1
|
Zhang X, Fu Y, Chen S, Liu G, Wang Y, He Q, Wang Q, Li N, Wang Z, Chen L, Wang J, Liang Z, Xu M, Mao Q. Exploring the standardization of human nasal antibody measurements. Emerg Microbes Infect 2025; 14:2475822. [PMID: 40071971 PMCID: PMC11915745 DOI: 10.1080/22221751.2025.2475822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 03/02/2025] [Indexed: 03/18/2025]
Abstract
Mucosal immunity is crucial for preventing the infection and transmission of respiratory viruses. Nasal antibody is inversely correlated with a lower risk of infection with respiratory viruses. However, the current reference standard for nasal antibody assessment is serum-based, mainly consisting of monomeric IgG and IgA. The applicability of serum-derived standards for assessing nasal antibodies, consisting mostly of dimeric or polymeric secretory IgA (sIgA), remains unvalidated. Herein, we first proved that the sera-derived standard was not applicable for assessing nasal antibodies. Using a non-homologous standard as a calibrator introduced systematic error up to 10 times, which did not benefit the understanding of mucosal antibody response. Therefore, we attempted to develop two candidate standards (CS1, CS2) using nasal mucosal lining fluids (NMLFs) collected from SARS-CoV-2 Omicron convalescents or intranasal vaccine recipients, and CS3 using a sIgA monoclonal antibody. CS2 exhibited broad-spectrum binding activity against 12 SARS-CoV-2 strains, including all tested Omicron subvariants. A collaborative study conducted by seven laboratories demonstrated that CS2 improved the harmonization of inter-laboratory variability (pre-standardization geometric coefficients of variance, 14-314%; post-standardization, 3-35%). Using CS2 ensured an accurate assessment of nasal antibodies. Thus, CS2 was established as a national standard for evaluating nasal SARS-CoV-2-specific antibodies (Lot: 300052-202401, 1000 U/mL). Our work provides a benchmark for evaluating mucosal vaccines for SARS-CoV-2 and inspires new avenues for developing new reference standards for other mucosal vaccines.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- State Key Laboratory of Drug Regulatory Science, Evaluation of Biological Products, Key Laboratory of Research on Quality and Standardization of Biotech Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yulong Fu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Si Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, People's Republic of China
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guanxing Liu
- Changchun Institute of Biological Products Co., Ltd., Changchun, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Drug Regulatory Science, Evaluation of Biological Products, Key Laboratory of Research on Quality and Standardization of Biotech Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qian He
- State Key Laboratory of Drug Regulatory Science, Evaluation of Biological Products, Key Laboratory of Research on Quality and Standardization of Biotech Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qian Wang
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, People's Republic of China
| | - Na Li
- Beijing Minhai Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Zhongfang Wang
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, People's Republic of China
| | - Ling Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, People's Republic of China
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Junzhi Wang
- State Key Laboratory of Drug Regulatory Science, Evaluation of Biological Products, Key Laboratory of Research on Quality and Standardization of Biotech Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zhenglun Liang
- State Key Laboratory of Drug Regulatory Science, Evaluation of Biological Products, Key Laboratory of Research on Quality and Standardization of Biotech Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Miao Xu
- State Key Laboratory of Drug Regulatory Science, Evaluation of Biological Products, Key Laboratory of Research on Quality and Standardization of Biotech Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qunying Mao
- State Key Laboratory of Drug Regulatory Science, Evaluation of Biological Products, Key Laboratory of Research on Quality and Standardization of Biotech Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Research Units of Innovative Vaccine Quality Evaluation and Standardization, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Amaral R, Concha T, Vítor J, Almeida AJ, Calado C, Gonçalves LM. Chitosan Nanoparticles for Enhanced Immune Response and Delivery of Multi-Epitope Helicobacter pylori Vaccines in a BALB/c Mouse Model. Pharmaceutics 2025; 17:132. [PMID: 39861778 PMCID: PMC11768296 DOI: 10.3390/pharmaceutics17010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Helicobacter pylori is the leading cause of chronic gastritis, peptic ulcer, gastric adenocarcinoma, and mucosal-associated lymphoma. Due to the emerging problems with antibiotic treatment against H. pylori in clinical practice, H. pylori vaccination has gained more interest. Oral immunization is considered a promising approach for preventing initial colonization of this bacterium in the gastrointestinal tract, establishing a first line of defense at gastric mucosal surfaces. Chitosan nanoparticles can be exploited effectively for oral vaccine delivery due to their stability, simplicity of target accessibility, and beneficial mucoadhesive and immunogenic properties. Methods: In this study, new multi-epitope pDNA- and recombinant protein-based vaccines incorporating multiple H. pylori antigens were produced and encapsulated in chitosan nanoparticles for oral and intramuscular administration. The induced immune response was assessed through the levels of antigen-specific IgGs, secreted mucosal SIgA, and cytokines (IL-2, IL-10, and IFN-γ) in immunized BALB/C mice. Results: Intramuscular administration of both pDNA and recombinant protein-based vaccines efficiently stimulated the production of specific IgG2a and IgG1, which was supported by cytokines levels. Oral immunizations with either pDNA or recombinant protein vaccines revealed high SIgA levels, suggesting effective gastric mucosal immunization, contrasting with intramuscular immunizations, which did not induce SIgA. Conclusions: These findings indicate that both pDNA and recombinant protein vaccines encapsulated into chitosan nanoparticles are promising candidates for eradicating H. pylori and mitigating associated gastric diseases in humans.
Collapse
Affiliation(s)
- Rita Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - Tomás Concha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - Jorge Vítor
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - Cecília Calado
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisbon, Portugal;
- iBB—Institute for Bioengineering and Biosciences, i4HB—Associate Laboratory, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Lídia M. Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| |
Collapse
|
4
|
Yoshizato R, Miura M, Shitaoka K, Matsuoka Y, Higashiura A, Yamamoto A, Guo Y, Azuma H, Kawano Y, Ohga S, Yasuda T. Comprehensive method for producing high-affinity mouse monoclonal antibodies of various isotypes against (4-hydroxy-3-nitrophenyl)acetyl (NP) hapten. Heliyon 2024; 10:e40837. [PMID: 39698082 PMCID: PMC11652855 DOI: 10.1016/j.heliyon.2024.e40837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Monoclonal antibody (mAb) technology has significantly contributed to basic research and clinical settings for various purposes, including protective and therapeutic drugs. However, a rapid and convenient method to generate high-affinity antigen-specific mAbs has not yet been reported. Here, we developed a rapid, easy, and low-cost protocol for antigen-specific mAb production from single memory B cells. Using this method, high-affinity IgG1 mAbs specific to the hapten 4-hydroxy-3-nitrophenylacetyl (NP) were established from NP-CGG immunized C57BL/6 mice within 6 days. Our mAb production system allows flexible switching of IgG1 to any other isotype with the same paratope, enabling the absolute quantification of antigen-specific serum antibody titers and affinity maturation. Additionally, we established a protocol for the production of IgM and IgA, retaining their functional pentamer and dimer structures. This method is also effective against human antigens and pathogens, making it a powerful tool for mAb development in both research and clinical settings.
Collapse
Affiliation(s)
- Rin Yoshizato
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Miura
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyomi Shitaoka
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuri Matsuoka
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akifumi Higashiura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akima Yamamoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Azuma
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Kawano
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Kaneva E, Harizanov R, Velcheva D, Tsvetkova N, Pavlova M, Alexiev I, Dimitrova R, Videnova M, Borisova R, Ivanova A. Studies on the significance of secretory IgA antibodies in the pathogenesis and clinical course of enterobiasis in infected persons from Bulgaria: preliminary findings. Helminthologia 2024; 61:277-285. [PMID: 40012619 PMCID: PMC11864104 DOI: 10.2478/helm-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/28/2024] [Indexed: 02/28/2025] Open
Abstract
Enterobiasis is one of the most common human parasitic infections worldwide and in Bulgaria. The objective of this study was to ascertain the levels of intestinal secretory IgA antibodies in patients with enterobiasis, to determine the local immune response in this helminthiasis, and to evaluate its influence on clinical manifestations during infection. Faecal samples from 102 enterobiasis patients and 40 clinically healthy controls were examined. In individuals infected with Enterobius vermicularis, the range of values for SIgA was higher (from 27.5 μg/ml to 13916 μg/ml). However, no statistically significant difference was found between them and those in persons without evidence of infection (from 27.5 to 8999 μg/ml). In both groups of individuals (infected and non-infected), we observed differences in the levels of SIgA, which appeared to be dependent on the age and gender of the subjects. Significantly, higher values were observed in children and adolescents, as well as in males. In individuals with enterobiasis, a higher level of SIgA was observed in those with pronounced clinical symptoms (mean value = 2198.74) compared to asymptomatic individuals (mean value = 1588.54). The highest levels were observed in patients presenting with perianal pruritus (mean value = 3559.54). Our study of the local humoral immune response in people with enterobiasis is the first of its kind in the country. The results clearly show a direct correlation between the presence of clinical symptoms in enterobiasis and elevated levels of secretory IgA in faeces.
