Copyright
©The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Virol. Nov 12, 2016; 5(4): 161-169
Published online Nov 12, 2016. doi: 10.5501/wjv.v5.i4.161
Published online Nov 12, 2016. doi: 10.5501/wjv.v5.i4.161
Role of RNA secondary structure in emergence of compartment specific hepatitis B virus immune escape variants
Sibnarayan Datta, Molecular Virology Laboratory, Defence Research, Laboratory (DRDO), Tezpur 784001, Assam, India
Runu Chakravarty, Hepatitis Research Laboratory, ICMR Virus Unit (ICMR), Kolkata 700010, West Bengal, India
Author contributions: Datta S designed the study to test the hypothesis, performed predictions, analyzed the models and wrote the manuscript; Chakravarty R reviewed the results and edited the manuscript.
Supported by Fellowship and funds from University Grants Commission (UGC), Min. of Human Resource and Development, Govt. of India and Defence Research & Development Organization (DRDO) (DRDO), Min. of Defence, Govt. of India (to Sibnarayan Datta); and Indian Council of Medical Research (ICMR), Ministry of Health and Family Welfare (MoHFW) (to Runu Chakravarty).
Institutional review board statement: Not applicable.
Institutional animal care and use committee statement: Not applicable.
Conflict-of-interest statement: None of the authors have any conflict of interest to disclose.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Sibnarayan Datta, PhD, Molecular Virology Laboratory, Defence Research, Laboratory (DRDO), Tezpur 784001, Assam, India. sndatta1978@gmail.com
Telephone: +91-3712-258087 Fax: +91-3712-258534
Received: June 24, 2016
Peer-review started: June 27, 2016
First decision: August 5, 2016
Revised: August 9, 2016
Accepted: August 27, 2016
Article in press: August 29, 2016
Published online: November 12, 2016
Processing time: 137 Days and 2.2 Hours
Peer-review started: June 27, 2016
First decision: August 5, 2016
Revised: August 9, 2016
Accepted: August 27, 2016
Article in press: August 29, 2016
Published online: November 12, 2016
Processing time: 137 Days and 2.2 Hours
Core Tip
Core tip: We have previously shown that, in our study population, distribution of hepatitis B virus (HBV) subgenotypes A1 and A2 is highly biased in the serum/plasma and peripheral blood leukocyte (PBL) compartments respectively. Analysing the predicted base pairing patterns of pregenomic RNAs (pgRNAs), specific for HBV subgenotype A1 and A2, we demonstrate that the potent immune escape mutation G145R evolves specifically in the context of HBV subgenotype A2. The PBL compartment is exposed to strong anti-HBs immunity, and thus G145R is highly advantageous for the virus to persist. This explains the exclusive preponderance of subgenotype A2 in the PBL compartment, sharply contrasting the prevalence of subgenotype A1 in the serum/plasma.