1
|
Dirck A, Diggins NL, Crawford LB, Perez WD, Parkins CJ, Struthers HH, Turner R, Pham AH, Mitchell J, Papen CR, Malouli D, Hancock MH, Caposio P. HCMV UL8 interaction with β-catenin and DVL2 regulates viral reactivation in CD34 + hematopoietic progenitor cells. J Virol 2023; 97:e0124123. [PMID: 37772824 PMCID: PMC10617580 DOI: 10.1128/jvi.01241-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE CD34+ hematopoietic progenitor cells (HPCs) are an important cellular reservoir for latent human cytomegalovirus (HCMV). Several HCMV genes are expressed during latency that are involved with the maintenance of the viral genome in CD34+ HPC. However, little is known about the process of viral reactivation in these cells. Here, we describe a viral protein, pUL8, and its interaction and stabilization with members of the Wnt/β-catenin pathway as an important component of viral reactivation. We further define that pUL8 and β-catenin interact with DVL2 via a PDZ-binding domain, and loss of UL8 interaction with β-catenin-DVL2 restricts viral reactivation. Our findings will be instrumental in understanding the molecular processes involved in HCMV reactivation in order to design new antiviral therapeutics.
Collapse
Affiliation(s)
- Aaron Dirck
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nicole L. Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lindsey B. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Wilma D. Perez
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Hillary H. Struthers
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Rebekah Turner
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Andrew H. Pham
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jennifer Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Courtney R. Papen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
2
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 1106] [Impact Index Per Article: 368.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
3
|
Baasch S, Giansanti P, Kolter J, Riedl A, Forde AJ, Runge S, Zenke S, Elling R, Halenius A, Brabletz S, Hengel H, Kuster B, Brabletz T, Cicin-Sain L, Arens R, Vlachos A, Rohr JC, Stemmler MP, Kopf M, Ruzsics Z, Henneke P. Cytomegalovirus subverts macrophage identity. Cell 2021; 184:3774-3793.e25. [PMID: 34115982 DOI: 10.1016/j.cell.2021.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.
Collapse
Affiliation(s)
- Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Piero Giansanti
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - André Riedl
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Aaron James Forde
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Solveig Runge
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Simon Zenke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany
| | - Anne Halenius
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Simone Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University Munich, 85354 Freising, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luka Cicin-Sain
- Immune Aging and Chronic Infections Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hanover Medical School (MHH), 30625 Hanover, Germany
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jan Christopher Rohr
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany
| | - Marc Philippe Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Zsolt Ruzsics
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany.
| |
Collapse
|
4
|
Ueland T, Astrup E, Otterdal K, Lekva T, Janardhanan J, Prakash JAJ, Thomas K, Michelsen AE, Aukrust P, Varghese GM, Damås JK. Secreted Wnt antagonists in scrub typhus. PLoS Negl Trop Dis 2021; 15:e0009185. [PMID: 33914733 PMCID: PMC8112706 DOI: 10.1371/journal.pntd.0009185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/11/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The mechanisms that control local and systemic inflammation in scrub typhus have only been partially elucidated. The wingless (Wnt) signaling pathways are emerging as important regulators of inflammation and infection, but have not been investigated in scrub typhus. METHODOLOGY/PRINCIPAL FINDINGS Plasma levels of secreted Wnt antagonists (i.e. DKK-1, sFRP-3, WIF-1 and SOST) were analyzed in patients with scrub typhus (n = 129), patients with similar febrile illness without O. tsutsugamushi infection (n = 31), febrile infectious disease controls, and in healthy controls (n = 31) from the same area of South India, and were correlated to markers of inflammation, immune and endothelial cell activation as well as for their association with organ specific dysfunction and mortality in these patients. We found i) Levels of SOST and in particular sFRP-3 and WIF-1 were markedly increased