Collapse
Affiliation(s)
- E. Kaneva
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - R. Harizanov
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - D. Velcheva
- Medical Diagnostic Laboratory “Cibalab”, 83 Gyueshevo Str., 1379Sofia, Bulgaria
| | - N. Tsvetkova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - M. Pavlova
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - I. Alexiev
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 44A Gen. Stoletov Blvd., 1233Sofia, Bulgaria
| | - R. Dimitrova
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 44A Gen. Stoletov Blvd., 1233Sofia, Bulgaria
| | - M. Videnova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - R. Borisova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - A. Ivanova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| |
Collapse
|
6
|
Zhang JY, Li XY, Li DX, Zhang ZH, Hu LQ, Sun CX, Zhang XN, Wu M, Liu LT. Endoplasmic reticulum stress in intestinal microecology: A controller of antineoplastic drug-related cardiovascular toxicity. Biomed Pharmacother 2024; 181:117720. [PMID: 39631125 DOI: 10.1016/j.biopha.2024.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is extensively studied as a pivotal role in the pathological processes associated with intestinal microecology. In antineoplastic drug treatments, ER stress is implicated in altering the permeability of the mechanical barrier, depleting the chemical barrier, causing dysbiosis, exacerbating immune responses and inflammation in the immune barrier. Enteric dysbiosis and intestinal dysfunction significantly affect the circulatory system in various heart disorders. In antineoplastic drug-related cardiovascular (CV) toxicity, ER stress constitutes a web of relationships in the host-microbiome symbiotic regulatory loop. Therefore, understanding the holobiont perspective will help de-escalate spatial and temporal restrictions. This review investigates the role of ER stress-mediated gut microecological alterations in antineoplastic treatment-induced CV toxicity.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Ya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - De-Xiu Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Zi-Hao Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lan-Qing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chang-Xin Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Nan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Long-Tao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
7
|
Zhang H, Sheng S, Li C, Bao X, Zhao L, Chen J, Guan P, Li X, Pan N, Liang Y, Wang X, Sun J, Wang X. Mucosal immunization with the lung Lactobacillus-derived amphiphilic exopolysaccharide adjuvanted recombinant vaccine improved protection against P. aeruginosa infection. PLoS Pathog 2024; 20:e1012696. [PMID: 39556597 DOI: 10.1371/journal.ppat.1012696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Respiratory infections caused by Pseudomonas aeruginosa are a major health problem globally. Current treatment for P. aeruginosa infections relies solely on antibiotics, but the rise of antibiotic-resistant strains necessitates an urgent need for a protective vaccine. Traditional parenteral vaccines, despite employing potent adjuvants aimed at serotype-dependent immunity, often fail to elicit the desired mucosal immune response. Thus, developing vaccines that target both localized mucosal and systemic immune responses represents a promising direction for future research on P. aeruginosa vaccination. In this study, we explored EPS301, the exopolysaccharide derived from the lung microbiota strain Lactobacillus plantarum WXD301, which exhibits excellent self-assembly properties, enabling the formation of homogeneous nanoparticles when encapsulating recombinant PcrV of P. aeruginosa, designated as EPS301@rPcrV. Notably, the EPS301 vector effectively enhanced antigen adhesion to the nasal and pulmonary mucosal tissues and prolonged antigen retention. Moreover, EPS301@rPcrV provided effective and sustained protection against P. aeruginosa pneumonia, surpassing the durability achieved with the "gold standard" cholera toxin adjuvant. The EPS301-adjuvanted vaccine formulation elicited robust mucosal IgA and Th17/γδ17 T cell responses, which exceeded those induced by the CTB-adjuvanted vaccination and were sustained for over 112 days. Additionally, Th 17 and γδ 17 resident memory T cells induced by EPS301@rPcrV were crucial for protection against P. aeruginosa challenge. Intriguingly, IL-17A knockout mice exhibited lower survival rates, impaired bacterial clearance ability, and exacerbated lung tissue damage upon EPS301 adjuvanted vaccination against P. aeruginosa-induced pneumonia, indicating an IL-17A-dependent protective mechanism. In conclusion, our findings provided direct evidence that EPS301@rPcrV mucosal vaccine is a promising candidate for future clinical application against P. aeruginosa-induced pulmonary infection.
Collapse
Affiliation(s)
- Haochi Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, Inner Mongolia, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Chunhe Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Lixia Zhao
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, Inner Mongolia, China
| | - Jian Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, Inner Mongolia, China
| | - Pingyuan Guan
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, Inner Mongolia, China
| | - Xiaoyan Li
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, Inner Mongolia, China
| | - Na Pan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Xueqi Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Jingmin Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| |
Collapse
|
8
|
Bum Lee J, Huang Y, Oya Y, Nutzinger J, LE Ang Y, Sooi K, Chul Cho B, Soo RA. Modulating the gut microbiome in non-small cell lung cancer: Challenges and opportunities. Lung Cancer 2024; 194:107862. [PMID: 38959670 DOI: 10.1016/j.lungcan.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Despite the efficacy of immunotherapy in non-small cell lung cancer (NSCLC), the majority of the patients experience relapse with limited subsequent treatment options. Preclinical studies of various epithelial tumors, such as melanoma and NSCLC, have shown that harnessing the gut microbiome resulted in improvement of therapeutic responses to immunotherapy. Is this review, we summarize the role of microbiome, including lung and gut microbiome in the context of NSCLC, provide overview of the mechanisms of microbiome in efficacy and toxicity of chemotherapies and immunotherapies, and address current ongoing clinical trials for NSCLC including fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs).
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yuko Oya
- Department of Respiratory Medicine, Fujita Health University, Toyoake, Japan
| | - Jorn Nutzinger
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yvonne LE Ang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Kenneth Sooi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.
| |
Collapse
|
9
|
Leite ACL, Nascimento TP, da Cunha MNC, Mehari Y, Berger E, Scheich D, Lingg N, Jungbauer A. Purification of secretory IgA monoclonal antibodies enriched fraction directly from cell culture medium using aqueous two-phase systems. Int J Biol Macromol 2024; 275:133581. [PMID: 38960262 DOI: 10.1016/j.ijbiomac.2024.133581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Secretory immunoglobulin A [sIgA] is a promising candidate for enteric therapeutics applications, and several sIgA-based constructs are currently being developed by groups utilizing clarified Chinese hamster ovary [CHO] cell culture supernatants. To the monoclonal antibody downstream processing typically entails chromatography-based purification processes beginning with Protein A chromatography. In this paper, aqueous two-phase systems [ATPS] were employed for the preliminary purification of secretory immunoglobulin A [sIgA] monoclonal antibody [mAb] from clarified CHO-cell culture supernatants. A 24 full factorial design was utilized. The influence of various process parameters such as pH, PEG molecular weight [MPEG], PEG concentration [CPEG], and phosphate salt concentration [CPHO], on the sIgA partition coefficient [K sIgA] and the recovery index [Y] in the PEG phase were evaluated. The Elisa assay revealed that, in the ATPS conditions tested, sIgA mAb was mostly detected in PEG upper phase. Run 14 with the highest sIgA activity exhibited the following conditions: MPEG 8.000 g/mol, CPEG 12,5 %, pH 7,0 and CPHO 10 %, and a sIgA K of 94.50 and a recovery index [Y] of 33.52 %. The proposed platform provides straightforward implementation, yields comparable results, and offers significantly improved economics for manufacturing sIgA mAb biotherapeutics.
Collapse
Affiliation(s)
- Ana Cristina Lima Leite
- Biotechnology and Blood Products Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Avenida Artur de Sá, 50740-520 Recife, Pernambuco, Brazil.
| | - Thiago Pajeú Nascimento
- Federal Rural University of Pernambuco, Laboratory of Bioactive Products and Technology, Department of Morphology and Animal Physiology Animal, Av. Dom Manoel de Medeiros, s/n, 52171-900 Recife, Pernambuco, Brazil
| | | | - Yirgaalem Mehari
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology [ACIB], Muthgasse 18, 1190 Vienna, Austria
| | - Eva Berger
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology [ACIB], Muthgasse 18, 1190 Vienna, Austria
| | - David Scheich
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology [ACIB], Muthgasse 18, 1190 Vienna, Austria
| | - Nico Lingg
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology [ACIB], Muthgasse 18, 1190 Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology [ACIB], Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
10
|
Penarete-Acosta D, Stading R, Emerson L, Horn M, Chakraborty S, Han A, Jayaraman A. A microfluidic co-culture model for investigating colonocytes-microbiota interactions in colorectal cancer. LAB ON A CHIP 2024; 24:3690-3703. [PMID: 38973701 DOI: 10.1039/d4lc00013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Changes in the abundance of certain bacterial species within the colorectal microbiota correlate with colorectal cancer (CRC) development. While carcinogenic mechanisms of single pathogenic bacteria have been characterized in vitro, limited tools are available to investigate interactions between pathogenic bacteria and both commensal microbiota and colonocytes in a physiologically relevant tumor microenvironment. To address this, we developed a microfluidic device that can be used to co-culture colonocyte spheroids and colorectal microbiota. The device was used to explore the effect of Fusobacterium nucleatum, an opportunistic pathogen associated with colorectal cancer development in humans, on colonocyte gene expression and microbiota composition. F. nucleatum altered the transcription of genes involved in cytokine production, epithelial-to-mesenchymal transition, and proliferation in colonocytes in a contact-independent manner; however, most of these effects were significantly diminished by the presence of commensal microbiota. Interestingly, F. nucleatum significantly altered the abundance of multiple bacterial clades associated with mucosal immune responses and cancer development in the colon. Our results highlight the importance of evaluating the potential carcinogenic activity of pathogens in the context of a commensal microbiota, and the potential to discover novel inter-species microbial interactions in the CRC microenvironment.
Collapse
Affiliation(s)
| | - Rachel Stading
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
| | - Laura Emerson
- Department of Biomedical Engineering, Texas A&M University, USA.
| | - Mitchell Horn
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Arum Han
- Department of Biomedical Engineering, Texas A&M University, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
- Department of Electrical and Computer Engineering, Texas A&M University, USA
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
| |
Collapse
|
11
|
Laprise F, Arduini A, Duguay M, Pan Q, Liang C. SARS-CoV-2 Accessory Protein ORF8 Targets the Dimeric IgA Receptor pIgR. Viruses 2024; 16:1008. [PMID: 39066171 PMCID: PMC11281603 DOI: 10.3390/v16071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
SARS-CoV-2 is a highly pathogenic respiratory virus that successfully initiates and establishes its infection at the respiratory mucosa. However, little is known about how SARS-CoV-2 antagonizes the host's mucosal immunity. Recent findings have shown a marked reduction in the expression of the polymeric Ig receptor (pIgR) in COVID-19 patients. This receptor maintains mucosal homeostasis by transporting the dimeric IgA (dIgA) and pentameric IgM (pIgM) across mucosal epithelial cells to neutralize the invading respiratory pathogens. By studying the interaction between pIgR and SARS-CoV-2 proteins, we discovered that the viral accessory protein Open Reading Frame 8 (ORF8) potently downregulates pIgR expression and that this downregulation activity of ORF8 correlates with its ability to interact with pIgR. Importantly, the ORF8-mediated downregulation of pIgR diminishes the binding of dIgA or pIgM, and the ORF8 proteins of the variants of concern of SARS-CoV-2 preserve the function of downregulating pIgR, indicating the importance of this conserved activity of ORF8 in SARS-CoV-2 pathogenesis. We further observed that the secreted ORF8 binds to cell surface pIgR, but that this interaction does not trigger the cellular internalization of ORF8, which requires the binding of dIgA to pIgR. These findings suggest the role of ORF8 in SARS-CoV-2 mucosal immune evasion.
