1
|
Parolini C. Pathophysiology of bone remodelling cycle: Role of immune system and lipids. Biochem Pharmacol 2025; 235:116844. [PMID: 40044049 DOI: 10.1016/j.bcp.2025.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Osteoporosis is the most common skeletal disease worldwide, characterized by low bone mineral density, resulting in weaker bones, and an increased risk of fragility fractures. The maintenance of bone mass relies on the precise balance between bone synthesis and resorption. The close relationship between the immune and skeletal systems, called "osteoimmunology", was coined to identify these overlapping "scientific worlds", and its function resides in the evaluation of the mutual effects of the skeletal and immune systems at the molecular and cellular levels, in both physiological and pathological states. Lipids play an essential role in skeletal metabolism and bone health. Indeed, bone marrow and its skeletal components demand a dramatic amount of daily energy to control hematopoietic turnover, acquire and maintain bone mass, and actively being involved in whole-body metabolism. Statins, the main therapeutic agents in lowering plasma cholesterol levels, are able to promote osteoblastogenesis and inhibit osteoclastogenesis. This review is meant to provide an updated overview of the pathophysiology of bone remodelling cycle, focusing on the interplay between bone, immune system and lipids. Novel therapeutic strategies for the management of osteoporosis are also discussed.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', via Balzaretti 9 - Università degli Studi di Milano 20133 Milano, Italy.
| |
Collapse
|
2
|
Liu X, Wang S, Du X, Wang Y, Mo L, Li H, Qu Z, Wang X, Sun J, Li Y, Wang J. Identification of Disulfidptosis-Related Genes and Molecular Subgroups in Rheumatoid Arthritis for Diagnostic Model and Patient Stratification. J Inflamm Res 2025; 18:4157-4175. [PMID: 40125081 PMCID: PMC11930242 DOI: 10.2147/jir.s505746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Cell death contributes to the pathogenesis of rheumatoid arthritis (RA) through various pathways. Disulfidptosis is a recently discovered novel form of cell death characterized by the abnormal accumulation of intracellular disulfide bonds. It remains unclear for the association between RA and disulfidptosis. Methods A comprehensive analysis of three GEO datasets was presented in this study. First, the analysis involved the use of weighted gene co-expression network analysis (WGCNA) and differential analysis and were employed to identify the key module genes related to RA and disulfidptosis-related genes. The machine learning algorithms were used to identify the hub genes. Second, a diagnostic model was constructed for RA based on the hub genes. The nomogram and receiver operating characteristic (ROC) curves were utilized to evaluate the diagnostic value of the model. Third, two RA subtypes were identified based on hub genes by using consensus clustering analysis. Then, the disease activity scores, clinical markers, and immune cells were compared between the two RA subgroups. Finally, the differential expression of hub genes was validated between healthy controls and RA patients by qPCR. Results Four hub genes (KLHL2, POLK, CLEC4D, NXT2) were identified. The expression of the four hub genes was verified to be significantly higher in RA patients compared with healthy controls. The superior diagnostic value of the model was validated, which demonstrated that the model outperforms each hub gene individually. Two subtypes of RA were determined. Patients in cluster A exhibited relatively lower levels of DAS28-CRP, DAS28-ESR, CDAI, SDAI, RF, CRP, and MMP3. In contrast, patients in cluster B had significantly higher levels of the above markers. Conclusion Four hub genes were identified to provide unique insights into the role of disulfidptosis in RA. Additionally, a promising diagnosis model and patient stratification were established based on the hub genes to assess the risk of RA onset and RA disease activity.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Siyao Wang
- Department of Gastroenterology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xinru Du
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yulu Wang
- Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Lingfei Mo
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Hanchao Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Zechao Qu
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xiaohao Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jian Sun
- Institute of Endemic Diseases, School of Public Health & Key Laboratory of Trace Elements and Endemic Diseases, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yuanyuan Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jing Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
3
|
Wu S, Xie Y, Jiang Y, Zhang X, Zhou Y, Zuo X, Li T. GTS-21 modulates rheumatoid arthritis Th17 and Th2 lymphocyte subset differentiation through the ɑ7nAch receptor. Clin Rheumatol 2025; 44:989-998. [PMID: 39812970 DOI: 10.1007/s10067-025-07320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Previous research has demonstrated ɑ7nAch receptor (ɑ7nAchR) agonists to provide benefit for rheumatoid arthritis (RA) patients. However, the immunological mechanism of action for these ɑ7nAchR agonists has not been elucidated. Herein, the effect of GTS-21, a selective ɑ7nAchR agonist, on the differentiation of Th17 and Th2 cells was assessed. CD4 + T cells were obtained from the peripheral blood mononuclear cells (PBMCs) of RA patients and healthy donors. CD4 + T cells were separately differentiated into Th2 or Th17 cells with or without GTS-21 and with or without alpha-bungarotoxin (ɑBgt) (a ɑ7nAchR antagonist). The proportions of Th17 and Th2 cells were assessed by flow cytometry. Levels of the T cell cytokines, IL-17A and IL-4, were assessed by ELISA. Specific transcription factors, retinoic orphan receptor c (RORc), and GATA Binding Protein 3 (GATA-3) were detected by western blot. GTS-21 reduced IL-17A and increased IL-4 production by RA PBMCs. GTS-21 reduced the percentage of Th17 cells and increased the percentage of Th2 cells during Th17 and Th2 differentiation, respectively. GTS-21 downregulated RA CD4 + T cells RORc levels and reduced the secretion of IL-17A during Th17 differentiation. GTS-21 upregulated RA CD4 + T cells GATA3 and promoted IL-4 production during Th2 differentiation. ɑ-Bgt blocked the effects of GTS-21 during Th17 and Th2 differentiation. These results demonstrated that GTS-21 suppressed RA Th17 differentiation and promoted Th2 differentiation. As such, the use of GTS-21 may be a new therapeutic approach by which to treat RA patients. Key Points • GTS-21 suppressed RA Th17 differentiation and promoted Th2 differentiation via acting on ɑ7nAchR. • The protective effect of GTS-21 on RA may be related to its regulation of Th cell subsets.
Collapse
Affiliation(s)
- Shiyao Wu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Dermatology and Immunology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanli Xie
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Dermatology and Immunology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Jiang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Dermatology and Immunology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoli Zhang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Dermatology and Immunology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaou Zhou
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Dermatology and Immunology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Dermatology and Immunology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tong Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Dermatology and Immunology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Wu J, Liu S, Zhang H, Zhang X, Xue J, Li Z, Zhang Y, Jiang Y, Zhang P, Yang M, Cui Q, Du G, Zhao L. Amlexanox ameliorates imiquimod-induced psoriasis-like dermatitis by inhibiting Th17 cells and the NF-κB signal pathway. Biomed Pharmacother 2025; 184:117922. [PMID: 39983433 DOI: 10.1016/j.biopha.2025.117922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Psoriasis is a chronic inflammatory dermatological disorder characterized by the aberrant differentiation and hyperproliferation of epidermal keratinocytes, boosted immune cell infiltration, and cytokine and chemokine production. Patients with psoriasis experience persistent discomfort and their conditions remain incurable. Therefore, development of safe and effective treatments for psoriasis is critical. Amlexanox, a tricyclic amine carboxylic acid, has various pharmacological advantages in previous studies, including anti-inflammatory, anti-allergic, immunomodulatory, and metabolic properties. Here we used the imiquimod (IMQ)-induced animal model and interleukin 17 A (IL-17A) activated keratinocytes to examine the efficacy of amlexanox in the treatment of psoriasis. Immunological and histological analyses revealed that both topical and oral administration of amlexanox reduced psoriatic symptoms such as increased skin thickness, erythema, scale formation, and immune cell infiltration. In the IMQ-induced mouse model, amlexanox also reduced splenic Th17 cell counts and the production of IL-17/Th17-associated cytokines and chemokines. Furthermore, amlexanox inhibited nuclear factor-κB phosphorylation in IL-17 activated keratinocytes. These findings indicated that amlexanox effectively alleviated psoriatic symptoms through both oral and topical administration. We propose that amlexanox is a potent therapeutic candidate for the treatment of psoriasis.
Collapse
Affiliation(s)
- Juan Wu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Shan Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Hongwei Zhang
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China; Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xingyue Zhang
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Jie Xue
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhengjuan Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yue Zhang
- The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yiming Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Pengyan Zhang
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Menglin Yang
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Qinghua Cui
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Guanhua Du
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Lili Zhao
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China; Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Xin J, Song X, Zheng H, Li W, Qin Y, Wang W, Zhang H, Peng G. Exploring the antiviral potential of shikimic acid against Chikungunya virus through network pharmacology, molecular docking, and in vitro experiments. Front Vet Sci 2025; 12:1524812. [PMID: 39917312 PMCID: PMC11799295 DOI: 10.3389/fvets.2025.1524812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus that can lead to chronic arthritis and significantly diminish the quality of life of patients. Given the expanding global prevalence of CHIKV and the absence of specific antiviral therapies, there is an urgent need to explore effective treatment options. This study aimed to evaluate the antiviral effects of shikimic acid (SA) against CHIKV through a combination of network pharmacology, molecular docking, and in vitro assays. Network pharmacology analysis identified 26 potential targets through which SA could inhibit CHIKV, including key pathogenic targets such as TNF, IL-6, and MAPK3. This hypothesis was further supported by molecular docking. The molecular docking analysis revealed that SA could interact with multiple CHIKV-related targets, including EGF, with vina scores generally lower than -6, indicating a high propensity for stable complex formation. The results also suggested that SA could potentially disrupt the IL-17 signaling pathway by engaging with various targets to form complexes. In vitro experiments confirmed that SA significantly enhanced the viability of 293T and BHK-21 cells infected with CHIKV by ~25% and reduced viral load by over 20% at concentrations ranging from 1,000 to 31.25 μM. Additionally, SA was found to markedly downregulate the expression of CHIKV-related attachment factors ACTG1, TSPAN9, and TIM-1 in 293T cells infected with CHIKV. Furthermore, RT-qPCR analysis demonstrated that SA effectively decreased the expression of NFKB1, PTGS2, RELA, and EGF related to the IL-17 signaling pathway. In conclusion, these findings indicate that SA is a promising candidate for developing treatment strategies targeting CHIKV with good clinical application value.
Collapse
Affiliation(s)
- Jialiang Xin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Haohong Zheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenjing Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuyang Qin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Wang
- Institute of Virology, Wenzhou University, Wenzhou, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Riaz M, Rasool G, Yousaf R, Fatima H, Munir N, Ejaz H. Anti-Rheumatic potential of biological DMARDS and protagonistic role of bio-markers in early detection and management of rheumatoid arthritis. Innate Immun 2025; 31:17534259251324820. [PMID: 40091354 PMCID: PMC11912179 DOI: 10.1177/17534259251324820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that primarily affects the synovial joint linings, resulting in progressive disability, increased mortality, and considerable economic costs. Early treatment with disease-modifying antirheumatic medications (DMARDs) can significantly improve the overall outlook for people with RA. Contemporary pharmaceutical interventions, encompassing standard, biological, and emerging small molecule disease- modifying anti-rheumatic medications continue to be the cornerstone of RA management, with substantial advancements made in the pursuit of achieving remission from the disease and preventing joint deformities. Nevertheless, a substantial segment of individuals with RA do not experience a satisfactory response to existing treatments, underscoring the pressing need for novel therapeutic options. Biologic DMARDs are among the therapy choices. Non-tumor necrosis factor inhibitors (Non-TNFi) such as abatacept, rituximab, tocilizumab, and sarilumab are examples, as are anti-tumor necrosis factor (TNF) medications such as infliximab, adalimumab, etanercept, golimumab, and certolizumab pegol. More recent biomarkers have emerged and showed usefulness in the early detection of RA. These biomarkers, often referred to simply as "biomarkers", are quantifiable indicators of normal or pathologic processes, and they can also gauge treatment response. The assessment of RA treatment response typically combines patient-reported outcomes, physical evaluations, and laboratory findings, as there isn't a single biomarker that has proven sufficient for measuring disease activity. This review explores the usage of biologic DMARDs as a therapeutic approach for RA, as well as the biomarkers typically used for RA early diagnosis, prognosis prediction, and disease activity evaluation.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ghulam Rasool
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ruhamah Yousaf
- Department of Health Professional Technologies, The University of Lahore, Lahore, Pakistan
| | - Hina Fatima
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Naveed Munir
- Department of Biomedical Lab Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
7
|
Padureanu V, Forțofoiu MC, Donoiu I, Tieranu EN, Dumitrascu C, Padureanu R, Mușetescu AE, Alexandru C, Iorgus CC, Bobirca F, Dascalu A, Bobirca A. COPA Syndrome-From Pathogenesis to Treatment. Diagnostics (Basel) 2024; 14:2819. [PMID: 39767180 PMCID: PMC11674574 DOI: 10.3390/diagnostics14242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Coatomer subunit α (COPA) syndrome is a mendelian autosomal dominant immune dysregulation disease characterized by early onset lung disease in the form of diffuse alveolar hemorrhaging or interstitial lung disease, frequently associated with arthritis, glomerulonephritis, and high titer autoantibodies usually mimicking other autoimmune diseases. While immunosuppressive medication has been effective in controlling arthritis, data on long-term lung disease control remains scarce, which poses a real challenge as the progression of lung disease is the main cause of poor life expectancy in COPA patients. Nevertheless, JAK inhibitor therapy seems to be the most promising therapeutic choice now.
