1
|
Al Kadi M, Yamashita M, Shimojima M, Yoshikawa T, Ebihara H, Okuzaki D, Kurosu T. Cytokine storm and vascular leakage in severe dengue: insights from single-cell RNA profiling. Life Sci Alliance 2025; 8:e202403008. [PMID: 40127923 PMCID: PMC11933670 DOI: 10.26508/lsa.202403008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Severe dengue is characterized by vascular leakage triggered by a hyperinflammatory response, though the underlying mechanisms remain unclear. Our previous mouse model study highlighted the importance of small intestine in severe disease and identified key cytokines (IL-17A, TNF-α, and IL-6) involved. Here, we used a Fixed RNA Profiling assay to characterize key cytokine- and effector-producing cells, along with their receptor expression. Type 3 innate lymphoid cells (ILC3), Th17 cells, and γδ T cells emerged as pathologically relevant IL-17A/F-producing cells. These cells expressed IL-1β and IL-23 receptors, underscoring the significance of these signaling pathways. IL-1β was produced by M2-like macrophages, dendritic cells, and neutrophils, whereas M1-like macrophages, which differentiated post-infection, produced IL-23, TNF-α, and IL-6, acting as initiators and amplifiers of the cytokine storm. Newly differentiated neutrophils produced IL-1β and effector molecule matrix metalloprotease-8, suggesting a dual role in exacerbating the cytokine storm and directly mediating vascular leakage. Identified macrophages and neutrophils exhibited atypical characteristics. These findings provide new pathological insights into severe dengue and broader mechanism underlying cytokine storm-related diseases.
Collapse
Affiliation(s)
- Mohamad Al Kadi
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Maika Yamashita
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Xiao Y, Luo T, Duan C, Wang X, Yang Y, Li R, Deng J, Zhao Q. Ethyl acetate extract from Herpetospermun cardigerum wall. Ameliorated concanavalin A-induced autoimmune hepatitis in mice by reprofiling gut microenvironment to modulate IDO1/KYN and PI3K/AKT/NF-κB pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119578. [PMID: 40081510 DOI: 10.1016/j.jep.2025.119578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is an immunoinflammatory chronic liver disease with increasing prevalence worldwidely, lacking of effective medicine. Herpetospermum caudigerum Wall. (HC) is a traditional Tibetan medicine used to treat liver diseases for thousands of years. However, investigation into the effects of HC in AIH remains scarce. PURPOSE Our study aimed to explore the effects and mechanisms of ethyl acetate extract from the seeds of HC (HCDEAE) against concanavalin A (Con A)-induced liver impairment in mouse. STUDY DESIGN AND METHODS HCDEAE was extracted from the seeds of HC, then characterized by UPLC-Q-TOF/MS. Con A-induced AIH mice were used to investigate the impacts of HCDEAE on liver impairment, T cells differentiation, gut microbiota and its derived metabolites, intestinal barrier impairment and inflammation, as well as the mechanisms of HCDEAE in liver in AIH. RESULTS HCDEAE (90 mg/kg, i.g.) effectively alleviated Con A-induced hepatic pathological damage, suppressed elevation of serum ALT, AST, IFN-γ, and TNF-α; in spleen, HCDEAE attenuated spleen impairment, elevated the percentage of CD4+CD25+ cells and FOXP3 gene expression, inhibited up-regulation of RORγt gene expression and IL-17; in liver, HCDEAE down-regulated IL-17, elevated FOXP3 gene expression and IL-10, increased the protein and gene expression of TGF-β1; in colon, HCDEAE attenuated intestinal barrier impairment, inhibited down-regulation of Occludin and ZO-1, and relieved elevation of IL-1β, as well as re-profiled the gut microenvironment. Furthermore, HCDEAE demonstrated the ability to elevate tryptophan metabolism among kynurenine pathway, activate IDO1/KYN pathway and inhibit PI3K/AKT/NF-κB signaling pathway in liver of AIH mice. CONCLUSION Pretreatment with HCDEAE (90 mg/kg·d-1, i.g.) for 9 days could effectively alleviate the liver inflammation and injure, protect intestinal barriers, attenuate spleen impairment, maintain Treg-Th17 cell equilibrium in Con A-induced AIH mice, via re-profiling gut microbiota, modulation of tryptophan metabolism in the gastrointestinal tract and in liver, to activate IDO1/KYN pathway and inhibit the abnormal activation of PI3K/AKT/NF-κB signaling pathway in liver. The present study highlighted the potential of HCDEAE as a drug candidate for AIH.
Collapse
Affiliation(s)
- Yu Xiao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Tianfeng Luo
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Changsong Duan
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Xinhui Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Yixi Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jinpeng Deng
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
3
|
Lee JJ, Yang L, Kotzin JJ, Ahimovic D, Bale MJ, Nigrovic PA, Josefowicz SZ, Mathis D, Benoist C. Early transcriptional effects of inflammatory cytokines reveal highly redundant cytokine networks. J Exp Med 2025; 222:e20241207. [PMID: 39873673 DOI: 10.1084/jem.20241207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli. To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses, with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses. Pathway and motif analysis identified several main controllers (NF-κB, IRF8, and PU.1), but the largest portion of the response appears to be mediated by MYC, which was also implicated in the response to γc cytokines. Indeed, inflammatory and γc cytokines elicited surprisingly similar responses (∼50% overlap in NK cells). Significant overlap with interferon-induced responses was observed, paradoxically in lymphoid but not myeloid cell types. These results point to a highly redundant cytokine network, with intertwined effects between disparate cytokines and cell types.
Collapse
Affiliation(s)
- Juliana J Lee
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jonathan J Kotzin
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dughan Ahimovic
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences , New York, NY, USA
| | - Michael J Bale
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences , New York, NY, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Z Josefowicz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences , New York, NY, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard , Cambridge, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard , Cambridge, MA, USA
| |
Collapse
|
4
|
Steri M, Orrù V, Sidore C, Mulas A, Pitzalis M, Busonero F, Maschio A, Serra V, Dei M, Lai S, Virdis F, Lobina M, Loizedda A, Marongiu M, Masala M, Floris M, Curreli N, Balaci L, Loi F, Pilia MG, Delitala A, Fiorillo E, Schlessinger D, Zoledziewska M. TYK2 :p.Pro1104Ala Variant Protects Against Autoimmunity by Modulating Immune Cell Levels. Immunology 2025; 174:462-469. [PMID: 39835539 PMCID: PMC11885862 DOI: 10.1111/imm.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The TYK2:p.Pro1104Ala (rs34536443) hypomorph variant has been associated with protection against numerous autoimmune disorders. Thus, its mechanism of action becomes of great interest. Here, consistent with the participation of activated immune cells in autoimmunity, we show that the variant regulates the levels of immune cells at a human, general population level and is associated particularly with higher levels of T and B lymphocytes, especially the naïve (non-activated) compartment. Also, consistent with a protective function in autoimmunity, the level of regulatory CD4+ T cells was increased. Thus, this variant decreases immune activation thereby protecting from autoimmunity. Our work links the cellular mechanism regulated by the TYK2:p.Pro1104Ala variant to autoimmunity protection and supports TYK2 as a therapeutic target in autoimmunity.
Collapse
Affiliation(s)
- Maristella Steri
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Valeria Orrù
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Carlo Sidore
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Antonella Mulas
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Maristella Pitzalis
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Fabio Busonero
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Andrea Maschio
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Valentina Serra
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Mariano Dei
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Sandra Lai
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Francesca Virdis
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Monia Lobina
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Annalisa Loizedda
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Michele Marongiu
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Marco Masala
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Matteo Floris
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Nicolò Curreli
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Lenuta Balaci
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Francesco Loi
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Maria Grazia Pilia
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Alessandro Delitala
- Department of Medicine, Surgery and PharmacyUniversity of SassariSassariItaly
| | - Edoardo Fiorillo
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Magdalena Zoledziewska
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| |
Collapse
|
5
|
Yang S, Cao Q, Yan K, Wang C, Song X, Bian X, Li S, Cheng Z, Zhang X, Wang Y, Guo R, Wang X, Song H, Fan B, Li B. Preparation and functional identification of various porcine cytokines. Cytokine 2025; 188:156880. [PMID: 39922016 DOI: 10.1016/j.cyto.2025.156880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
The insufficiency of current Porcine Epidemic Diarrhea (PED) vaccines against highly pathogenic strains highlights the critical importance of enhancing mucosal immunity in the prevention and control of porcine enteric viral diseases. Due to limited research platforms, the understanding of the porcine mucosal immune system and its response mechanisms remains incomplete. This study employed prokaryotic expression and purification methods to obtain eight essential cytokines involved in mucosal immune responses (CD40L, IL-2, IL-6, TNF-α, IL-13, IL-17α, TGF-β, APRIL). By utilizing various cell models including porcine intestinal organoids, IPEC-J2, Vero-E6, porcine peripheral blood lymphocytes, and porcine Peyer's patch lymphocytes, the functions of these eight cytokines were identified through flow cytometry, immunoblotting, relative quantitative PCR, and CFSE proliferation assays. The results demonstrate that all eight purified proteins exhibit both protein activity and function. The purification of these molecules lays the groundwork for further exploration of the mucosal barrier of pigs and mucosal immune-related studies, as well as providing research tools for the prevention and control of enteric viral diseases in pigs.
Collapse
Affiliation(s)
- Shanshan Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Qiuxia Cao
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, PR China
| | - Kexin Yan
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Chuanhong Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xu Song
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xianyu Bian
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Sufen Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Zhenkong Cheng
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xuehan Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yi Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Rongli Guo
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaodu Wang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, PR China
| | - Houhui Song
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, PR China
| | - Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
6
|
Hu H, Zhang G, Chen T, Liu Y, Meng L, Holmdahl R, Dai L, Zhao Y. Immunosenescence in autoimmune diseases. Autoimmun Rev 2025:103805. [PMID: 40132774 DOI: 10.1016/j.autrev.2025.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Autoimmune diseases (AIDs) are a group of disorders in which the immune system mistakenly attacks the body's own tissues, characterized by the loss of tolerance to self-antigens and destruction of tissues. Aging is a natural process of physiological decline that also alters the immune system, a condition known as immunosenescence. During immunosenescence, the immune system undergoes various changes, including modifications and antigenicity of self-antigens, abnormalities in the quantity, phenotype, and function of lymphocytes and antibodies, as well as a narrowing of the B and T cell receptor repertoire, changes that may increase susceptibility to AIDs. Additionally, senescent immune cells and the senescence-associated secretory phenotype (SASP) contribute to target organ involvement in AIDs, exacerbating chronic inflammation and tissue damage. Mitochondrial dysfunction and metabolic imbalances in AIDs lead to the accumulation of senescent cells, which act as upstream drivers of immunosenescence. In this review, we summarize the bidirectional relationship between AIDs and immunosenescence, as well as its potential mechanisms. Therapeutic approaches targeting immunosenescence in AIDs remain at an early stage. Strategies aimed at resetting or reversing the aging immune system are expected to become a novel direction in the future.
