Knoepfel SA, Centlivre M, Liu YP, Boutimah F, Berkhout B. Selection of RNAi-based inhibitors for anti-HIV gene therapy. World J Virol 2012; 1(3): 79-90 [PMID: 24175213 DOI: 10.5501/wjv.v1.i3.79]
Corresponding Author of This Article
Ben Berkhout, PhD, Professor, Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands. b.berkhout@amc.uva.nl
Article-Type of This Article
Guidelines For Basic Science
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Virol. Jun 12, 2012; 1(3): 79-90 Published online Jun 12, 2012. doi: 10.5501/wjv.v1.i3.79
Selection of RNAi-based inhibitors for anti-HIV gene therapy
Stefanie A Knoepfel, Mireille Centlivre, Ying Poi Liu, Fatima Boutimah, Ben Berkhout
Stefanie A Knoepfel, Mireille Centlivre, Ying Poi Liu, Fatima Boutimah, Ben Berkhout, Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
Author contributions: Knoepfel SA and Centlivre M contributed equally to this work; Knoepfel SA, Centlivre M and Berkhout B drafted the manuscript and figures; all authors contributed in discussions, data collection and drafting of Table 1.
Supported by The NWO-CW (Chemical Sciences), ZonMw (Medical Sciences), and the Dutch AIDS Fund (project 2006006); the DAAD (German Academic Exchange Service); the FRM (Fondation pour la Recherche Medicale)
Correspondence to: Ben Berkhout, PhD, Professor, Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands. b.berkhout@amc.uva.nl
Telephone: +31-20-5664822 Fax: +31-20-6916531
Received: October 9, 2011 Revised: February 16, 2012 Accepted: May 20, 2012 Published online: June 12, 2012
Abstract
In the last decade, RNA interference (RNAi) advanced to one of the most widely applied techniques in the biomedical research field and several RNAi therapeutic clinical trials have been launched. We focus on RNAi-based inhibitors against the chronic infection with human immunodeficiency virus type 1 (HIV-1). A lentiviral gene therapy is proposed for HIV-infected patients that will protect and reconstitute the vital immune cell pool. The RNAi-based inhibitors that have been developed are short hairpin RNA molecules (shRNAs), of which multiple are needed to prevent viral escape. In ten distinct steps, we describe the selection process that started with 135 shRNA candidates, from the initial design criteria, via testing of the in vitro and in vivo antiviral activity and cytotoxicity to the final design of a combinatorial therapy with three shRNAs. These shRNAs satisfied all 10 selection criteria such as targeting conserved regions of the HIV-1 RNA genome, exhibiting robust inhibition of HIV-1 replication and having no impact on cell physiology. This combinatorial shRNA vector will soon move forward to the first clinical studies.