1
|
Yang Y, Delcourte L, van Belleghem C, Fonte S, Gerard K, Baconnais S, Callon M, Le Cam E, Fogeron ML, Levrero M, Faivre-Moskalenko C, Böckmann A, Lecoq L. Structure and nucleic acid interactions of the S Δ60 domain of the hepatitis delta virus small antigen. Proc Natl Acad Sci U S A 2025; 122:e2411890122. [PMID: 40324079 DOI: 10.1073/pnas.2411890122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/25/2025] [Indexed: 05/07/2025] Open
Abstract
Infection with hepatitis delta virus (HDV) causes the most severe form of viral hepatitis, affecting more than 15 million people worldwide. HDV is a small RNA satellite virus of the hepatitis B virus (HBV) that relies on the HBV envelope for viral particle assembly. The only specific HDV component is the ribonucleoprotein (RNP), which consists of viral RNA (vRNA) associated with the small (S) and large (L) delta antigens (HDAg). While the structure of the HDAg N-terminal assembly domain is known, here we address the structure of the remaining SΔ60 protein using NMR. We show that SΔ60 contains two intrinsically disordered regions separated by a helix-loop-helix motif and that this structure is conserved in the full-length protein. Solution NMR analysis revealed that SΔ60 binds to both full-length and truncated vRNA, highlighting the role of the helical regions in submicromolar affinity interactions. The resulting complex contains approximately 120 SΔ60 proteins per RNA. Our results provide a model for the arginine-rich domains in RNP assembly and RNA interactions. In addition, we show that a cluster of acidic residues within the structured region of SΔ60 is critical for HDV replication, possibly mimicking the nucleosome acidic patch involved in the recruitment of chromatin remodelers. Our work thus provides the molecular basis for understanding the role of the C-terminal RNA-binding domain of S-HDAg in HDV infection.
Collapse
Affiliation(s)
- Yang Yang
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Loïc Delcourte
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Carolanne van Belleghem
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Simone Fonte
- Institut hospitalo-universitaire (IHU) EVEREST, Institute of Hepatology Lyon, Lyon 69004, France
- UMR University Claude Bernard Lyon 1 - INSERM U1350, Pathobiologie et thérapie des maladies du foie (PaThLiv), Lyon 69003, France
| | - Kassandra Gerard
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, UMR CNRS 5672, Lyon 69342, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay - Gustave Roussy, Villejuif 94805, France
| | - Morgane Callon
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay - Gustave Roussy, Villejuif 94805, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Massimo Levrero
- Institut hospitalo-universitaire (IHU) EVEREST, Institute of Hepatology Lyon, Lyon 69004, France
- UMR University Claude Bernard Lyon 1 - INSERM U1350, Pathobiologie et thérapie des maladies du foie (PaThLiv), Lyon 69003, France
- Department of Hepatology, Hospices Civils de Lyon, Lyon 69004, France
- Faculté de Médecine Lyon Est, University Claude Bernard Lyon 1, Lyon 69003, France
| | | | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| |
Collapse
|
2
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Weidle UH, Birzele F. Prostate Cancer: De-regulated Circular RNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2025; 22:136-165. [PMID: 39993805 PMCID: PMC11880926 DOI: 10.21873/cgp.20494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2025] [Accepted: 12/03/2024] [Indexed: 02/26/2025] Open
Abstract
Therapy resistance, including castration-resistance and metastasis, remains a major hurdle in the treatment of prostate cancer. In order to identify novel therapeutic targets and treatment modalities for prostate cancer, we conducted a comprehensive literature search on PubMed to identify de-regulated circular RNAs that influence treatment efficacy in preclinical prostate cancer-related in vivo models. Our analysis identified 49 circular RNAs associated with various processes, including treatment resistance, transmembrane and secreted proteins, transcription factors, signaling cascades, human antigen R, nuclear receptor binding, ubiquitination, metabolism, epigenetics and other target categories. The identified targets and circular RNAs can be further scrutinized through target validation approaches. Down-regulated circular RNAs are candidates for reconstitution therapy, while up-regulated RNAs can be inhibited using small interfering RNA (siRNA), antisense oligonucleotides (ASO) or clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR-CAS)-related approaches.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
4
|
Pisaturo M, Russo A, Grimaldi P, Martini S, Coppola N. Current and future therapeutic options for chronic hepatitis D virus infection. Front Cell Infect Microbiol 2025; 14:1382017. [PMID: 40008233 PMCID: PMC11850310 DOI: 10.3389/fcimb.2024.1382017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 11/19/2024] [Indexed: 02/27/2025] Open
Abstract
In the last few years there have been innovations in HDV therapy which have brought new excitement in the scientific community also considering the few therapeutic opportunities. Recently, new molecular targets have been identified, both in monotherapy and in combination with peginterferon alpha (PegIFNα). Evaluating this review of the literature of the last ten years, HDV-related chronic hepatitis seems to have become a potentially curable disease, a statement that was unthinkable a few years ago. There are old and new weapons at our disposal. The old weapons are PegIFNα and recently PegIFN-lambda (PegIFNλ). PegIFNα, for which there are more data, appears to be an excellent combination regimen, if not contraindicated, both for Bulevirtide (BLV), data supported by important clinical trials and real-world studies, and probably for lonarfanib, although in the latter case the results are not yet definitive as the studies are fewer. However, data on long-term follow-up are needed.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