Collapse
Affiliation(s)
- Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Guangyue Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Liesu Meng
- Department of Rheumatology, and National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Xiang J, Han J, Wu J, Xu S, Cheng C, Zhang J. Single-cell RNA sequencing revealed cell landscape of tongue dorsal mucosa in rats with gastric intestinal metaplasia. Cell Death Discov 2025; 11:105. [PMID: 40090940 PMCID: PMC11911441 DOI: 10.1038/s41420-025-02386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
The formation of tongue coating is closely related with the differentiation of the lingual dorsal mucosa, and a great deal of evidence shows that the variation of tongue coating reflects the pathological and physiological state of the gastric mucosa. However, the detailed mechanism remains elusive. This study established a rat model of gastric intestinal metaplasia (GIM) with 2% sodium salicylate and 20 mmol/L of deoxycholate sodium, and used single-cell RNA sequencing (scRNA-seq) to reveal the cell landscape of tongue dorsal mucosa. In comparison to the control group, the tongue dorsal mucosa of GIM rats became grayish-white, and the histologic characteristics presented an uneven distribution of tongue papilla with many immune cells in the submucosal layer. The expressive levels of pro-inflammatory factors (IL-1β, IL-6, and IL-17) were significantly higher in GIM rats than in the control group. Stratified analysis revealed the significant downregulation of autophagy marker gene Map1lc3a in neutrophils and T cells, and the significant downregulation of cuproptosis marker gene Dlst in fibroblasts of the tongue dorsal mucosa in GIM rats. These changes were closely related to mucosal inflammation and impaired tissue barrier integrity. Significantly, the expression of several keratin genes (Krt7, Krt8, Krt13, Krt16, and Krt76) was significantly downregulated, as well as the expression of the bitter taste receptor gene Rtp4 and the sweet taste receptor gene Tas1r2 in the GIM rats. The data indicated that fewer cells entered regulated cell death in immune cells of tongue mucosa, a more active inflammatory response occurred, the keratinization of tongue dorsal mucosal cells was inhibited, and the taste perception function was weakened. The results bring new perspectives on tongue coating in the application of gastric disorders. Characteristics of the tongue dorsum mucosal cell landscape in the rats with gastric intestinal metaplasia. The abundances of T cells, neutrophils, and macrophages were upregulated, and the autophagy marker gene Map1lc3a in T cells and neutrophils was downregulated, which indicated an actively inflammatory immune response. Downregulation of cuprotosis marker gene Dlst in fibroblasts suggested potential damage to the mucosal barrier. Meanwhile, the expression of bitter receptor Rtp4 and sweet receptor Tas1r2 in mesenchymal stem cells was downregulated. The cell communication ability was reduced, especially between mesenchymal stem cells and epithelial cells. In a word, the abnormal status of tongue dorsum mucosa may accompany the development of gastric intestinal metaplasia.
Collapse
Affiliation(s)
- Jiao Xiang
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
| | - Jing Han
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
| | - Jianping Wu
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
- Laboratory Animal Center, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
| | - Shuo Xu
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
| | - Chun Cheng
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China.
| | - Junfeng Zhang
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
van Dalen SCM, Stein JWJ, Bruurmijn T, Foster ML, Chirivi RGS, van der Linden M, van Es H, Szepietowski JC, Krajewski PK, van Straalen KR, Prens EP, Ingram JR, Meldrum E. Neutrophil Extracellular Traps Are Widely Distributed Across Lesional and Perilesional Hidradenitis Suppurativa Skin, and Elevated Serum NET Markers Associate With Moderate to Severe HS Disease. Int J Dermatol 2025. [PMID: 40083018 DOI: 10.1111/ijd.17706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Neutrophils are scarce in healthy skin but infiltrate lesions of hidradenitis suppurativa (HS) patients. Activated neutrophils release proinflammatory neutrophil extracellular traps (NETs), which have been implicated in the pathophysiology of HS. This study aimed to describe the distribution of NETs relative to the features of HS skin lesions and reveal whether serum NET markers were elevated in association with disease activity. METHODS Immunohistochemistry assessed the distribution of the key NET component citrullinated histone H3 (CitH3) in lesional, perilesional, and unaffected HS skin. Several markers of NETs (nucleosomes, calprotectin, and CitH3) were quantified in HS serum with ELISA. RESULTS HS lesional skin biopsies showed increased CitH3-positive staining compared to unaffected skin. This signal was widely distributed across both lesional and perilesional regions of HS skin and was associated with HS structures such as the lining of epithelialized skin tunnels. Moreover, several NET-associated markers were elevated in the serum of HS patients compared to healthy volunteers and correlated with each other. Finally, serum NET markers showed significant elevation in patients with moderate to severe disease activity based on IHS-4 scores, compared to those with no or mild activity. CONCLUSIONS Elevated NET markers are widely distributed in HS skin and serum. These data indicate that NET-associated markers in serum are candidate biomarkers for HS disease severity. The results confirm the rationale for anti-inflammatory therapy targeting NETs in HS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jacek C Szepietowski
- Faculty of Medicine, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Piotr K Krajewski
- University Centre of General Dermatology and Oncodermatology, Wrocław Medical University, Poland
| | | | | | - John R Ingram
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
| | | |
Collapse
|
9
|
Zong Y, Tong X, Chong WP. Th17 Response in Uveitis: A Double-Edged Sword in Ocular Inflammation and Immune Regulation. Clin Rev Allergy Immunol 2025; 68:26. [PMID: 40072803 PMCID: PMC11903535 DOI: 10.1007/s12016-025-09038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Uveitis involves a complex interplay of immune cell infiltration and cytokine imbalances, with Th17 cells playing a central role in this process. Th17 cells contribute to disease pathogenesis by promoting inflammation, recruiting additional immune cells, and directly damaging retinal tissues. This review discusses the current knowledge on therapeutic strategies targeting Th17-related cytokines, including cytokine blockade, small molecule inhibitors, and immunomodulatory approaches. Traditionally, Th17-related cytokines have been viewed as pro-inflammatory agents in uveitis. However, emerging research has highlighted the capacity of the Th17 response to express immunoregulatory cytokines, notably IL-10, IL-24, and TGF-β. This suggest that the Th17 response may have a dualistic role that includes immune suppression. In this review, we will discuss this paradoxical nature of Th17 cells in immune regulation and inflammation that they can both promote and mitigate uveitis. We expected that a deeper understanding of these mechanisms is imperative for the innovation of novel therapeutics that could consider the dual role of Th17 response in the pathogenesis of uveitis. By finely tuning the Th17 response to preserve retinal integrity and function, these new treatments could bring significant benefits to patients with uveitis. This review aims to shed light on the complexities of the Th17 response in uveitis and its implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Xue Tong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
10
|
Sarrand J, Baglione L, Bouvy C, Soyfoo M. Bimekizumab in the Treatment of Axial Spondyloarthritis and Psoriatic Arthritis: A New Kid on the Block. Int J Mol Sci 2025; 26:2315. [PMID: 40076933 PMCID: PMC11899827 DOI: 10.3390/ijms26052315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
The interleukin (IL)-17 family encompasses six structurally related pro-inflammatory cystine knot proteins, designated as IL-17A to IL-17F. Over the last decades, evidence has pointed to its role as a critical player in the development of inflammatory diseases such as psoriasis (PsO), axial spondyloarthritis (axSpA), and psoriatic arthritis (PsA). More specifically, IL-17A and IL-17F are overexpressed in the skin and synovial tissues of patients with these diseases, and recent studies suggest their involvement in promoting inflammation and tissue damage in axSpA and PsA. Bimekizumab is a monoclonal antibody targeting both IL-17A and IL-17F, playing an important role in the treatment of these diseases. This review details the implications of bimekizumab in the therapeutic armamentarium of axSpA and PsA.
Collapse
Affiliation(s)
| | | | | | - Muhammad Soyfoo
- Department of Rheumatology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (J.S.); (L.B.); (C.B.)
| |
Collapse
|
11
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Cui X, Song Y, Han J, Yuan Z. The multifaceted role of SMAD4 in immune cell function. Biochem Biophys Rep 2025; 41:101902. [PMID: 39802394 PMCID: PMC11721226 DOI: 10.1016/j.bbrep.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response. Understanding SMAD4's role in immune cells is crucial, as its dysregulation can lead to autoimmune disorders, chronic inflammation, and immune deficiencies. The review emphasizes the significance of SMAD4 in immune regulation, proposing that deeper investigation could reveal novel therapeutic targets for immune-mediated conditions. Insights into SMAD4's involvement in processes like T cell differentiation, B cell class switch recombination, and macrophage polarization underscore its potential as a therapeutic target for a range of diseases, including autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Xinmu Cui
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Yu Song
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Jianfeng Han
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
- Cellular Biomedicine Group Inc, Shanghai, 201203, China
| | - Zhaoxin Yuan
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| |
Collapse
|
13
|
Wambreuse N, Caulier G, Eeckhaut I, Borrello L, Bureau F, Fievez L, Delroisse J. Morpho-functional characterisation of cœlomocytes in the aquacultivated sea cucumber Holothuria scabra: From cell diversity to transcriptomic immune response. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110144. [PMID: 39842678 DOI: 10.1016/j.fsi.2025.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Holothuria scabra is one of the most valuable species of sea cucumber owing to its exploitation as a seafood product. This study aims to describe the main molecular and cellular actors in the immunology of this species. First, a detailed description of the immune cells - the cœlomocytes - is provided, highlighting five main cell types including phagocytes, small round cells (SRCs), spherulocytes, fusiform cells, and crystal cells, with a further five subtypes identified using transmission electron microscopy. Cœlomocyte aggregates were also described morphologically, yielding two main types, one comprising three successive maturation stages. A comparison of the concentration and proportion of cell populations was carried out between the two main body fluids, namely the hydrovascular fluid of the Polian vesicle (HF) and the perivisceral fluid of the general cavity (PF), and no clear relation could be highlighted. Next, the cœlomocyte immune response was studied 24 h after lipopolysaccharide (LPS) injection in the two body fluids. Firstly, the fluctuation in cell populations was assessed, and despite a high inter-individual variability, it shows a decrease in the phagocyte proportion and an increase in the SRC proportion. Secondly, the differential gene expression of PF cœlomocytes was studied by de novo RNA-sequencing between LPS-injected and control-injected individuals: 945 genes were differentially expressed, including 673 up-regulated and 272 down-regulated in the LPS-injected individuals. Among these genes, 80 had a presumed function in immunity based on their annotation, covering a wide range of immune mechanisms. Overall, this study reveals a complex immune system at both molecular and cellular levels and constitutes a baseline reference on H. scabra immunity, which may be useful for the development of sustainable aquaculture and provides valuable data for comparative immunology.
Collapse
Affiliation(s)
- Noé Wambreuse
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000, Mons, Belgium; Belaza Marine Station (IH.SM-UMONS-ULB-ULIEGE), Toliara, 601, Madagascar.
| | - Guillaume Caulier
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000, Mons, Belgium; Belaza Marine Station (IH.SM-UMONS-ULB-ULIEGE), Toliara, 601, Madagascar
| | - Igor Eeckhaut
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000, Mons, Belgium; Belaza Marine Station (IH.SM-UMONS-ULB-ULIEGE), Toliara, 601, Madagascar
| | - Laura Borrello
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000, Mons, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000, Liège, Belgium
| | - Laurence Fievez
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000, Liège, Belgium
| | - Jérôme Delroisse
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000, Mons, Belgium; Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
14
|
Wei Y, Wang H, Tian D, Song T, Sun J, Lu P, Zhang L, Zhang X, Yin L. Cerebrospinal fluid interleukin-6 may be a biomarker for conversion of clinically isolated syndrome to neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2025; 95:106313. [PMID: 39919358 DOI: 10.1016/j.msard.2025.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/24/2024] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
OBJECTIVE To evaluated the predictive value of several cerebrospinal fluid (CSF) cytokines in the conversion of clinically isolated syndrome (CIS) patients to neuromyelitis optica spectrum disorder (NMOSD) or multiple sclerosis (MS). METHODS We enrolled 33 CIS patients whose CSF samples were collected during the acute phase of the first onset before immunotherapy. The CSF levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-13, IL-17A, IL-21, IL-23, interferon-γ (IFN-γ) and transforming growth factor beta 1 (TGF-β1) were measured using the human cytokine multiplex assay or ELISA. Patients were seen every 3 to 6 months. Unscheduled visits occur in case of exacerbations. Clinical measures of disease progression were recorded. RESULTS The mean follow-up of CIS patients was 23.2 ± 7.9 months. Six patients converted to NMOSD, six patients converted to MS. The CSF IL-21 and IL-6 levels were significantly elevated in CIS patients converted to NMOSD than those who did not. High CSF IL-6 levels are a predictor of conversion to NMOSD in patients with CIS and are associated with a shorter time to conversion. Increased CSF IL-6 levels correlated with CSF WBC count, protein level and IgG index, segment of myelitis, EDSS scores. There was no significant difference in cytokine levels between patients who converted to MS and those who did not. CONCLUSIONS These findings validate CSF IL-6 as an independent predictive factor for the risk of clinical conversion to NMOSD in CIS. The above CSF cytokines levels in CIS patients can't predict conversion to MS.
