after injury. Activation of β-catenin is presumed to be regulated through the posttranslational protein modification. Little is known about whether β-catenin is also subjected to regulation at the posttranscriptional mRNA level. Here, we report that insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) plays a pivotal role in regulating β-catenin. IGF2BP3 was upregulated in renal tubular epithelium of various animal models and patients with chronic kidney disease. IGF2BP3 not only was a direct downstream target of Wnt/β-catenin but also was obligatory for transducing Wnt signal. In vitro, overexpression of IGF2BP3 in kidney tubular cells induced fibrotic responses, whereas knockdown of endogenous IGF2BP3 prevented the expression of injury and fibrosis markers in tubular cells after Wnt3a stimulation. In vivo, exogenous IGF2BP3 promoted β-catenin activation and aggravated kidney fibrosis, while knockdown of IGF2BP3 ameliorated renal fibrotic lesions after obstructive injury. RNA immunoprecipitation and mRNA stability assays revealed that IGF2BP3 directly bound to β-catenin mRNA and stabilized it against degradation. Furthermore, knockdown of IGF2BP3 in tubular cells accelerated β-catenin mRNA degradation in vitro. These studies demonstrate that IGF2BP3 promotes β-catenin signaling and drives kidney fibrosis, which may be mediated through stabilizing β-catenin mRNA. Our findings uncover a previously underappreciated dimension of the complex regulation of Wnt/β-catenin signaling and suggest a potential target for therapeutic intervention of fibrotic kidney diseases.
Collapse
Affiliation(s)
- Dongyan Song
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyue Shang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinyi Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Menghua Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiongcheng Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadie Xiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Kumar S, Fan X, Rasouly HM, Sharma R, Salant DJ, Lu W. ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis. JCI Insight 2023; 8:e158418. [PMID: 36445780 PMCID: PMC9870089 DOI: 10.1172/jci.insight.158418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
FOXD1+ cell-derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific conditional knockout of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2-cKO mouse kidneys. Zeb2-deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers, including PDGFRβ, CSPG4, desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development, whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.
Collapse
|
48
|
Chen JY, Yiu WH, Tang PMK, Tang SCW. New insights into fibrotic signaling in renal cell carcinoma. Front Cell Dev Biol 2023; 11:1056964. [PMID: 36910160 PMCID: PMC9996540 DOI: 10.3389/fcell.2023.1056964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Fibrotic signaling plays a pivotal role in the development and progression of solid cancers including renal cell carcinoma (RCC). Intratumoral fibrosis (ITF) and pseudo-capsule (PC) fibrosis are significantly correlated to the disease progression of renal cell carcinoma. Targeting classic fibrotic signaling processes such as TGF-β signaling and epithelial-to-mesenchymal transition (EMT) shows promising antitumor effects both preclinically and clinically. Therefore, a better understanding of the pathogenic mechanisms of fibrotic signaling in renal cell carcinoma at molecular resolution can facilitate the development of precision therapies against solid cancers. In this review, we systematically summarized the latest updates on fibrotic signaling, from clinical correlation and molecular mechanisms to its therapeutic strategies for renal cell carcinoma. Importantly, we examined the reported fibrotic signaling on the human renal cell carcinoma dataset at the transcriptome level with single-cell resolution to assess its translational potential in the clinic.
Collapse
Affiliation(s)
- Jiao-Yi Chen
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai-Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sydney Chi-Wai Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
49
|
Chen X, Wang J, Lin Y, Liu Y, Zhou T. Signaling Pathways of Podocyte Injury in Diabetic Kidney Disease and the Effect of Sodium-Glucose Cotransporter 2 Inhibitors. Cells 2022; 11:3913. [PMID: 36497173 PMCID: PMC9736207 DOI: 10.3390/cells11233913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most important comorbidities for patients with diabetes, and its incidence has exceeded one tenth, with an increasing trend. Studies have shown that diabetes is associated with a decrease in the number of podocytes. Diabetes can induce apoptosis of podocytes through several apoptotic pathways or induce autophagy of podocytes through related pathways. At the same time, hyperglycemia can also directly lead to apoptosis of podocytes, and the related inflammatory reactions are all harmful to podocytes. Podocyte damage is often accompanied by the production of proteinuria and the progression of DKD. As a new therapeutic agent for diabetes, sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been demonstrated to be effective in the treatment of diabetes and the improvement of terminal outcomes in many rodent experiments and clinical studies. At the same time, SGLT2i can also play a protective role in diabetes-induced podocyte injury by improving the expression of nephrotic protein defects and inhibiting podocyte cytoskeletal remodeling. Some studies have also shown that SGLT2i can play a role in inhibiting the apoptosis and autophagy of cells. However, there is no relevant study that clearly indicates whether SGLT2i can also play a role in the above pathways in podocytes. This review mainly summarizes the damage to podocyte structure and function in DKD patients and related signaling pathways, as well as the possible protective mechanism of SGLT2i on podocyte function.
Collapse
Affiliation(s)
- Xiutian Chen
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Jiali Wang
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yongda Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yiping Liu
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
50
|
Kandel R, Singh KP. Higher Concentrations of Folic Acid Cause Oxidative Stress, Acute Cytotoxicity, and Long-Term Fibrogenic Changes in Kidney Epithelial Cells. Chem Res Toxicol 2022; 35:2168-2179. [PMID: 36354958 DOI: 10.1021/acs.chemrestox.2c00258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Kidney fibrosis is a common step during chronic kidney disease (CKD), and its incidence has been increasing worldwide. Aberrant recovery after repeated acute kidney injury leads to fibrosis. The mechanism of fibrogenic changes in the kidney is not fully understood. Folic acid-induced kidney fibrosis in mice is an established in vivo model to study kidney fibrosis, but the mechanism is poorly understood. Moreover, the effect of higher concentrations of folic acid on kidney epithelial cells in vitro has not yet been studied. Oxidative stress is a common property of nephrotoxicants. Therefore, this study evaluated the role of folic acid-induced oxidative stress in fibrogenic changes by using the in vitro renal proximal tubular epithelial cell culture model. To obtain comprehensive and robust data, three different cell lines derived from human and mouse kidney epithelium were treated with higher concentrations of folic acid for both acute and long-term durations, and the effects were determined at the cellular and molecular levels. The result of cell viability by the MTT assay and the measurement of reactive oxygen species (ROS) levels by the DCF assay revealed that folic acid caused cytotoxicity and increased levels of ROS in acute exposure. The cotreatment with antioxidant N-acetyl cysteine (NAC) protected the cytotoxic effect, suggesting the role of folic acid-induced oxidative stress in cytotoxicity. In contrast, the long-term exposure to folic acid caused increased growth, DNA damage, and changes in the expression of marker genes for EMT, fibrosis, oxidative stress, and oxidative DNA damage. Some of these changes, particularly the acute effects, were abrogated by cotreatment with antioxidant NAC. In summary, the novel findings of this study suggest that higher concentrations of folic acid-induced oxidative stress act as the driver of cytotoxicity as an acute effect and of fibrotic changes as a long-term effect in kidney epithelial cells.
Collapse
Affiliation(s)
- Ramji Kandel
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas 79409, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|