Saravanan UB, Namachivayam M, Jeewon R, Huang JD, Durairajan SSK. Animal models for SARS-CoV-2 and SARS-CoV-1 pathogenesis, transmission and therapeutic evaluation. World J Virol 2022; 11(1): 40-56 [PMID: 35117970 DOI: 10.5501/wjv.v11.i1.40]
Corresponding Author of This Article
Siva Sundara Kumar Durairajan, MSc, M.Tech, PhD, Associate Professor, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Tiruvarur 610005, India. d.sivasundarakumar@cutn.ac.in
Research Domain of This Article
Virology
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Udhaya Bharathy Saravanan, Mayurikaa Namachivayam, Siva Sundara Kumar Durairajan, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
Rajesh Jeewon, Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
Jian-Dong Huang, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
Jian-Dong Huang, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
Author contributions: Durairajan SSK, and Huang JD conceptualized, designed, and contributed to the outline of the review article; Saravanan UB, Durairajan SSK, Jeewon R, and Namachivayam M contributed to drafting, editing, and formatting of the manuscript; Saravanan UB, and Namachivayam M contributed to the illustration; Durairajan SSK secured the funding of the study; Durairajan SSK, and Huang JD are joint senior authors.
Supported byCOVID Therapeutics, Department of Biotechnology, Government of India, Ref. No. BT/PR4094/COT/142/20/2021.
Conflict-of-interest statement: Nothing to disclosed.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Siva Sundara Kumar Durairajan, MSc, M.Tech, PhD, Associate Professor, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Tiruvarur 610005, India. d.sivasundarakumar@cutn.ac.in
Received: June 24, 2021 Peer-review started: June 24, 2021 First decision: July 31, 2021 Revised: August 22, 2021 Accepted: November 24, 2021 Article in press: November 24, 2021 Published online: January 25, 2022 Processing time: 204 Days and 13 Hours
Core Tip
Core tip: In this review we discuss the importance of various animal models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1). SARS-CoV-2 is the causal agent of coronavirus disease 2019 (COVID-19) and the World Health Organization declared the outbreak of COVID-19 as a public health emergency of concern. Due to the inadequate knowledge in analyzing the mode of action of COVID-19 infection, we must be thoroughly familiarized with the available animal models. Therefore, we discuss the pros and cons of various animal models, and emphasize the use of humanized mice to study the biology of viral diseases because it is convenient to mimic the human immune system in humanized mice.