Collapse
Affiliation(s)
- Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.); (R.P.)
| | - Mircea-Cătălin Forțofoiu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.); (R.P.)
| | - Ionut Donoiu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Eugen-Nicolae Tieranu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Catalin Dumitrascu
- Department of Internal Medicine and Rheumatology, “Dr. Ion Cantacuzino” Clinical Hospital, 011437 Bucharest, Romania; (C.A.); (C.C.I.); (A.B.)
| | - Rodica Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.); (R.P.)
| | - Anca Emanuela Mușetescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Cristina Alexandru
- Department of Internal Medicine and Rheumatology, “Dr. Ion Cantacuzino” Clinical Hospital, 011437 Bucharest, Romania; (C.A.); (C.C.I.); (A.B.)
- Department of Internal Medicine and Rheumatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Catalina Iorgus
- Department of Internal Medicine and Rheumatology, “Dr. Ion Cantacuzino” Clinical Hospital, 011437 Bucharest, Romania; (C.A.); (C.C.I.); (A.B.)
| | - Florin Bobirca
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, “Dr. Ion Cantacuzino” Clinical Hospital, 030167 Bucharest, Romania;
| | - Ana Dascalu
- Department of Ophthalmology, Emergency University Hospital Bucharest, 050098 Bucharest, Romania;
| | - Anca Bobirca
- Department of Internal Medicine and Rheumatology, “Dr. Ion Cantacuzino” Clinical Hospital, 011437 Bucharest, Romania; (C.A.); (C.C.I.); (A.B.)
- Department of Internal Medicine and Rheumatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
8
|
Kaminiów K, Kiołbasa M, Pastuszczak M. The Significance of the Cell-Mediated Host Immune Response in Syphilis. Microorganisms 2024; 12:2580. [PMID: 39770782 PMCID: PMC11677580 DOI: 10.3390/microorganisms12122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Syphilis, caused by the highly invasive pathogen Treponema pallidum, remains one of the oldest and most significant public health challenges. According to the World Health Organization (WHO), the number of new syphilis cases among adults aged 15-49 years in 2022 was estimated at approximately 8 million, with notable increases observed in Europe, the Americas, and Africa. The cellular immune response plays a critical role in combating this infection, and its insufficient activity may contribute to chronic progression of the disease. T. pallidum effectively evades the host immune response, enabling its prolonged survival within the host and increasing the risk of late complications such as neurosyphilis and cardiovascular syphilis. This review article discusses the mechanisms of cellular immune responses in T. pallidum infection, including T lymphocyte activation, proinflammatory cytokine production, and the roles of macrophages and dendritic cells in pathogen recognition and elimination. Additionally, it examines the immune evasion strategies employed by T. pallidum, such as the low immunogenicity of its antigens and its ability to suppress the activation of effector cells. A comprehensive understanding of the current knowledge regarding cellular immune mechanisms may contribute to the development of more effective diagnostic and therapeutic approaches in syphilis management.
Collapse
Affiliation(s)
- Konrad Kaminiów
- Clinical Department of Dermatology, Medical University of Silesia, Marii Curie-Skłodowskiej 10, 41-800 Zabrze, Poland; (M.K.); (M.P.)
| | | | | |
Collapse
|
9
|
Lee JH, Lee JE, Im DS. Blocking the Sphingosine-1-Phosphate Receptor 2 (S1P 2) Reduces the Severity of Collagen-Induced Arthritis in DBA-1J Mice. Int J Mol Sci 2024; 25:13393. [PMID: 39769163 PMCID: PMC11677552 DOI: 10.3390/ijms252413393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025] Open
Abstract
The amount of sphingosine 1-phosphate (S1P) found in the synovial tissue of individuals with rheumatoid arthritis is five times greater than that in those with osteoarthritis. Our study aims to determine whether inhibiting S1P2 can mitigate collagen-induced rheumatoid arthritis (CIA) by using an S1P2 antagonist, JTE-013, alongside DBA-1J S1pr2 wild-type (WT) and knock-out (KO) mice. CIA causes increases in arthritis scores, foot swelling, synovial hyperplasia, pannus formation, proteoglycan depletion, cartilage damage, and bone erosion, but these effects are markedly reduced when JTE-013 is administered to S1pr2 WT mice. CIA also elevates mRNA expression levels of pro-inflammatory Th1/Th17 cytokines in the foot and spleen, which are significantly decreased by JTE-013 in S1pr2 WT mice. Additionally, CIA raises Th1/Th17 and Treg cell counts, while JTE-013 reduces these elevations in the spleens of S1pr2 WT mice. Treatment with JTE-013 or the absence of S1pr2 curtails the differentiation of naïve T cells into Th1 and Th17 cells in a dose-dependent manner. In SW982 human synovial cells, JTE-013 lowers LPS-induced increases in pro-inflammatory cytokine levels. Overall, these findings propose that blocking S1P2 in immune and synovial cells may alleviate rheumatoid arthritis symptoms and offer a potential therapeutic approach.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea; (J.-H.L.); (J.-E.L.)
| | - Jung-Eun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea; (J.-H.L.); (J.-E.L.)
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea; (J.-H.L.); (J.-E.L.)
- Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| |
Collapse
|
10
|
Boboryko D, Olejnik-Wojciechowska J, Baranowska M, Bratborska AW, Skórka P, Pawlik A. Biological therapy for psoriatic arthritis: current state and future perspectives. Rheumatol Int 2024; 44:2711-2725. [PMID: 39311915 DOI: 10.1007/s00296-024-05722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 12/14/2024]
Abstract
Psoriatic arthritis is a medical condition that lies at the intersection of various fields of medicine, and its therapy always requires a comprehensive, holistic approach. Biological disease-modifying antirheumatic drugs (bDMARDs) constitute an extremely effective treatment method for PsA, provided that appropriate principles for patient qualification for the drug are followed, along with subsequent monitoring of the response to treatment. Based on their mechanisms of action, four main groups of bDMARDs used in PsA can be distinguished (TNF inhibitors, IL-12/23 and IL-23 inhibitors, IL-17 inhibitors, CTLA4 agonists). Clinical trials are ongoing in search of registration for additional bDMARDs, and the tasks for doctors and scientists worldwide include patient education, increasing treatment accessibility, and optimizing its costs.
Collapse
Affiliation(s)
- Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, Szczecin, 70-111, Poland
| | | | - Magdalena Baranowska
- Department of Physiology, Pomeranian Medical University, Szczecin, 70-111, Poland
| | | | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, Szczecin, 70-111, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, 70-111, Poland.
| |
Collapse
|
11
|
Lin KR, Li PX, Zhu XH, Mao XF, Peng JL, Chen XP, SiTu CY, Zhang LF, Luo W, Han YB, Yu SF. Peripheral immune characteristics and subset disorder in reproductive females with endometriosis. Front Immunol 2024; 15:1431175. [PMID: 39669572 PMCID: PMC11634862 DOI: 10.3389/fimmu.2024.1431175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Pathogenesis of endometriosis (EN) is still unknown, but growing evidence suggests that immune regulation may be important, and the pattern of peripheral immune changes in reproductive women with EN has yet to be fully explored. In this study, we conducted a comprehensive and systematic analysis of immune cell subsets within T cells, B cells, NK cells, and γδ T cells in peripheral blood (PB) samples from women with EN, women with uterine fibroids (UF) but without EN (UF-alone), and healthy controls using multi-parameter flow cytometry. Our findings revealed that UF, a common comorbidity of EN, exhibited similar peripheral immune features to EN, particularly in T cell and B cell immunity. Compared to healthy controls, we constructed the peripheral immune profile of EN. This profile highlighted that the immunopathogenic factors in EN predominantly relate to the immune disorder of B cells and their subsets, as well as the functional abnormalities within immune cell subsets of CD4+ T cells, CD8+ T cells, and γδ T cells. Moreover, using the random forest (RF) machine-learning method, we developed a diagnostic model that can effectively identify the patients with EN from healthy controls. The immune factors identified within this model could be pivotal for unraveling the immune pathogenic mechanisms of EN. Our study is the first to present a comprehensive depiction of the circulating immune features in EN, although the detailed roles and underlying mechanisms of these immune factors in the context of EN require further investigation.
Collapse
Affiliation(s)
- Kai-Rong Lin
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Pei-Xian Li
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Xiao-hong Zhu
- Department of Gynecology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xiao-fan Mao
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Jia-Li Peng
- Department of Gynecology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xiang-Ping Chen
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Cui-Yao SiTu
- Department of Gynecology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Li-Fang Zhang
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Wei Luo
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Yu-Bin Han
- Department of Gynecology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Si-Fei Yu
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| |
Collapse
|
12
|
Ma Y, Yi C, Cai N, Chen J. Integration of single-cell and spatial transcriptome sequencing identifies CDKN2A as a senescent biomarker in endothelial cells implicating hepatocellular carcinoma malignancy. J Cancer Res Clin Oncol 2024; 150:487. [PMID: 39503880 PMCID: PMC11541268 DOI: 10.1007/s00432-024-06017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/25/2024] [Indexed: 11/09/2024]
Abstract
PURPOSE Highly complex tumor microenvironment makes hepatocellular carcinoma (HCC) as one of the most malignant tumors worldwide. The role of cellular senescence in HCC has been gradually recognized. The present study aimed to comprehensively elucidate the senescence-related features of HCC in single-cell and spatial dimension. METHODS Single-cell RNA sequencing (scRNA-Seq) data was used to clarify the heterogeneity of senescence-related genes (SRGs) among multiple cell types within HCC. Spatial transcriptome RNA sequencing (stRNA-Seq) data was used for depicting SRGs features in spatial dimension. A prognostic model based on SRGs was constructed by using of bulk sequencing (bulk-Seq) data of HCC. The cell-cell interaction of senescent endothelial cells (ECs) in tumor microenvironment was analyzed. Then, the role of senescent ECs was verified through in vitro and in vivo experiments. RESULTS The level of senescence demonstrated substantial heterogeneity among different cell types within tumor microenvironment of HCC, where ECs exhibited the most prominent senescent phenotype. Senescent ECs activated specific regulatory pathways through communicating with other cell types, with a potential impact on tumor progression. Spatial analysis revealed senescent ECs mainly located in the core region of HCC. The interaction of senescent ECs and immune cells implicated their role in tumor progression and immunotherapeutic response. In addition, CDKN2A was identified as an independent risk factor for HCC prognosis by constructing a prognostic model. Patients with high risk displayed an even worse outcome. The experimental verification indicated senescence of ECs determined by CDKN2A exhibited a secretory phenotype. Furthermore, senescent ECs with CDKN2A overexpression promote the proliferation and migration of HCC. CONCLUSION The present study recognizes the critical effect of senescent ECs defined by CDKN2A in the promotion of tumor progression, which sheds new light on the investigation of ECs senescence in HCC.