and DKK-1 decreased in scrub typhus patients at admission to the hospital compared to healthy controls. ii) In recovering scrub typhus patients, SOST, sFRP-3 and WIF-1 decreased and DKK-1 increased. iii) SOST was positively correlated with markers of monocyte/macrophage and endothelial/vascular activation as well as with renal dysfunction and poor outcome iv) Finally, regulation of Wnt pathways by O. tsutsugamushi in vitro in monocytes and ex vivo in mononuclear cells isolated from patients with scrub typhus, as evaluated by gene expression studies available in public repositories, revealed markedly attenuated canonical Wnt signaling. CONCLUSIONS/SIGNIFICANCE Our findings suggest that scrub typhus is characterized by attenuated Wnt signaling possibly involving dysregulated levels of several secreted pathway antagonists. The secreted Wnt antagonist SOST was strongly associated with renal dysfunction and poor prognosis in these patients.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
- * E-mail:
| | - Elisabeth Astrup
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jeshina Janardhanan
- Department of Medicine and Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - John A. J. Prakash
- Department of Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kurien Thomas
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - George M. Varghese
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan K. Damås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
5
|
Fang L, Gao C, Bai RX, Wang HF, Du SY. Overexpressed sFRP3 exerts an inhibitory effect on hepatocellular carcinoma via inactivation of the Wnt/β-catenin signaling pathway. Cancer Gene Ther 2020; 28:875-891. [DOI: 10.1038/s41417-020-0201-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
|
6
|
Crimean-Congo hemorrhagic fever virus infection triggers the upregulation of the Wnt signaling pathway inhibitor genes. Virus Genes 2020; 56:508-514. [PMID: 32335793 DOI: 10.1007/s11262-020-01759-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 12/16/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic agent. Thus far, vaccines and specific antiviral therapies are not available against the threat of infection. Our knowledge regarding its pathogenesis is indeed limited, and thus, developing effective antiviral therapies is hampered. Several studies have demonstrated that the CCHFV infection has an impact on numerous signal transduction pathways. In parallel, the Wnt signaling pathway components are responsible for different important biological processes including cell fate determination, cell migration and cell polarity. Moreover, its implication among several virus infections has been proven, yet little is known in reference to which components of the Wnt pathway are being activated/inhibited as a response to the infection. Our aim was to elicit the influence of the CCHFV infection on adenocarcinomic human alveolar basal epithelial cells in vitro regarding the Wnt signaling pathway-related genes. Gene-expression changes of 92 Wnt-associated genes were examined 48 h post-infection. Furthermore, β-catenin levels were compared in the infected and uninfected cells. Significant changes were observed in the case of 13 genes. The majority of the upregulated genes are associated with the inhibition of the Wnt/β-catenin signaling. Additionally, infected cells expressed less β-catenin. Our findings suggest that CCHFV blocks the Wnt/β-catenin pathway. Our study corroborates the link between CCHFV infection and the Wnt signaling pathways. In addition, it broadens our knowledge in the CCHFV pathomechanism.
Collapse
|
7
|
Khanizadeh S, Hasanvand B, Esmaeil Lashgarian H, Almasian M, Goudarzi G. Interaction of viral oncogenic proteins with the Wnt signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:651-659. [PMID: 30140402 PMCID: PMC6098952 DOI: 10.22038/ijbms.2018.28903.6982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/08/2018] [Indexed: 12/13/2022]
Abstract
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenesis. Different signaling pathways play a part in the carcinogenesis that occurs in a cell. Among these pathways, the Wnt signaling pathway plays a predominant role in carcinogenesis and is known as a central cellular pathway in the development of tumors. There are three Wnt signaling pathways that are well identified, including the canonical or Wnt/β-catenin dependent pathway, the noncanonical or β-catenin-independent planar cell polarity (PCP) pathway, and the noncanonical Wnt/Ca2+ pathway. Most of the oncogenic viruses modulate the canonical Wnt signaling pathway. This review discusses the interaction between proteins of several human oncogenic viruses with the Wnt signaling pathway.