5
|
Koonin E, Lee B. Diversity and evolution of viroids and viroid-like agents with circular RNA genomes revealed by metatranscriptome mining. Nucleic Acids Res 2025; 53:gkae1278. [PMID: 39727156 PMCID: PMC11797063 DOI: 10.1093/nar/gkae1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Viroids, the agents of several plant diseases, are the smallest and simplest known replicators that consist of covalently closed circular (ccc) RNA molecules between 200 and 400 nucleotides in size. Viroids encode no proteins and rely on host RNA polymerases for replication, but some contain ribozymes involved in replication intermediate processing. Although other viroid-like agents with cccRNAs genomes, such as satellite RNAs, ribozyviruses and retrozymes, have been discovered, until recently, the spread of these agents in the biosphere appeared narrow, and their actual diversity and evolution remained poorly understood. Extensive, targeted metatranscriptome mining dramatically expanded the known diversity of cccRNAs genomes. These searches identified numerous, diverse viroid-like cccRNAs, many found in environments devoid of plant and animal material, suggesting replication in unicellular eukaryotic and/or prokaryotic hosts. Several cccRNAs are targeted by CRISPR systems, supporting their association with bacteria. In addition to small cccRNAs in the viroid size range, a broad variety of ribozyviruses and novel viruses with cccRNAs genomes, with genomes reaching nearly 5 kilobases, were discovered. Thus, metatranscriptome mining shows that the diversity of viroid-like cccRNAs genomes is far greater than previously suspected, prompting reassessment of the relevance of these replicators for understanding the primordial RNA world.
Collapse
Affiliation(s)
- Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Benjamin D Lee
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
6
|
Zulian V, Salichos L, Taibi C, Pauciullo S, Dong L, D’Offizi G, Biliotti E, Rianda A, Federici L, Bibbò A, De Sanctis M, McPhee F, Garbuglia AR. Exploring Predictive Factors for Bulevirtide Treatment Response in Hepatitis Delta-Positive Patients. Biomedicines 2025; 13:280. [PMID: 40002694 PMCID: PMC11852621 DOI: 10.3390/biomedicines13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Hepatitis delta virus (HDV) infection represents the most severe form of viral hepatitis and is a significant global health challenge. Bulevirtide (BLV) is a novel therapeutic treatment that has resulted in variable response rates in HBV/HDV-coinfected patients. We evaluated clinical, virological, and polymorphic factors for the purpose of predicting BLV treatment success. Methods: Thirty HBV/HDV-coinfected patients received BLV monotherapy (2 mg/day) for 24 to 48 weeks. Baseline (BL) serum samples were collected to assess clinical parameters and virological markers (HDV RNA, HBV DNA, HBsAg, HBcrAg, anti-HBc IgG) at treatment weeks 24 (TW24) and 48 (TW48). Additionally, full-genome HDV sequencing and a phylogenetic analysis were performed. Finally, analyses of the HDAg protein sequence and HDV RNA secondary structure were conducted to evaluate potential associations with treatment response. Results: A significant reduction in HDV RNA levels was observed at TW48, with a virological response (HDV RNA undetectable or ≥2 Log decline from BL) achieved by 58% of patients. Median BL levels of anti-HBc IgG were significantly different between virological responders (39.3 COI; interquartile range [IQR] 31.6-47.1) and virological non-responders (244.7 COI; IQR 127.0-299.4) (p = 0.0001). HDV genotype 1e was predominant across the cohort, and no specific HDAg polymorphisms predicted the response. However, secondary structure analysis of HDV RNA revealed that a specific pattern of internal loops in the region 63-100 nucleotides downstream of the editing site may influence treatment response by impacting editing efficacy. Conclusions: This study revealed key factors influencing BLV efficacy in HBV/HDV coinfection. Lower baseline anti-HBc IgG levels strongly correlated with a positive virological response, suggesting that the liver's inflammatory state affects treatment success. Additionally, the analysis of HDV RNA secondary structure in patients receiving BLV treatment revealed a higher editing efficiency in virological responders, highlighting areas for further research.
Collapse
Affiliation(s)
- Verdiana Zulian
- Virology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (S.P.); (L.F.); (A.B.); (M.D.S.); (A.R.G.)
| | - Leonidas Salichos
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA; (L.S.); (L.D.)
| | - Chiara Taibi
- Infectious Diseases and Hepatology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (C.T.); (G.D.); (E.B.); (A.R.)
| | - Silvia Pauciullo
- Virology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (S.P.); (L.F.); (A.B.); (M.D.S.); (A.R.G.)
| | - Levi Dong
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA; (L.S.); (L.D.)
| | - Gianpiero D’Offizi
- Infectious Diseases and Hepatology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (C.T.); (G.D.); (E.B.); (A.R.)
| | - Elisa Biliotti
- Infectious Diseases and Hepatology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (C.T.); (G.D.); (E.B.); (A.R.)
| | - Alessia Rianda
- Infectious Diseases and Hepatology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (C.T.); (G.D.); (E.B.); (A.R.)