Collapse
Affiliation(s)
- Frederique Laprise
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Mathew Duguay
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Institut de Recherche Clinique de Montréal, Montreal, QC H2W 1R7, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
12
|
Jin G, Wang R, Jin Y, Song Y, Wang T. From intramuscular to nasal: unleashing the potential of nasal spray vaccines against coronavirus disease 2019. Clin Transl Immunology 2024; 13:e1514. [PMID: 38770238 PMCID: PMC11103645 DOI: 10.1002/cti2.1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected 700 million people worldwide since its outbreak in 2019. The current pandemic strains, including Omicron and its large subvariant series, exhibit strong transmission and stealth. After entering the human body, the virus first infects nasal epithelial cells and invades host cells through the angiotensin-converting enzyme 2 receptor and transmembrane serine protease 2 on the host cell surface. The nasal cavity is an important body part that protects against the virus. Immunisation of the nasal mucosa produces immunoglobulin A antibodies that effectively neutralise viruses. Saline nasal irrigation, a type of physical therapy, can reduce the viral load in the nasal cavity and prevent viral infections to some extent. As a commonly used means to fight SARS-CoV-2, the intramuscular (IM) vaccine can induce the human body to produce a systemic immune response and immunoglobulin G antibody; however, the antibody is difficult to distribute to the nasal mucosa in time and cannot achieve a good preventive effect. Intranasal (IN) vaccines compensate for the shortcomings of IM vaccines, induce mucosal immune responses, and have a better effect in preventing infection. In this review, we discuss the nasal defence barrier, the harm caused by SARS-CoV-2, the mechanism of its invasion into host cells, nasal cleaning, IM vaccines and IN vaccines, and suggest increasing the development of IN vaccines, and use of IN vaccines as a supplement to IM vaccines.
Collapse
Affiliation(s)
- Ge Jin
- Faculty of MedicineDalian University of TechnologyDalianLiaoningChina
- Department of RadiotherapyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangLiaoningChina
| | - Runze Wang
- Department of RadiotherapyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangLiaoningChina
| | - Yi Jin
- Department of Breast SurgeryLiaoning Cancer Hospital and InstituteShenyangLiaoningChina
| | - Yingqiu Song
- Department of RadiotherapyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangLiaoningChina
| | - Tianlu Wang
- Faculty of MedicineDalian University of TechnologyDalianLiaoningChina
- Department of RadiotherapyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangLiaoningChina
- Department of RadiotherapyCancer Hospital of Dalian University of TechnologyDalianLiaoningChina
| |
Collapse
|
13
|
Curvino EJ, Woodruff ME, Roe EF, Freire Haddad H, Cordero Alvarado P, Collier JH. Supramolecular Peptide Self-Assemblies Facilitate Oral Immunization. ACS Biomater Sci Eng 2024; 10:3041-3056. [PMID: 38623037 PMCID: PMC11382288 DOI: 10.1021/acsbiomaterials.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Oral immunization is a promising strategy for preventing and treating gastrointestinal (GI) infections and diseases, as it allows for direct access to the disease site. To elicit immune responses within the GI tract, however, there are many obstacles that oral vaccines must surmount, including proteolytic degradation and thick mucus barriers. Here, we employed a modular self-assembling peptide nanofiber platform to facilitate oral immunization against both peptide and small molecule epitopes. Synthesizing nanofibers with d-amino acids rendered them resistant to proteases in vitro, whereas l-amino acid nanofibers were rapidly degraded. Additionally, the inclusion of peptide sequences rich in proline, alanine, and serine (PAS), increased nanofiber muco-penetration, and accelerated nanofiber transport through the GI tract. Oral immunization with PASylated nanofibers and mucosal adjuvant generated local and systemic immune responses to a peptide epitope but only for l-amino acid nanofibers. Further, we were able to apply this design to also enable oral immunization against a small molecule epitope and illustrated the therapeutic and prophylactic effectiveness of these immunizations in mouse models of colitis. These findings demonstrate that supramolecular peptide self-assemblies have promise as oral vaccines and immunotherapies.
Collapse
Affiliation(s)
- Elizabeth J Curvino
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Mia E Woodruff
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Emily F Roe
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Helena Freire Haddad
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Pablo Cordero Alvarado
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
14
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
15
|
Ma B, Tao M, Li Z, Zheng Q, Wu H, Chen P. Mucosal vaccines for viral diseases: Status and prospects. Virology 2024; 593:110026. [PMID: 38373360 DOI: 10.1016/j.virol.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Virus-associated infectious diseases are highly detrimental to human health and animal husbandry. Among all countermeasures against infectious diseases, prophylactic vaccines, which developed through traditional or novel approaches, offer potential benefits. More recently, mucosal vaccines attract attention for their extraordinary characteristics compared to conventional parenteral vaccines, particularly for mucosal-related pathogens. Representatively, coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), further accelerated the research and development efforts for mucosal vaccines by thoroughly investigating existing strategies or involving novel techniques. While several vaccine candidates achieved positive progresses, thus far, part of the current COVID-19 mucosal vaccines have shown poor performance, which underline the need for next-generation mucosal vaccines and corresponding platforms. In this review, we summarized the typical mucosal vaccines approved for humans or animals and sought to elucidate the underlying mechanisms of these successful cases. In addition, mucosal vaccines against COVID-19 that are in human clinical trials were reviewed in detail since this public health event mobilized all advanced technologies for possible solutions. Finally, the gaps in developing mucosal vaccines, potential solutions and prospects were discussed. Overall, rational application of mucosal vaccines would facilitate the establishing of mucosal immunity and block the transmission of viral diseases.
Collapse
Affiliation(s)
- Bingjie Ma
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Mengxiao Tao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Quanfang Zheng
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China.
| |
Collapse
|
16
|
Keller JK, Diekhof EK. Influence of female sex hormones on proactive behavioral and physiological immune parameters. Reprod Biol 2024; 24:100880. [PMID: 38581902 DOI: 10.1016/j.repbio.2024.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Women may be more susceptible to infections in the luteal phase, supposedly as a consequence of the hormone progesterone and its immunosuppressive action. While immunosuppression may be important for successful oocyte implantation and pregnancy, it makes women more vulnerable to pathogens. According to theory, to compensate for reduced immunocompetence, women in the luteal phase exhibit proactive behavioral responses, such as disgust and avoidance of disease-associated stimuli, to minimize contagion risk. However, previous studies yielded inconsistent results, and did not account for accompanying proactive immune responses, like the increase of secretory immunoglobin A (sIgA). Here, we assessed the proactive immune response and feelings of disgust associated with disease cues in the comparison of 61 woman with a natural menstrual cycle (31 in the follicular and 30 in the luteal phase) and 20 women taking hormonal contraception (HC). Women rated disease vulnerability and disgust propensity, watched a video displaying people with respiratory symptoms, which was evaluated for its disgust-evoking potential and contagiousness, and provided saliva samples for hormone and sIgA analysis. Women with HC reported a heightened vulnerability to disease compared to naturally cycling women, whereas both the feeling of disgust and the sIgA increase elicited by the disease video were similar across groups, regardless of progesterone. We found a u-shaped relationship between progesterone and baseline sIgA in naturally cycling women, with its nadir during ovulation. Overall, our data do not support a compensatory relationship between the proposed progesterone-induced immunosuppression and heightened disgust or a proactive sIgA response.
Collapse
Affiliation(s)
- Judith K Keller
- Neuroendocrinology and Human Biology Unit, Department of Biology, Faculty of Mathematics, Informatics and Natural Sciences, Institute for Animal Cell- and Systems Biology, Universität Hamburg, Hamburg, Germany.
| | - Esther K Diekhof
- Neuroendocrinology and Human Biology Unit, Department of Biology, Faculty of Mathematics, Informatics and Natural Sciences, Institute for Animal Cell- and Systems Biology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
17
|
Li XD, Lu Y, Luo CY, Xin WG, Kang X, Lin YC, Lin LB. Lacticaseibacillus chiayiensis mediate intestinal microbiome and microbiota-derived metabolites regulating the growth and immunity of chicks. Vet Microbiol 2024; 290:109969. [PMID: 38211362 DOI: 10.1016/j.vetmic.2023.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Emerging evidence confirms beneficial properties of probiotics in promoting growth and immunity of farmed chicken. However, the molecular mechanisms underlying the host-microbiome interactions mediated by probiotics are not fully understood. In this study, the internal mechanisms of Lacticaseibacillus chiayiensis-mediated host-microbiome interactions and to elucidate how it promotes host growth were investigated by additional supplementation with L. chiayiensis. We conducted experiments, including intestinal cytokines, digestive enzymes test, intestinal microbiome, metabolome and transcriptome analysis. The results showed that chickens fed L. chiayiensis exhibited higher body weight gain and digestive enzyme activity, and lower pro-inflammatory cytokines, compared to controls. Microbiota sequencing analysis showed that the gut microbiota structure was reshaped with L. chiayiensis supplementation. Specifically, Lactobacillus and Escherichia increased in abundance and Enterococcus, Lactococcus, Corynebacterium, Weissella and Gallicola decreased. In addition, the bacterial community diversity was significantly increased compared to controls. Metabolomic and transcriptomic analyses revealed that higher bile acids and N-acyl amides concentrations and lower carbohydrates concentrations in L. chiayiensis-fed chickens. Meanwhile, the expression of genes related to nutrient transport and absorption in the intestine was upregulated, which reflected the enhanced digestion and absorption of nutrients in chickens supplemented with L. chiayiensis. Moreover, supplementation of L. chiayiensis down-regulated genes involved in inflammation-related, mainly involved in NF-κB signaling pathway and MHC-II mediated antigen presentation process. Cumulatively, these findings highlight that host-microbiota crosstalk enhances the host growth phenotype in two ways: by enhancing bile acid metabolism and digestive enzyme activity, and reducing the occurrence of intestinal inflammation to promote nutrient absorption and maintain intestinal health. This provides a basis for the application of LAB as an alternative to antibiotics in animal husbandry.
Collapse
Affiliation(s)
- Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Yao Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Cheng-Ying Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Xin Kang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China.
