Copyright
©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
Hypothesis of design of biological cell robot as human immunodeficiency virus vaccine
Yao-Ying Xie, Fan Yang, Xiao-Yu Liao, College of Clinical Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
Author contributions: All the authors contributed equally to this work.
Supported by AIDS Association of Inner Mongolia University for Nationalities , No. IMUN20190908 .
Conflict-of-interest statement: All authors have no any conflict of interests to disclose.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Yao-Ying Xie, PhD, Research Fellow, College of Clinical Medicine, Inner Mongolia University for Nationalities, No. 536, Huolinhe Street (West), Tongliao 028000, Inner Mongolia Autonomous Region, China. xieyaoying@outlook.com
Received: May 24, 2020
Peer-review started: May 24, 2020
First decision: June 15, 2020
Revised: June 29, 2020
Accepted: August 15, 2020
Article in press: August 15, 2020
Published online: September 25, 2020
Processing time: 123 Days and 11.8 Hours
Peer-review started: May 24, 2020
First decision: June 15, 2020
Revised: June 29, 2020
Accepted: August 15, 2020
Article in press: August 15, 2020
Published online: September 25, 2020
Processing time: 123 Days and 11.8 Hours
Core Tip
Core Tip: In February 2020, the birth of the world's first live-cell robot has brought hope for the artificial design of human live cells. Therefore, herein we propose a hypothesis: Can we artificially design a cell as an alternative target cell for human immunodeficiency virus (HIV) infection and use it as a new acquired immune deficiency syndrome vaccine to prevent HIV infection.