| | - Luigi Federici
- Virology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (S.P.); (L.F.); (A.B.); (M.D.S.); (A.R.G.)
| | - Angela Bibbò
- Virology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (S.P.); (L.F.); (A.B.); (M.D.S.); (A.R.G.)
| | - Martina De Sanctis
- Virology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (S.P.); (L.F.); (A.B.); (M.D.S.); (A.R.G.)
| | | | - Anna Rosa Garbuglia
- Virology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (S.P.); (L.F.); (A.B.); (M.D.S.); (A.R.G.)
| |
Collapse
|
7
|
Huang J, Yang P, Pan W, Wu F, Qiu J, Ma Z. The role of polypeptides encoded by ncRNAs in cancer. Gene 2024; 928:148817. [PMID: 39098512 DOI: 10.1016/j.gene.2024.148817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
It was previously thought that ncRNA could not encode polypeptides, but recent reports have challenged this notion. As research into ncRNA progresses, it is increasingly clear that it serves roles beyond traditional mechanisms, playing significant regulatory roles in various diseases, notably cancer, which is responsible for 70% of human deaths. Numerous studies have highlighted the diverse regulatory mechanisms of ncRNA that are pivotal in cancer initiation and progression. The role of ncRNA-encoded polypeptides in cancer regulation has gained prominence. This article explores the newly identified regulatory functions of these polypeptides in three types of ncRNA-lncRNA, pri-miRNA, and circRNA. These polypeptides can interact with proteins, influence signaling pathways, enhance miRNA stability, and regulate cancer progression, malignancy, resistance, and other clinical challenges. Furthermore, we discuss the evolutionary significance of these polypeptides in the transition from RNA to protein, examining their emergence and conservation throughout evolution.
Collapse
Affiliation(s)
- Jiayuan Huang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ping Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118,China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jianhua Qiu
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201800, China.
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Cardoso MF, Machado MV. The Changing Face of Hepatitis Delta Virus Associated Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3723. [PMID: 39594679 PMCID: PMC11591730 DOI: 10.3390/cancers16223723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatitis delta virus (HDV) infection requires the presence of hepatitis B virus (HBV), and chronic HBV-HDV coinfection is considered the most severe form of viral hepatitis. When compared with HBV mono-infection, HBV-HDV coinfection is associated with higher rates of liver cirrhosis and hepatocellular carcinoma (HCC). In this review, we aim to elucidate the complex relationship between HDV infection and the development of HCC. The exact mechanisms underlying the carcinogenic potential of HDV remain to be fully elucidated. Evidence suggests that HDV has both indirect and direct oncogenic effects. Indirect effects promote accelerated progression to liver cirrhosis, which results in a different tumor microenvironment. Direct oncogenic effects are suggested by a distinct molecular signature. The recent epidemiological data regarding HBV-HDV coinfection should make us reconsider the HCC screening strategy, with special focus in younger non-cirrhotic patients. Finally, treating HCC in patients with chronic HDV poses unique challenges due to the complex interplay between HBV and HDV and the severity of liver disease. An in-depth understanding of the epidemiology and pathophysiology of HDV infection and carcinogenesis is essential to improve disease management in this high-risk population.
Collapse
Affiliation(s)
- Mariana Ferreira Cardoso
- Gastroenterology Department, Hospital Prof. Doutor Fernando Fonseca, 2720-276 Amadora, Portugal;
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mariana Verdelho Machado
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Gastroenterology Department, Hospital de Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal
| |
Collapse
|
9
|
Giorgio M, Ramírez Ladino KA, López G, Sosa Rojas M, Outon E, Delfino CM. Frequency of hepatitis D virus with different hepatitis B virus serological markers and coinfections in hospital patients from Argentina: synchronous testing of anti-HDV antibodies and HDV RNA. Eur J Gastroenterol Hepatol 2024:00042737-990000000-00417. [PMID: 39373637 DOI: 10.1097/meg.0000000000002857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
BACKGROUND Hepatitis D virus (HDV) RNA-positive cases with total anti-HDV antibodies nonreactive were documented. Moreover, HDV infection was observed in subjects with occult hepatitis B virus infection. The prevalence of HDV infection in Argentina is low; however, further research in different populations is needed. OBJECTIVE This study aimed to perform synchronous HDV detection in reactive hepatitis B virus patients treated in a public hospital in the province of Buenos Aires, Argentina, some of whom were coinfected with hepatitis C virus and/or HIV. A total of 189 hepatitis B virus-reactive serum samples with or without hepatitis C virus and/or HIV coinfection were synchronously analyzed for anti-HDV antibodies and HDV RNA. RESULTS HDV prevalence was 4.2% with HDV RNA found in 61 samples, most of which were nonreactive to anti-HDV antibodies and hepatitis B surface antigen. Genotype 1 was identified in all HDV sequences. Moreover, triple and quadruple infections were observed, showing a high frequency of HDV infection in hospitalized patients not following the recommended diagnostic algorithm. CONCLUSIONS This study is evidence that the synchronous testing of anti-HDV antibodies and HDV RNA is necessary for the diagnosis of HDV infection in Argentina. Finally, further research is necessary to identify high-risk populations and improve prevention and control strategies for triple and quadruple infections and their potential consequences.