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China.
| |
Collapse
|
18
|
Qi G, Liu X, Shi L, Zhuang J, Liu B. Targeted Depletion of Individual Pathogen by Bacteria-Templated Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307940. [PMID: 37921569 DOI: 10.1002/adma.202307940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Selective and targeted removal of individual species or strains of bacteria from complex communities can be desirable over traditional and broadly acting antibiotics in several conditions. However, strategies that can detect and ablate bacteria with high specificity are emerging in recent years. Herein, a platform is reported that uses bacteria as a template to synthesize polymers containing guanidinium groups for self-selective depletion of specific pathogenic bacteria without disturbing microbial communities. Different from conventional antibiotics, repeated treatment of bacteria with the templated polymers does not evolve drug resistance mutants after 20 days of serial passaging. Especially, high in vivo therapeutic effectiveness of the templated polymers is achieved in E. coli- and P. aeruginosa-induced microbial peritonitis. The templated polymers have shown high selectivity in in vivo antimicrobial activity, which has excellent potential as systemic antimicrobials against bacterial infections.
Collapse
Affiliation(s)
- Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xianglong Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Leilei Shi
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Jiahao Zhuang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Institute for Functional Intelligent Materials, National University of Singapore, Blk S9, Level 9, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
19
|
Sechan F, Loens K, Goossens H, Ieven M, van der Hoek L. Endemic Human Coronavirus-Specific Nasal Immunoglobulin A and Serum Immunoglobulin G Dynamics in Lower Respiratory Tract Infections. Vaccines (Basel) 2024; 12:90. [PMID: 38250903 PMCID: PMC10820673 DOI: 10.3390/vaccines12010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Endemic human coronaviruses (HCoV) NL63, 229E, OC43, and HKU1 cause respiratory infection. Following infection, a virus-specific serum antibody rise is usually observed, coinciding with recovery. In some cases, an infection is not accompanied by an immunoglobulin G (IgG) antibody rise in serum in the first month after HCoV infection, even though the infection has cleared in that month and the patient has recovered. We investigated the possible role of nasal immunoglobulin A (IgA). We measured spike (S) and nucleocapsid (N)-specific nasal IgA during and after an HCoV lower respiratory tract infection (LRTI) and compared the IgA responses between subjects with and without a significant IgG rise in serum (IgG responders (n = 31) and IgG non-responders (n = 14)). We found that most IgG responders also exhibited significant nasal IgA rise in the first month after the infection, whereas such an IgA rise was lacking in most IgG non-responders. Interestingly, the serum IgG non-responders presented with a significantly higher nasal IgA when they entered this study than during the acute phase of the LRTI. Our data suggest that nasal IgA could be part of a fast acute response to endemic HCoV infection and may play a role in clearing the infection.
Collapse
Affiliation(s)
- Ferdyansyah Sechan
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| | - Katherine Loens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium; (K.L.); (H.G.); (M.I.)
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium; (K.L.); (H.G.); (M.I.)
| | - Margareta Ieven
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium; (K.L.); (H.G.); (M.I.)
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Zhang X, Zhang J, Chen S, He Q, Bai Y, Liu J, Wang Z, Liang Z, Chen L, Mao Q, Xu M. Progress and challenges in the clinical evaluation of immune responses to respiratory mucosal vaccines. Expert Rev Vaccines 2024; 23:362-370. [PMID: 38444382 DOI: 10.1080/14760584.2024.2326094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Following the coronavirus disease pandemic, respiratory mucosal vaccines that elicit both mucosal and systemic immune responses have garnered increasing attention. However, human physiological characteristics pose significant challenges in the evaluation of mucosal immunity, which directly impedes the development and application of respiratory mucosal vaccines. AREAS COVERED This study summarizes the characteristics of immune responses in the respiratory mucosa and reviews the current status and challenges in evaluating immune response to respiratory mucosal vaccines. EXPERT OPINION Secretory Immunoglobulin A (S-IgA) is a major effector molecule at mucosal sites and a commonly used indicator for evaluating respiratory mucosal vaccines. However, the unique physiological structure of the respiratory tract pose significant challenges for the clinical collection and detection of S-IgA. Therefore, it is imperative to develop a sampling method with high collection efficiency and acceptance, a sensitive detection method, reference materials for mucosal antibodies, and to establish a threshold for S-IgA that correlates with clinical protection. Sample collection is even more challenging when evaluating mucosal cell immunity. Therefore, a mucosal cell sampling method with high operability and high tolerance should be established. Targets of the circulatory system capable of reflecting mucosal cellular immunity should also be explored.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jialu Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Si Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
| | - Qian He
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyang Liu
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Zhongfang Wang
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
| | - Zhenglun Liang
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Ling Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qunying Mao
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
21
|
Keller JK, Dulovic A, Gruber J, Griesbaum J, Schneiderhan-Marra N, Wülfing C, Kruse J, Hartmann A, Diekhof EK. SARS-CoV-2 specific sIgA in saliva increases after disease-related video stimulation. Sci Rep 2023; 13:22631. [PMID: 38123577 PMCID: PMC10733377 DOI: 10.1038/s41598-023-47798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Secretory immunoglobulin A (sIgA) in saliva is the most important immunoglobulin fighting pathogens in the respiratory tract and may thus play a role in preventing SARS-CoV-2 infections. To gain a better understanding of the plasticity in the mucosal antibody, we investigated the proactive change in secretion of salivary SARS-CoV-2-specific sIgA in 45 vaccinated and/or previously infected, generally healthy persons (18 to 35 years, 22 women). Participants were exposed to a disease video displaying humans with several respiratory symptoms typical for COVID-19 in realistic situations of increased contagion risk. The disease video triggered an increase in spike-specific sIgA, which was absent after a similar control video with healthy people. The increase further correlated inversely with revulsion and aversive feelings while watching sick people. In contrast, the receptor binding domain-specific sIgA did not increase after the disease video. This may indicate differential roles of the two salivary antibodies in response to predictors of airborne contagion. The observed plasticity of spike-specific salivary antibody release after visual simulation of enhanced contagion risk suggests a role in immune exclusion.
Collapse
Affiliation(s)
- Judith K Keller
- Department of Biology, Neuroendocrinology and Human Biology Unit, Faculty of Mathematics, Informatics and Natural Sciences, Institute for Animal Cell and Systems Biology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Jens Gruber
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Johanna Griesbaum
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Clemens Wülfing
- Department of Biology, Interdisciplinary Neurobiology and Immunology, Faculty of Mathematics, Informatics and Natural Sciences, Institute for Animal Cell and Systems Biology, Universität Hamburg, Hamburg, Germany
| | - Jana Kruse
- Department of Biology, Neuroendocrinology and Human Biology Unit, Faculty of Mathematics, Informatics and Natural Sciences, Institute for Animal Cell and Systems Biology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Annika Hartmann
- Department of Biology, Neuroendocrinology and Human Biology Unit, Faculty of Mathematics, Informatics and Natural Sciences, Institute for Animal Cell and Systems Biology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Esther K Diekhof
- Department of Biology, Neuroendocrinology and Human Biology Unit, Faculty of Mathematics, Informatics and Natural Sciences, Institute for Animal Cell and Systems Biology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| |
Collapse
|
22
|
Muranishi K, Kinoshita M, Inoue K, Ohara J, Mihara T, Sudo K, Ishii KJ, Sawa T, Ishikura H. Antibody Response Following the Intranasal Administration of SARS-CoV-2 Spike Protein-CpG Oligonucleotide Vaccine. Vaccines (Basel) 2023; 12:5. [PMID: 38276664 PMCID: PMC10818492 DOI: 10.3390/vaccines12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The new coronavirus infection causes severe respiratory failure following respiratory tract infection with severe acute respiratory syndrome-related coronavirus (SARS-CoV-2). All currently approved vaccines are administered intramuscularly; however, intranasal administration enhances mucosal immunity, facilitating the production of a less invasive vaccine with fewer adverse events. Herein, a recombinant vaccine combining the SARS-CoV-2 spike protein receptor-binding domain (RBD), or S1 protein, with CpG-deoxyoligonucleotide (ODN) or aluminum hydroxide (alum) adjuvants was administered intranasally or subcutaneously to mice. Serum-specific IgG titers, IgA titers in the alveolar lavage fluid, and neutralizing antibody titers were analyzed. The nasal administration of RBD protein did not increase serum IgG or IgA titers in the alveolar lavage fluid. However, a significant increase in serum IgG was observed in the intranasal group administered with S1 protein with CpG-ODN and the subcutaneous group administered with S1 protein with alum. The IgA and IgG levels increased significantly in the alveolar lavage fluid only after the intranasal administration of the S1 protein with CpG-ODN. The neutralizing antibody titers in serum and bronchoalveolar lavage were significantly higher in the intranasal S1-CpG group than in every other group. Hence, the nasal administration of the S1 protein vaccine with CpG adjuvant might represent an effective vaccine candidate.
Collapse
Affiliation(s)
- Kentaro Muranishi
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 814-0133, Japan; (K.M.); (H.I.)
| | - Mao Kinoshita
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Keita Inoue
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Junya Ohara
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Toshihito Mihara
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Kazuki Sudo
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Ken J. Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
| | - Teiji Sawa
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 814-0133, Japan; (K.M.); (H.I.)
| |
Collapse
|
23
|
He Z, Dong H. The roles of short-chain fatty acids derived from colonic bacteria fermentation of non-digestible carbohydrates and exogenous forms in ameliorating intestinal mucosal immunity of young ruminants. Front Immunol 2023; 14:1291846. [PMID: 38149240 PMCID: PMC10750390 DOI: 10.3389/fimmu.2023.1291846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
Short-chain fatty acids (SCFA) are a class of organic fatty acids that consist of 1 to 6 carbons in length. They are primary end-products which arise from non-digestible carbohydrates (NDC) fermentation of colonic bacteria. They are the fundamental energy sources for post-weaning ruminants. SCFA represent the major carbon flux of diet through the gut microbiota to the host. They also play a vital role in regulating cell expansion and gene expression of the gastrointestinal tract (GIT). Recently, remarkable progresses have been made in understanding the immunomodulatory effects of SCFA and their interactions with the host. The processes involved in this study encompassed inflammasome activation, proliferation of lymphocytes, and maturation of intestinal mucosal immunity maturation. It is important to note that the establishment and maturation of intestinal mucosal immune system are intricately connected to the barrier function of intestinal epithelial cells (IEC) and the homeostasis of gut microbiota. Thus, insights into the role of SCFA in enteric mucosal immunoreaction of calves will enhance our understanding of their various regulatory functions. This review aims to analyze recent evidence on the role of SCFA as essential signaling molecules between gut microbiota and animal health. Additionally, we provide a summary of current literature on SCFA in intestinal mucosal immune responses of dairy calves.