Collapse
Affiliation(s)
- Yuzhen Wei
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160, China.
| | - Huabing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160, China.
| | - Decai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160, China.
| | - Tian Song
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160, China.
| | - Jiali Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160, China.
| | - Ping Lu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160, China.
| | - Lulin Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160, China.
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160, China.
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100160, China.
| |
Collapse
|
15
|
Bi Z, Zhang Q, Gao H, Ge H, Zhan J, Yang M, Bu B. The JAK1/3 Inhibitor Tofacitinib Regulates Th Cell Profiles and Humoral Immune Responses in Myasthenia Gravis. Muscle Nerve 2025; 71:474-486. [PMID: 39821232 DOI: 10.1002/mus.28348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
INTRODUCTION/AIMS Tofacitinib, a first-generation Janus kinase (JAK) 1/3 inhibitor, is commonly used for treating ulcerative colitis and rheumatoid arthritis. However, its role in myasthenia gravis (MG) remains unclear. This study aimed to evaluate the immunomodulatory effects of tofacitinib on experimental autoimmune myasthenia gravis (EAMG) and peripheral blood mononuclear cells (PBMCs) from patients with MG. METHODS Flow cytometry, enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR), and Western blot were used to evaluate the effects of tofacitinib on T helper (Th) cell profiles, humoral immune responses, and the JAK-signal transducer and activator of transcription (STAT) pathway proteins. RESULTS In vivo, tofacitinib significantly ameliorated EAMG severity in rats, reducing the proportions of Th1, Th17 and memory B cells, and anti-acetylcholine receptor (AChR) antibodies levels, while increasing the proportions of regulatory T (Treg) cells. In vitro, tofacitinib administration resulted in a significant decrease in the proportions of Th1 and IgG-secreting B cell, and a significant upregulation of Treg cells in mononuclear cells (MNCs) from EAMG rats, which was consistent with findings in PBMCs from MG patients. Further analysis revealed that tofacitinib inhibited CD4+ T cell differentiation into Th1 by decreasing phosphorylated STAT1 levels, while promoting Treg differentiation via increased phosphorylated STAT5 levels in MNCs from EAMG rats. DISCUSSION Tofacitinib modulates Th cell profiles and humoral immune responses by targeting the JAK-STAT pathway, suggesting its potential as a therapeutic candidate for MG. Further clinical studies are warranted to evaluate the efficacy and safety of tofacitinib in MG patients.
Collapse
MESH Headings
- Animals
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Rats
- Humans
- Female
- Janus Kinase 3/antagonists & inhibitors
- Janus Kinase 3/metabolism
- Immunity, Humoral/drug effects
- Male
- Janus Kinase 1/antagonists & inhibitors
- Janus Kinase 1/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- Middle Aged
- Rats, Inbred Lew
- Myasthenia Gravis, Autoimmune, Experimental/drug therapy
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Adult
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Myasthenia Gravis/drug therapy
- Myasthenia Gravis/immunology
- Protein Kinase Inhibitors/pharmacology
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
Collapse
Affiliation(s)
- Zhuajin Bi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Huajie Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Huizhen Ge
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayang Zhan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Nashtahosseini Z, Eslami M, Paraandavaji E, Haraj A, Dowlat BF, Hosseinzadeh E, Oksenych V, Naderian R. Cytokine Signaling in Diabetic Neuropathy: A Key Player in Peripheral Nerve Damage. Biomedicines 2025; 13:589. [PMID: 40149566 DOI: 10.3390/biomedicines13030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes mellitus, characterized by progressive nerve damage driven by chronic hyperglycemia and systemic inflammation. The pathophysiology of DPN is significantly influenced by pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α. These cytokines promote oxidative stress, vascular dysfunction, and neuronal degeneration by activating important signaling pathways including NF-κB and MAPK. While IL-6 promotes a pro-inflammatory microenvironment, increasing neuronal damage and neuropathic pain, TNF-α and IL-1β worsen Schwann cell failure by compromising axonal support and causing demyelination. Immune cell infiltration and TLR activation increase the inflammatory cascade in DPN, resulting in a persistent neuroinflammatory state that sustains peripheral nerve injury. The main characteristics of DPN are axonal degeneration, decreased neurotrophic support, and Schwann cell dysfunction, which weaken nerve transmission and increase susceptibility to damage. Advanced glycation end-products, TNF-α, and CXCL10 are examples of biomarkers that may be used for early diagnosis and disease progression monitoring. Additionally, crucial molecular targets have been found using proteomic and transcriptome techniques, enabling precision medicine for the treatment of DPN. This review emphasizes the importance of cytokine signaling in the pathogenesis of DPN and how cytokine-targeted treatments might reduce inflammation, restore nerve function, and improve clinical outcomes for diabetic patients.
Collapse
Affiliation(s)
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Elham Paraandavaji
- Clinical Research Development Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran 13399-73111, Iran
| | - Alireza Haraj
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-1453, Iran
| | - Bahram Fadaee Dowlat
- Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-1453, Iran
| | - Ehsan Hosseinzadeh
- Department of Surgery, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Ramtin Naderian
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
17
|
Sun X, Yang J, Wang Z, Nie Q, Yang Q, Zhang W, Liu M, Wang L, Zhu L. ZEB1 expression in Th17 cells correlated with p-STAT3 in human apical periodontitis. BMC Oral Health 2025; 25:315. [PMID: 40016707 PMCID: PMC11869427 DOI: 10.1186/s12903-025-05633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND ZEB1, a zinc-finger E homeobox-binding transcription factor most frequently associated with developmental programs linked to epithelial-mesenchymal transition, has been demonstrated to regulate immune cell function. The study aimed to investigate the expression pattern of ZEB1 in Th17 cells and its colocalization with p-STAT3 in human apical periodontitis lesions. METHODS Thirty-nine human periapical tissues were collected for ex vivo study, including periapical granulomas (PGs, n = 14), radicular cysts (RCs, n = 12), and healthy control tissues (control group, n = 13). Inflammatory infiltration of the lesions was assessed using hematoxylin-eosin staining. The expression of ZEB1 was detected and analyzed by immunohistochemistry. The localization of ZEB1 in Th17 cells and its colocalization with p-STAT3 were assessed using fluorescence colocalization. RESULTS ZEB1 expression was significantly higher in PGs and RCs than in the healthy control group; however no significant difference between the two groups was observed. Immunofluorescence analysis revealed that ZEB1 expression was correlated with IL17 and CD4 double-positive cells in human periapical lesions. ZEB1/ p-STAT3 double-positive cells were predominant in RCs and PGs than in the healthy control group. CONCLUSIONS The expression of ZEB1 was significantly elevated in PGs and RCs, and correlated with Th17 cells and p-STAT3 expression. This study revealed that ZEB1 is a potential player correlated with STAT3 activation and Th17 cells in apical periodontitis pathogenesis.
Collapse
Affiliation(s)
- Xiaoyue Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zijun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qing Nie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qian Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Mingwen Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Li Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
18
|
Yuk CM, Hong S, Kim D, Kim M, Jeong HW, Park SJ, Min H, Kim W, Lim J, Kim HD, Kim SG, Seong RH, Kim S, Lee SH. Inositol polyphosphate multikinase regulates Th1 and Th17 cell differentiation by controlling Akt-mTOR signaling. Cell Rep 2025; 44:115281. [PMID: 39946233 DOI: 10.1016/j.celrep.2025.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/15/2024] [Accepted: 01/16/2025] [Indexed: 02/28/2025] Open
Abstract
Activated proinflammatory T helper (Th) cells, including Th1 and Th17 cells, drive immune responses against pathogens and contribute to autoimmune diseases. We show that the expression of inositol polyphosphate multikinase (IPMK), an enzyme essential for inositol phosphate metabolism, is highly induced in Th1 and Th17 subsets. Deletion of IPMK in CD4+ T cells leads to diminished Th1- and Th17-mediated responses, reducing resistance to Leishmania major and attenuating experimental autoimmune encephalomyelitis. IPMK-deficient CD4+ T cells show impaired activation and Th17 differentiation, linked to the decreased activation of Akt, mTOR, and STAT3. Mechanistically, IPMK functions as a phosphatidylinositol 3-kinase to regulate phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) production, promoting T cell activation and effector functions. In IPMK-deficient CD4+ T cells, T cell receptor-stimulated PtdIns(3,4,5)P3 generation is abolished by wortmannin, suggesting IPMK acts in a wortmannin-sensitive manner. These findings establish IPMK as a critical regulator of Th1 and Th17 differentiation, underscoring its role in maintaining immune homeostasis.
Collapse
Affiliation(s)
- Chae Min Yuk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Dongeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Hyungyu Min
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooseob Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongbu Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Hyo Dam Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Rho Hyun Seong
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea.
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
19
|
Yashima K, Kurumi H, Yamaguchi N, Isomoto H. Progressing advanced therapies for inflammatory bowel disease: Current status including dual biologic therapy and discontinuation of biologics. Expert Rev Gastroenterol Hepatol 2025:1-20. [PMID: 39968880 DOI: 10.1080/17474124.2025.2469832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION Advanced therapies (ADT) that encompass biological agents and small molecules have been approved for the treatment of inflammatory bowel disease (IBD), broadening the spectrum of available treatment options. Nevertheless, a substantial proportion of patients fail to achieve satisfactory responses, necessitating surgical intervention. Treatment objectives have evolved beyond clinical remission, reduction of inflammation, and mucosal healing, shifting focus toward enhancing the quality of life, acknowledging the profound impact of IBD on physical and mental well-being. AREA COVERED This comprehensive review describes the current landscape of ADT for IBD, including dual biologic therapy (DBT), which involves the combination of two biologics or a single biologic with a small-molecule compound, as well as considerations surrounding the discontinuation of biologics. EXPERT OPINION ADT is the standard treatment for moderate to severe IBD, while DBT appears promising for specific subsets of patients, including those with refractory disease or extraintestinal manifestations. However, these approaches may increase the risk of adverse effects, including malignancy. To optimize individualized treatment strategies in patients with refractory IBD, further trials are needed to refine ADT's predictive value, establish DBT's safety and indications, define biologic discontinuation criteria, and evaluate emerging biomarkers, artificial intelligence, and bowel ultrasound in patient management.
Collapse
Affiliation(s)
- Kazuo Yashima
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroki Kurumi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Naoyuki Yamaguchi
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
20
|
Fey RM, Billo A, Clister T, Doan KL, Berry EG, Tibbitts DC, Kulkarni RP. Personalization of Cancer Treatment: Exploring the Role of Chronotherapy in Immune Checkpoint Inhibitor Efficacy. Cancers (Basel) 2025; 17:732. [PMID: 40075580 PMCID: PMC11899640 DOI: 10.3390/cancers17050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/01/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
In the era of precision medicine, mounting evidence suggests that the time of therapy administration, or chronotherapy, has a great impact on treatment outcomes. Chronotherapy involves planning treatment timing by considering circadian rhythms, which are 24 h oscillations in behavior and physiology driven by synchronized molecular clocks throughout the body. The value of chronotherapy in cancer treatment is currently under investigation, notably in the effects of treatment timing on efficacy and side effects. Immune checkpoint inhibitor (ICI) therapy is a promising cancer treatment. However, many patients still experience disease progression or need to stop the therapy early due to side effects. There is accumulating evidence that the time of day at which ICI therapy is administered can have a substantial effect on ICI efficacy. Thus, it is important to investigate the intersections of circadian rhythms, chronotherapy, and ICI efficacy. In this review, we provide a brief overview of circadian rhythms in the context of immunity and cancer. Additionally, we outline current applications of chronotherapy for cancer treatment. We synthesize the 29 studies conducted to date that examine the impact of time-of-day administration on the efficacy of ICI therapy, its associated side effects, and sex differences in both efficacy and side effects. We also discuss potential mechanisms underlying these observed results. Finally, we highlight the challenges in this area and future directions for research, including the potential for a chronotherapeutic personalized medicine approach that tailors the time of ICI administration to individual patients' circadian rhythms.