Collapse
Affiliation(s)
- Yue Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China
| | - Chenhe Yi
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China
| | - Ning Cai
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Jinhong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China.
| |
Collapse
|
13
|
Jiang X, Gao M, Ding Y, Wang J, Song Y, Xiao H, Kong X. Interleukin-17B in common carp (Cyprinus carpio L.): Molecular cloning and immune effects as immune adjuvant of Aeromonas veronii formalin-killed vaccine. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109832. [PMID: 39147176 DOI: 10.1016/j.fsi.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The interleukin-17 (IL-17) family of cytokines is critical for host defense responses and mediates different pro- or anti-inflammatory mediators through different signaling pathways. However, the function of the related family member, IL-17B, in teleosts is poorly understood. In the present study, an IL-17B homolog (CcIL-17B) in common carp (Cyprinus carpio) was identified, and sequence analysis showed that CcIL-17B had eight conserved cysteine residues, four of which could form two pairs of disulfide bonds, which in turn formed a ring structure composed of nine amino acids (aa). The deduced aa sequences of CcIL-17B shared 35.79-92.93 % identify with known homologs. The expression patterns were characterized in healthy and bacteria-infected carp. In healthy carp, IL-17B mRNA was highly expressed in the spleen, whereas Aeromonas veronii effectively induced CcIL-17B expression in the liver, head, kidney, gills, and intestine. The recombinant protein rCcIL-17B could regulate the expression levels of inflammatory cytokines (such as IL-1β, IL-6, TNF-α, and IFN-γ) in primary cultured head kidney leukocytes in vitro. As an adjuvant for the formalin-killed A. veronii (FKA) vaccine, rCcIL-17B induced the production of specific antibodies more rapidly and effectively than Freund's complete adjuvant (FCA). The results of the challenge experiments showed that the relative percent survival (RPS) after vaccination with rCcIL-17B was 78.13 %. This percentage was significantly elevated compared to that observed in the alternative experimental groups (62.5 % and 37.5 %, respectively). Additionally, the bacterial loads in the spleen of the rCcIL-17B + FKA group were significantly lower than those in the control group from 12 h to 48 h after bacterial infection. Furthermore, histological analysis showed that the epithelial cells were largely intact, and the striated border structure was complete in the intestine of rCcIL-17B + FKA group. Collectively, our results demonstrate that CcIL-17B plays a crucial role in eliciting immune responses and evokes a higher RPS against A. veronii challenge compared to the traditional adjuvant FCA, indicating that rCcIL-17B is a promising vaccine adjuvant for controlling A. veronii infection.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hehe Xiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
14
|
Braun J, Sieper J, Märker-Hermann E. Looking back on 51 years of the Carol Nachman Prize in Rheumatology-significance for the field of spondyloarthritis research. Z Rheumatol 2024; 83:563-574. [PMID: 38864856 PMCID: PMC11442482 DOI: 10.1007/s00393-024-01496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 06/13/2024]
Abstract
The city and casino of Wiesbaden, capital of the German state Hessen, have endowed the Carol Nachman Prize to promote research work in the field of rheumatology since 1972. The prize, endowed with 37,500 €, is the second highest medical award in Germany and serves to promote clinical, therapeutic, and experimental research work in the field of rheumatology. In June 2022, the 50-year anniversary was celebrated. In the symposium preceding the award ceremony, an overview was given on the significance of spondyloarthritis for the work of the awardees in the past 30 years. This overview has now been put together to inform the interested community of the work performed, including the opinion of the awardees regarding what they consider to be their most important contribution.
Collapse
Affiliation(s)
- Jürgen Braun
- Rheumatologisches Versorgungszentrum Steglitz, Schloßstr. 110, 12163, Berlin, Germany.
| | - Joachim Sieper
- Rheumatologie am Campus Benjamin Franklin, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
15
|
Ivanova M, Zimba O, Dimitrov I, Angelov AK, Georgiev T. Axial Spondyloarthritis: an overview of the disease. Rheumatol Int 2024; 44:1607-1619. [PMID: 38689098 DOI: 10.1007/s00296-024-05601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Axial Spondyloarthritis (axSpA) is a chronic, inflammatory, immune-mediated rheumatic disease that comprises two subsets, non-radiographic and radiographic axSpA, and belongs to a heterogeneous group of spondyloarthritides (SpA). Over the years, the concept of SpA has evolved significantly, as reflected in the existing classification criteria. Considerable progress has been made in understanding the genetic and immunological basis of axSpA, in studying the processes of chronic inflammation and pathological new bone formation, which are pathognomonic for the disease. As a result, new medication therapies were developed, which bring more effective ways for disease control. This review presents a brief overview of the literature related to these aspects of disease after summarising the available information on the topic that we considered relevant. Specifically, it delves into recent research illuminating the primary pathological processes of enthesitis and associated osteitis in the context of inflammation in axSpA. The exploration extends to discussion of inflammatory pathways, with a particular focus on Th1/Th17-mediated immunity and molecular signaling pathways of syndesmophyte formation. Additionally, the review sheds light on the pivotal role of cytokine dysregulation, highlighting the significance of the IL-23/17 axis and TNF-α in this intricate network of immune responses which is decisive for therapeutic approaches in the disease.
Collapse
Affiliation(s)
- Mariana Ivanova
- Medical Faculty, Medical University-Sofia, Sofia, Bulgaria.
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski", 13, Urvich St., Sofia, 1612, Bulgaria.
| | - Olena Zimba
- Department of Rheumatology, Immunology and Internal Medicine, University Hospital in Krakow, Kraków, Poland
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of Internal Medicine N2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Ivan Dimitrov
- Clinic of Orthopedics and Traumatology, University Hospital "Prof. Dr. St. Kirkovich", Stara Zagora, Bulgaria
- Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | | | - Tsvetoslav Georgiev
- First Department of Internal Medicine, Faculty of Medicine, Medical University-Varna, Varna, Bulgaria
- Rheumatology Clinic, St. Marina University Hospital-Varna, Varna, Bulgaria
| |
Collapse
|
16
|
Kao CJ, Charmsaz S, Alden SL, Brancati M, Li HL, Balaji A, Munjal K, Howe K, Mitchell S, Leatherman J, Griffin E, Nakazawa M, Tsai HL, Danilova L, Thoburn C, Gizzi J, Gross NE, Hernandez A, Coyne EM, Shin SM, Babu JS, Apostol GW, Durham J, Christmas BJ, Konig MF, Lipson EJ, Naidoo J, Cappelli LC, Pabani A, Ged Y, Baretti M, Brahmer J, Hoffman-Censits J, Seiwert TY, Garonce-Hediger R, Guha A, Bansal S, Tang L, Jaffee EM, Chandler GS, Mohindra R, Ho WJ, Yarchoan M. Immune-related events in individuals with solid tumors on immunotherapy associate with Th17 and Th2 signatures. J Clin Invest 2024; 134:e176567. [PMID: 39403935 PMCID: PMC11473156 DOI: 10.1172/jci176567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUNDImmune-related adverse events (irAEs) and their associated morbidity/mortality are a key concern for patients receiving immune checkpoint inhibitors (ICIs). Prospective evaluation of the drivers of irAEs in a diverse pan-tumor cohort is needed to identify patients at greatest risk and to develop rational treatment and interception strategies.METHODSIn an observational study, we prospectively collected blood samples and performed regular clinical evaluations for irAEs in patients receiving ICI therapy as standard of care for solid tumors. We performed in-parallel analysis of cytokines by Luminex immunoassay and circulating immune cells by cytometry by time-of-flight (CyTOF) at baseline and on treatment to investigate mechanisms of irAEs.RESULTSWe enrolled 111 patients, of whom 40.5% developed a symptomatic irAE (grade ≥ 2). Development of a grade ≥ 2 irAE was positively associated with the use of combination ICI and a history of an autoimmune disorder. Early changes in T helper 17 (Th17) (IL-6, IL-17f), type 2 (IL-5, IL-13, IL-25), and type 1 (TNF-α) cytokine signatures and congruent on-treatment expansions of Th17 and Th2 effector memory (Th2EM) T cell populations in peripheral blood were positively associated with the development of grade ≥2 irAEs. IL-6 levels were also associated with inferior cancer-specific survival and overall survival.CONCLUSIONSIn a diverse, prospective pan-tumor cohort, Th17 and Th2 skewing during early ICI treatment was associated with the development of clinically relevant irAEs but not antitumor responses, providing possible targets for monitoring and therapeutic interventions.FUNDINGJohns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, the NCI SPORE in Gastrointestinal Cancers (P50 CA062924), NCI grant (R50CA243627 to LD), the NIH Center Core Grant (P30 CA006973), Swim Across America (to MY), NIAMS (K23AR075872 to LC), and imCORE-Genentech grant 137515 (to Johns Hopkins Medicine on behalf of MY).
Collapse
Affiliation(s)
- Chester J. Kao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | | | - Madelena Brancati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Howard L. Li
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aanika Balaji
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kabeer Munjal
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Kathryn Howe
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Sarah Mitchell
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - James Leatherman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Ervin Griffin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Mari Nakazawa
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Hua-Ling Tsai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ludmila Danilova
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chris Thoburn
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Gizzi
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole E. Gross
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Erin M. Coyne
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Sarah M. Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Jayalaxmi Suresh Babu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - George W. Apostol
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Jennifer Durham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Brian J. Christmas
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Maximilian F. Konig
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan J. Lipson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jarushka Naidoo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Beaumont Hospital, Dublin, Ireland
- RCSI University of Health Sciences, Dublin, Ireland
| | - Laura C. Cappelli
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aliyah Pabani
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yasser Ged
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marina Baretti
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jean Hoffman-Censits
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tanguy Y. Seiwert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Aditi Guha
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Sanjay Bansal
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Laura Tang
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Elizabeth M. Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - G. Scott Chandler
- F. Hoffmann-La Roche Ltd., a member of the imCORE network, Basel, Switzerland
| | - Rajat Mohindra
- F. Hoffmann-La Roche Ltd., a member of the imCORE network, Basel, Switzerland
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
| | - Mark Yarchoan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Silveira-Freitas JEP, Campagnolo ML, dos Santos Cortez M, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. Long chikungunya? An overview to immunopathology of persistent arthralgia. World J Virol 2024; 13:89985. [PMID: 38984075 PMCID: PMC11229846 DOI: 10.5501/wjv.v13.i2.89985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 06/24/2024] Open
Abstract
Chikungunya fever (CF) is caused by an arbovirus whose manifestations are extremely diverse, and it has evolved with significant severity in recent years. The clinical signs triggered by the Chikungunya virus are similar to those of other arboviruses. Generally, fever starts abruptly and reaches high levels, followed by severe polyarthralgia and myalgia, as well as an erythematous or petechial maculopapular rash, varying in severity and extent. Around 40% to 60% of affected individuals report persistent arthralgia, which can last from months to years. The symptoms of CF mainly represent the tissue tropism of the virus rather than the immunopathogenesis triggered by the host's immune system. The main mechanisms associated with arthralgia have been linked to an increase in T helper type 17 cells and a consequent increase in receptor activator of nuclear factor kappa-Β ligand and bone resorption. This review suggests that persistent arthralgia results from the presence of viral antigens post-infection and the constant activation of signaling lymphocytic activation molecule family member 7 in synovial macrophages, leading to local infiltration of CD4+ T cells, which sustains the inflammatory process in the joints through the secretion of pro-inflammatory cytokines. The term "long chikungunya" was used in this review to refer to persistent arthralgia since, due to its manifestation over long periods after the end of the viral infection, this clinical condition seems to be characterized more as a sequel than as a symptom, given that there is no active infection involved.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa de Pós-graduação em Biotecnologia, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| |
Collapse
|
19
|
Byravan S, Samarasinghe H, Yuan JSJ, Tahir SH, Moorthy A, Tahir H. From bench to bedside - is there a role of IL-17 drugs in rheumatoid arthritis? Expert Opin Investig Drugs 2024; 33:591-600. [PMID: 38696223 DOI: 10.1080/13543784.2024.2351505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION IL-17 has been described as a pro-inflammatory cytokine that is relevant in the seronegative spondylarthritides with IL-17 targeted therapies being licensed for their treatment.There is evidence to demonstrate that IL-17 is found in RA joints and contributes to the pro-inflammatory cascade. This results in synovial hyperplasia and osteoclastogenesis thus causing joint destruction and bony erosions. AREAS COVERED This review article summarizes trials that have studied the use of IL-17 targeted therapies in RA patients who have failed conventional synthetic disease-modifying therapy (C-DMARDS) and biologic DMARDS. EXPERT OPINION The trials that have studied IL-17 inhibitors in RA patients have only shown a modest improvement in disease activity. In several trials, the primary endpoint was not achieved whilst in others, when comparing with existing licensed biologics for RA, did not demonstrate any superiority.Tissue Necrosis Factor-alpha (TNF-α) likely plays more of a pivotal role in the pathogenesis of RA with IL-17 having a synergistic effect. Therefore, in our opinion, IL-17 inhibitors as an independent therapy for RA are less likely to provide a cost-effective benefit. There may be scope to potentially combine it with TNF-α-inhibitors (TNF-i), but this requires further research especially with the potential concerns related to increased immunosuppression.