Collapse
Affiliation(s)
| | - Hong Dong
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
24
|
Heise EL, Chichelnitskiy E, Greer M, Franz M, Aburahma K, Iablonskii P, de Manna ND, Christoph S, Verboom M, Hallensleben M, Boethig D, Avsar M, Welte T, Schwerk N, Sommer W, Haverich A, Warnecke G, Kuehn C, Falk C, Salman J, Ius F. Lung transplantation despite preformed donor-specific antihuman leukocyte antigen antibodies: a 9-year single-center experience. Am J Transplant 2023; 23:1740-1756. [PMID: 37225088 DOI: 10.1016/j.ajt.2023.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Pretransplant allosensitization to human leukocyte antigens (HLA) increases the recipient's waiting list time and mortality in lung transplantation. Rather than waiting for crossmatch-negative donors, since 2013, recipients with preformed donor-specific antiHLA antibodies (pfDSA) have been managed with repeated IgA- and IgM-enriched intravenous immunoglobulin (IgGAM) infusions, usually in combination with plasmapheresis before IgGAM and a single dose of antiCD20 antibody. This retrospective study presents our 9-year experience with patients transplanted with pfDSA. Records of patients transplanted between February 2013 and May 2022 were reviewed. Outcomes were compared between patients with pfDSA and those without any de novo donor-specific antiHLA antibodies. The median follow-up time was 50 months. Of the 1,043 patients who had undergone lung transplantation, 758 (72.7%) did not develop any early donor-specific antiHLA antibodies, and 62 (5.9%) patients exhibited pfDSA. Among the 52 (84%) patients who completed treatment, pfDSA was cleared in 38 (73%). In pfDSA vs control patients and at 8-year follow-up, respectively, graft survival (%) was 75 vs 65 (P = .493) and freedom from chronic lung allograft dysfunction (%) was 63 vs 65 (P = .525). In lung transplantation, crossing the preformed HLA-antibody barrier is safe using a treatment protocol based on IgGAM. Patients with pfDSA have a good 8-year graft survival rate and freedom from chronic lung allograft dysfunction, similar to control patients.
Collapse
Affiliation(s)
- Emma L Heise
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Evgeny Chichelnitskiy
- Department of Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Mark Greer
- Department of Respiratory Medicine,Hannover Medical School,Hannover,Germany; Member of the German Center for Lung Research (DZL), Hannover/Heidelberg, Germany
| | - Maximilian Franz
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Khalil Aburahma
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Pavel Iablonskii
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany; Medical Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Nunzio D de Manna
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Stella Christoph
- Department of Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Murielle Verboom
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Michael Hallensleben
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Dietmar Boethig
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Murat Avsar
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine,Hannover Medical School,Hannover,Germany; Member of the German Center for Lung Research (DZL), Hannover/Heidelberg, Germany
| | - Nicolaus Schwerk
- Department of Pediatric Pneumology Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Member of the German Center for Lung Research (DZL), Hannover/Heidelberg, Germany
| | - Wiebke Sommer
- Department of Cardiac Surgery, Heidelberg Medical School, Heidelberg, Germany; Member of the German Center for Lung Research (DZL), Hannover/Heidelberg, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, Heidelberg Medical School, Heidelberg, Germany; Member of the German Center for Lung Research (DZL), Hannover/Heidelberg, Germany
| | - Christian Kuehn
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany; Member of the German Center for Lung Research (DZL), Hannover/Heidelberg, Germany
| | - Christine Falk
- Department of Transplantation Immunology, Hannover Medical School, Hannover, Germany; Member of the German Center for Lung Research (DZL), Hannover/Heidelberg, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany; Member of the German Center for Lung Research (DZL), Hannover/Heidelberg, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany; Member of the German Center for Lung Research (DZL), Hannover/Heidelberg, Germany.
| |
Collapse
|
25
|
Dotiwala F, Upadhyay AK. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines (Basel) 2023; 11:1585. [PMID: 37896988 PMCID: PMC10611113 DOI: 10.3390/vaccines11101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the potential to prevent the infection from getting established. This is different from systemic vaccination, which protects against the development of systemic symptoms. The field of mucosal vaccination has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines induce systemic immune responses at par with systemic vaccinations. This review summarizes the function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral vectors provide as inhaled vaccine platforms.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA
| | | |
Collapse
|
26
|
Zhang S, Han Y, Schofield W, Nicosia M, Karell PE, Newhall KP, Zhou JY, Musich RJ, Pan S, Valujskikh A, Sangwan N, Dwidar M, Lu Q, Stappenbeck TS. Select symbionts drive high IgA levels in the mouse intestine. Cell Host Microbe 2023; 31:1620-1638.e7. [PMID: 37776865 DOI: 10.1016/j.chom.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 09/01/2023] [Indexed: 10/02/2023]
Abstract
Immunoglobulin A (IgA) is an important factor in maintaining homeostasis at mucosal surfaces, yet luminal IgA levels vary widely. Total IgA levels are thought to be driven by individual immune responses to specific microbes. Here, we found that the prebiotic, pectin oligosaccharide (pec-oligo), induced high IgA levels in the small intestine in a T cell-dependent manner. Surprisingly, this IgA-high phenotype was retained after cessation of pec-oligo treatment, and microbiome transmission either horizontally or vertically was sufficient to retain high IgA levels in the absence of pec-oligo. Interestingly, the bacterial taxa enriched in the overall pec-oligo bacterial community differed from IgA-coated microbes in this same community. Rather, a group of ethanol-resistant microbes, highly enriched for Lachnospiraceae bacterium A2, drove the IgA-high phenotype. These findings support a model of intestinal adaptive immunity in which a limited number of microbes can promote durable changes in IgA directed to many symbionts.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250000, P.R. China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yi Han
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Michael Nicosia
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul E Karell
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kevin P Newhall
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Julie Y Zhou
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ryan J Musich
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohammed Dwidar
- Department of Cardiovascular and Metabolic Sciences, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qiuhe Lu
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
27
|
Gaglio SC, Perduca M, Zipeto D, Bardi G. Efficiency of Chitosan Nanocarriers in Vaccinology for Mucosal Immunization. Vaccines (Basel) 2023; 11:1333. [PMID: 37631901 PMCID: PMC10459455 DOI: 10.3390/vaccines11081333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
The mucosal barrier constitutes a huge surface area, close to 40 m2 in humans, located mostly in the respiratory, gastrointestinal and urogenital tracts and ocular cavities. It plays a crucial role in tissue interactions with the microbiome, dietary antigens and other environmental materials. Effective vaccinations to achieve highly protective mucosal immunity are evolving strategies to counteract several serious diseases including tuberculosis, diphtheria, influenzae B, severe acute respiratory syndrome, Human Papilloma Virus infection and Acquired Immune Deficiency Syndrome. Interestingly, one of the reasons behind the rapid spread of severe acute respiratory syndrome coronavirus 2 variants has been the weakness of local immunization at the level of the respiratory mucosa. Mucosal vaccines can outperform parenteral vaccination as they specifically elicit protective mucosal immune responses blocking infection and transmission. In this scenario, chitosan-based nanovaccines are promising adjuvants-carrier systems that rely on the ability of chitosan to cross tight junctions and enhance particle uptake due to chitosan-specific mucoadhesive properties. Indeed, chitosan not only improves the adhesion of antigens to the mucosa promoting their absorption but also shows intrinsic immunostimulant abilities. Furthermore, by finely tuning the colloidal properties of chitosan, it can provide sustained antigen release to strongly activate the humoral defense. In the present review, we agnostically discuss the potential reasons why chitosan-based vaccine carriers, that efficiently elicit strong immune responses in experimental setups and in some pre-clinical/clinical studies, are still poorly considered for therapeutic formulations.
Collapse
Affiliation(s)
- Salvatore Calogero Gaglio
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
28
|
Zhao L, Xiao J, Li S, Guo Y, Fu R, Hua S, Du Y, Xu S. The interaction between intestinal microenvironment and stroke. CNS Neurosci Ther 2023; 29 Suppl 1:185-199. [PMID: 37309254 PMCID: PMC10314114 DOI: 10.1111/cns.14275] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Stroke is not only a major cause of disability but also the third leading cause of death, following heart disease and cancer. It has been established that stroke causes permanent disability in 80% of survivors. However, current treatment options for this patient population are limited. Inflammation and immune response are major features that are well-recognized to occur after a stroke. The gastrointestinal tract hosts complex microbial communities, the largest pool of immune cells, and forms a bidirectional regulation brain-gut axis with the brain. Recent experimental and clinical studies have highlighted the importance of the relationship between the intestinal microenvironment and stroke. Over the years, the influence of the intestine on stroke has emerged as an important and dynamic research direction in biology and medicine. AIMS In this review, we describe the structure and function of the intestinal microenvironment and highlight its cross-talk relationship with stroke. In addition, we discuss potential strategies aiming to target the intestinal microenvironment during stroke treatment. CONCLUSION The structure and function of the intestinal environment can influence neurological function and cerebral ischemic outcome. Improving the intestinal microenvironment by targeting the gut microbiota may be a new direction in treating stroke.
Collapse
Affiliation(s)
- Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Jie Xiao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Songlin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shengyu Hua
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| |
Collapse
|
29
|
Chiantera V, Laganà AS, Basciani S, Nordio M, Bizzarri M. A Critical Perspective on the Supplementation of Akkermansia muciniphila: Benefits and Harms. Life (Basel) 2023; 13:1247. [PMID: 37374030 DOI: 10.3390/life13061247] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Akkermansia muciniphila is a mucin-degrading bacterium of the intestinal niche, exerting beneficial effects on the host metabolic profile. Accumulating evidence indicated Akkermansia as a promising therapeutic probiotic against metabolic disorders such as obesity, type 2 diabetes and cardiovascular diseases. However, in specific intestinal microenvironments, its excessive enrichment may be not beneficial. Conditions like inflammatory bowel disease (IBD), Salmonella typhimurium infection or post-antibiotic reconstitution may not benefit from Akkermansia supplementation. Furthermore, using Akkermansia in patients with endocrine and gynecological disorders-such as polycystic ovary syndrome (PCOS) or endometriosis-that have a higher risk of developing IBD, should be critically evaluated. In addition, a cautionary note comes from the neurological field, as the gut microbiota of patients suffering from Parkinson's disease or multiple sclerosis exhibits a characteristic signature of Akkermansia municiphila abundance. Overall, considering these controversial points, the use of Akkermansia should be evaluated on an individual basis, avoiding risking unexpected effects.