Collapse
Affiliation(s)
- Rosalyn M. Fey
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Avery Billo
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Terri Clister
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Khanh L. Doan
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Elizabeth G. Berry
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
| | - Deanne C. Tibbitts
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.M.F.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
21
|
Zečević S, Popović D, Tomić S, Bekić M, Rakočević S, Kosanović M, Stojanović D, Uskoković P, Marković M, Bokonjić D, Čolić M. Anti-Inflammatory and Immunomodulatory Properties of Inorganic Fullerene-Like Tungsten Disulfide Nanoparticles in the Culture of Human Peripheral Blood Mononuclear Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:322. [PMID: 40072125 PMCID: PMC11901739 DOI: 10.3390/nano15050322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 03/14/2025]
Abstract
Tungsten disulfide (WS2) nanoparticles have emerged in the biomedical field as potential theranostic agents due to their unique properties, including biocompatibility. However, their impact on the immune response remains unexplored. This study aimed to evaluate the effects of inorganic fullerene-like WS2 (IF-WS2) nanostructures on human peripheral blood mononuclear cells (PBMCs) in vitro. The study investigated several parameters to evaluate the effects of IF-WS2 nanoparticles. Cytotoxicity was assessed by measuring cell viability, apoptosis, and necrosis. Internalization of IF-WS2 by PBMCs was analyzed using morphological and flow cytometric techniques. Proliferation was studied in CellTrace Far Red-prestained total PBMCs stimulated with phytohemagglutinin (PHA) and in isolated T cell cultures stimulated with CD3/CD28-coated beads. Additionally, the production of cytokines and chemokines was measured in culture supernatants of total PBMCs and T cells. IF-WS2 nanoparticles were non-cytotoxic up to a concentration of 200 µg/mL. Concentrations ≥25 µg/mL inhibited PHA-stimulated PBMC proliferation but did not affect T cell proliferation. Morphological and flow cytometric analysis demonstrated dose- and time-dependent internalization of IF-WS2 by macrophages. Additionally, IF-WS2 significantly reduced the production of pro-inflammatory cytokines (IL-1β, TNF-α, IL-8, MCP-1, and GRO-α) in PHA-stimulated PBMCs. Th1, Th17, and Th21 cytokines were downregulated, while Th2, Th9, and T regulatory cytokines were upregulated. In conclusion, this study demonstrated for the first time that pristine IF-WS2 nanoparticles, at non-cytotoxic concentrations, exhibit notable anti-inflammatory and immunomodulatory properties on activated PBMCs in vitro.
Collapse
Affiliation(s)
- Snežana Zečević
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (S.Z.); (D.P.); (S.R.); (D.B.)
| | - Darinka Popović
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (S.Z.); (D.P.); (S.R.); (D.B.)
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (S.T.); (M.B.); (M.K.); (M.M.)
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (S.T.); (M.B.); (M.K.); (M.M.)
| | - Sara Rakočević
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (S.Z.); (D.P.); (S.R.); (D.B.)
| | - Maja Kosanović
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (S.T.); (M.B.); (M.K.); (M.M.)
| | - Dušica Stojanović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (D.S.); (P.U.)
| | - Petar Uskoković
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (D.S.); (P.U.)
| | - Milan Marković
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (S.T.); (M.B.); (M.K.); (M.M.)
| | - Dejan Bokonjić
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (S.Z.); (D.P.); (S.R.); (D.B.)
| | - Miodrag Čolić
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (S.Z.); (D.P.); (S.R.); (D.B.)
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
22
|
Ramirez GA, Cardamone C, Lettieri S, Fredi M, Mormile I. Clinical and Pathophysiological Tangles Between Allergy and Autoimmunity: Deconstructing an Old Dichotomic Paradigm. Clin Rev Allergy Immunol 2025; 68:13. [PMID: 39932658 DOI: 10.1007/s12016-024-09020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 02/14/2025]
Abstract
Allergic and autoimmune disorders are characterised by dysregulation of the immune responses to otherwise inert environmental substances and autoantigens, leading to inflammation and tissue damage. Their incidence has constantly increased in the last decades, and their co-occurrence defies current standards in patient care. For years, allergy and autoimmunity have been considered opposite conditions, with IgE and Th2 lymphocytes cascade driving canonical allergic manifestations and Th1/Th17-related pathways accounting for autoimmunity. Conversely, growing evidence suggests that these conditions not only share some common inciting triggers but also are subtended by overlapping pathogenic pathways. Permissive genetic backgrounds, along with epithelial barrier damage and changes in the microbiome, are now appreciated as common risk factors for both allergy and autoimmunity. Eosinophils and mast cells, along with autoreactive IgE, are emerging players in triggering and sustaining autoimmunity, while pharmacological modulation of B cells and Th17 responses has provided novel clues to the pathophysiology of allergy. By combining clinical and therapeutic evidence with data from mechanistic studies, this review provides a state-of-the-art update on the complex interplay between allergy and autoimmunity, deconstructing old dichotomic paradigms and offering potential clues for future research.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Cardamone
- Immunorheumatology Unit, University Hospital "San Giovanni Di Dio E Ruggi d'Aragona", Largo Città d'Ippocrate, Via San Leonardo 1, 84131, Salerno, Italy.
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
| | - Sara Lettieri
- Pulmonology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ilaria Mormile
- Division of Internal Medicine and Clinical Immunology, Department of Internal Medicine and Clinical Complexity, AOU Federico II, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
23
|
Xie M, Huang Z, Zhang Y, Gan Y, Li H, Li D, Ding H. The Mycoplasma hyopneumoniae protein Mhp274 elicits mucosal and systemic immune responses in mice. Front Cell Infect Microbiol 2025; 15:1516944. [PMID: 39991712 PMCID: PMC11842358 DOI: 10.3389/fcimb.2025.1516944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Background Mycoplasma hyopneumoniae is the etiological agent of mycoplasmal pneumonia of swine (MPS). Commercial vaccines provide partial protection and do not prevent the colonization and transmission of M. hyopneumoniae. The bottleneck in the development of more effective vaccines for MPS is the stimulation of effective immune responses in the host. The purpose of the present study was to evaluate the immune responses of immunodominant proteins Mhp170, Mhp274 and Mhp336 in BALB/c mice. Methods The recombinant Mhp170 (rMhp170), Mhp274 (rMhp274), and Mhp336 (rMhp336) proteins were purified from recombinant bacteria. Fifty-two six-week-old SPF female BALB/c mice were divided into five groups: a commercial inactivated vaccine-immunized group, three recombinant protein-inoculated groups, and a PBS-treated group. The physical parameters and body weights of the mice were observed during the experiment. The lung/body coefficient and macroscopic and microscopic lung lesions were evaluated. IgG and its isotypes IgG1 and IgG2a in serum and BALF and sIgA in BALF were assessed. The levels of IFN-γ, IL-4, and IL-17, in the supernatants of splenocytes and in serum were measured, and the mRNA levels of three cytokines in splenocytes were analyzed. Finally, lymphocyte proliferation after stimulation with corresponding proteins or crude extract of M. hyopneumoniae J strain was assessed. Results We successfully constructed recombinant bacteria expressing rMhp170, rMhp274, and rMhp336. None of the mice from all groups presented adverse reactions and macroscopic and microscopic lung lesions. rMhp170 and rMhp274 were capable of inducing the production of IgG, IgG1 and IgG2 in serum and BALF, the secretion of IFN-γ, IL-4 and IL-17 in serum, the expression of IFN-γ, IL-4 and IL-17 mRNAs in splenocytes, and high levels of lymphocyte proliferation. Moreover, rMhp274 significantly increased sIgA in BALF. Nevertheless, rMhp336 induced only IgG, IgG1 and IgG2 production in sera; the secretion of IFN-γ and IL-4 in sera and BALF; the expression of IFN-γ and IL-4 mRNAs in the splenocyte population; and lymphocyte proliferation. Conclusion Mhp170 and Mhp274 induced Th1/Th2/Th17 immune responses, and Mhp336 stimulated mixed Th1/Th2-type immune responses, in mice. Our data suggest that Mhp274 is a potential viable candidate for the development of a subunit vaccine for MPS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Prado DS, Cattley RT, Sonego AB, Sutariya P, Wu S, Lee M, Boggess WC, Shlomchik MJ, Hawse WF. The phospholipid kinase PIKFYVE is essential for Th17 differentiation. J Exp Med 2025; 222:e20240625. [PMID: 39738812 DOI: 10.1084/jem.20240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
T helper 17 (Th17) cells are effector cells that mediate inflammatory responses to bacterial and fungal pathogens. While the cytokine signaling inputs required to generate Th17s are established, less is known about intracellular pathways that drive Th17 differentiation. Our previously published phosphoproteomic screen identifies that PIKFYVE, a lipid kinase that generates the phosphatidylinositol PtdIns(3,5)P2, is activated during Th17 differentiation. Herein, we discovered that PIKFYVE regulates kinase and transcription factor networks to promote Th17 differentiation. As a specific example, PtdIns(3,5)P2 directly stimulates mTORC1 kinase activity to promote cell division and differentiation pathways. Furthermore, PIKFYVE promotes STAT3 phosphorylation, which is required for Th17 differentiation. Chemical inhibition or CD4-specific deletion of PIKFYVE reduces Th17 differentiation and autoimmune pathology in the experimental autoimmune encephalomyelitis murine model of multiple sclerosis. Our findings identify molecular mechanisms by which PIKFYVE promotes Th17 differentiation and suggest that PIKFYVE is a potential therapeutic target in Th17-driven autoimmune diseases.