Collapse
Affiliation(s)
- Marianela Giorgio
- Laboratorio de Virología, Hospital Interzonal General de Agudos 'Dr. Pedro Fiorito', Avellaneda, Buenos Aires, Argentina
| | - Kelly Alejandra Ramírez Ladino
- Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM). Ciudad Autónoma de Buenos Aires, Argentina
| | - Guido López
- Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM). Ciudad Autónoma de Buenos Aires, Argentina
| | - Maricel Sosa Rojas
- Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM). Ciudad Autónoma de Buenos Aires, Argentina
| | - Estela Outon
- Laboratorio de Virología, Hospital Interzonal General de Agudos 'Dr. Pedro Fiorito', Avellaneda, Buenos Aires, Argentina
| | - Cecilia María Delfino
- Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM). Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
Lee CC, Lau YC, Liang YK, Hsian YH, Lin CH, Wu HY, Tan DJY, Yeh YM, Chao M. vHDvDB 2.0: Database and Group Comparison Server for Hepatitis Delta Virus. Viruses 2024; 16:1254. [PMID: 39205227 PMCID: PMC11359145 DOI: 10.3390/v16081254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The hepatitis delta virus (HDV) is a unique pathogen with significant global health implications, affecting individuals who are coinfected with the hepatitis B virus (HBV). HDV infection has profound clinical consequences, manifesting either as coinfection with HBV, resulting in acute hepatitis and potential liver failure, or as superinfection in chronic HBV cases, substantially increasing the risk of cirrhosis and hepatocellular carcinoma. Given the complex dynamics of HDV infection and the urgent need for advanced research tools, this article introduces vHDvDB 2.0, a comprehensive HDV full-length sequence database. This innovative platform integrates data preprocessing, secondary structure prediction, and epidemiological research tools. The primary goal of vHDvDB 2.0 is to consolidate HDV sequence data into a user-friendly repository, thereby facilitating access for researchers and enhancing the broader scientific understanding of HDV. The significance of this database lies in its potential to streamline HDV research by providing a centralized resource for analyzing viral sequences and exploring genotype-specific characteristics. It will also enable more in-depth research within the HDV sequence domains.
Collapse
Affiliation(s)
- Chi-Ching Lee
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yiu Chung Lau
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - You-Kai Liang
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Hsuan Hsian
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Hsiang Lin
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsin-Ying Wu
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Deborah Jing Yi Tan
- Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Mei Chao
- Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
11
|
Wen K, Chen X, Gu J, Chen Z, Wang Z. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. J Biomed Sci 2024; 31:63. [PMID: 38877495 PMCID: PMC11177406 DOI: 10.1186/s12929-024-01047-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Zhenyao Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China.
| |
Collapse
|
12
|
Asandem DA, Segbefia SP, Kusi KA, Bonney JHK. Hepatitis B Virus Infection: A Mini Review. Viruses 2024; 16:724. [PMID: 38793606 PMCID: PMC11125943 DOI: 10.3390/v16050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are the leading causes of end-stage liver disease worldwide. Although there is a potent vaccine against HBV, many new infections are recorded annually, especially in poorly resourced places which have lax vaccination policies. Again, as HBV has no cure and chronic infection is lifelong, vaccines cannot help those already infected. Studies to thoroughly understand the HBV biology and pathogenesis are limited, leaving much yet to be understood about the genomic features and their role in establishing and maintaining infection. The current knowledge of the impact on disease progression and response to treatment, especially in hyperendemic regions, is inadequate. This calls for in-depth studies on viral biology, mainly for the purposes of coming up with better management strategies for infected people and more effective preventative measures for others. This information could also point us in the direction of a cure. Here, we discuss the progress made in understanding the genomic basis of viral activities leading to the complex interplay of the virus and the host, which determines the outcome of HBV infection as well as the impact of coinfections.
Collapse
Affiliation(s)
- Diana Asema Asandem
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra P.O. Box LG 52, Ghana;
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (S.P.S.); (K.A.K.)
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (S.P.S.); (K.A.K.)
| | - Joseph Humphrey Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| |
Collapse
|
13
|
Maestro S, Gomez-Echarte N, Camps G, Usai C, Olagüe C, Vales A, Aldabe R, Gonzalez-Aseguinolaza G. Deciphering the Role of Post-Translational Modifications and Cellular Location of Hepatitis Delta Virus (HDV) Antigens in HDV-Mediated Liver Damage in Mice. Viruses 2024; 16:379. [PMID: 38543745 PMCID: PMC10975000 DOI: 10.3390/v16030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 05/23/2024] Open
Abstract
Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular aspects of HDV and associated liver damage. For the purpose of this study, we generated HDV genomes modified by site-directed mutagenesis aimed to (i) prevent some post-translational modifications of HDV antigens (HDAgs) such as large-HDAg (L-HDAg) isoprenylation or short-HDAg (S-HDAg) phosphorylation; (ii) alter the localization of HDAgs within the subcellular compartments; and (iii) inhibit the right conformation of the delta ribozyme. First, the different HDV mutants were tested in vitro using plasmid-transfected Huh-7 cells and then in vivo in C57BL/6 mice using AAV vectors. We found that Ser177 phosphorylation and ribozymal activity are essential for HDV replication and HDAg expression. Mutations of the isoprenylation domain prevented the formation of infectious particles and increased cellular toxicity and liver damage. Furthermore, altering HDAg intracellular localization notably decreased viral replication, though liver damage remained unchanged versus normal HDAg distribution. In addition, a mutation in the nuclear export signal impaired the formation of infectious viral particles. These findings contribute valuable insights into the intricate mechanisms of HDV biology and have implications for therapeutic considerations.