Collapse
Affiliation(s)
- Vito Chiantera
- Unit of Gynecologic Oncology, ARNAS "Civico-Di Cristina-Benfratelli", Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, ARNAS "Civico-Di Cristina-Benfratelli", Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Maurizio Nordio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Mariano Bizzarri
- System Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
30
|
Yount KS, Hall JM, Caution K, Shamseldin MM, Guo M, Marion K, Fullen AR, Huang Y, Maynard JA, Quataert SA, Deora R, Dubey P. Systemic priming and intranasal booster with a BcfA-adjuvanted acellular pertussis vaccine generates CD4+ IL-17+ nasal tissue resident T cells and reduces B. pertussis nasal colonization. Front Immunol 2023; 14:1181876. [PMID: 37275891 PMCID: PMC10232778 DOI: 10.3389/fimmu.2023.1181876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Resurgence of pertussis, caused by Bordetella pertussis, necessitates novel vaccines and vaccination strategies to combat this disease. Alum-adjuvanted acellular pertussis vaccines (aPV) delivered intramuscularly reduce bacterial numbers in the lungs of immunized animals and humans, but do not reduce nasal colonization. Thus, aPV-immunized individuals are sources of community transmission. We showed previously that modification of a commercial aPV (Boostrix) by addition of the Th1/17 polarizing adjuvant Bordetella Colonization Factor A (BcfA) attenuated Th2 responses elicited by alum and accelerated clearance of B. pertussis from mouse lungs. Here we tested whether a heterologous immunization strategy with systemic priming and mucosal booster (prime-pull) would reduce nasal colonization. Methods Adult male and female mice were immunized intramuscularly (i.m.) with aPV or aPV/BcfA and boosted either i.m. or intranasally (i.n.) with the same formulation. Tissue-resident memory (TRM) responses in the respiratory tract were quantified by flow cytometry, and mucosal and systemic antibodies were quantified by ELISA. Immunized and naïve mice were challenged i.n. with Bordetella pertussis and bacterial load in the nose and lungs enumerated at days 1-14 post-challenge. Results We show that prime-pull immunization with Boostrix plus BcfA (aPV/BcfA) generated IFNγ+ and IL-17+ CD4+ lung resident memory T cells (TRM), and CD4+IL-17+ TRM in the nose. In contrast, aPV alone delivered by the same route generated IL-5+ CD4+ resident memory T cells in the lungs and nose. Importantly, nasal colonization was only reduced in mice immunized with aPV/BcfA by the prime-pull regimen. Conclusions These results suggest that TH17 polarized TRM generated by aPV/BcfA may reduce nasal colonization thereby preventing pertussis transmission and subsequent resurgence.
Collapse
Affiliation(s)
- Kacy S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Jesse M. Hall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Kyle Caution
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Mohamed M. Shamseldin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Myra Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Keirsten Marion
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Audra R. Fullen
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Yimin Huang
- Department of Chemical Engineering, University of Texas-Austin, Austin, TX, United States
| | - Jennifer A. Maynard
- Department of Chemical Engineering, University of Texas-Austin, Austin, TX, United States
| | - Sally A. Quataert
- Respiratory Pathogens Research Center, University of Rochester Medical Center, Rochester, NY, United States
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
31
|
Saranya GR, Viswanathan P. Gut microbiota dysbiosis in AKI to CKD transition. Biomed Pharmacother 2023; 161:114447. [PMID: 37002571 DOI: 10.1016/j.biopha.2023.114447] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND AND AIM The symptoms of acute kidney injury (AKI) include a sudden drop-in glomerular filtration rate (GFR), a rise in serum creatinine (sCr), blood urea nitrogen (BUN), and electrolytes, which leads to a rapid loss of kidney function. Chronic kidney disease progresses when AKI symptoms persist for over three months or 90 days. Numerous prevalent secondary risk factors, including diabetes, hypertension, obesity, and heart illness, are directly or indirectly linked to the development of AKI and the switch from AKI to CKD. Recently, the change of intestinal bacteria known as "gut dysbiosis" has been linked to distant organ dysfunction, including the heart, lungs, kidneys, and brain. Indirectly or directly, gut dysbiosis contributes to the progression of CKD and AKI. However, the effects of gut dysbiosis and the mechanism of action in the progression from AKI to CKD are unknown or need further investigation. The mechanism by which gut dysbiosis initiates AKI's progression to CKD should be explicitly concerned. The review primarily focuses on the action of gut dysbiosis in kidney disease, the effects of dysbiosis, the characterisation of dysbiosis and its pathogenic products, the various pathogenic routes and mechanism involved in expediting the transition from AKI to CKD. CONCLUSION We identified and briefly reviewed the impacts of dysbiosis in various situations such as hypoxia, mitochondrial induced reactive oxygen species (mtROS), aryl hydrocarbon receptor (AhR) activation and microbiota derived uremic toxemic substances profoundly to push AKI to CKD conditions.
Collapse
Affiliation(s)
- G R Saranya
- Renal Research Lab, School of Bio Sciences and Technology, Pearl Research Park, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Pragasam Viswanathan
- Renal Research Lab, School of Bio Sciences and Technology, Pearl Research Park, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
32
|
Song C, Chai Z, Chen S, Zhang H, Zhang X, Zhou Y. Intestinal mucus components and secretion mechanisms: what we do and do not know. Exp Mol Med 2023; 55:681-691. [PMID: 37009791 PMCID: PMC10167328 DOI: 10.1038/s12276-023-00960-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 04/04/2023] Open
Abstract
Damage to the colon mucus barrier, the first line of defense against microorganisms, is an important determinant of intestinal diseases such as inflammatory bowel disease and colorectal cancer, and disorder in extraintestinal organs. The mucus layer has attracted the attention of the scientific community in recent years, and with the discovery of new mucosal components, it has become increasingly clear that the mucosal barrier is a complex system composed of many components. Moreover, certain components are jointly involved in regulating the structure and function of the mucus barrier. Therefore, a comprehensive and systematic understanding of the functional components of the mucus layer is clearly warranted. In this review, we summarize the various functional components of the mucus layer identified thus far and describe their unique roles in shaping mucosal structure and function. Furthermore, we detail the mechanisms underlying mucus secretion, including baseline and stimulated secretion. In our opinion, baseline secretion can be categorized into spontaneous Ca2+ oscillation-mediated slow and continuous secretion and stimulated secretion, which is mediated by massive Ca2+ influx induced by exogenous stimuli. This review extends the current understanding of the intestinal mucus barrier, with an emphasis on host defense strategies based on fortification of the mucus layer.
Collapse
Affiliation(s)
- Chunyan Song
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Zhenglong Chai
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Si Chen
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Hui Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China.
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Yuping Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China.
| |
Collapse
|
33
|
Bohländer F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front Immunol 2023; 14:1127339. [PMID: 37051237 PMCID: PMC10083398 DOI: 10.3389/fimmu.2023.1127339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory lung diseases represent a persistent burden for patients and the global healthcare system. The combination of high morbidity, (partially) high mortality and limited innovations in the last decades, have resulted in a great demand for new therapeutics. Are therapeutic IgA antibodies possibly a new hope in the treatment of inflammatory lung diseases? Current research increasingly unravels the elementary functions of IgA as protector against infections and as modulator of overwhelming inflammation. With a focus on IgA, this review describes the pathological alterations in mucosal immunity and how they contribute to chronic inflammation in the most common inflammatory lung diseases. The current knowledge of IgA functions in the circulation, and particularly in the respiratory mucosa, are summarized. The interplay between neutrophils and IgA seems to be key in control of inflammation. In addition, the hurdles and benefits of therapeutic IgA antibodies, as well as the currently known clinically used IgA preparations are described. The data highlighted here, together with upcoming research strategies aiming at circumventing the current pitfalls in IgA research may pave the way for this promising antibody class in the application of inflammatory lung diseases.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Translational Research, Biotest AG, Dreieich, Germany
| |
Collapse
|
34
|
Abo-Shaban T, Sharna SS, Hosie S, Lee CYQ, Balasuriya GK, McKeown SJ, Franks AE, Hill-Yardin EL. Issues for patchy tissues: defining roles for gut-associated lymphoid tissue in neurodevelopment and disease. J Neural Transm (Vienna) 2023; 130:269-280. [PMID: 36309872 PMCID: PMC10033573 DOI: 10.1007/s00702-022-02561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/20/2022] [Indexed: 10/31/2022]
Abstract
Individuals diagnosed with neurodevelopmental conditions such as autism spectrum disorder (ASD; autism) often experience tissue inflammation as well as gastrointestinal dysfunction, yet their underlying causes remain poorly characterised. Notably, the largest components of the body's immune system, including gut-associated lymphoid tissue (GALT), lie within the gastrointestinal tract. A major constituent of GALT in humans comprises secretory lymphoid aggregates known as Peyer's patches that sense and combat constant exposure to pathogens and infectious agents. Essential to the functions of Peyer's patches is its communication with the enteric nervous system (ENS), an intrinsic neural network that regulates gastrointestinal function. Crosstalk between these tissues contribute to the microbiota-gut-brain axis that altogether influences mood and behaviour. Increasing evidence further points to a critical role for this signalling axis in neurodevelopmental homeostasis and disease. Notably, while the neuroimmunomodulatory functions for Peyer's patches are increasingly better understood, functions for tissues of analogous function, such as caecal patches, remain less well characterised. Here, we compare the structure, function and development of Peyer's patches, as well as caecal and appendix patches in humans and model organisms including mice to highlight the roles for these essential tissues in health and disease. We propose that perturbations to GALT function may underlie inflammatory disorders and gastrointestinal dysfunction in neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- T Abo-Shaban
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - S S Sharna
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
| | - S Hosie
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - C Y Q Lee
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - G K Balasuriya
- Department of Physiology and Cell Biology, Kobe University School of Medicine, 7-5-1 Kusunoki-Cho, Chuo, Kobe, 650-0017, Japan
| | - S J McKeown
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - A E Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - E L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
35
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
36
|
McArthur S. Regulation of Physiological Barrier Function by the Commensal Microbiota. Life (Basel) 2023; 13:life13020396. [PMID: 36836753 PMCID: PMC9964120 DOI: 10.3390/life13020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A fundamental characteristic of living organisms is their ability to separate the internal and external environments, a function achieved in large part through the different physiological barrier systems and their component junctional molecules. Barrier integrity is subject to multiple influences, but one that has received comparatively little attention to date is the role of the commensal microbiota. These microbes, which represent approximately 50% of the cells in the human body, are increasingly recognized as powerful physiological modulators in other systems, but their role in regulating barrier function is only beginning to be addressed. Through comparison of the impact commensal microbes have on cell-cell junctions in three exemplar physiological barriers-the gut epithelium, the epidermis and the blood-brain barrier-this review will emphasize the important contribution microbes and microbe-derived mediators play in governing barrier function. By extension, this will highlight the critical homeostatic role of commensal microbes, as well as identifying the puzzles and opportunities arising from our steadily increasing knowledge of this aspect of physiology.