Collapse
Affiliation(s)
- Douglas S Prado
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Richard T Cattley
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Andreza B Sonego
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Parth Sutariya
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Shuxian Wu
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William F Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
25
|
Suresh R, Olaitan Comfort S, Dolatyabi S, Schrock J, Singh M, Renukaradhya GJ. Evaluation of mucosal adjuvants to chitosan-nanoparticle-based oral subunit vaccine for controlling salmonellosis in broilers. Front Immunol 2025; 16:1509990. [PMID: 39981235 PMCID: PMC11840259 DOI: 10.3389/fimmu.2025.1509990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Salmonellosis, a gastrointestinal disease, continues to be one of the major public health concerns worldwide. Poultry meat and eggs are recognized as the major source of Salmonella food poisoning in humans. Our study evaluated the protective efficacy of mannose-conjugated chitosan-nanoparticle (mChitosan-NP)-based subunit vaccine, consisting of immunogenic outer membrane proteins and flagella of Salmonella Enteritidis [mChitosan (OMP+FLA)/FLA-NP], coadministered orally with potent mucosal adjuvants to reduce the colonization of S. Enteritidis in the intestines of broiler chickens. We evaluated the adjuvant effects of three different doses of two well-known mucosal adjuvants, c-di-GMP (stimulator of interferon gene agonist) and whole cell lysate (WCL) of Mycobacterium smegmatis, to improve the efficacy of mChitosan (OMP+FLA)/FLA-NP vaccine. Our data reaffirmed the potent adjuvanticity of both of these adjuvants and identified their optimal dose when entrapped in mChitosan-NP to potentiate the immunogenicity and efficacy of orally delivered mChitosan (OMP+FLA)/FLA-NP vaccine. The physical characteristics of mChitosan (OMP+FLA)/FLA-NP, mChitosan-GMP/FLA-NP, and mChitosan-WCL/FLA-NP formulations revealed a high positive charge (Zeta potential +20-25 mV), size 235-260 nm, and polydispersity index 0.35-0.52, which are conducive for oral delivery. The efficacy in chickens that received oral administration with a combination of the vaccine-adjuvant formulations was evaluated by challenging with Salmonella Enteritidis. Our data showed that mChitosan (OMP+FLA)/FLA-NP WCL at 10 µg/dose formulation consistently reduced the S. Enteritidis load by over 0.5 log10 comparable to a commercial live vaccine at post-challenge days 4 and 10. Immunologically, we observed enhanced systemic and mucosal antibody and cellular (B cells and T-helper cells) immune responses as well as upregulation of expression of immune cytokine genes IFN-γ, TGF-β, and IL-17 in the cecal tonsils of adjuvanted mChitosan-NP Salmonella-subunit-vaccinated birds. Overall, particularly the mucosal adjuvant WCL consistently enhanced the efficacy of mChitosan (OMP+FLA)/FLA-NP vaccine by inducing effective immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
26
|
Spencer BL, Nguyen DT, Marroquin SM, Gapin L, O’Brien RL, Doran KS. Characterization of the Cellular Immune Response to Group B Streptococcal Vaginal Colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635275. [PMID: 39975125 PMCID: PMC11838357 DOI: 10.1101/2025.01.29.635275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Introduction Group B Streptococcus (GBS) asymptomatic colonizes the female genital tract (FGT) but can contribute to adverse pregnancy outcomes including pre-term birth, chorioamnionitis, and neonatal infection. We previously observed that GBS elicits FGT cytokine responses, including IL-17, during murine vaginal colonization; yet the anti-GBS cellular immune response during colonization remained unknown. We hypothesized that GBS may induce cellular immunity, resulting in FGT clearance. Methods Herein, we utilize depleting antibodies and knockout mice and performed flow cytometry to investigate cellular immunes responses during GBS colonization. Results We found that neutrophils (effectors of the IL-17 response) are important for GBS mucosal control as neutrophil depletion promoted increased GBS burdens in FGT tissues. Flow cytometric analysis of immune populations in the vagina, cervix, and uterus revealed, however, that GBS colonization did not induce a marked increase in FGT CD45+ immune cells. We also found that that Vγ6+ γδ T cells comprise a primary source of FGT IL-17. Finally, using knockout mice, we observed that IL-17-producing γδ T cells are important for the control of GBS in the FGT during murine colonization. Conclusions Taken together, this work characterizes FGT cellular immunity and suggests that GBS colonization does not elicit a significant immune response, which may be a bacterial directed adaptive outcome. However, certain FGT immune cells, such as neutrophils and ɣδ T cells, contribute to host defense and control of GBS colonization.
Collapse
Affiliation(s)
- Brady L. Spencer
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Dustin T. Nguyen
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Stephanie M. Marroquin
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Laurent Gapin
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Rebecca L. O’Brien
- National Jewish Health, Department of Biomedical Research, Denver, CO, USA
| | - Kelly S. Doran
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| |
Collapse
|
27
|
Gan W, Liu X, Liu F, Hu J. Staphylococcus aureus regulates Th17 cells and autophagy via STING in chronic eosinophilic rhinosinusitis with nasal polyps. Eur Arch Otorhinolaryngol 2025; 282:881-894. [PMID: 39674846 PMCID: PMC11805884 DOI: 10.1007/s00405-024-09100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
PURPOSE As a common pathogen of rhinosinusitis, the role of Staphylococcus aureus in modulating autophagy through STING activation and Th17 cell differentiation in CRSwNP remains unexplored. This study aims to investigate how S. aureus regulates Th17 cell differentiation and the occurrence and development of autophagy in CRS by inducing STING expression. METHODS Immunoblotting and flow cytometry were employed to assess the expression levels of STING, RORγt, LC3B, and MUC5AC, as well as Th17 markers in cells. HNECs were co-cultured with S. aureus in vitro to explore its regulatory effects. RESULTS STING expression was found to be decreased in CRSwNP tissues, while RORγt, LC3B, and MUC5AC levels were elevated. S. aureus was shown to induce Th17 differentiation via STING regulation. STING activators reduced Th17 inflammation, while autophagy activators increased autophagosomes and MUC5AC levels. CONCLUSION The STING system may play a protective role in the inflammatory response of nasal epithelial cells. S. aureus inhibits STING, not only by promoting the differentiation of pathogenic Th17 cells but also by increasing autophagy levels in nasal epithelial cells. Both mechanisms contribute to the enhanced expression of MUC5AC, facilitating the progression of CRSwNP.
Collapse
Affiliation(s)
- Weigang Gan
- Department of Otolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Sichuan Province, 37Guoxue Lane, Chengdu, 610041, China
| | - Xingchen Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Sichuan Province, 37Guoxue Lane, Chengdu, 610041, China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Sichuan Province, 37Guoxue Lane, Chengdu, 610041, China.
| | - Junying Hu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Sichuan Province, 37Guoxue Lane, Chengdu, 610041, China
| |
Collapse
|
28
|
Bertin A, Marie JC. [What if effector T cells could induce cancer?]. Med Sci (Paris) 2025; 41:130-132. [PMID: 40028949 DOI: 10.1051/medsci/2025007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Affiliation(s)
- Alexia Bertin
- Centre de recherche en cancérologie de Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Université Claude Bernard de Lyon 1, Centre Léon Bérard, Lyon, France - Équipe labellisée par la Ligue nationale contre le cancer
| | - Julien C Marie
- Centre de recherche en cancérologie de Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Université Claude Bernard de Lyon 1, Centre Léon Bérard, Lyon, France - Équipe labellisée par la Ligue nationale contre le cancer
| |
Collapse
|
29
|
Jagasia P, Taritsa I, Bagdady K, Shah S, Fracol M. Silicone breast implant-associated pathologies and T cell-mediated responses. Inflamm Res 2025; 74:33. [PMID: 39891670 DOI: 10.1007/s00011-025-02006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
Silicone breast implants elicit a foreign body response (FBR) defined by a complex cascade of various immune cells. Studies have shown that the capsule around silicone breast implants that forms as a result of the FBR contains large T cell populations. T cells are implicated in pathologies such as capsular contracture, which is defined by an excessively fibrotic capsule, and breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), a non-Hodgkin's lymphoma. In this article, we provide a synthesis of 17 studies reporting on T cell-mediated responses to silicone breast implants and highlight recent developments on this topic. The lymphocytes present in the breast implant capsule are predominantly Th1 and Th17 cells. Patients with advanced capsular contracture had fewer T-regulatory (Treg) cells present in the capsules that were less able to suppress T effector cells such as Th17 cells, which can promote fibrosis in autoimmune conditions. Textured silicone implants, which are associated with BIA-ALCL, created a more robust T cell response, especially CD30 + T cells in the peri-implant fluid and CD4 + T cells in the capsule. Cultivating a deeper understanding of T cell-mediated responses to silicone breast implants may allow for novel treatments of breast implant-associated complications and malignancies.
Collapse
Affiliation(s)
- Puja Jagasia
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Iulianna Taritsa
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Kazimir Bagdady
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Shivani Shah
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Megan Fracol
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA.
| |
Collapse
|
30
|
Feng S, Li S, Wu Z, Li Y, Wu T, Zhou Z, Liu X, Chen J, Fu S, Wang Z, Zhong Z, Zhong Y. Saffron improves the efficacy of immunotherapy for colorectal cancer through the IL-17 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118854. [PMID: 39326815 DOI: 10.1016/j.jep.2024.118854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron is one of the traditional medicinal herbs, which contains various active ingredients, such as safranal, crocin, saffron acid, etc. It has anti-inflammatory, antioxidant, and anti-cancer properties, and is widely used in clinical practice. The anti-cancer efficacy of saffron has been previously confirmed, but its anti-cancer mechanism in colorectal cancer remains unclear. OBJECTIVE We investigated the effect of active compounds of saffron on the efficacy of immunotherapy for colorectal cancer. METHODS TCMSP and liquid chromatography-mass spectrometry analysis (LC-MS), GeneCards, and DisGeNET databases were used to identify the active compounds of saffron, drug targets and the disease targets of colorectal cancer. They were then subjected to Gene Ontology Enrichment (GO) and Signalling Pathway Enrichment (KEGG) analyses. The core targets and corresponding compounds were selected for molecular docking. The effect of active components of saffron on the proliferation of CT26 and HCT116 cells was investigated using the cell counting kit-8 (CCK-8). In vitro experiments were conducted by subcutaneous injection of CT26 cells to establish a colon cancer model. Enzyme-linked immunosorbent assay (ELISA), western blotting (WB), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and flow cytometry (FCM) were employed to validate the effects of saffron on colorectal cancer immunotherapy. RESULTS 1. LC-MS analysis revealed that the main active component of saffron extract was crocin. The active chemicals of saffron intersected with 170 colorectal cancer targets, with 17 predicting targets for saffron treatment. GO and KEGG enrichment analyses revealed that the active components of saffron can prevent colorectal cancer development by enhancing Th17 cell differentiation and the IL-17 signaling pathway. 2. In vitro studies revealed that saffron alcohol extract, crocin, and safranal can suppress the proliferation of CT26 and HCT116 cells. 3. In vivo studies showed that crocin and safranal can increase the body mass and decrease the tumor mass of loaded mice, decrease the serum level of IL-17, and lower the mRNA expression level of IL-17, IL-6, TNF-α, TGF-β, and PD-L1 and IL-17, PD-L1 protein in tumors. This inhibitory effect was strengthened after combined immunotherapy. In addition, saffron modulated CD4+ and CD8+ T cells and the CD4+/CD8+T ratio in mouse spleens. CONCLUSION The active components of saffron can reduce the expression of inflammatory factors and ameliorate the immunological microenvironment of tumors via the IL-17 signaling pathway, thereby improving the efficacy of immunotherapy for colorectal cancer. This study provides pharmacological support for the application of saffron in enhancing the efficacy of immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
- Siqi Feng
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Shiying Li
- Seoul National University, Seoul, Korea.