Collapse
Affiliation(s)
- Swetha Byravan
- Department of Rheumatology, University Hospitals of Birmingham, Birmingham, UK
| | | | | | | | - Arumugam Moorthy
- Department of Rheumatology, University Hospitals of Leicester NHS Trust, Leicester, UK
- College of Life Sciences, University of Leicester, Leicester, UK
| | - Hasan Tahir
- Department of Rheumatology, Royal Free London NHS Foundation Trust, London, UK
- Division of Medicine, University College London, London, UK
| |
Collapse
|
20
|
Lee JE, Lee JH, Koh JM, Im DS. Free Fatty Acid 4 Receptor Activation Attenuates Collagen-Induced Arthritis by Rebalancing Th1/Th17 and Treg Cells. Int J Mol Sci 2024; 25:5866. [PMID: 38892051 PMCID: PMC11172425 DOI: 10.3390/ijms25115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Dietary supplementation with n-3 polyunsaturated fatty acids (PUFA) has been found to be beneficial in rodent rheumatoid arthritis models and human trials. However, the molecular targets of n-3 PUFAs and their beneficial effects on rheumatoid arthritis are under-researched. Free fatty acid receptor 4 (FFA4, also known as GPR120) is a receptor for n-3 PUFA. We aim to investigate whether FFA4 activation reduces collagen-induced rheumatoid arthritis (CIA) by using an FFA4 agonist, compound A (CpdA), in combination with DBA-1J Ffa4 gene wild-type (WT) and Ffa4 gene knock-out (KO) mice. CIA induced an increase in the arthritis score, foot edema, synovial hyperplasia, pannus formation, proteoglycan loss, cartilage damage, and bone erosion, whereas the administration of CpdA significantly suppressed those increases in Ffa4 WT mice but not Ffa4 gene KO mice. CIA increased mRNA expression levels of pro-inflammatory Th1/Th17 cytokines, whereas CpdA significantly suppressed those increases in Ffa4 WT mice but not Ffa4 gene KO mice. CIA induced an imbalance between Th1/Th17 and Treg cells, whereas CpdA rebalanced them in spleens from Ffa4 WT mice but not Ffa4 gene KO mice. In SW982 synovial cells, CpdA reduced the LPS-induced increase in pro-inflammatory cytokine levels. In summary, the present results suggest that the activation of FFA4 in immune and synovial cells could suppress the characteristics of rheumatoid arthritis and be an adjuvant therapy.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/drug therapy
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Th17 Cells/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/agonists
- Mice
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/drug effects
- Mice, Knockout
- Mice, Inbred DBA
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Male
- Cytokines/metabolism
Collapse
Affiliation(s)
- Jung-Eun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-E.L.); (J.-H.L.)
| | - Ju-Hyun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-E.L.); (J.-H.L.)
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea;
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-E.L.); (J.-H.L.)
- Division of Endocrinology and Metabolism, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea;
| |
Collapse
|
21
|
Dascălu RC, Bărbulescu AL, Stoica LE, Dinescu ȘC, Biță CE, Popoviciu HV, Ionescu RA, Vreju FA. Review: A Contemporary, Multifaced Insight into Psoriasis Pathogenesis. J Pers Med 2024; 14:535. [PMID: 38793117 PMCID: PMC11122105 DOI: 10.3390/jpm14050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Psoriasis is a chronic recurrent inflammatory autoimmune pathology with a significant genetic component and several interferences of immunological cells and their cytokines. The complex orchestration of psoriasis pathogenesis is related to the synergic effect of immune cells, polygenic alterations, autoantigens, and several other external factors. The major act of the IL-23/IL-17 axis, strongly influencing the inflammatory pattern established during the disease activity, is visible as a continuous perpetuation of the pro-inflammatory response and keratinocyte activation and proliferation, leading to the development of psoriatic lesions. Genome-wide association studies (GWASs) offer a better view of psoriasis pathogenic pathways, with approximately one-third of psoriasis's genetic impact on psoriasis development associated with the MHC region, with genetic loci located on chromosome 6. The most eloquent genetic factor of psoriasis, PSORS1, was identified in the MHC I site. Among the several factors involved in its complex etiology, dysbiosis, due to genetic or external stimulus, induces a burst of pro-inflammatory consequences; both the cutaneous and gut microbiome get involved in the psoriasis pathogenic process. Cutting-edge research studies and comprehensive insights into psoriasis pathogenesis, fostering novel genetic, epigenetic, and immunological factors, have generated a spectacular improvement over the past decades, securing the path toward a specific and targeted immunotherapeutic approach and delayed progression to inflammatory arthritis. This review aimed to offer insight into various domains that underline the pathogenesis of psoriasis and how they influence disease development and evolution. The pathogenesis mechanism of psoriasis is multifaceted and involves an interplay of cellular and humoral immunity, which affects susceptible microbiota and the genetic background. An in-depth understanding of the role of pathogenic factors forms the basis for developing novel and individualized therapeutic targets that can improve disease management.
Collapse
Affiliation(s)
- Rucsandra Cristina Dascălu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Andreea Lili Bărbulescu
- Department of Pharmacology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Loredana Elena Stoica
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Cristina Elena Biță
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Horațiu Valeriu Popoviciu
- Department of Rheumatology, BFK and Medical Rehabilitation, University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Mures, Romania;
| | - Răzvan Adrian Ionescu
- Third Internal Medicine Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Florentin Ananu Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| |
Collapse
|
22
|
Liao X, Xin J, Yu Z, Yan W, Li C, Cao L, Zhang H, Wang W. Unlocking the antiviral potential of rosmarinic acid against chikungunya virus via IL-17 signaling pathway. Front Cell Infect Microbiol 2024; 14:1396279. [PMID: 38800832 PMCID: PMC11127627 DOI: 10.3389/fcimb.2024.1396279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Background The Chikungunya virus is an Alphavirus that belongs to the Togaviridae family and is primarily transmitted by mosquitoes. It causes acute infection characterized by fever, headache, and arthralgia. Some patients also experience persistent chronic osteoarthritis-like symptoms. Dedicated antiviral treatments are currently unavailable for CHIKV. This study aims to explore the potential anti-CHIKV effect of rosmarinic acid using network pharmacology. Methods This study employed network pharmacology to predict and verify the molecular targets and pathways associated with ROSA in the context of CHIKV. The analysis outcomes were further validated using molecular docking and in vitro experiments. Results The analysis of CHIKV targets using the Kyoto Encyclopedia of Genes and Genomes and MCODE identified IL-17 as an important pathogenic pathway in CHIKV infection. Among the 30 targets of ROSA against CHIKV, nearly half were found to be involved in the IL-17 signaling pathway. This suggests that ROSA may help the host in resisting CHIKV invasion by modulating this pathway. Molecular docking validation results showed that ROSA can stably bind to 10 core targets out of the 30 identified targets. In an in vitro CHIKV infection model developed using 293T cells, treatment with 60 μM ROSA significantly improved the survival rate of infected cells, inhibited 50% CHIKV proliferation after CHIKV infection, and reduced the expression of TNF-α in the IL-17 signaling pathway. Conclusion This study provides the first confirmation of the efficacy of ROSA in suppressing CHIKV infection through the IL-17 signaling pathway. The findings warrant further investigation to facilitate the development of ROSA as a potential treatment for CHIKV infection.
Collapse
Affiliation(s)
- Xinfei Liao
- Wenzhou Polytechnic, Wenzhou, Zhejiang, China
| | - Jialiang Xin
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Ziping Yu
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Weiming Yan
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Chenghui Li
- College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Liang Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Wei Wang
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
23
|
Gao Y, Lu Y, Liang X, Zhao M, Yu X, Fu H, Yang W. CD4 + T-Cell Senescence in Neurodegenerative Disease: Pathogenesis and Potential Therapeutic Targets. Cells 2024; 13:749. [PMID: 38727285 PMCID: PMC11083511 DOI: 10.3390/cells13090749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence. T-cells are an important part of the immune system, and their senescence is the main feature of immunosenescence. The appearance of senescent T-cells has been shown to potentially lead to chronic inflammation and tissue damage, with some studies indicating a direct link between T-cell senescence, inflammation, and neuronal damage. The role of these subsets with different functions in NDs is still under debate. A growing body of evidence suggests that in people with a ND, there is a prevalence of CD4+ T-cell subsets exhibiting characteristics that are linked to senescence. This underscores the significance of CD4+ T-cells in NDs. In this review, we summarize the classification and function of CD4+ T-cell subpopulations, the characteristics of CD4+ T-cell senescence, the potential roles of these cells in animal models and human studies of NDs, and therapeutic strategies targeting CD4+ T-cell senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (Y.L.); (X.L.); (M.Z.); (X.Y.); (H.F.)
| |
Collapse
|
24
|
Thiam F, Diop G, Coulonges C, Derbois C, Thiam A, Diouara AAM, Mbaye MN, Diop M, Nguer CM, Dieye Y, Mbengue B, Zagury JF, Deleuze JF, Dieye A. An elevated level of interleukin-17A in a Senegalese malaria cohort is associated with rs8193038 IL-17A genetic variant. BMC Infect Dis 2024; 24:275. [PMID: 38438955 PMCID: PMC10910704 DOI: 10.1186/s12879-024-09149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/17/2024] [Indexed: 03/06/2024] Open
Abstract
Malaria infection is a multifactorial disease partly modulated by host immuno-genetic factors. Recent evidence has demonstrated the importance of Interleukin-17 family proinflammatory cytokines and their genetic variants in host immunity. However, limited knowledge exists about their role in parasitic infections such as malaria. We aimed to investigate IL-17A serum levels in patients with severe and uncomplicated malaria and gene polymorphism's influence on the IL-17A serum levels. In this research, 125 severe (SM) and uncomplicated (UM) malaria patients and 48 free malaria controls were enrolled. IL-17A serum levels were measured with ELISA. PCR and DNA sequencing were used to assess host genetic polymorphisms in IL-17A. We performed a multivariate regression to estimate the impact of human IL-17A variants on IL-17A serum levels and malaria outcomes. Elevated serum IL-17A levels accompanied by increased parasitemia were found in SM patients compared to UM and controls (P < 0.0001). Also, the IL-17A levels were lower in SM patients who were deceased than in those who survived. In addition, the minor allele frequencies (MAF) of two IL-17A polymorphisms (rs3819024 and rs3748067) were more prevalent in SM patients than UM patients, indicating an essential role in SM. Interestingly, the heterozygous rs8193038 AG genotype was significantly associated with higher levels of IL-17A than the homozygous wild type (AA). According to our results, it can be concluded that the IL-17A gene rs8193038 polymorphism significantly affects IL-17A gene expression. Our results fill a gap in the implication of IL-17A gene polymorphisms on the cytokine level in a malaria cohort. IL-17A gene polymorphisms also may influence cytokine production in response to Plasmodium infections and may contribute to the hyperinflammatory responses during severe malaria outcomes.