Collapse
Affiliation(s)
- Sheila Maestro
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
- IdiSNA—Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Nahia Gomez-Echarte
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
- IdiSNA—Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Gracian Camps
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
- IdiSNA—Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Carla Usai
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
- IdiSNA—Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Cristina Olagüe
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
| | - Africa Vales
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
| | - Rafael Aldabe
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
| | - Gloria Gonzalez-Aseguinolaza
- DNA & RNA Medicine Division, Centro de Investigación Médica Aplicada, University of Navarra, Avenida Pío XII, 31008 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (C.O.); (A.V.)
| |
Collapse
|
14
|
Steger G, Riesner D, Prusiner SB. Viroids, Satellite RNAs and Prions: Folding of Nucleic Acids and Misfolding of Proteins. Viruses 2024; 16:360. [PMID: 38543726 PMCID: PMC10975798 DOI: 10.3390/v16030360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
Theodor ("Ted") Otto Diener (* 28 February 1921 in Zürich, Switzerland; † 28 March 2023 in Beltsville, MD, USA) pioneered research on viroids while working at the Plant Virology Laboratory, Agricultural Research Service, USDA, in Beltsville. He coined the name viroid and defined viroids' important features like the infectivity of naked single-stranded RNA without protein-coding capacity. During scientific meetings in the 1970s and 1980s, viroids were often discussed at conferences together with other "subviral pathogens". This term includes what are now called satellite RNAs and prions. Satellite RNAs depend on a helper virus and have linear or, in the case of virusoids, circular RNA genomes. Prions, proteinaceous infectious particles, are the agents of scrapie, kuru and some other diseases. Many satellite RNAs, like viroids, are non-coding and exert their function by thermodynamically or kinetically controlled folding, while prions are solely host-encoded proteins that cause disease by misfolding, aggregation and transmission of their conformations into infectious prion isoforms. In this memorial, we will recall the work of Ted Diener on subviral pathogens.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany;
| | - Detlev Riesner
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany;
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA;
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Hsu CW, Hsu HY, Chen CH, Chao M. Unbranched rod-like RNA is required for RNA editing of hepatitis delta virus genotype 2 and genotype 4. Virus Res 2023; 338:199239. [PMID: 37827303 PMCID: PMC10590747 DOI: 10.1016/j.virusres.2023.199239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
RNA editing of the hepatitis delta virus (HDV) is essential for generating the large delta antigen, which is crucial for virion assembly. In HDV genotype 1 (HDV-1), editing occurs within the context of the unbranched rod-like structure characteristic of HDV RNA, while RNA editing in HDV-3 requires a branched double-hairpin structure. The regulation of RNA editing in HDV-2 and HDV-4 remains uncertain. Based on predictions of the unbranched rod-like RNA structures of HDV-2 and HDV-4, the editing site occurs as an A.C mismatch pair, surrounded by four base pairs upstream and two base pairs downstream of the editing site, respectively. To investigate HDV-2 and HDV-4 RNA editing, cultured cells were transfected with non-replicating editing reporters carrying wild-type sequences or specific mutations. The results revealed that the editing rates observed for wild-type HDV-2 and HDV-4 were fairly similar, albeit lower than that of HDV-1. Like HDV-1, both HDV-2 and HDV-4 showed a reduction in editing rate when the A.C mismatch pair and the immediately upstream base-paired region were disturbed. Notably, extending the downstream base-paired region from two to three or four (forming a structure identical to that of HDV-1) base pairs increased editing rate. Furthermore, we presented novel evidence that indicates the importance of the first bulge's size, located upstream of the editing site, and the base-pairing length within 7-13 and 28-39 nucleotides downstream of the editing site in influencing the HDV-4 editing rate. To summarize, our analyses suggest that the unbranched rod-like structures surrounding the editing site of HDV-2 and HDV-4 play a crucial role in regulating their RNA editing rates.
Collapse
Affiliation(s)
- Chao-Wei Hsu
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan
| | - Hsueh-Ying Hsu
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan
| | - Chien-Hung Chen
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Mei Chao
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan; Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang 33302, Taiwan.
| |
Collapse
|
16
|
Umukoro E, Alukal JJ, Pak K, Gutierrez J. State of the Art: Test all for Anti-Hepatitis D Virus and Reflex to Hepatitis D Virus RNA Polymerase Chain Reaction Quantification. Clin Liver Dis 2023; 27:937-954. [PMID: 37778778 DOI: 10.1016/j.cld.2023.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Diagnosis of HDV exposure is based on clinical assays of anti-hepatitis D antibody and current infection with hepatitis D RNA PCR. The role of hepatitis D antigen testing is not yet defined. RT-qPCR is the gold standard for measuring HDV RNA viral load, which is used to assess response to the treatment of HDV infection. Gaps in testing include poor sensitivity of antigen testing and quantitative HDV RNA accuracy can be affected by the genotypic variability of the virus and variation in laboratory techniques. There is also a limitation in HDV testing due to access, cost, and limited knowledge of testing indications. Droplet digital PCR promises to be a more accurate method to quantify HDV RNA. Also, the recent development of a rapid HDV detection test could prove useful in resource-limited areas.