| | - Zhonghua Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yun Li
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Tingting Wu
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Zhangjie Zhou
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jian Chen
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Shujuan Fu
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Zhiying Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | | | - Yi Zhong
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| |
Collapse
|
31
|
Wang S, Jiang Q, Liu Y, Zhang X, Huang Y, Zhang H. The Role of Immune Cells in Moyamoya Disease. Brain Sci 2025; 15:137. [PMID: 40002470 PMCID: PMC11852451 DOI: 10.3390/brainsci15020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Moyamoya disease (MMD) is a rare progressive cerebrovascular disorder characterized by the stenosis or occlusion of the terminal segments of the internal carotid arteries, leading to the development of abnormal collateral vascular networks. These networks are a compensatory mechanism for reduced blood flow to the brain. Despite extensive research, the exact etiology of MMD remains unknown, although recent studies suggest that immune system dysfunction plays a critical role in its pathogenesis. In particular, the involvement of immune cells such as T cells, macrophages, and dendritic cells has been increasingly recognized. These immune cells contribute to the inflammatory process and vascular remodeling observed in MMD patients, further complicating the disease's progression. Inflammation and immune-mediated damage to the vessel walls may accelerate the narrowing and occlusion of arteries, exacerbating ischemic events in the brain. Additionally, studies have revealed that certain genetic and environmental factors can influence immune system activation in MMD, linking these pathways to disease development. This review aims to provide a comprehensive overview of the immune mechanisms at play in MMD, focusing on how immune cells participate in vascular injury and remodeling. Understanding these immunological processes may offer new therapeutic targets to halt or reverse disease progression, potentially leading to more effective treatment strategies for MMD.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Jiang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
32
|
Ahmad A, Singh RB, Nickolich KL, Pilewski MJ, Ngeow C, Frempong-Manso K, Robinson KM. Restoration of Type 17 immune signaling is not sufficient for protection during influenza-associated pulmonary aspergillosis. Front Immunol 2025; 16:1529849. [PMID: 39949778 PMCID: PMC11821594 DOI: 10.3389/fimmu.2025.1529849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Influenza-associated pulmonary aspergillosis (IAPA) is a severe complication of influenza infection that occurs in critically ill patients and results in higher mortality compared to influenza infection alone. Interleukin-17 (IL-17) and the Type 17 immune signaling pathway cytokine family are recognized for their pivotal role in fostering protective immunity against various pathogens. In this study, we investigate the role of IL-17 and Type 17 immune signaling components during IAPA. Methods Wild-type mice were challenged with influenza A H1N1 (flu) and then exposed to Aspergillus fumigatus ATCC42202 resting conidia on day 6 post-influenza infection, followed by the quantification of cytokines and chemokines at 48 h post-fungal infection. Results and discussion The gene and protein expression levels revealed that IL-17 and Type 17 immune cytokines and antimicrobial peptides are downregulated during IAPA compared to mice singularly infected solely with A. fumigatus. Restoration of Type 17 immunity was not sufficient to provide protection against the increased fungal burden observed during IAPA. These findings contrast those observed during post-influenza bacterial super-infection, in which restoration of Type 17 immune signaling protects against exacerbation seen during super-infection. Our study highlights the need for future studies to understand the immune mechanisms that increase susceptibility to fungal infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keven M. Robinson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Zhu Y, Yao ZC, Li S, Ma J, Wei C, Yu D, Stelzel JL, Ni BYX, Miao Y, Van Batavia K, Lu X, Lin J, Dai Y, Kong J, Shen R, Goodier KD, Liu X, Cheng L, Vuong I, Howard GP, Livingston NK, Choy J, Schneck JP, Doloff JC, Reddy SK, Hickey JW, Mao HQ. mRNA lipid nanoparticle-incorporated nanofiber-hydrogel composite generates a local immunostimulatory niche for cancer immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.633179. [PMID: 39975373 PMCID: PMC11838205 DOI: 10.1101/2025.01.27.633179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hydrogel materials have emerged as versatile platforms for various biomedical applications. Notably, the engineered nanofiber-hydrogel composite (NHC) has proven effective in mimicking the soft tissue extracellular matrix, facilitating substantial recruitment of host immune cells and the formation of a local immunostimulatory microenvironment. Leveraging this feature, here we report an mRNA lipid nanoparticle (LNP)-incorporated NHC microgel matrix, termed LiNx, by incorporating LNPs loaded with mRNA encoding tumour antigens. Harnessing the potent transfection efficiency of LNPs in antigen-presenting cells (APCs), LiNx demonstrates remarkable immune cell recruitment, antigen expression and presentation, and cellular interaction. These attributes collectively create an immunostimulating milieu and yield a potent immune response achievable with a single dose, comparable to the conventional three-dose LNP immunization regimen. Further investigations reveal that the LiNx not only generates heightened Th1 and Th2 responses but also elicits a distinctive Type 17 T helper cell-mediated response pivotal for bolstering antitumour efficacy. Our findings elucidate the mechanism underlying LiNx's role in potentiating antigen-specific immune responses, presenting a new strategy for cancer immunotherapy.
Collapse
|
34
|
de Farias ECF, do Nascimento LMPP, Pavão Junior MJC, Pavão DCA, Pinheiro APS, Pinheiro AHO, Alves MCB, Ferraro KMMM, Aires LFQ, Dias LG, Machado MMM, Serrão MJD, Gomes RR, de Moraes SMP, Pontes GCL, Carvalho RDFP, Silva CTC, Neves CMAD, dos Santos JCL, de Sousa AMB, da Silva LL, de Mello MLFMF, Carvalho PB, Braga RDB, Harada KDO, Justino MCA, Costa IB, Brasil-Costa I, Monteiro MC, Clemente G, Terreri MT. Plasma IL-17A is increased in patients with critical MIS-C and associated to in-hospital mortality. Front Immunol 2025; 15:1485009. [PMID: 39931580 PMCID: PMC11807959 DOI: 10.3389/fimmu.2024.1485009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025] Open
Abstract
Background Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe post-COVID-19 complication with multiple phenotypes. Objectives The aim of this study is to study inflammatory biomarkers (cytokines and oxidative stress) in critical MIS-C patients and to observe if there is association between these biomarkers and mortality. Methods A single-center prospective study enrolled patients with MIS-C (with positive molecular test), aged between 1 month and 18 years of age. Data was collected from 20 pediatric intensive care unit (PICU)'s bed. Inflammatory biomarkers (cytokines and oxidative stress markers) were performed on day 1 and 3 after hospitalization. Survival rate was calculated, and Kaplan-Meier curves were plotted. Univariate and multivariate Cox regression analyses were conducted. The ROC (Receiver Operating Characteristic) curve analysis was performed. Results and conclusions A total of 41 patients out of 109 patients admitted at PICU with suspected MIS-C during the study period were included, of which 33 (80.5%) were male, 9 (22%) were under one year old, and 30 (73.2%) presented comorbidities. Among them, 16 (39%) did not survive. The mean survival time was shorter in patients with higher levels of IL-17A (≥ 19.71 pg/mL) on day 1 (115 vs 323 days, p = 0.004). Higher levels of IL-17A on day 1 were associated with mortality in both the crude model (HR 1.03, CI95% 1.004-1.057, p = 0.022) and the adjusted model (HR 1.043, CI95% 1.013-1.075, p = 0.012). ROC analysis revealed a cut-off value for the IL-17A of 14.32 pg/ml. The other immunological and inflammatory markers did not demonstrate an association with survival (p>0.05). Our findings suggest that patients with high levels of IL-17A are at greater risk for death.
Collapse
Affiliation(s)
- Emmerson C. F. de Farias
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Luciana M. P. P. do Nascimento
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Manoel J. C. Pavão Junior
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Dalila C. A. Pavão
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Ana P. S. Pinheiro
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Andreza H. O. Pinheiro
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Marília C. B. Alves
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Kíssila M. M. M. Ferraro
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Larisse F. Q. Aires
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Luana G. Dias
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Mayara M. M. Machado
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Michaelle J. D. Serrão
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Raphaella R. Gomes
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Sara M. P. de Moraes
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Gabriela C. L. Pontes
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Railana D. F. P. Carvalho
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Cristiane T. C. Silva
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Carla M. A. das Neves
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Joyce C. L. dos Santos
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Adriana M. B. de Sousa
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Leda L. da Silva
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Mary L. F. M. F. de Mello
- Division of Pediatric Intensive Care, Department of Pediatrics, Fundação Santa Casa de Misericórdia do Pará, Belém, Brazil
| | - Patricia B. Carvalho
- Division of Pediatric Intensive Care, Departament of Pediatrics, Fundação Hospital das Clínicas Gaspar Viana, Belém, Brazil
| | - Renata de B. Braga
- Division of Pediatric Intensive Care, Departament of Pediatrics, Fundação Hospital das Clínicas Gaspar Viana, Belém, Brazil
| | - Kathia de O. Harada
- Division of Pediatric Intensive Care, Departament of Pediatrics, Fundação Hospital das Clínicas Gaspar Viana, Belém, Brazil
| | - Maria C. A. Justino
- Clinical Research Unit, Health Surveillance Secretariat, Brazilian Ministry of Health, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Iran B. Costa
- Immunology Laboratory, Virology Unit, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Igor Brasil-Costa
- Immunology Laboratory, Virology Unit, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Marta C. Monteiro
- Pharmaceutical Science Post-Graduation Program and Neuroscience and Cell Biology Graduate Program, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Gleice Clemente
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Teresa Terreri
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Zhang Q, Yang Z, Ou X, Zhang M, Qin X, Wu G. The role of immunity in insulin resistance in patients with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2025; 15:1464561. [PMID: 39911236 PMCID: PMC11797073 DOI: 10.3389/fendo.2024.1464561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent disorder of the endocrine system with significant clinical implications, often leading to health complications related to adipose tissue accumulation, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes mellitus. While the precise pathogenesis of PCOS remains unclear, it is now recognized that genetic, endocrine, and metabolic dysregulations all contribute significantly to its onset. The immunopathogenesis of PCOS has not been extensively explored, but there is growing speculation that immune system abnormalities may play a pivotal role. This chronic inflammatory state is exacerbated by factors such as obesity and hyperinsulinemia. Therefore, this review aims to elucidate the interplay between IR in PCOS patients, the controlled immune response orchestrated by immune cells and immunomodulatory molecules, and their interactions with adipocytes, hyperandrogenemia, chronic inflammation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Qixuan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhe Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Ou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengying Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyu Qin
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gengxiang Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Pramanik R, Chattopadhyay S, Bishayi B. Dual neutralization of TGF-β and IL-21 regulates Th17/Treg balance by suppressing inflammatory signalling in the splenic lymphocytes of Staphylococcus aureus infection-induced septic arthritic mice. Immunol Res 2025; 73:38. [PMID: 39831928 DOI: 10.1007/s12026-024-09586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4+ T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis. A high Th17 could lead to autoimmunity, whereas an increase in Tregs indicates immunosuppression. Depending on the external cytokine milieu, naïve CD4+ T cells transform into either Th17 or Treg cell lineage. TGF-β in the presence of IL-21 produces Th17 cells and drives the inflammatory cascade of reactions. We studied the effects of in vivo neutralization of TGF-β and IL-21 in septic arthritic mice to control arthritic inflammation, which has not been studied before. The arthritic index showed maximum severity in the SA group which substantially reduced in the Ab-treated groups. Flow cytometric analyses of peripheral blood collected from mice at 9DPI revealed the highest Th17/Treg ratio in the SA group but least in the combined-antibody-treated group. TGF-β1 and IL-21 cytokine production from serum, spleen, and synovial tissue homogenates was significantly reduced in the dual Ab-treated group than in the untreated SA group. From the Western blot analyses obtained from splenic lymphocytes at 9 DPI, we elucidated the possible underlying mechanism of interplay in downstream signalling involving the interaction between different STAT proteins and SOCS, NF-κB, RANKL, mTOR, iNOS, and COX-2 in regulating inflammation and osteoclastogenesis. On endogenous blockade with TGF-β and IL-21, the Th17/Treg ratio and resultant arthritic inflammation in SA were found to be reduced. Therefore, maintaining the Th17/Treg balance is critical to eradicate infection as well as suppress excessive inflammation and neutralization of TGF-β and IL-21 could provide a novel therapeutic strategy to treat staphylococcal SA.
Collapse
Affiliation(s)
- Rochana Pramanik
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Sreya Chattopadhyay
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India.