Collapse
Affiliation(s)
- Fatou Thiam
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal.
| | - Gora Diop
- Departement de Biologie Animale, Faculte Des Sciences Et Techniques, Unite Postulante de Biologie GenetiqueGenomique Et Bio-Informatique (G2B), Universite Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, Dakar, BP: 5005, Senegal
- Pole d'Immunophysiopathologie & Maladies Infectieuses (IMI), Institut Pasteur de Dakar, 36, Avenue Pasteur, Dakar, BP: 220, Senegal
| | - Cedric Coulonges
- Equipe GBA «GenomiqueBioinformatique & Applications», Conservatoire National Des Arts Et Metiers, 292, Rue Saint Martin, Paris Cedex 03, Paris, 75141, France
| | - Celine Derbois
- Centre National de Recherche en Génétique Humaine (CNRGH), Institut de Biologie François Jacob, 2 Rue Gaston Crémieux, CP 5721, Evry Cedex, 91057, France
| | - Alassane Thiam
- Pole d'Immunophysiopathologie & Maladies Infectieuses (IMI), Institut Pasteur de Dakar, 36, Avenue Pasteur, Dakar, BP: 220, Senegal
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Mame Ndew Mbaye
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Mamadou Diop
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Babacar Mbengue
- Service d'Immunologie, Faculté de Médecine, de Pharmacie Et d'Odontostomatologie, Université Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, Dakar, BP: 5005, Senegal
| | - Jean-Francois Zagury
- Equipe GBA «GenomiqueBioinformatique & Applications», Conservatoire National Des Arts Et Metiers, 292, Rue Saint Martin, Paris Cedex 03, Paris, 75141, France
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génétique Humaine (CNRGH), Institut de Biologie François Jacob, 2 Rue Gaston Crémieux, CP 5721, Evry Cedex, 91057, France
| | - Alioune Dieye
- Service d'Immunologie, Faculté de Médecine, de Pharmacie Et d'Odontostomatologie, Université Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, Dakar, BP: 5005, Senegal
| |
Collapse
|
25
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
26
|
Shi W, Xu Y, Zhang A, Jia X, Liu S, Hu Z. Inflammatory cytokines and their potential role in Sjogren's syndrome risk: insights from a mendelian randomization study. Adv Rheumatol 2024; 64:14. [PMID: 38365917 DOI: 10.1186/s42358-024-00354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024] Open
Abstract
AIM This study aimed to investigate the causal impact of inflammatory cytokines on Sjogren's Syndrome (SS) and to identify potential biomarkers for SS clinical management using Mendelian Randomization (MR). MATERIALS AND METHODS Leveraging GWAS summary data of inflammatory cytokines and SS, we executed the first two-sample MR analysis. Genetic variants from prior GWASs associated with circulating inflammatory cytokines served as instrumental variables (IVs). Data regarding cytokines were analyzed using the Olink Target-96 Inflammation panel, synthesizing data from 14,824 participants. GWAS summary statistics for SS were procured from the UK Biobank, focusing on samples of European ancestry. To discern the causal relationship between inflammatory cytokines and SS, several MR methodologies, including inverse variance weighted (IVW) and MR-Egger regression, were applied. RESULTS After rigorous IV quality control, 91 cytokines were incorporated into the MR analysis. The IVW analysis identified 8 cytokines with a positive association to SS: Axin-1 (OR 2.56, 95% CI 1.07-6.10), T-cell surface glycoprotein CD5 (OR 1.81, 95% CI 1.08-3.02), CUDP1 (OR 1.61, 95% CI 1.00-2.58), CXCL10 (OR 1.92, 95% CI 1.25-2.95), IL-4 (OR 2.18, 95% CI 1.22-3.91), IL-7 (OR 2.35, 95% CI 1.27-4.33), MCP-2 (OR 1.27, 95% CI 1.05-1.54), and TNFRSF9 (OR 1.83, 95% CI 1.03-3.24), suggesting their potential in increasing SS risk. CONCLUSION Our study conducted through MR, identified various inflammatory cytokines associated with SS risk, validating some previous research results and offering some new potential biomarkers for SS. However, these findings necessitate further research for validation and exploration of their precise role in the onset and progression of SS.
Collapse
Affiliation(s)
- Wenbin Shi
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Guanlan Avenue 187, Shenzhen City, Guangdong Province, 518110, P. R. China
| | - Yuli Xu
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Guanlan Avenue 187, Shenzhen City, Guangdong Province, 518110, P. R. China
| | - Anan Zhang
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Guanlan Avenue 187, Shenzhen City, Guangdong Province, 518110, P. R. China
| | - Xiqun Jia
- Department of Pediatrics, Shenzhen Longhua District Central Hospital, Guanlan Avenue 187, Guangdong Province, Shenzhen Cit, 518110, P. R. China
| | - Shuhua Liu
- Department of Neonatalogy, Shenzhen Longhua District Central Hospital, Guanlan Avenue 187, Shenzhen City, Guangdong Province, 518110, P. R. China.
- Department of Pediatrics, Shenzhen Longhua District Central Hospital, Guanlan Avenue 187, Guangdong Province, Shenzhen Cit, 518110, P. R. China.
| | - Ziyang Hu
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Guanlan Avenue 187, Shenzhen City, Guangdong Province, 518110, P. R. China.
| |
Collapse
|
27
|
Krsmanović L, Arsović N, Bokonjić D, Nešić V, Dudvarski Z, Pavlović D, Dubravac Tanasković M, Ristić S, Elez-Burnjaković N, Balaban R, Ćurčić B, Ivanović R, Vuković N, Vuković M, Milić M, Joksimović B. The Impact of Cytokines on Health-Related Quality of Life in Adolescents with Allergic Rhinitis. Biomedicines 2024; 12:428. [PMID: 38398030 PMCID: PMC10886792 DOI: 10.3390/biomedicines12020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Frequent episodes of nasal symptoms are the usual clinical manifestations (CM) of allergic rhinitis (AR) and have a significant negative impact on health-related quality of life (HRQoL) in adolescents. The purpose of this cross-sectional study was to test the hypothesis that cytokines in nasal mucus may be associated with HRQoL in adolescents with AR. METHODS European Quality of Life 5 Dimensions 3 Level Version (EQ-5D-3L), "The Adolescent Rhinoconjunctivitis Quality of Life Questionnaire" (AdolRQLQ) and the Total 4 Symptom Score (T4SS) scoring system were administered to 113 adolescents with AR, nonallergic rhinitis (NAR) and to healthy control subjects. Nasal secretions were sampled and tested for 13 cytokines using a multiplex flow cytometric bead assay. RESULTS The AR group had significantly lower EQ-5D-3L (0.661 ± 0.267 vs. 0.943 ± 0.088; p < 0.001) and higher AdolRQLQ total scores (2.76 ± 1.01 vs. 1.02 ± 0.10; p < 0.001) compared to the control group. The AR group had higher concentrations of IL-1β (p = 0.002), IL-6 (p = 0.031), IL-8 (p < 0.001), IL17-A (p = 0.013) and IL-18 (p = 0.014) compared to the control group, and IL-1β, IL-6, IL17-A and IL-18 were significantly (p < 0.050) increased with disease progression. Cytokines IL-1β, IL-6, as well as severe CM, were identified as significant predictors of lower HRQoL in adolescents with AR. CONCLUSIONS This study identified IL-1β, IL-6, as well as severe CM, as predictors of lower HRQoL in adolescents with AR. However, these results should only serve as a starting point for additional confirmation research.
Collapse
Affiliation(s)
- Ljiljana Krsmanović
- University Hospital Foča, 73300 Foča, Bosnia and Herzegovina
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Nenad Arsović
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
- Clinic of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Bokonjić
- University Hospital Foča, 73300 Foča, Bosnia and Herzegovina
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Vladimir Nešić
- Clinic of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Dudvarski
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
- Clinic of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia
| | - Dragana Pavlović
- University Hospital Foča, 73300 Foča, Bosnia and Herzegovina
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | | | - Siniša Ristić
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | | | - Radmila Balaban
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Branislava Ćurčić
- University Hospital Foča, 73300 Foča, Bosnia and Herzegovina
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Radenko Ivanović
- University Hospital Foča, 73300 Foča, Bosnia and Herzegovina
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | | | - Maja Vuković
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Marija Milić
- Department of Epidemiology, Faculty of Medicine, University of Pristina Temporarily Seated in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia
| | - Bojan Joksimović
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| |
Collapse
|
28
|
Zhou MS, Zheng SY, Chen C, Li X, Zhang Q, Zhao YJ, Zhang W. Gene expression analysis to identify mechanisms underlying improvement of myocardial fibrosis by finerenone in SHR. Biochem Pharmacol 2024; 220:115975. [PMID: 38086490 DOI: 10.1016/j.bcp.2023.115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Both spironolactone and finerenone treatments significantly reduced SBP and there was no statistical difference in their antihypertensive effects. The differences in body weight (at the end of 1/2/3/4 week) to pre-dose body weight ratio and heart rate (at the end of 1/2/3/4 week) to pre-dose heart rate ratio were not statistically significant in the vehicle, spironolactone, finerenone, and control groups.There was no statistically significant difference in mortality among the vehicle, spironolactone, and finerenone groups. The relative heart mass, ANP, BNP, CVF, Col I, TGF-β, and Casp-3 were gradually decreased in vehicle group, spironolactone group, and finerenone group. Among them, BNP, CVF, TGF-β, and Casp-3 were significantly decreased in the finerenone group compared with the vehicle group. HE and Masson staining showed that the cardiomyocytes of rats in the vehicle group and spironolactone group were disorganized, with cell hypertrophy, significantly enlarged cell gaps and a large amount of collagen deposition, whereas the cardiomyocytes of rats in the finerenone group and the control group were more neatly arranged, with smaller cell gaps and a small amount of collagen tissue deposition. RNA sequencing (RNA-seq) showed that there was a total of 119 differentially expressed genes (DEGs) between finerenone treatment and vehicle treatment. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that the signaling pathways involved were mainly in drug metabolism-cytochrome P450, chemical carcinogenesis, IL-17 signaling pathway, axon guidance, and hematopoietic cell lineage. Protein-protein interaction (PPI) analysis showed that the core genes were Oaslf, Nos2, LOC687780, Rhobtb1, Ephb3, and Rps27a.
Collapse
Affiliation(s)
- Ming-Shuang Zhou
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China.
| | - Shao-Ying Zheng
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China
| | - Cheng Chen
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China
| | - Xue Li
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China
| | - Qin Zhang
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China
| | - Ya-Jing Zhao
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China.
| | - Wen Zhang
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China.
| |
Collapse
|
29
|
Zeisbrich M, Thiel J, Venhoff N. The IL-17 pathway as a target in giant cell arteritis. Front Immunol 2024; 14:1199059. [PMID: 38299156 PMCID: PMC10828953 DOI: 10.3389/fimmu.2023.1199059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
The network of IL-17 cytokines is considered a key component of autoimmune and inflammatory processes. Blocking IL-17 showed great success in psoriasis as well as psoriatic arthritis, and in patients with axial spondyloarthritis. Secukinumab is one of the approved IL-17A inhibitors for these diseases and is now routinely used. In giant cell arteritis, a large vessel vasculitis, there is accumulating evidence for a pathogenic role of IL-17 and Th17 cells, which are part of the CD4+ T-cell subset. Giant cell arteritis occurs in individuals over 50 years of age and many have relative contraindications to glucocorticoid therapy, which today still represents the mainstay therapy. Despite the approval of tocilizumab, which targets the IL-6 receptor, a high demand for glucocorticoid-sparing agents remains that combine the effective suppression of the acute inflammation observed in giant cell arteritis with a safety profile that matches the needs of an older patient population. The first results from a phase II proof-of-principle study (TitAIN) support an optimistic outlook on a potential new treatment option with secukinumab in giant cell arteritis.
Collapse
Affiliation(s)
- Markus Zeisbrich
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Eshwar V, Kamath A. Assessment of safety profile of secukinumab in real-world scenario using United States food and drug administration adverse event reporting system database. Sci Rep 2024; 14:1222. [PMID: 38216608 PMCID: PMC10786882 DOI: 10.1038/s41598-023-50013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024] Open
Abstract
Secukinumab is an anti-IL-17 monoclonal antibody approved for treating psoriasis and various arthritides. A comprehensive evaluation of its safety, especially in a real-world setting, is necessary. This study aimed to describe the adverse events (AE) associated with secukinumab use using the United States Food and Drug Administration Adverse Event Reporting System (FAERS) database. FAERS data files containing AE reports from 2015 to 2021 were downloaded for data mining. Primary or secondary suspect medications indicated for psoriasis were identified and analyzed. Medical dictionary for regulatory activities (MedDRA version 24.1) was used to analyze the AE terms. To detect potential safety signals of AE from secukinumab use, disproportionality analysis was used. A total of 365,590 adverse event reports were identified; of these, 44,761 reports involved the use of secukinumab. Safety signals were identified for ocular infections and gastrointestinal adverse events at the standardised MedDRA query level. Safety signals for oral candidiasis, oral herpes, conjunctivitis, eye infections, and ulcerative colitis were identified at the preferred term level. The findings of our study are consistent with those of earlier studies, such as the increased risk of infections and inflammatory bowel disease. However, our study also identified additional safety signals that need to be further evaluated.