Collapse
Affiliation(s)
| | - Joseph J Alukal
- University of California, School of Medicine, 3390 University Avenue, Riverside, CA 92501, USA
| | - Kevin Pak
- Naval Medical Center, 34800 Bob Wilson Drive, San Diego, CA 92134, USA
| | - Julio Gutierrez
- Center for Organ Transplant, Scripps Clinic, Scripps MD Anderson Center, Scripps Green Hospital, 10666 N. Torrey Pines Road (N-200), La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Abdul Majeed N, Zehnder B, Koh C, Heller T, Urban S. Hepatitis delta: Epidemiology to recent advances in therapeutic agents. Hepatology 2023; 78:1306-1321. [PMID: 36738087 DOI: 10.1097/hep.0000000000000331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Hepatitis D virus (HDV) was first described in 1977 and is dependent on the presence of hepatitis B surface antigen (HBsAg) for its entry into cells and on the human host for replication. Due to the envelopment with the hepatitis B virus (HBV) envelope, early phases of HDV entry resemble HBV infection. Unlike HBV, HDV activates innate immune responses. The global prevalence of HDV is estimated to be about 5% of HBsAg positive individuals. However, recent studies have described a wide range of prevalence between 12 to 72 million individuals. Infection can occur as super-infection or co-infection. The diagnosis of active HDV infection involves screening with anti HDV antibodies followed by quantitative PCR testing for HDV RNA in those who are HBsAg positive. The diagnostic studies have evolved over the years improving the validity and reliability of the tests performed. HDV infection is considered the most severe form of viral hepatitis and the HDV genotype may influence the disease course. There are eight major HDV genotypes with prevalence varying by geographic region. HDV treatment has been challenging as HDV strongly depends on the host cell for replication and provides few, if any viral targets. Better understanding of HDV virology has led to the development of several therapeutic agents currently being studied in different phase II and III clinical trials. There is increasing promise of effective therapies that will ameliorate the course of this devastating disease.
Collapse
Affiliation(s)
- Nehna Abdul Majeed
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|
18
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
20
|
Majeed NA, Hitawala AA, Heller T, Koh C. Diagnosis of HDV: From virology to non-invasive markers of fibrosis. Liver Int 2023; 43 Suppl 1:31-46. [PMID: 36621853 PMCID: PMC10329733 DOI: 10.1111/liv.15515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/25/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Hepatitis D viral infection in humans is a disease that requires the establishment of hepatitis B, relying on hepatitis B surface Ag and host cellular machinery to replicate and propagate the infection. Since its discovery in 1977, substantial progress has been made to better understand the hepatitis D viral life cycle, pathogenesis and modes of transmission along with expanding on clinical knowledge related to prevention, diagnosis, monitoring and treatment. The availability of serologic diagnostic assays for hepatitis D infection has evolved over time with current widespread availability, improved detection and standardized reporting. With human migration, the epidemiology of hepatitis D infection has changed over time. Thus, the ability to use diagnostic assays remains essential to monitor the global impact of hepatitis D infection. Separately, while liver biopsy remains the gold standard for the staging of this rapidly progressive and severe form of chronic viral hepatitis, there is an unmet need for clinical monitoring of chronic hepatitis D infection for management of progressive disease. Thus, exploration of the utility of non-invasive fibrosis markers in hepatitis D is ongoing. In this review, we discuss the virology, the evolution of diagnostics and the development of non-invasive markers for the detection and monitoring of fibrosis in patients with hepatitis D infection.
Collapse
Affiliation(s)
- Nehna Abdul Majeed
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Asif Ali Hitawala
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Pan C, Gish R, Jacobson IM, Hu KQ, Wedemeyer H, Martin P. Diagnosis and Management of Hepatitis Delta Virus Infection. Dig Dis Sci 2023; 68:3237-3248. [PMID: 37338616 PMCID: PMC10374831 DOI: 10.1007/s10620-023-07960-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/24/2023] [Indexed: 06/21/2023]
Abstract
Hepatitis D virus (HDV) depends on hepatitis B virus (HBV) to enter and exit hepatocytes and to replicate. Despite this dependency, HDV can cause severe liver disease. HDV accelerates liver fibrosis, increases the risk of hepatocellular carcinoma, and hastens hepatic decompensation compared to chronic HBV monoinfection. The Chronic Liver Disease Foundation (CLDF) formed an expert panel to publish updated guidelines on the testing, diagnosis, and management of hepatitis delta virus. The panel group performed network data review on the transmission, epidemiology, natural history, and disease sequelae of acute and chronic HDV infection. Based on current available evidence, we provide recommendations for screening, testing, diagnosis, and treatment of hepatitis D infection and review upcoming novel agents that may expand treatment options. The CLDF recommends universal HDV screening for all patients who are Hepatitis B surface antigen-positive. Initial screening should be with an assay to detect antibodies generated against HDV (anti-HDV). Patients who are positive for anti-HDV IgG antibodies should then undergo quantitative HDV RNA testing. We also provide an algorithm that describes CLDF recommendations on the screening, diagnosis, testing, and initial management of Hepatitis D infection.