Collapse
Affiliation(s)
- Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| |
Collapse
|
37
|
Takada K, Melnikov VG, Kobayashi R, Komine-Aizawa S, Tsuji NM, Hayakawa S. Female reproductive tract-organ axes. Front Immunol 2023; 14:1110001. [PMID: 36798125 PMCID: PMC9927230 DOI: 10.3389/fimmu.2023.1110001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
The female reproductive tract (FRT) and remote/versatile organs in the body share bidirectional communication. In this review, we discuss the framework of the "FRT-organ axes." Each axis, namely, the vagina-gut axis, uterus-gut axis, ovary-gut axis, vagina-bladder axis, vagina-oral axis, uterus-oral axis, vagina-brain axis, uterus-brain axis, and vagina-joint axis, is comprehensively discussed separately. Each axis could be involved in the pathogenesis of not only gynecological diseases but also diseases occurring apart from the FRT. Although the microbiota is clearly a key player in the FRT-organ axes, more quantitative insight into the homeostasis of the microbiota could be provided by host function measurements rather than current microbe-centric approaches. Therefore, investigation of the FRT-organ axes would provide us with a multicentric approach, including immune, neural, endocrine, and metabolic aspects, for understanding the homeostatic mechanism of women's bodies. The framework of the FRT-organ axes could also provide insights into finding new therapeutic approaches to maintain women's health.
Collapse
Affiliation(s)
- Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| | | | - Ryoki Kobayashi
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Microbiology and Immunology, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Noriko M. Tsuji
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Department of Food Science, Jumonji University, Saitama, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| |
Collapse
|
38
|
Huang YY, Liang YT, Wu JM, Wu WT, Liu XT, Ye TT, Chen XR, Zeng XA, Manzoor MF, Wang LH. Advances in the Study of Probiotics for Immunomodulation and Intervention in Food Allergy. Molecules 2023; 28:molecules28031242. [PMID: 36770908 PMCID: PMC9919562 DOI: 10.3390/molecules28031242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Food allergies are a serious food safety and public health issue. Soybean, dairy, aquatic, poultry, and nut products are common allergens inducing allergic reactions and adverse symptoms such as atopic dermatitis, allergic eczema, allergic asthma, and allergic rhinitis. Probiotics are assumed as an essential ingredient in maintaining intestinal microorganisms' composition. They have unique physiological roles and therapeutic effects in maintaining the mucosal barrier, immune function, and gastrointestinal tract, inhibiting the invasion of pathogenic bacteria, and preventing diarrhea and food allergies. Multiple pieces of evidence reveal a significant disruptive effect of probiotics on food allergy pathology and progression mechanisms. Thus, this review describes the allergenic proteins as an entry point and briefly describes the application of probiotics in allergenic foods. Then, the role of probiotics in preventing and curing allergic diseases by regulating human immunity through intestinal flora and intestinal barrier, modulating host immune active cells, and improving host amino acid metabolism are described in detail. The anti-allergic role of probiotics in the function and metabolism of the gastrointestinal tract has been comprehensively explored to furnish insights for relieving food allergy symptoms and preventing food allergy.
Collapse
Affiliation(s)
- Yan-Yan Huang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Yan-Tong Liang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jia-Min Wu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Wei-Tong Wu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-Tong Liu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Ting-Ting Ye
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xiao-Rong Chen
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| | - Muhammad Faisal Manzoor
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| | - Lang-Hong Wang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| |
Collapse
|
39
|
Arnocky S, Denomme B, Hodges-Simeon C, Hlay JK, Davis AC, Brennan H. Self-perceived Mate Value is Predicted by Biological and self-reported Indices of Health in Young Adults. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2023; 9:54-71. [PMID: 36686590 PMCID: PMC9838438 DOI: 10.1007/s40750-022-00209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Immunocompetence can influence an organism's reproductive fitness, and thus presumably their desirability as a mate (i.e., mate value). In humans, the link between immunocompetence and mate value has found circumstantial support by way of both expressed mate preferences for healthy partners, and via preferences for attractive phenotypes that are ostensibly linked to immune functioning. We examined whether a biological marker of immunocompetence, salivary immunoglobulin A (sIgA), along with self-reported frequency and severity of symptoms of poor health predicted individuals' reported mate value and mating behavior in a sample of 691 young adults. Our measures of immunocompetence (sIgA and symptoms of poor health) correlated significantly with one another, suggesting sIgA is a viable marker of general immune function in young adults. We then examined the independent contributions of these variables to mate value, controlling for age, sex, and body mass index (BMI). Results showed that sIgA (positively) and poor health (negatively) predicted mate value, but not lifetime number of sex partners or current romantic relationship status. These findings suggest that those with better health and immune function report being more desirable as mating partners but support past research showing null links to reported mating behavior. Together, these findings suggest that more comprehensive work on links between immunocompetence and mating is required.
Collapse
Affiliation(s)
- Steven Arnocky
- Nipissing University, 100 College Drive, P1B8L7 North Bay, ON Canada
| | - Brittany Denomme
- Nipissing University, 100 College Drive, P1B8L7 North Bay, ON Canada
| | | | | | - Adam C. Davis
- Nipissing University, 100 College Drive, P1B8L7, North Bay, ON Canada
| | - Hillary Brennan
- Nipissing University, 100 College Drive, P1B8L7 North Bay, ON Canada
| |
Collapse
|
40
|
Ding S, Cheng Y, Azad MAK, Dong H, He J, Huang P, Kong X. Dietary fiber alters immunity and intestinal barrier function of different breeds of growing pigs. Front Immunol 2023; 14:1104837. [PMID: 36865532 PMCID: PMC9972983 DOI: 10.3389/fimmu.2023.1104837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Dietary fiber (DF) regulates immune response and barrier function by interacting with epithelial cells and immune cells. However, the differences in the regulation of intestinal health of different pig breeds by DF remain obscure. Methods A total of 60 healthy pigs (20 pigs/breed) from Taoyuan black (TB), Xiangcun black (XB), and Duroc (DR) pigs (body weight = 11.00 ± 1.00 kg) were fed two different levels (low and high) of DF for 28 days to evaluate the differences in the modulation of intestinal immunity and barrier function by DF in different pig breeds. Results TB and XB pigs had higher plasma Eos level, Eos%, and Lym% but lower Neu level compared with the DR pigs when fed low DF (LDF). The TB and XB pigs had higher plasma Eos, MCV, and MCH levels and Eos% while lower Neu% compared with the DR pigs when fed high DF (HDF). HDF decreased IgA, IgG, IgM, and sIgA concentrations in the ileum of TB and XB pigs compared with the DR pigs, while the plasma IgG and IgM concentrations of TB pigs were higher than those of the DR pigs. Moreover, compared with the DR pigs, HDF decreased the levels of IL-1β, IL-17, and TGF-β in the plasma, and IL-1β, IL-2, IL-6, IL-10, IL-17, IFN-γ, TGF-β, and TNF-α in the ileum of TB and XB pigs. However, HDF did not affect the mRNA expression of cytokines in the ileum of TB, XB, and DR pigs, while HDF increased the TRAF6 expression of TB pigs compared with the DR pigs. In addition, HDF increased the Claudin abundance of TB and DR pigs compared with the pigs feeding with LDF. Moreover, in the LDF and HDF groups, the XB pigs had higher protein abundances of Claudin and ZO-1 compared with the TB and DR pigs. Conclusions DF regulated the TB and DR pigs' plasma immune cells, the XB pigs showed enhanced barrier function, and the DR pigs had increased ileal inflammation, which indicates that Chinese indigenous pigs are more DF tolerant than the DR pigs.
Collapse
Affiliation(s)
- Sujuan Ding
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yating Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haibo Dong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pan Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Strugnell RA. When secretion turns into excretion - the different roles of IgA. Front Immunol 2022; 13:1076312. [PMID: 36618388 PMCID: PMC9812643 DOI: 10.3389/fimmu.2022.1076312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
IgA deficiency is the commonest immunodeficiency affecting up to 1 in 700 individuals. The effects of IgA deficiency are difficult to see in many individuals, are mild in many fewer and severe in fewer still. While monovalent IgA is found in serum, dimeric IgA is secreted through mucosal surfaces where it helps to maintain epithelial homeostasis. Studies with knockout mice have taught us that there are subtle inflammatory consequences of removing secretory IgA (sIgA), and the best explanation for these changes can be related by the loss of the 'excretory' immune system. The excretion of antigens is a logical process in regulating the immune system, given the long half-life of complement fixing antibodies. But the function of IgA as an immune or inflammation regulator may go beyond antigen removal.