Collapse
Affiliation(s)
- Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Banafsheh Hasanvand
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mohammad Almasian
- Department of English Language, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Gholamreza Goudarzi
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
8
|
Wnt Signaling as Master Regulator of T-Lymphocyte Responses: Implications for Transplant Therapy. Transplantation 2017; 100:2584-2592. [PMID: 27861287 DOI: 10.1097/tp.0000000000001393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cell-mediated immune responses to the grafted tissues are the major reason for failed organ transplantation. The regulation of T cell responses is complex and involves major histocompatibility complex molecules on transplanted organs, cytokines, regulatory cells, and antigen-presenting cells. The evolutionary conserved Wnt signal transduction pathway has long been known for its importance in development of stem cells and immature T cells in the thymus. Recent evidence indicates the Wnt pathway as a master regulator of T cell immune responses via governing the balance between T helper 17/regulatory T cells and by regulating the formation of effector and memory cytotoxic CD8 T cell responses. In doing so, Wnt signals influence the outcome of immune responses in transplantation settings.
Collapse
|
9
|
Zwezdaryk KJ, Combs JA, Morris CA, Sullivan DE. Regulation of Wnt/β-catenin signaling by herpesviruses. World J Virol 2016; 5:144-154. [PMID: 27878101 PMCID: PMC5105047 DOI: 10.5501/wjv.v5.i4.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/19/2016] [Accepted: 08/06/2016] [Indexed: 02/05/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is instrumental in successful differentiation and proliferation of mammalian cells. It is therefore not surprising that the herpesvirus family has developed mechanisms to interact with and manipulate this pathway. Successful coexistence with the host requires that herpesviruses establish a lifelong infection that includes periods of latency and reactivation or persistence. Many herpesviruses establish latency in progenitor cells and viral reactivation is linked to host-cell proliferation and differentiation status. Importantly, Wnt/β-catenin is tightly connected to stem/progenitor cell maintenance and differentiation. Numerous studies have linked Wnt/β-catenin signaling to a variety of cancers, emphasizing the importance of Wnt/β-catenin pathways in development, tissue homeostasis and disease. This review details how the alpha-, beta-, and gammaherpesviruses interact and manipulate the Wnt/β-catenin pathway to promote a virus-centric agenda.
Collapse
|
10
|
van Zuylen WJ, Rawlinson WD, Ford CE. The Wnt pathway: a key network in cell signalling dysregulated by viruses. Rev Med Virol 2016; 26:340-55. [PMID: 27273590 DOI: 10.1002/rmv.1892] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wendy J van Zuylen
- Serology and Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - William D Rawlinson
- Serology and Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Caroline E Ford
- Metastasis Research Group, School of Women's and Children's Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
11
|
Åsberg A, Humar A, Rollag H, Jardine AG, Kumar D, Aukrust P, Ueland T, Bignamini AA, Hartmann A. Lessons Learned From a Randomized Study of Oral Valganciclovir Versus Parenteral Ganciclovir Treatment of Cytomegalovirus Disease in Solid Organ Transplant Recipients: The VICTOR Trial. Clin Infect Dis 2016; 62:1154-60. [DOI: 10.1093/cid/ciw084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/09/2016] [Indexed: 12/28/2022] Open
|
12
|
Roy S, Arav-Boger R. New cell-signaling pathways for controlling cytomegalovirus replication. Am J Transplant 2014; 14:1249-58. [PMID: 24839861 PMCID: PMC4280670 DOI: 10.1111/ajt.12725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/10/2014] [Accepted: 02/27/2014] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) is increasingly recognized as an accomplished modulator of cell-signaling pathways, both directly via interaction between viral and cellular proteins, and indirectly by activating metabolic/energy states of infected cells. Viral genes, as well as captured cellular genes, enable CMV to modify these pathways upon binding to cellular receptors, up until generation of virus progeny. Deregulation of cell-signaling pathways appears to be a well-developed tightly balanced virus strategy to achieve the desired consequences in each infected cell type. Importantly and perhaps surprisingly, identification of new signaling pathways in cancer cells positioned CMV as a sophisticated user and abuser of many such pathways, creating opportunities to develop novel therapeutic strategies for inhibiting CMV replication (in addition to standard of care CMV DNA polymerase inhibitors). Advances in genomics and proteomics allow the identification of CMV products interacting with the cellular machinery. Ultimately, clinical implementation of candidate drugs capable of disrupting the delicate balance between CMV and cell-signaling will depend on the specificity and selectivity index of newly identified targets.
Collapse
|