| |
Collapse
|
37
|
Singh J, Saxena E, Chaudhary AR, Kaur M, Salotra M, Rasane P, Kaur S, Ercisli S, Durul MS, Bozhuyuk MR, Urusan AH, Ullah R. Immunomodulatory properties of Giloy ( Tinospora cordifolia) leaves and its applications in value-added products. Heliyon 2025; 11:e40948. [PMID: 39758376 PMCID: PMC11699423 DOI: 10.1016/j.heliyon.2024.e40948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
In Ayurvedic texts, Giloy (Tinospora cordifolia) have been known as the most potent and important medicinal product. Giloy leaves have been used for centuries to cure various ailments and diseases in the human body. This review highlights that giloy leaves have immunomodulatory properties and can be used to develop functional food products. The current review focuses on the phytochemical composition of giloy leaves, and the mechanism for their immunomodulatory action highlighting specific pathways including NF-kB pathway and interleukin modulation. Giloy leaves possess antioxidant activity and induce apoptosis of cells in the immune response. Studies have shown the potential of incorporating giloy leaves into a wide range of value-added products, such as beverages, biscuits, and herbal formulations, to bridge traditional knowledge with modern functional food production. A comparison of traditional and modern giloy-based products demonstrates their benefits and drawbacks, showing that traditional techniques can be combined with modern scientific developments to improve medicinal efficacy. Although giloy leaves-based products show promising potential, further research is necessary to ascertain their effectiveness.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Etika Saxena
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Anjali Raj Chaudhary
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mandeep Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Molly Salotra
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkiye
| | | | | | - Ahmet Hakan Urusan
- Department of Plant and Animal Science, Vocational School of Food, Agriculture and Animal Science, 12200, Bingol, Turkiye
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Liu S, Jia C, Zhao J, Xiong Y, Yan W, Zhang W, Nie Y, Xue Y, Deng W. Multiomics and experimental approaches reveal the anti-acute lung injury effects of Fallopia aubertii (L. Henry) Holub extract via IL-17/NF-κB pathway inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119123. [PMID: 39571698 DOI: 10.1016/j.jep.2024.119123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fallopia aubertii (L. Henry) Holub (F. aubertii), a traditional Tibetan medicine, is used in China for treating respiratory inflammatory diseases, including acute lung injury (ALI). However, the chemical constituents of F. aubertii and its anti-inflammatory mechanisms in the lungs remain poorly understood. AIM OF THE STUDY This study aimed to identify the chemical constituents of the F. aubertii extract (FAE), evaluate its effectiveness in reducing ALI in mice, and elucidate the underlying mechanisms of its action. MATERIALS AND METHODS The chemical composition of FAE was determined using UPLC-LTQ Velos Pro-Orbitrap Elite. Network pharmacology was employed to predict the mechanisms by which FAE might mitigate ALI. Mice were administered FAE orally for seven days, followed by intratracheal instillation of lipopolysaccharide (LPS) to induce ALI. On the final day, the mice were euthanized, and their lungs were collected for transcriptome analysis, proteomics, pharmacodynamic evaluation, and mechanistic studies. Hematoxylin and eosin (H&E) staining assessed lung pathology. Transcriptome and proteomic analyses, along with real-time quantitative PCR (RT-qPCR) and western blotting, were used to investigate FAE's effects on lung inflammation and related signaling pathways. In vitro experiments further explored the anti-ALI mechanisms of FAE. Immunofluorescence assays in RAW264.7 cells examined the nuclear translocation of NF-κB. RESULTS Fifty-one compounds were identified in FAE, predominantly flavonoid glycosides. Network pharmacology suggested that FAE may inhibit ALI by modulating the NF-κB pathway and Th17 differentiation. RNA-seq analysis indicated that FAE might suppress inflammation through the IL-17 signaling pathway, with these findings corroborated by mRNA level measurements in vivo and in vitro. FAE alleviated LPS-induced ALI by modulating the IL-17A signaling pathway, which was confirmed through proteomic analysis. Western blotting revealed that FAE reduced the expression of IL-17A, Act1, TRAF6, and p-NF-κB, while immunofluorescence assays showed FAE inhibited LPS-induced NF-κB nuclear translocation. CONCLUSION FAE attenuates inflammation-mediated ALI by inhibiting the IL-17A/NF-κB signaling pathway. This study highlights the anti-ALI effects of FAE and provides a theoretical foundation for its potential use in ALI treatment.
Collapse
Affiliation(s)
- Shuna Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 518107, PR China
| | - Canchao Jia
- The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jingxin Zhao
- Clinical Research Center, Translational Medicine Research Institute, The First People's Hospital of Foshan, Foshan, 528000, PR China
| | - Yue Xiong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Wensi Yan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Wenxiu Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Yichu Nie
- Clinical Research Center, Translational Medicine Research Institute, The First People's Hospital of Foshan, Foshan, 528000, PR China.
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China.
| |
Collapse
|
40
|
Zavvar F, Mazandarani M, Hoseinifar SH, Jafari V, Lieke T. Effects of Feed Supplementation With Fulvic Acid on the Systemic and Mucosal Protective Mechanisms of Juvenile Rainbow Trout (Oncorhynchus mykiss). J Anim Physiol Anim Nutr (Berl) 2025. [PMID: 39806798 DOI: 10.1111/jpn.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important fish species raised in aquaculture, but it is susceptible to stress, infections diseases. The present study aimed to determine the effects of fulvic acid feed addition on the systemic and mucosal protective mechanisms of juvenile rainbow trout and to elucidate the underlying molecular mechanisms of changes in the gut. Rainbow trout (4.30 ± 0.6 g) diet was supplemented with different levels of fulvic acid: 0% (Control), 0.5%, 1% and 2%. At the end of 8-week feeding trial, growth parameters such as final weight gained weight (%), SGR (F1%) increased, and FCR (all levels) decreased significantly compared to the control group. We found that the activity of lysozyme, glutathione peroxidase, and catalase in the serum were significantly improved, especially after the addition of 0.5% and 1% of fulvic acid. At the same time, the immunoglobulin concentration in the skin mucus was increased with 0.5% supplementation. However, the expression of tnf-α, il-6 and gpx in the intestine was strongly upregulated after supplementation with 2%, indicating oxidative stress and inflammation with this level of fulvic acid inclusion. Furthermore, the mucus lysozyme activity was reduced at this concentration, which can increase the susceptibility to pathogen invasion. The results suggest that adding 0.5%-1% of fulvic acid to the feed of juvenile rainbow trout can help to improve their immune and antioxidative defenses and thereby support the wellbeing of fish.
Collapse
Affiliation(s)
- Fatemeh Zavvar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mazandarani
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Valiollah Jafari
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Thora Lieke
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
41
|
Zhu Z, Zhang Y, Chen H, Zhang H. Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome. Tissue Barriers 2025:2452082. [PMID: 39798076 DOI: 10.1080/21688370.2025.2452082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli. The aim of this review is to provide a summary and discussion of recent advances in the understanding of the importance of cell-cell crosstalk in the pathogenesis of ALI/ARDS, with a specific focus on the cell-cell interactions that may offer prospective therapeutic avenues for ALI/ARDS.
Collapse
Affiliation(s)
- Zhenzhen Zhu
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Ying Zhang
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Huan Chen
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Huali Zhang
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
42
|
Gonçalves LTDC, Neves GST, da Silva AMP, Telles DDM, Figueredo CMDS, Lourenço EJV, Teixeira MKS. The Effect of Peri-Implant Therapy on the Expression of Th17-Related Cytokines in Patients with Peri-Implant Mucositis and Peri-Implantitis: A Prospective Longitudinal Study. J Clin Med 2025; 14:340. [PMID: 39860346 PMCID: PMC11766395 DOI: 10.3390/jcm14020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Cytokines related to the Th17 response have been associated with peri-implant diseases; however, the effect of peri-implant therapy on their modulation remains underexplored. To evaluate the effect of peri-implant therapy on the expression of cytokines related to the Th17 response in the peri-implant crevicular fluid (PICF) (GM-CSF, IFN-γ, IL-1β, IL-4, IL-6, IL-10, IL-12 (p70), IL-17A, IL-21, IL-23, and TNF-α) of partially edentulous patients with peri-implant disease (PID). Methods: Thirty-seven systemically healthy individuals presenting with peri-implant mucositis (PIM) (n = 20) or peri-implantitis (PI) (n = 17) were treated and evaluated at baseline (T0) and three months after therapy (T1). Clinical parameters (probing depth (PD), clinical attachment level (CAL), plaque index, and bleeding on probing index (BoP), were evaluated. The PIM group underwent non-surgical therapy, while the PI group received a surgical approach. PICF was collected with absorbent paper strips and analyzed with a multiplex assay. Results: Eighty-eight implants were treated in 37 patients (56 in the PIM group and 32 in the PI group). After therapy, significant reductions in PD, CAL, plaque index, and BoP were observed in the PIM group (p < 0.05). In the PI group, significant reductions in PD, CAL, and BoP were noted (p < 0.05). The PIM group showed a significant reduction of IL-17A and TNF-α after therapy, while the PI group showed a significant reduction of IL-1β, IL-6, and TNF-α (p < 0.05). Conclusions: The peri-implant therapy for patients with PID reduced the expression of cytokines related to the Th17 response in PICF.
Collapse
Affiliation(s)
- Líssya Tomaz da Costa Gonçalves
- Department of Prosthodontics, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil; (L.T.d.C.G.); (G.S.T.N.); (A.M.P.d.S.); (D.d.M.T.); (E.J.V.L.); (M.K.S.T.)
| | - Glaucia Schuindt Teixeira Neves
- Department of Prosthodontics, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil; (L.T.d.C.G.); (G.S.T.N.); (A.M.P.d.S.); (D.d.M.T.); (E.J.V.L.); (M.K.S.T.)
| | - Alexandre Marques Paes da Silva
- Department of Prosthodontics, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil; (L.T.d.C.G.); (G.S.T.N.); (A.M.P.d.S.); (D.d.M.T.); (E.J.V.L.); (M.K.S.T.)
| | - Daniel de Moraes Telles
- Department of Prosthodontics, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil; (L.T.d.C.G.); (G.S.T.N.); (A.M.P.d.S.); (D.d.M.T.); (E.J.V.L.); (M.K.S.T.)
| | - Carlos Marcelo da Silva Figueredo
- School of Medicine and Dentistry, Griffith University, Queensland 4222, Australia
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Eduardo José Veras Lourenço
- Department of Prosthodontics, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil; (L.T.d.C.G.); (G.S.T.N.); (A.M.P.d.S.); (D.d.M.T.); (E.J.V.L.); (M.K.S.T.)
| | - Mayla Kezy Silva Teixeira
- Department of Prosthodontics, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil; (L.T.d.C.G.); (G.S.T.N.); (A.M.P.d.S.); (D.d.M.T.); (E.J.V.L.); (M.K.S.T.)
| |
Collapse
|
43
|
Prado-Costa B, Pinto LF, Fonseca MF, de Freitas D, Alvarenga LM. A Synthetic View on Acanthamoeba Keratitis Host Immune Response: Potential Factors Influencing the Development of Chronic Inflammation. Cornea 2025; 44:118-127. [PMID: 39627013 DOI: 10.1097/ico.0000000000003690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 02/05/2025]
Abstract
PURPOSE The purpose of this study was to compile the current knowledge concerning Acanthamoeba keratitis (AK) host immune response to better understand the elements involved in the chronification of inflammation and worse disease outcomes. METHODS A scoping review of the literature on AK host immune response was written after a systematic literature search was performed on the PubMed, Latin American Caribbean Health Sciences Literature, Cochrane Library, Embase, Web of Science, and Scientific Electronic Library Online databases. Recovered articles were screened according to inclusion and exclusion criteria, and the selected studies were analyzed to compile the review. RESULTS The search strategy yielded a total of 768 articles from all searched databases. After the exclusion of duplicate records, 412 studies were screened according to inclusion and exclusion criteria. Finally, a total of 95 articles were selected to compile this review, of which 15 were included as additional bibliography. As for study type, 45 were experimental, 19 were observational, 23 were case reports, and 8 were reviews. CONCLUSIONS From the literature, both innate and adaptive immune systems seem to play an important role in AK control and resolution. On the other hand, there is also abundant evidence pointing out that the development of chronic and extracorneal inflammation is immune mediated and is influenced by several factors such as individual patient genetic variability, inadequate treatment, and Acanthamoeba strain pathogenicity.
Collapse
Affiliation(s)
- Bianca Prado-Costa
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil ; and
| | - Larissa Fagundes Pinto
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Mariana Fernandes Fonseca
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil ; and
| | - Denise de Freitas
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Larissa Magalhães Alvarenga
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil ; and
| |
Collapse
|
44
|
Liang J, Yao L, Liu Z, Chen Y, Lin Y, Tian T. Nanoparticles in Subunit Vaccines: Immunological Foundations, Categories, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407649. [PMID: 39501996 DOI: 10.1002/smll.202407649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Indexed: 01/11/2025]
Abstract
Subunit vaccines, significant in next-generation vaccine development, offer precise targeting of immune responses by focusing on specific antigens. However, this precision often comes at the cost of eliciting strong and durable immunity, posing a great challenge to vaccine design. To address this limitation, recent advancements in nanoparticles (NPs) are utilized to enhance antigen delivery efficiency and boost vaccine efficacy. This review examines how the physicochemical properties of NPs influence various stages of the immune response during vaccine delivery and analyzes how different NP types contribute to immune activation and enhance vaccine performance. It then explores the unique characteristics and immune activation mechanisms of these NPs, along with their recent advancements, and highlights their application in subunit vaccines targeting infectious diseases and cancer. Finally, it discusses the challenges in NP-based vaccine development and proposes future directions for innovation in this promising field.