Collapse
Affiliation(s)
- Vishnu Eshwar
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
31
|
Wang X, Han C, Yang D, Zhou J, Dong H, Wei Z, Xu S, Xu C, Zhang Y, Sun Y, Ni B, Guo S, Zhang J, Zhao T, Chen X, Luo J, Wu Y, Tian Y. STAT3 and SOX-5 induce BRG1-mediated chromatin remodeling of RORCE2 in Th17 cells. Commun Biol 2024; 7:10. [PMID: 38172644 PMCID: PMC10764326 DOI: 10.1038/s42003-023-05735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Retinoid-related orphan receptor gamma t (RORγt) is the lineage-specific transcription factor for T helper 17 (Th17) cells. Our previous study demonstrated that STAT3 likely participates in the activation of RORCE2 (a novel enhancer of the RORγt gene) in Th17 cells. However, the detailed mechanism is still unclear. Here, we demonstrate that both STAT3 and SOX-5 mediate the enhancer activity of RORCE2 in vitro. Deletion of the STAT3 binding site (STAT3-BS) in RORCE2 impaired RORγt expression and Th17 differentiation, resulting in reduced severity of experimental autoimmune encephalomyelitis (EAE). Mechanistically, STAT3 and SOX-5 bind the RORCE2 region and recruit the chromatin remodeling factor BRG1 to remodel the nucleosomes positioned at this region. Collectively, our data suggest that STAT3 and SOX-5 mediate the differentiation of Th17 cells through the induction of BRG1-mediated chromatin remodeling of RORCE2 in Th17 cells.
Collapse
Affiliation(s)
- Xian Wang
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
- Department of Immunology, Medical College of Qingdao University, 266071, Qingdao, Shandong, People's Republic of China
| | - Chao Han
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Di Yang
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Jian Zhou
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Hui Dong
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Zhiyuan Wei
- The First Affiliated Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Shuai Xu
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), 400037, Chongqing, People's Republic of China
| | - Chen Xu
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Yiwei Zhang
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Yi Sun
- The First Affiliated Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Sheng Guo
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Jingbo Zhang
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), 400037, Chongqing, People's Republic of China
| | - Tingting Zhao
- Chongqing International Institute for Immunology, 400030, Chongqing, People's Republic of China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 100853, Beijing, China
| | - Jie Luo
- The First Affiliated Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China.
- Chongqing International Institute for Immunology, 400030, Chongqing, People's Republic of China.
| | - Yi Tian
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China.
| |
Collapse
|
32
|
Tyagi AM. Mechanism of action of gut microbiota and probiotic Lactobacillus rhamnosus GG on skeletal remodeling in mice. Endocrinol Diabetes Metab 2024; 7:e440. [PMID: 37505196 PMCID: PMC10782069 DOI: 10.1002/edm2.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Gut microbiota (GM) is the collection of small organisms such as bacteria, fungi, bacteriophages and protozoans living in the intestine in symbiotics relation within their host. GM regulates host metabolism by various mechanisms. METHODS This review aims to consolidate current information for physicians on the effect of GM on bone health. For this, an online search of the literature was conducted using the keywords gut microbiota, bone mass, osteoporosis, Lactobacillus and sex steroid. RESULTS AND CONCLUSIONS There is a considerable degree of variation in bone mineral density (BMD) within populations, and it is estimated that a significant component of BMD variability is due to genetics. However, the remaining causes of bone mass variance within populations remain largely unknown. A well-recognized cause of phenotypic variation in bone mass is the composition of the microbiome. Studies have shown that germ-free (GF) mice have higher bone mass compared to conventionally raised (CR) mice. Furthermore, GM dysbiosis, also called dysbacteriosis, is defined as any alteration in the composition of the microbial community that has been colonized in the host intestine and associated with the development of bone diseases. For instance, postmenopausal osteoporosis (PMO) and diabetes. GM can be modulated by several factors such as genetics, age, drugs, food habits and probiotics. Probiotics are defined as viable bacteria that confer health benefits by modulating GM when administered in adequate quantity. Lactobacillus rhamnosus GG (LGG) is a great example of such a probiotic. LGG has been shown to regulate bone mass in healthy mice as well as ovariectomized (OVX) mice via two different mechanisms. This review will focus on the literature regarding the mechanism by which GM and probiotic LGG regulate bone mass in healthy mice as well as in OVX mice, a model of PMO.
Collapse
|
33
|
Brackman LC, Jung MS, Green EH, Joshi N, Revetta FL, McClain MS, Markham NO, Piazuelo MB, Scott Algood HM. IL-17 signaling protects against Helicobacter pylori-induced gastric cancer. Gut Microbes 2024; 16:2430421. [PMID: 39588838 PMCID: PMC11639209 DOI: 10.1080/19490976.2024.2430421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Helicobacter pylori infection is the predominant risk factor for the development of gastric cancer. Risk is enhanced by specific H. pylori virulence factors, diet, and the inflammatory response. Chronic activation of T helper (Th) 1 and Th17 pathways contributes to prolonged inflammation; yet, higher expression of IL-17 receptor (IL-17RA) is a favorable prognostic marker for survival after gastric cancer diagnosis. The protective impact of IL-17RA signaling is not understood. To investigate if IL-17RA signaling protects during H. pylori-induced carcinogenesis, the transgenic InsGAStg/tg mouse, which is prone to H. pylori-induced gastric cancer, was utilized. InsGAStg/tg mice and InsGAStg/tgIl17ra-/- mice were infected with a cag type 4 secretion system (T4SS) positive H. pylori strain for up to 6 months. Six weeks post-infection, IL-17RA deficiency led to increased bacterial burden, increased gastritis, and development of lymphoid follicles. Increased inflammation was associated with heightened cellular proliferation and earlier loss of parietal and chief cells in InsGAStg/tgIl17ra-/- mice. Gastric cancers developed more frequently by 3- and 6-months post-infection in H. pylori-infected InsGAStg/tgIl17ra-/- mice compared to InsGAStg/tg mice. Chronic inflammation was exacerbated with IL-17RA deficiency, characterized by elevated Th1/Th17 cytokines, increased B cell infiltration, and enhanced IgA production, despite reduced expression of the polymeric immunoglobulin receptor. Further, paragastric lymph nodes of InsGAStg/tgIl17ra-/- mice were enlarged relative to controls and displayed altered gene expression profiles. Increased inflammation was accompanied by a significant increase in Cybb expression, which encodes NADPH oxidase 2, suggesting that increased oxidative damage may occur in the absence of IL-17RA. Further, there is increased phosphorylation of histone 2AX in IL-17RA deficient mice, indicating that the DNA damage response is highly activated. These data suggest that IL-17RA signaling activates a protective pathway to prevent excessive inflammation which otherwise can lead to increased oxidative stress, DNA damage, and drive gastric carcinogenesis after H. pylori infection.
Collapse
Affiliation(s)
- Lee C. Brackman
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew S. Jung
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emily H. Green
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nikhita Joshi
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- School of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Frank L. Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark S. McClain
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas O. Markham
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Holly M. Scott Algood
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
| |
Collapse
|
34
|
Illes Z, Jørgensen MM, Bæk R, Bente LM, Lauridsen JT, Hyrlov KH, Aboo C, Baumbach J, Kacprowski T, Cotton F, Guttmann CRG, Stensballe A. New Enhancing MRI Lesions Associate with IL-17, Neutrophil Degranulation and Integrin Microparticles: Multi-Omics Combined with Frequent MRI in Multiple Sclerosis. Biomedicines 2023; 11:3170. [PMID: 38137391 PMCID: PMC10740934 DOI: 10.3390/biomedicines11123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Blood-barrier (BBB) breakdown and active inflammation are hallmarks of relapsing multiple sclerosis (RMS), but the molecular events contributing to the development of new lesions are not well explored. Leaky endothelial junctions are associated with increased production of endothelial-derived extracellular microvesicles (EVs) and result in the entry of circulating immune cells into the brain. MRI with intravenous gadolinium (Gd) can visualize acute blood-barrier disruption as the initial event of the evolution of new lesions. METHODS Here, weekly MRI with Gd was combined with proteomics, multiplex immunoassay, and endothelial stress-optimized EV array to identify early markers related to BBB disruption. Five patients with RMS with no disease-modifying treatment were monitored weekly using high-resolution 3T MRI scanning with intravenous gadolinium (Gd) for 8 weeks. Patients were then divided into three groups (low, medium, or high MRI activity) defined by the number of new, total, and maximally enhancing Gd-enhancing lesions and the number of new FLAIR lesions. Plasma samples taken at each MRI were analyzed for protein biomarkers of inflammation by quantitative proteomics, and cytokines using multiplex immunoassays. EVs were characterized with an optimized endothelial stress EV array based on exosome surface protein markers for the detection of soluble secreted EVs. RESULTS Proteomics analysis of plasma yielded quantitative information on 208 proteins at each patient time point (n = 40). We observed the highest number of unique dysregulated proteins (DEPs) and the highest functional enrichment in the low vs. high MRI activity comparison. Complement activation and complement/coagulation cascade were also strongly overrepresented in the low vs. high MRI activity comparison. Activation of the alternative complement pathway, pathways of blood coagulation, extracellular matrix organization, and the regulation of TLR and IGF transport were unique for the low vs. high MRI activity comparison as well, with these pathways being overrepresented in the patient with high MRI activity. Principal component analysis indicated the individuality of plasma profiles in patients. IL-17 was upregulated at all time points during 8 weeks in patients with high vs. low MRI activity. Hierarchical clustering of soluble markers in the plasma indicated that all four MRI outcomes clustered together with IL-17, IL-12p70, and IL-1β. MRI outcomes also showed clustering with EV markers CD62E/P, MIC A/B, ICAM-1, and CD42A. The combined cluster of these cytokines, EV markers, and MRI outcomes clustered also with IL-12p40 and IL-7. All four MRI outcomes correlated positively with levels of IL-17 (p < 0.001, respectively), and EV-ICAM-1 (p < 0.0003, respectively). IL-1β levels positively correlated with the number of new Gd-enhancing lesions (p < 0.01), new FLAIR lesions (p < 0.001), and total number of Gd-enhancing lesions (p < 0.05). IL-6 levels positively correlated with the number of new FLAIR lesions (p < 0.05). Random Forests and linear mixed models identified IL-17, CCL17/TARC, CCL3/MIP-1α, and TNF-α as composite biomarkers predicting new lesion evolution. CONCLUSIONS Combination of serial frequent MRI with proteome, neuroinflammation markers, and protein array data of EVs enabled assessment of temporal changes in inflammation and endothelial dysfunction in RMS related to the evolution of new and enhancing lesions. Particularly, the Th17 pathway and IL-1β clustered and correlated with new lesions and Gd enhancement, indicating their importance in BBB disruption and initiating acute brain inflammation in MS. In addition to the Th17 pathway, abundant protein changes between MRI activity groups suggested the role of EVs and the coagulation system along with innate immune responses including acute phase proteins, complement components, and neutrophil degranulation.
Collapse
Affiliation(s)
- Zsolt Illes
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, 5230 Odense, Denmark
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, 9220 Aalborg, Denmark; (M.M.J.); (R.B.)
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, 9220 Aalborg, Denmark; (M.M.J.); (R.B.)
| | - Lisa-Marie Bente
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; (L.-M.B.); (T.K.)
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Jørgen T. Lauridsen
- Department of Business and Economics, University of Southern Denmark, 5230 Odense, Denmark;
| | - Kirsten H. Hyrlov
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 101408 Beijing, China
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark;
- Institute for Computational Systems Biology, University of Hamburg, 20148 Hamburg, Germany
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; (L.-M.B.); (T.K.)