Collapse
Affiliation(s)
- Calvin Pan
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Gastroenterology and Hepatology, NYU Langone Health, NYU Grossman School of Medicine, New York, USA
| | - Robert Gish
- Robert G. Gish Consultants, LLC, 6022 La Jolla Mesa Dr, La Jolla, CA 92037-7814 USA
- Medical Director Hepatitis B Foundation, Doylestown, PA USA
| | - Ira M. Jacobson
- NYU Langone Gastroenterology Associates, 240 East 38Th Street, 23Rd Floor, New York, NY 10016 USA
| | - Ke-Qin Hu
- University of California, Irvine, 101 The City Dr S, Building 22C, Room 1503, Orange, CA 92868 USA
| | - Heiner Wedemeyer
- Clinic for Gastroenterology, Hepatology and Endocrinology Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Paul Martin
- University of Miami Miller School of Medicine, 1500 NW 12 AVE., E Tower #1101, Miami, FL 33136 USA
| |
Collapse
|
22
|
Abstract
First discovered over 40 years ago, the hepatitis delta virus (HDV) is a unique RNA virus, requiring hepatitis B virus (HBV) antigens for its assembly, replication, and transmission. HBV and HDV can be acquired at the same time (coinfection) or HDV infection can occur in persons with chronic HBV (superinfection). Screening guidelines for HDV are inconsistent. While some guidelines recommend universal screening for all people with HBV, others recommend risk-based screening. Estimates of the global HDV prevalence range from 4.5 to 14.6% among persons with HBV; thus, there may be up to 72 million individuals with HDV worldwide. HDV is the most severe form of viral hepatitis. Compared to HBV monoinfection, HDV coinfection increases the risk of cirrhosis, hepatocellular carcinoma, hepatic decompensation, mortality, and necessity for liver transplant. Despite the severity of HDV, there are few treatment options. Pegylated interferon (off-label use) has long been the only available treatment, although bulevirtide is conditionally approved in some European countries. There are many potential treatments in development, but as yet, there are few effective and safe therapies for HDV infection. In conclusion, given the severity of HDV disease and the paucity of treatments, there is a great unmet need for HDV therapies.
Collapse
Affiliation(s)
- Brian Pearlman
- Department of Internal Medicine, Wellstar Atlanta Medical Center, Medical College of Georgia, Emory School of Medicine, Atlanta, Georgia
| |
Collapse
|
23
|
Hoblos R, Kefalakes H. Immunology of hepatitis D virus infection: General concepts and present evidence. Liver Int 2023; 43 Suppl 1:47-59. [PMID: 36074070 DOI: 10.1111/liv.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 02/13/2023]
Abstract
Infection with the hepatitis D virus induces the most severe form of chronic viral hepatitis, affecting over 12 million people worldwide. Chronic HDV infection leads to rapid development of liver cirrhosis and hepatocellular carcinoma in ~70% of patients within 15 years of infection. Recent evidence suggests that an interplay of different components of the immune system are contributing to viral control and may even be implicated in liver disease pathogenesis. This review will describe general concepts of antiviral immune response and elicit the present evidence concerning the interplay of the hepatitis D virus with the immune system.
Collapse
Affiliation(s)
- Reem Hoblos
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Helenie Kefalakes
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Papatheodoridi A, Papatheodoridis G. Hepatocellular carcinoma: The virus or the liver? Liver Int 2023; 43 Suppl 1:22-30. [PMID: 35319167 DOI: 10.1111/liv.15253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) represents a major public health problem being one of the most common causes of cancer-related deaths worldwide. Hepatitis B (HBV) and C viruses have been classified as oncoviruses and are responsible for the majority of HCC cases, while the role of hepatitis D virus (HDV) in liver carcinogenesis has not been elucidated. HDV/HBV coinfection is related to more severe liver damage than HBV mono-infection and recent studies suggest that HDV/HBV patients are at increased risk of developing HCC compared to HBV mono-infected patients. HBV is known to promote hepatocarcinogenesis via DNA integration into host DNA, disruption of molecular pathways by regulatory HBV x (HBx) protein and excessive oxidative stress. Recently, several molecular mechanisms have been proposed to clarify the pathogenesis of HDV-related HCC including activation of signalling pathways by specific HDV antigens, epigenetic dysregulation and altered gene expression. Alongside, ongoing chronic inflammation and impaired immune responses have also been suggested to facilitate carcinogenesis. Finally, cellular senescence seems to play an important role in chronic viral infection and inflammation leading to hepatocarcinogenesis. In this review, we summarize the current literature on the impact of HDV in HCC development and discuss the potential interplay between HBV, HDV and neighbouring liver tissue in liver carcinogenesis.