Collapse
Affiliation(s)
- Jiale Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lan Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Taoran Tian
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| |
Collapse
|
45
|
Lissoni P, Rovelli F, Messina G, Monzon A, Valentini A, Sassola A, Di Fede G, Simoes-de-Silva AC, Merli N, Bartsch C, Vlaescu VG, Cardinali DD. Psycho-Neuro-EndocrinE-Immunology Therapy of Cancer, Autoimmunity, Geriatric Disorders, Covid-19, and Hypertension. Methods Mol Biol 2025; 2868:111-132. [PMID: 39546228 DOI: 10.1007/978-1-0716-4200-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Despite the great number of experimental investigations in the area of psycho-neuro-endocrine-immunology showing that endocrine, nervous, and immune systems cannot be in vivo physiologically separated, the diagnosis and therapies of the pathologies of these three functional biological systems continue to be separately performed from a clinical practice point of view. The separation between experimental and clinical medicine became dramatic after the discovery of more than 10 human molecules provided by anti-inflammatory and antitumor activity, completely devoid of any toxicity, which may be subdivided into three fundamental classes, consisting of the pineal indole, beta-carboline, and methoxy-kynuramine hormones. Moreover, human systemic diseases, including cancer, autoimmunity, and cardiovascular pathologies, despite their different pathogenesis and symptomatology, are commonly characterized by a progressive decline in the endogenous production of pineal hormones, endocannabinoids, and Ang 1-7, with a consequent inflammatory status and diminished natural resistance against cancer. Then the evaluation of the functional status of the pineal gland, the endocannabinoid system, and ACE2-Ang 1-7 axis should have to be included within the laboratory analyses for the systemic diseases. Finally, the correction of cancer- and autoimmunity-related neuroimmune and neuroendocrine alterations could influence the clinical course of systemic diseases. In fact, preliminary clinical results would demonstrate that the neuroimmune regimen with pineal hormones, cannabinoids, and Ang 1-7 may allow clinical benefits also in patients affected by systemic pathologies, including cancer, autoimmunity, and cardiovascular diseases, who did not respond to the standard therapies.
Collapse
Affiliation(s)
- Paolo Lissoni
- Institute of Biological Medicine, Milan, Italy
- Madonna del Soccorso Hospital, San Benedetto del Tronto, Ascoli Piceno, Italy
| | - Franco Rovelli
- Institute of Biological Medicine, Milan, Italy
- Madonna del Soccorso Hospital, San Benedetto del Tronto, Ascoli Piceno, Italy
| | - Giusy Messina
- Institute of Biological Medicine, Milan, Italy
- Madonna del Soccorso Hospital, San Benedetto del Tronto, Ascoli Piceno, Italy
| | - Alejandra Monzon
- Institute of Biological Medicine, Milan, Italy
- Madonna del Soccorso Hospital, San Benedetto del Tronto, Ascoli Piceno, Italy
| | - Agnese Valentini
- Institute of Biological Medicine, Milan, Italy
- Madonna del Soccorso Hospital, San Benedetto del Tronto, Ascoli Piceno, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang CN, Wang HW, Lin HY, Kok SH, Hong CY, Shun CT, Cheng SJ, Wu FY, Lin SK. The role of 27-hydroxycholesterol in hypercholesterolemia-associated exacerbation of apical periodontitis and therapeutic potential of felodipine. J Dent Sci 2025; 20:89-99. [PMID: 39873033 PMCID: PMC11762924 DOI: 10.1016/j.jds.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/26/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Studies have demonstrated a relation between hypercholesterolemia and development of apical periodontitis (AP), but the underlying mechanism is uncertain. 27-hydroxycholesterol (27HC), produced by cytochrome P450 27A1 (CYP27A1)-catalyzed hydroxylation of cholesterol, is known to possess pro-inflammatory activity. Felodipine is an anti-hypertensive agent able to inhibit CYP27A1. The study aimed to examine the inflammatory response of macrophages to 27HC and the relation between 27HC accumulation and progression of experimental AP. The therapeutic effect of felodipine was also evaluated. Materials and methods J774 murine macrophages were used. Expressions of cyclooxygenase-2 (COX-2) and C-C motif chemokine ligand 20 (CCL20) were examined by Western blot. Concentrations of 27HC were assessed by enzyme-linked immunosorbent assay. Fluorescence assay was used to evaluate cholesterol levels. AP was induced in male rats receiving high fat/high cholesterol diet (HFHCD) or normal diet (ND). Micro-computed tomography and immunohistochemistry were employed to evaluate disease progression and therapeutic effect of felodipine. Results Cholesterol enhanced production of 27HC which in turn stimulated COX-2 and CCL20 synthesis by macrophages. HFHCD consumption significantly augmented serum and lesion tissue levels of 27HC in rats. Lesion size and infiltration of COX-2+ and interleukin (IL)-17+ cells increased in parallel with 27HC accumulation in AP. Felodipine suppressed cholesterol-induced 27HC production in macrophages. Felodipine treatment reduced serum and tissue levels of 27HC in HFHCD rats and concurrently mitigated AP propagation. Conclusion Our results suggest a pivotal role of 27HC in hypercholesterolemia-exacerbated AP. By repressing 27HC production, felodipine may have the potential to help mitigate AP in obese individuals.
Collapse
Affiliation(s)
- Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Ying Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Yuan Hong
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Fang-Yu Wu
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
47
|
Yang Y, Zhao Y, Liu H, Wu X, Guo M, Xie L, Wang G, Shi J, Yu W, Dong G. Inflammation-Targeted Biomimetic Nano-Decoys via Inhibiting the Infiltration of Immune Cells and Effectively Delivering Glucocorticoids for Enhanced Multiple Sclerosis Treatment. Adv Healthc Mater 2025; 14:e2402965. [PMID: 39440626 DOI: 10.1002/adhm.202402965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Excessive infiltration of neutrophil and inflammatory cytokines accumulation as well as the inadequate delivery of drugs to the targeted site are key pathological cascades in multiple sclerosis (MS). Herein, inflammation-targeting biomimetic nano-decoys (TFMN) is developed that inhibit the infiltration of immune cells and effectively deliver glucocorticoids to lesions for enhanced MS treatment. Nano-decoys encapsulated with the glucocorticoid methylprednisolone (MPS) are prepared by coating neutrophil membrane (NM) on nanoparticles formed by the self-assembly of tannic acid and poloxamer188/pluronic68. Benefiting from the natural inflammation-targeting ability of activated neutrophil membranes, TFMN can target the lesion site and prevent neutrophils infiltration by adsorbing and neutralizing elevated neutrophil-related cytokines, subsequently modulating the inflammatory microenvironment in experimental autoimmune encephalomyelitis mice. TFMN exhibits a strong antioxidant capacity and scavenged excessive reactive oxygen species to enhance neuronal protection. Furthermore, at the inflammation site, perforin, discharged by cytotoxic T-lymphocytes, triggered the controlled release of MPS within the TFMN through perforin-formed pores in the NM. Simultaneously, this mechanism protected neurons from perforin-induced toxicity. The MPS liberated at the targeted site achieves optimal drug accumulation, thereby enhancing therapeutic efficacy. In conclusion, the innovative system shows potential for integrating various therapeutic agents, offering a novel strategy for CNS disorders.
Collapse
Affiliation(s)
- Yiling Yang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huixian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyun Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Xie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangsheng Wang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenyan Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
48
|
Abhale K, Veeranjaneyulu A, Desai S. A Snapshot of Biomarkers in Psoriasis. Curr Drug Discov Technol 2025; 22:e180324228068. [PMID: 38500289 DOI: 10.2174/0115701638278470240312075112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
A persistent long-standing, inflammatory skin condition that is brought on by a variety of factors is psoriasis. It is distinguished by itchy, scaly, reddish plaques, particularly on areas of the body that are frequently chafed, including the extensor sites of the limbs. Recent developments in molecular-targeted therapy that use biologics or small-molecule inhibitors can effectively cure even the worst psoriatic indications. The outstanding clinical outcomes of treatment help to clarify the disease's detrimental consequences on quality of life. Biomarkers that identify deep remission are essential for developing uniform treatment plans. Blood protein markers such as AMPs that are consistently quantifiable can be very helpful in routine clinical practice. The metabolic pathways involve biomarkers that can not only help diagnose psoriasis in a clinical setting but also indicate its severity based on the levels present in the body. Machine learning and AI have made a diagnosis of the expression of genes as biomarkers more accessible. In this article, biomarkers, as well as their key role in psoriasis, are discussed.
Collapse
Affiliation(s)
- Krushna Abhale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | | | - Shivani Desai
- Clinical Research and Pharmacovigilance, Serum Institute of India Pvt. Ltd., Hadapsar, Pune, India
| |
Collapse
|
49
|
Lee YJ, Cho ML. Targeting T helper 17 cells: emerging strategies for overcoming transplant rejection. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:309-325. [PMID: 39743231 PMCID: PMC11732763 DOI: 10.4285/ctr.24.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Solid organ transplantation has significantly improved the survival rate of patients with terminal organ failure. However, its success is often compromised by allograft rejection, a process in which T helper 17 (Th17) cells play a crucial role. These cells facilitate rejection by enhancing neutrophil infiltration into the graft and by activating endothelial cells and fibroblasts. Additionally, Th17 cells can trigger the activation of other T cell types, including Th1, Th2, and CD8+ T cells, further contributing to rejection. An imbalance between Th17 and regulatory T cells (Tregs) is known to promote rejection. To counteract this, immunosuppressive drugs have been developed to inhibit T cell activity and foster transplant tolerance. Another approach involves the adoptive transfer of regulatory cells, such as Tregs and myeloid-derived suppressor cells, to dampen T cell functions. This review primarily focuses on the roles of Th17 cells in rejection and their interactions with other T cell subsets. We also explore various strategies aimed at suppressing T cells to induce tolerance.
Collapse
Affiliation(s)
- Young Joon Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine (LaTIM), College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine (LaTIM), College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
50
|
Horng HC, Xu JW, Kuo YS, Chen YS, Chiu YH, Tsui KH, Tung YT. Dual Mechanisms of Action: Anti-Candida and Anti-Inflammatory Potential of Lactobacillus Fermentation Broth in Treating Vulvovaginal Candidiasis. J Fungi (Basel) 2024; 11:18. [PMID: 39852437 PMCID: PMC11766182 DOI: 10.3390/jof11010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/25/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Vulvovaginal candidiasis (VVC), a condition predominantly caused by Candida albicans, affects millions of women worldwide, prompting the need for alternative treatments due to the side effects and increasing resistance associated with conventional imidazole antifungals. This study investigated VAGINNE®, a novel fermentation broth derived from Lactobacillus species, as a potential VVC treatment. Using a BALB/c mouse model of C. albicans infection, we evaluated VAGINNE®'s effects on vaginal microbiome composition, inflammatory markers, and tissue integrity. Our findings revealed that VAGINNE® treatment enhanced the growth of beneficial Lactobacillus species while suppressing C. albicans proliferation, leading to a more balanced vaginal microbiome. Additionally, VAGINNE® significantly reduced pro-inflammatory cytokines (IL-17A, IL-22, IL-23) in vaginal tissues and systemic inflammatory markers (IL-6, IL-1β) in plasma. Histological analysis showed minimal fungal invasion and preserved vaginal epithelial integrity in VAGINNE®-treated mice compared to untreated controls. These results suggest that VAGINNE® could serve as an effective anti-Candida and anti-inflammatory agent for managing VVC, offering a promising alternative to traditional antifungal treatments. By promoting a healthy vaginal microbiome, reducing inflammation, and maintaining tissue health, this probiotic-based approach presents a novel strategy for addressing VVC, particularly in cases of drug resistance or adverse reactions to standard therapies. This study underscores the potential of microbiome-modulating strategies in managing vaginal infections, paving the way for more targeted and side-effect-free VVC treatments.
Collapse
Affiliation(s)
- Huann-Cheng Horng
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
- Faculty of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Jin-Wei Xu
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Shan Kuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Sin Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Hsuan Chiu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|