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Francois Cotton
- Service de Radiologie, Centre Hospitalier Lyon-Sud, France/CREATIS, Université de Lyon, 69007 Lyon, France;
| | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Clinical Cancer Center, Aalborg University Hospital, 9220 Aalborg, Denmark
| |
Collapse
|
35
|
Didevar N, Rezasoltani P, Pourgholaminejad A, Kazemnezhad Leyli E, Seyednoori T, Zahiri Sorouri Z. Interleukin-17, C-reactive protein, Neutrophil-to-Lymphocyte ratio, Lymphocyte-to-Monocyte ratio, and lipid profiles in healthy menopausal women with or without hot flashes: A cross-sectional study. PLoS One 2023; 18:e0291804. [PMID: 37992065 PMCID: PMC10664956 DOI: 10.1371/journal.pone.0291804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/06/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION The reciprocation between systemic inflammatory markers (SIMs), dyslipidemia, and hot flashes (HFs) can play a part in the pathogenesis of endothelial dysfunction through menopause. This study intended to determine the association between some SIMs, lipids, and HFs in healthy menopausal women. MATERIALS AND METHODS We designed a cross-sectional study in which 160 healthy menopausal women aged 40-60 were enrolled. Concerning their HFs status, they were stratified into two groups by consecutive sampling: without HFs (n = 40) and with HFs (n = 120). In addition to clinical variables and HFs experience, we measured the fasting serum levels of SIMs and lipid profiles (LPs), including Interleukin-17 (IL-17), high- sensitivity C-Reactive Protein (hs-CRP), Total Cholesterol (TC), Triglycerides (TG), Low-Density Lipoprotein Cholesterol (LDL-C), and High-Density Lipoprotein Cholesterol (HDL-C) in each group. Then, we calculated TC/HDL-C concerning the related variables and determined Neutrophil-to-Lymphocyte Ratio (NLR), and Lymphocyte-to-Monocyte Ratio (LMR), according to Complete Blood Count (CBC) quantitative parameters in each group. Furthermore, we used logistic regression analysis to assess the association between SIMs, LPs, and HFs. SETTINGS We performed this study in a governmental teaching hospital, Guilan/Rasht, Iran, from April to September 2021. RESULTS The two groups of menopausal women without and with HFs were not significantly different regarding the median of IL-17, hs-CRP, NLR, LMR, TG, HDL-C, and TC/HDL-C, and the mean of TC and LDL-C. Based on multiple logistic regression, TG levels appeared to be associated with the incidence of HFs (B = 0.004, P = 0.040, Odds Ratio:1.004, 95%CI:1.000-1.009). NLR seemed to have an increasing impact on the HFs severity, according to ordinal logistic regression (B = 0.779, P = 0.005, Odds Ratio = 2.180, 95%CI:1.270-3.744). Furthermore, hs-CRP negatively correlated with TG (r = -0.189, P = 0.039) and TC/HDL-C (r = -0.268, P = 0.003) in menopausal women with HFs. CONCLUSION This study indicated an association between SIMs, lipids, and HFs. These connections may suggest HFs as links between SIMs/LPs alterations and their outcomes.
Collapse
Affiliation(s)
- Nazila Didevar
- Department of Midwifery, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvaneh Rezasoltani
- Department of Midwifery, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Pourgholaminejad
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Kazemnezhad Leyli
- Department of Biostatistics, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Seyednoori
- Department of Midwifery, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Ziba Zahiri Sorouri
- Department of Obstetrics and Gynecology, Reproductive Health Research Center, Alzahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
36
|
Tout I, Noack M, Miossec P. Differential effects of interleukin-17A and 17F on cell interactions between immune cells and stromal cells from synovium or skin. Sci Rep 2023; 13:19223. [PMID: 37932356 PMCID: PMC10628108 DOI: 10.1038/s41598-023-45653-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
We compared the contribution of IL-17A and IL-17F in co-culture systems mimicking cell interactions as found in inflamed synovium and skin. Synoviocytes or skin fibroblasts were co-cultured with activated PBMC, with IL-17A, IL-17 A/F, IL-17F, IL-23, anti-IL-17A, anti-IL-17A/F or anti-IL-17F antibodies. IL-17A, IL-17F, IL-6 and IL-10 production was measured at 48 h. mRNA expression of receptor subunits for IL-23, IL-12 and IL-17 was assessed at 24 h. Both cell activation and interactions were needed for a high IL-17A secretion while IL-17F was stimulated by PHA activation alone and further increased in co-cultures. IL-17F levels were higher than IL-17A in both co-cultures (p < 0.05). IL-17F addition decreased IL-17A secretion (p < 0.05) but IL-17A addition had no effect on IL-17F secretion. Interestingly, IL-17A and IL-17F upregulated IL-17RA and IL-17RC mRNA expression in PBMC/skin fibroblast co-cultures (p < 0.05) while only IL-17F exerted this effect in synoviocytes (p < 0.05). Monocyte exclusion in both co-cultures increased IL-17A and IL-17F (twofold, p < 0.05) while decreasing IL-10 and IL-6 secretion (twofold, p < 0.05). IL-17A and F had differential effects on their receptor expression with a higher sensitivity for skin fibroblasts highlighting the differential contribution of IL-17A and F in joint vs. skin diseases.
Collapse
Affiliation(s)
- Issam Tout
- Immunogenomics and Inflammation Research Unit, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003, Lyon, France
| | - Mélissa Noack
- Immunogenomics and Inflammation Research Unit, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003, Lyon, France.
- Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, 5 Place d'Arsonval, 69437, Lyon, France.
| |
Collapse
|
37
|
Zhang P, Su Y, Li S, Chen H, Wu R, Wu H. The roles of T cells in psoriasis. Front Immunol 2023; 14:1081256. [PMID: 37942312 PMCID: PMC10628572 DOI: 10.3389/fimmu.2023.1081256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/29/2023] [Indexed: 11/10/2023] Open
Abstract
Psoriasis is a recurring inflammatory skin condition characterized by scaly, red patches on the skin. It affects approximately 3% of the US population and is associated with histological changes such as epidermal hyperplasia, increased blood vessel proliferation, and infiltration of leukocytes into the skin's dermis. T cells, which are classified into various subtypes, have been found to play significant roles in immune-mediated diseases, particularly psoriasis. This paper provides a review of the different T lymphocyte subtypes and their functions in psoriasis, as well as an overview of targeted therapies for treating psoriasis.
Collapse
Affiliation(s)
| | | | | | | | - Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
38
|
Luca AC, David SG, David AG, Țarcă V, Pădureț IA, Mîndru DE, Roșu ST, Roșu EV, Adumitrăchioaiei H, Bernic J, Cojocaru E, Țarcă E. Atherosclerosis from Newborn to Adult-Epidemiology, Pathological Aspects, and Risk Factors. Life (Basel) 2023; 13:2056. [PMID: 37895437 PMCID: PMC10608492 DOI: 10.3390/life13102056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity throughout the world, accounting for 16.7 million deaths each year. The underlying pathological process for the majority of cardiovascular diseases is atherosclerosis, a slowly progressing, multifocal, chronic, immune-inflammatory disease that involves the intima of large and medium-sized arteries. The process of atherosclerosis begins in childhood as fatty streaks-an accumulation of lipids, inflammatory cells, and smooth muscle cells in the arterial wall. Over time, a more complex lesion develops into an atheroma and characteristic fibrous plaques. Atherosclerosis alone is rarely fatal; it is the further changes that render fibrous plaques vulnerable to rupture; plaque rupture represents the most common cause of coronary thrombosis. The prevalence of atherosclerosis is increasing worldwide and more than 50% of people with circulatory disease die of it, mostly in modern societies. Epidemiological studies have revealed several environmental and genetic risk factors that are associated with the early formation of a pathogenic foundation for atherosclerosis, such as dyslipidemia, hypertension, diabetes mellitus, obesity, and smoking. The purpose of this review is to bring together the current information concerning the origin and progression of atherosclerosis in childhood as well as the identification of known risk factors for atherosclerotic cardiovascular disease in children.
Collapse
Affiliation(s)
- Alina Costina Luca
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Simona Georgiana David
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Alexandru Gabriel David
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Viorel Țarcă
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana-Alexandra Pădureț
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Dana Elena Mîndru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Solange Tamara Roșu
- Nursing Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Eduard Vasile Roșu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Heidrun Adumitrăchioaiei
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Jana Bernic
- Discipline of Pediatric Surgery, “Nicolae Testemițanu” State University of Medicine and Pharmacy, 2025 Chisinau, Moldova;
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- Surgery II Department—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
39
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
40
|
Toghi M, Bitarafan S, Ghafouri-Fard S. Pathogenic Th17 cells in autoimmunity with regard to rheumatoid arthritis. Pathol Res Pract 2023; 250:154818. [PMID: 37729783 DOI: 10.1016/j.prp.2023.154818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Th17 cells contribute the pathobiology of autoimmune diseases, including rheumatoid arthritis (RA). However, it was shown that differentiated Th17 cells display a high degree of plasticity under the influence of inflammatory conditions. In some autoimmune diseases, the majority of Th17 cells, especially at sites of inflammation, have a phenotype that is intermediate between Th17 and Th1. These cells, which are described as Th17.1 or exTh17 cells, are hypothesized to be more pathogenic than classical Th17 cells. In this review, the involvement of Th17.1 lymphocytes in RA, and potential features that might render these cells to be more pathogenic are discussed.
Collapse
Affiliation(s)
- Mehdi Toghi
- Department of Immune and Infectious Diseases, Université Laval, Quebec City, Quebec, Canada
| | - Sara Bitarafan
- Department of Molecular Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Qu Y, Li D, Liu W, Shi D. Molecular consideration relevant to the mechanism of the comorbidity between psoriasis and systemic lupus erythematosus (Review). Exp Ther Med 2023; 26:482. [PMID: 37745036 PMCID: PMC10515117 DOI: 10.3892/etm.2023.12181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Systemic lupus erythematosus (SLE), a common autoimmune disease with a global incidence and newly diagnosed population estimated at 5.14 (range, 1.4-15.13) per 100,000 person-years and 0.40 million people annually, respectively, affects multiple tissues and organs; for example, skin, blood system, heart and kidneys. Accumulating data has also demonstrated that psoriasis (PS) can be a systemic inflammatory disease, which can affect organs other than the skin and occur alongside other autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis and SLE. The current explanations for the possible comorbidity of PS and SLE include: i) The two diseases share susceptible gene loci; ii) they share a common IL-23/T helper 17 (Th17) axis inflammatory pathway; and iii) the immunopathogenesis of the two conditions is a consequence of the interactions between IL-17 cytokines with effector Th17 cells, T regulatory cells, as well as B cells. In addition, the therapeutic efficacy of IL-17 or TNF-α inhibitors has been demonstrated in PS, and has also become evident in SLE. However, the mechanisms have not been investigated. To the best of our knowledge, there remains a lack of substantial studies on the correlation between PS and SLE. In the present review, the literature, with regards to the epidemiology, genetic predisposition, inflammatory mechanisms and treatment of the patients with both PS and SLE, has been reviewed. Further investigations into the molecular pathogenic mechanism may provide drug targets that could benefit the patients with concomitant PS and SLE.
Collapse
Affiliation(s)
- Yuying Qu
- Department of Dermatology, College of Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Weida Liu
- Department of Medical Mycology, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, Jiangsu 272002, P.R. China
| | - Dongmei Shi
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
42
|
Zeng X, Li J, Shan W, Lai Z, Zuo Z. Gut microbiota of old mice worsens neurological outcome after brain ischemia via increased valeric acid and IL-17 in the blood. MICROBIOME 2023; 11:204. [PMID: 37697393 PMCID: PMC10496352 DOI: 10.1186/s40168-023-01648-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Aging is a significant risk factor for ischemic stroke and worsens its outcome. However, the mechanisms for this worsened neurological outcome with aging are not clearly defined. RESULTS Old C57BL/6J male mice (18 to 20 months old) had a poorer neurological outcome and more severe inflammation after transient focal brain ischemia than 8-week-old C57BL/6J male mice (young mice). Young mice with transplantation of old mouse gut microbiota had a worse neurological outcome, poorer survival curve, and more severe inflammation than young mice receiving young mouse gut microbiota transplantation. Old mice and young mice transplanted with old mouse gut microbiota had an increased level of blood valeric acid. Valeric acid worsened neurological outcome and heightened inflammatory response including blood interleukin-17 levels after brain ischemia. The increase of interleukin-17 caused by valeric acid was inhibited by a free fatty acid receptor 2 antagonist. Neutralizing interleukin-17 in the blood by its antibody improved neurological outcome and attenuated inflammatory response in mice with brain ischemia and receiving valeric acid. Old mice transplanted with young mouse feces had less body weight loss and better survival curve after brain ischemia than old mice transplanted with old mouse feces or old mice without fecal transplantation. CONCLUSIONS These results suggest that the gut microbiota-valeric acid-interleukin-17 pathway contributes to the aging-related changes in the outcome after focal brain ischemia and response to stimulus. Valeric acid may activate free fatty acid receptor 2 to increase interleukin-17.