Collapse
|
42
|
Liang S, Wang S, Xu B, Ping L, Evivie SE, Zhao L, Chen Q, Li B, Huo G. Effects of microbiota-directed supplementary foods on gut microbiota in fecal colonized mice of healthy infants. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Miao Y, Zhang Q, Yuan Z, Wang J, Xu Y, Chai Y, Du M, Yu Q, Zhang L, Jiang Z. Proteomics analysis reveals novel insights into the mechanism of hepatotoxicity induced by Tripterygium wilfordii multiglycoside in mice. Front Pharmacol 2022; 13:1032741. [DOI: 10.3389/fphar.2022.1032741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Tripterygium wilfordii multiglycoside (GTW), extracted and purified from the peeled roots of T. wilfordii Hook.f. (TwHF), is a well-known traditional Chinese medicine and applied to various autoimmune diseases clinically. However, it has been reported to cause severe liver injury. At present, the mechanism underlying GTW-induced hepatotoxicity remain poorly defined. Here, we evaluated the effects of GTW on mouse liver and elucidated the associated mechanisms via label-free proteomics combined with bioinformatics analysis. Male C57BL/6J mice were randomly divided into normal group, a low-dose GTW (70 mg/kg) group and a high-dose GTW (140 mg/kg) group. After 1-week administration, GTW dose-dependently induced hepatotoxicity. Further analysis showed that GTW could act on the intestinal immune network for IgA production pathway, which plays an important role in maintaining intestinal homeostasis and influences the crosstalk between gut and liver. Western blots confirmed that GTW could decrease pIgR protein expression in the liver and ileum, and, as a result, the secretion of IgA into gut lumen was reduced. Further validation showed that intestinal barrier integrity was impaired in GTW-treated mice, promoting bacteria transferring to the liver and triggering proinflammatory response. Our study demonstrated that gut-liver axis may play a vital part in the progression of GTW-induced hepatotoxicity, which provides guidance for basic research and clinical application of GTW.
Collapse
|
44
|
Xiao Q, Yu F, Yan L, Zhao H, Zhang F. Alterations in circulating markers in HIV/AIDS patients with poor immune reconstitution: Novel insights from microbial translocation and innate immunity. Front Immunol 2022; 13:1026070. [PMID: 36325329 PMCID: PMC9618587 DOI: 10.3389/fimmu.2022.1026070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
After long-term anti-retroviral therapy (ART) treatment, most human immunodeficiency virus (HIV)/Acquired Immure Deficiency Syndrome (AIDS) patients can achieve virological suppression and gradual recovery of CD4+ T-lymphocyte (CD4+ T cell) counts. However, some patients still fail to attain normal CD4+ T cell counts; this group of patients are called immune non-responders (INRs), and these patients show severe immune dysfunction. The potential mechanism of poor immune reconstitution (PIR) remains unclear and the identification of uniform biomarkers to predict the occurrence of PIR is particularly vital. But limited information is available on the relationship between circulating markers of INRs and immune recovery. Hence, this review summarises alterations in the intestine microbiota and associated markers in the setting of PIR to better understand host-microbiota-metabolite interactions in HIV immune reconstitution and to identify biomarkers that can predict recovery of CD4+ T cell counts in INRs.
Collapse
Affiliation(s)
- Qing Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Liting Yan
- Infectious Disease Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Argentova V, Aliev T, Dolgikh D, Pakanová Z, Katrlík J, Kirpichnikov M. Features, modulation and analysis of glycosylation patterns of therapeutic recombinant immunoglobulin A. Biotechnol Genet Eng Rev 2022; 38:247-269. [PMID: 35377278 DOI: 10.1080/02648725.2022.2060594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Increasing the production of recombinant antibodies while ensuring high and stable protein quality remains a challenge in mammalian cell culture. This review is devoted to advances in the field of obtaining stable and optimal glycosylation of therapeutic antibodies based on IgA, as well as the subsequent issues of glycosylation control of glycoproteins during their production. Current studies also demonstrate a general need for a more fundamental understanding of the use of CHO cell-based producer cell lines, through which the glycoprofile of therapeutic IgA antibodies is produced and the dependence of glycosylation on culture conditions could be controlled. Optimization of glycosylation improves the therapeutic efficacy and can expand the possibilities for the creation of highly effective glycoprotein therapeutic drugs. Current status and trends in glycan analysis of therapeutic IgA, dominantly based on mass spectrometry and lectin microarrays are herein summarised as well.
Collapse
Affiliation(s)
- Victoria Argentova
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Teimur Aliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Dolgikh
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Bioorganic Chemistry, Russian Academy of SciencesShemyakin-Ovchinnikov, Moscow, Russia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mikhail Kirpichnikov
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Bioorganic Chemistry, Russian Academy of SciencesShemyakin-Ovchinnikov, Moscow, Russia
| |
Collapse
|
46
|
Keller JK, Wülfing C, Wahl J, Diekhof EK. Disease-related disgust promotes antibody release in human saliva. Brain Behav Immun Health 2022; 24:100489. [PMID: 35866104 PMCID: PMC9293731 DOI: 10.1016/j.bbih.2022.100489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The behavioral immune system (BIS) comprises manifold mechanisms, that may assist the physiological immune system (PIS) in counteracting infection and can even reduce the risk of contagion. Previous studies have found initial evidence for possible interactions between the two systems. However, most of these findings were correlative and have not been replicated. Further, none of these studies examined whether disease stimuli that indicate an enhanced airborne transmission risk may trigger a different immune response in comparison to stimuli that predominantly evoke core disgust. In the present study, we employed a video-priming approach to get further insight in the influence of the perception of disgust- and disease-related stimuli on the rapid physiological immune response, as indicated by changes of secretory immunoglobulin A (S-IgA) in saliva. We created three video primers that represented different categories of disgust- and/or disease-associated content. Two of the videos showed disease-related situations that were associated with contagious respiratory virus infections, varying in concealment of aerosols. The third video incurred no heightened airborne contagion risk, but comprised situations that are known to elicit core disgust, such as rotten foods, decaying animal carcasses, or cockroaches. A fourth video acted as control showing landscape impressions. The different video primers varied in their contagion risk and disgust-evoking potential. Given the role of S-IgA in the mucosal immune defense, we expected differences in the S-IgA response between the two videos indicating a heightened airborne contagion risk and the core disgust video, with the highest S-IgA to occur after the aerosol video. For this, we used the data of 107 healthy participants in a between-subjects design with the four video primers. We found a significant increase of S-IgA in response to both the disease- and the disgust-related videos, which correlated positively with the perceived contagion risk of the displayed situations. Nevertheless, there was no significant difference in the increase between the three disease- and disgust-related videos. We also found that people with a high contamination disgust produced less S-IgA in such situations, which is a hint for a compensating relationship between the BIS and PIS. Our observations suggest that the mere visual perception of videos showing realistic situations of an increased contagion risk can elicit a heightened release of salivary antibodies.
Realistic videos of respiratory diseases are efficient to trigger immune responses. Secretory Immunoglobulin A (S-IgA) in saliva increases after video-priming. S-IgA increase is positively correlated with perceived contagion risk. S-IgA increase is inversely correlated with the trait contamination disgust.
Collapse
|
47
|
Miteva D, Peshevska-Sekulovska M, Snegarova V, Batselova H, Alexandrova R, Velikova T. Mucosal COVID-19 vaccines: Risks, benefits and control of the pandemic. World J Virol 2022; 11:221-236. [PMID: 36188733 PMCID: PMC9523321 DOI: 10.5501/wjv.v11.i5.221] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/14/2022] [Accepted: 08/10/2022] [Indexed: 02/05/2023] Open
Abstract
Based on mucosal immunization to promote both mucosal and systemic immune responses, next-generation coronavirus disease 2019 (COVID-19) vaccines would be administered intranasally or orally. The goal of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is to provide adequate immune protection and avoid severe disease and death. Mucosal vaccine candidates for COVID-19 including vector vaccines, recombinant subunit vaccines and live attenuated vaccines are under development. Furthermore, subunit protein vac-cines and virus-vectored vaccines have made substantial progress in preclinical and clinical settings, resulting in SARS-CoV-2 intranasal vaccines based on the previously successfully used nasal vaccines. Additional to their ability to trigger stable, protective immune responses at the sites of pathogenic infection, the development of 'specific' mucosal vaccines targeting coronavirus antigens could be an excellent option for preventing future pandemics. However, their efficacy and safety should be confirmed.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Sofia University “St. Kliment Ohridski,” Faculty of Biology, Sofia 1164, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Violeta Snegarova
- Clinic of Internal Diseases, Naval Hospital - Varna, Military Medical Academy, Medical Faculty, Medical University, Varna 9000, Bulgaria
| | - Hristiana Batselova
- Department of Epidemiology and Disaster Medicine, Medical University, Plovdiv, University Hospital “St George”, Plovdiv 6000, Bulgaria
| | - Radostina Alexandrova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia 1000, Bulgaria
| | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
48
|
Jaisue J, Nii T, Suzuki N, Tsugami Y, Isobe N. Effect of repeated intrauterine infusion of lipopolysaccharides on mastitis in goats. Theriogenology 2022; 193:87-92. [PMID: 36156428 DOI: 10.1016/j.theriogenology.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 10/31/2022]
Abstract
A single infusion of lipopolysaccharide (LPSs) into the uterus induces inflammation in the mammary gland. This indicates that LPS can translocate from the uterus to the mammary gland. Natural endometritis is characterized by continuous intrauterine inflammation. The aim of the present study was to determine the effect of repeated intrauterine infusion of two different types of LPSs obtained from Escherichia coli O111:B4 (LPS-O111) and O55:B5 (LPS-O55) on the inflammatory status of the mammary glands of goats. Goats were assigned to three groups: LPS-O111, LPS-O55, and saline (control). Saline with (LPS-O111 and 55 groups) and without (control) 100 μg LPS was infused into the uterus continuously for 7 days. Decreased milk yield was detected in both LPS-O111 and LPS-O55 groups 2 days after the first LPS infusion. While somatic cell count (SCC) was significantly increased in all groups 1 day after the first LPS infusion, both LPS infusions further increased SCC 2 days after the first infusion and showed a significantly higher SCC than that in the control group. Plasma LPS-binding protein (LBP) was significantly higher in both LPS groups than in the control group during the days after infusion. In addition, pro-inflammatory cytokines, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-8, were significantly increased in both LPS infusion groups compared with those in the control group. The LPS-O111 infusion resulted in higher SCC, LBP, TNF-α, and IL-8 concentrations than those in the LPS-O55 group. These results suggest that repeated LPS infusion into the uterus can induce more severe mammary gland inflammation than a single infusion. Interestingly, the mammary tissues recovered from inflammation even though the LPS intrauterine infusion was continued.
Collapse
Affiliation(s)
- Jirapat Jaisue
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Naoki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Yusaku Tsugami
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
49
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
50
|
Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine 2022; 82:104163. [PMID: 35841869 PMCID: PMC9297075 DOI: 10.1016/j.ebiom.2022.104163] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Funding
Collapse
|