Collapse
Affiliation(s)
- Xianzhang Zeng
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Jun Li
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
| | - Weiran Shan
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
| | - Zhongmeng Lai
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, 350001 People’s Republic of China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
- Departments of Neuroscience and Neurosurgery, University of Virginia, Charlottesville, VA 22901 USA
| |
Collapse
|
43
|
Kim JY, Lee S, Jang S, Kim CW, Gu BH, Kim M, Kim I. T helper cell polarity determines salt sensitivity and hypertension development. Hypertens Res 2023; 46:2168-2178. [PMID: 37463980 DOI: 10.1038/s41440-023-01365-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023]
Abstract
High-salt intake is known to induce pathogenic T helper (Th) 17 cells and hypertension, but contrary to what is known, causes hypertension only in salt-sensitive (SS) individuals. Thus, we hypothesized that Th cell polarity determines salt sensitivity and hypertension development. Cultured splenic T cells from Dahl SS and salt-resistant (SR) rats subjected to hypertonic salt solutions were evaluated via ELISA, flow cytometry, immunocytochemistry and RT-qPCR. Seven-week-old SS and SR rats were fed a chow (CD) or high-salt diet (HSD) for 4 weeks, with weekly measurements of systolic blood pressure. The relaxation response of the aorta rings to the cumulative addition of acetylcholine was measured ex vivo. In these experimental animals, the Th cell polarity (Th17 and T regulatory [Treg]), the expression of Th17- or Treg-related genes, and the enrichment of the transcription factors RORγt and FOXP3 on the target gene promoter regions were determined via flow cytometry, RT-qPCR, and chromatin immunoprecipitation. Hypertonic salt solution induced Th17 and Treg cell differentiation in cultured splenic T cells isolated from SS and SR rats, respectively. HSD induced hypertension, endothelial dysfunction and proinflammatory Th17 cell differentiation only in SS rats. The enrichment of RORγt on the promoter regions of Il17a and Il23r increased their expression only in SS rats. Regardless of HSD, SR rats remained normotensive with Treg polarity, causing high Treg-related gene expressions (Il10, Cd25 and Foxp3). This study demonstrated that Th cell polarity determines salt sensitivity and drives hypertension development. SR rats were protected from HSD-associated hypertension via anti-inflammatory Treg polarity.
Collapse
Affiliation(s)
- Jee Young Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Soyung Lee
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Bon-Hee Gu
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang, 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang, 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
44
|
Watanabe K, Gomez AM, Kuramitsu S, Siurala M, Da T, Agarwal S, Song D, Scholler J, Rotolo A, Posey AD, Rook AH, Haun PL, Ruella M, Young RM, June CH. Identifying highly active anti-CCR4 CAR T cells for the treatment of T-cell lymphoma. Blood Adv 2023; 7:3416-3430. [PMID: 37058474 PMCID: PMC10345856 DOI: 10.1182/bloodadvances.2022008327] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
A challenge when targeting T-cell lymphoma with chimeric antigen receptor (CAR) T-cell therapy is that target antigens are often shared between T cells and tumor cells, resulting in fratricide between CAR T cells and on-target cytotoxicity on normal T cells. CC chemokine receptor 4 (CCR4) is highly expressed in many mature T-cell malignancies, such as adult T-cell leukemia/lymphoma (ATLL) and cutaneous T-cell lymphoma (CTCL), and has a unique expression profile in normal T cells. CCR4 is predominantly expressed by type-2 and type-17 helper T cells (Th2 and Th17) and regulatory T cells (Treg), but it is rarely expressed by other T helper (Th) subsets and CD8+ cells. Although fratricide in CAR T cells is generally thought to be detrimental to anticancer functions, in this study, we demonstrated that anti-CCR4 CAR T cells specifically depleted Th2 and Tregs, while sparing CD8+ and Th1 T cells. Moreover, fratricide increased the percentage of CAR+ T cells in the final product. CCR4-CAR T cells were characterized by high transduction efficiency, robust T-cell expansion, and rapid fratricidal depletion of CCR4-positive T cells during CAR transduction and expansion. Furthermore, mogamulizumab-based CCR4-CAR T cells induced superior antitumor efficacy and long-term remission in mice engrafted with human T-cell lymphoma cells. In summary, CCR4-depleted anti-CCR4 CAR T cells are enriched in Th1 and CD8+ T cells and exhibit high antitumor efficacy against CCR4-expressing T-cell malignancies.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Cancer Immunology, National Cancer Center Research Institute, Tokyo, Japan
| | - Angela M. Gomez
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mikko Siurala
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tong Da
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Sangya Agarwal
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Decheng Song
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Antonia Rotolo
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Avery D. Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Alain H. Rook
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Paul L. Haun
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
45
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
46
|
Kim YS, Hurley EH, Park Y, Ko S. Primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD): a condition exemplifying the crosstalk of the gut-liver axis. Exp Mol Med 2023; 55:1380-1387. [PMID: 37464092 PMCID: PMC10394020 DOI: 10.1038/s12276-023-01042-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 07/20/2023] Open
Abstract
The close relationship between primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD) provides a good opportunity to comprehend the gut-liver axis. The gut and the liver have reciprocal interactions, including how gut inflammation influences the liver through immune cells and the microbiota and how the microbiota in the gut modifies bile acids, which are produced and secreted from the liver. PSC-IBD shows distinct clinical findings from classical IBD. In addition, a distinct genetic predisposition and unique microbiota composition suggest that PSC-IBD is an independent disease entity. Understanding the pathogenesis of PSC-IBD helps to develop novel and effective therapeutic agents. Given the high risk of malignancies associated with PSC-IBD, it is critical to identify patients at high risk and implement appropriate surveillance and monitoring strategies. In this review, we provide an overview of PSC-IBD, which exemplifies the gut-liver axis.
Collapse
Affiliation(s)
- You Sun Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edward H Hurley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoojeong Park
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Deshmukh R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. MATERIALS TODAY COMMUNICATIONS 2023; 35:105877. [DOI: 10.1016/j.mtcomm.2023.105877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Phelps AL, Salguero FJ, Hunter L, Stoll AL, Jenner DC, O’Brien LM, Williamson ED, Lever MS, Laws TR. Tumour Necrosis Factor-α, Chemokines, and Leukocyte Infiltrate Are Biomarkers for Pathology in the Brains of Venezuelan Equine Encephalitis (VEEV)-Infected Mice. Viruses 2023; 15:1307. [PMID: 37376607 PMCID: PMC10302690 DOI: 10.3390/v15061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a disease typically confined to South and Central America, whereby human disease is characterised by a transient systemic infection and occasionally severe encephalitis, which is associated with lethality. Using an established mouse model of VEEV infection, the encephalitic aspects of the disease were analysed to identify biomarkers associated with inflammation. Sequential sampling of lethally challenged mice (infected subcutaneously) confirmed a rapid onset systemic infection with subsequent spread to the brain within 24 h of the challenge. Changes in inflammatory biomarkers (TNF-α, CCL-2, and CCL-5) and CD45+ cell counts were found to correlate strongly to pathology (R>0.9) and present previously unproven biomarkers for disease severity in the model, more so than viral titre. The greatest level of pathology was observed within the olfactory bulb and midbrain/thalamus. The virus was distributed throughout the brain/encephalon, often in areas not associated with pathology. The principal component analysis identified five principal factors across two independent experiments, with the first two describing almost half of the data: (1) confirmation of a systemic Th1-biased inflammatory response to VEEV infection, and (2) a clear correlation between specific inflammation of the brain and clinical signs of disease. Targeting strongly associated biomarkers of deleterious inflammation may ameliorate or even eliminate the encephalitic syndrome of this disease.
Collapse
Affiliation(s)
- Amanda L. Phelps
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | - Laura Hunter
- UK Health Security Agency, Salisbury SP4 0JG, UK
| | | | | | - Lyn M. O’Brien
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | - M. Stephen Lever
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | - Thomas R. Laws
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| |
Collapse
|
49
|
Lechner MG, Zhou Z, Hoang AT, Huang N, Ortega J, Scott LN, Chen HC, Patel AY, Yakhshi-Tafti R, Kim K, Hugo W, Famini P, Drakaki A, Ribas A, Angell TE, Su MA. Clonally expanded, thyrotoxic effector CD8 + T cells driven by IL-21 contribute to checkpoint inhibitor thyroiditis. Sci Transl Med 2023; 15:eadg0675. [PMID: 37196065 PMCID: PMC10227862 DOI: 10.1126/scitranslmed.adg0675] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Autoimmune toxicity occurs in up to 60% of patients treated with immune checkpoint inhibitor (ICI) therapy for cancer and represents an increasing clinical challenge for expanding the use of these treatments. To date, human immunopathogenic studies of immune-related adverse events (IRAEs) have relied on sampling of circulating peripheral blood cells rather than affected tissues. Here, we directly obtained thyroid specimens from individuals with ICI-thyroiditis, one of the most common IRAEs, and compared immune infiltrates with those from individuals with spontaneous autoimmune Hashimoto's thyroiditis (HT) or no thyroid disease. Single-cell RNA sequencing revealed a dominant, clonally expanded population of thyroid-infiltrating cytotoxic CXCR6+ CD8+ T cells (effector CD8+ T cells) present in ICI-thyroiditis but not HT or healthy controls. Furthermore, we identified a crucial role for interleukin-21 (IL-21), a cytokine secreted by intrathyroidal T follicular (TFH) and T peripheral helper (TPH) cells, as a driver of these thyrotoxic effector CD8+ T cells. In the presence of IL-21, human CD8+ T cells acquired the activated effector phenotype with up-regulation of the cytotoxic molecules interferon-γ (IFN-γ) and granzyme B, increased expression of the chemokine receptor CXCR6, and thyrotoxic capacity. We validated these findings in vivo using a mouse model of IRAEs and further demonstrated that genetic deletion of IL-21 signaling protected ICI-treated mice from thyroid immune infiltration. Together, these studies reveal mechanisms and candidate therapeutic targets for individuals who develop IRAEs.
Collapse
Affiliation(s)
- Melissa G. Lechner
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Zikang Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Aline T. Hoang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Drexel Medical School; Philadelphia, PA 19129
| | - Nicole Huang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Jessica Ortega
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Lauren N. Scott
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Anushi Y. Patel
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Rana Yakhshi-Tafti
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Rosalind Franklin Medical School; Chicago, IL 60064
| | - Kristy Kim
- UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Pouyan Famini
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Alexandra Drakaki
- Division of Hematology and Oncology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Antoni Ribas
- Division of Hematology and Oncology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Trevor E. Angell
- Division of Endocrinology and Diabetes, USC Keck School of Medicine; Los Angeles, CA 90033
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Division of Pediatric Endocrinology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| |
Collapse
|
50
|
Pan P, Pineda MA, Wang Y, Khan A, Nyirenda MH. Aberrant pro-inflammatory responses of CD20 + T cells in experimental arthritis. Cell Immunol 2023; 387:104717. [PMID: 37075620 DOI: 10.1016/j.cellimm.2023.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
CD20+ T cells comprise a highly inflammatory subset implicated in autoimmunity, including rheumatoid arthritis (RA). We sought to characterize the CD20+ T cell subset in the murine collagen-induced arthritis (CIA) model of RA and investigate the phenotype and functional relevance of CD3+CD20+ T cells in the lymph nodes and arthritic joints using flow cytometry and immunohistochemistry. We demonstrate that CD3+CD4+CD20+ and CD3+CD8+CD20+ T cells are expanded in the draining lymph nodes of CIA mice, produce increased levels of pro-inflammatory cytokines and are less susceptible to regulation by regulatory T cells. Notably, CD3+CD4+CD20+ and CD3+CD8+CD20+ T cells are enriched with CXCR5+PD-1+ T follicular helper cells and CXCR5-PD-1+ peripheral T helper cells, subsets of T cells implicated in promoting B-cell responses and antibody production within pathologically inflamed non-lymphoid tissues in RA. Our findings suggest CD20+ T cells are associated with inflammatory responses and may exacerbate pathology by promoting inflammatory B-cell responses.
Collapse
Affiliation(s)
- Piaopiao Pan
- University of Glasgow, School of Infection and Immunity, Glasgow, UK
| | - Miguel A Pineda
- Research into Inflammatory Arthritis Centre, Versus Arthritis (RACE-VA), Glasgow, Birmingham, Newcastle, and Oxford, UK; University of Glasgow, Centre for the Cellular Microenvironment, School of Molecular Biosciences, Glasgow, UK
| | - Yilin Wang
- University of Glasgow, School of Infection and Immunity, Glasgow, UK
| | - Aneesah Khan
- University of Glasgow, School of Infection and Immunity, Glasgow, UK
| | - Mukanthu H Nyirenda
- University of Glasgow, School of Infection and Immunity, Glasgow, UK; Research into Inflammatory Arthritis Centre, Versus Arthritis (RACE-VA), Glasgow, Birmingham, Newcastle, and Oxford, UK.
| |
Collapse
|