Collapse
Affiliation(s)
- Alkistis Papatheodoridi
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, "Alexandra" General Hospital of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens School of Health Sciences, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
25
|
Lee GS, Purdy MA, Choi Y. Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections. Life (Basel) 2023; 13:1527. [PMID: 37511902 PMCID: PMC10381383 DOI: 10.3390/life13071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies.
Collapse
Affiliation(s)
- Grace Sanghee Lee
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Michael A Purdy
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
26
|
Heller T, Buti M, Lampertico P, Wedemeyer H. Hepatitis D: Looking Back, Looking Forward, Seeing the Reward and the Promise. Clin Gastroenterol Hepatol 2023; 21:2051-2064. [DOI: 10.1016/j.cgh.2023.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
27
|
Dietz-Fricke C, Tacke F, Zöllner C, Demir M, Schmidt HH, Schramm C, Willuweit K, Lange CM, Weber S, Denk G, Berg CP, Grottenthaler JM, Merle U, Olkus A, Zeuzem S, Sprinzl K, Berg T, van Bömmel F, Wiegand J, Herta T, Seufferlein T, Zizer E, Dikopoulos N, Thimme R, Neumann-Haefelin C, Galle PR, Sprinzl M, Lohse AW, Schulze zur Wiesch J, Kempski J, Geier A, Reiter FP, Schlevogt B, Gödiker J, Hofmann WP, Buggisch P, Kahlhöfer J, Port K, Maasoumy B, Cornberg M, Wedemeyer H, Deterding K. Treating hepatitis D with bulevirtide - Real-world experience from 114 patients. JHEP Rep 2023; 5:100686. [PMID: 37025462 PMCID: PMC10071092 DOI: 10.1016/j.jhepr.2023.100686] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 04/08/2023] Open
Abstract
Background & Aims Bulevirtide is a first-in-class entry inhibitor of hepatitis B surface antigen. In July 2020, bulevirtide was conditionally approved for the treatment of hepatitis D, the most severe form of viral hepatitis, which frequently causes end-stage liver disease and hepatocellular carcinoma. Herein, we report the first data from a large multicenter real-world cohort of patients with hepatitis D treated with bulevirtide at a daily dose of 2 mg without additional interferon. Methods In a joint effort with 16 hepatological centers, we collected anonymized retrospective data from patients treated with bulevirtide for chronic hepatitis D. Results Our analysis is based on data from 114 patients, including 59 (52%) with cirrhosis, receiving a total of 4,289 weeks of bulevirtide treatment. A virologic response defined as an HDV RNA decline of at least 2 log or undetectable HDV RNA was observed in 87/114 (76%) cases with a mean time to virologic response of 23 weeks. In 11 cases, a virologic breakthrough (>1 log-increase in HDV RNA after virologic response) was observed. After 24 weeks of treatment, 19/33 patients (58%) had a virologic response, while three patients (9%) did not achieve a 1 log HDV RNA decline. No patient lost hepatitis B surface antigen. Alanine aminotransferase levels improved even in patients not achieving a virologic response, including five patients who had decompensated cirrhosis at the start of treatment. Treatment was well tolerated and there were no reports of drug-related serious adverse events. Conclusions In conclusion, we confirm the safety and efficacy of bulevirtide monotherapy in a large real-world cohort of patients with hepatitis D treated in Germany. Future studies need to explore the long-term benefits and optimal duration of bulevirtide treatment. Impact and implications Clinical trials proved the efficacy of bulevirtide for chronic hepatitis D and led to conditional approval by the European Medical Agency. Now it is of great interest to investigate the effects of bulevirtide treatment in a real-world setting. In this work, we included data from 114 patients with chronic hepatitis D who were treated with bulevirtide at 16 German centers. A virologic response was seen in 87/114 cases. After 24 weeks of treatment, only a small proportion of patients did not respond to treatment. At the same time, signs of liver inflammation improved. This observation was independent from changes in hepatitis D viral load. The treatment was generally well tolerated. In the future, it will be of interest to investigate the long-term effects of this new treatment.
Collapse
Affiliation(s)
- Christopher Dietz-Fricke
- Department of Gastroenterology, Hepatology and Endocrinology at Hannover Medical School, Hannover, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Caroline Zöllner
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Hartmut H. Schmidt
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Christoph Schramm
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Katharina Willuweit
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Christian M. Lange
- Department of Medicine II, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Sabine Weber
- Department of Medicine II, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Gerald Denk
- Department of Medicine II, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Christoph P. Berg
- Department of Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectiology, and Geriatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia M. Grottenthaler
- Department of Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectiology, and Geriatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | - Alexander Olkus
- Department of Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | - Stefan Zeuzem
- Internal Medicine Department, Goethe University Hospital, Frankfurt, Germany
| | - Kathrin Sprinzl
- Internal Medicine Department, Goethe University Hospital, Frankfurt, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Florian van Bömmel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Johannes Wiegand
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Toni Herta
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | | | - Eugen Zizer
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | | | - Robert Thimme
- Department of Medicine II, University Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter R. Galle
- Department of Medicine I, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Martin Sprinzl
- Department of Medicine I, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Ansgar W. Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg - Lübeck - Borstel - Riems, Hamburg, Germany
| | - Jan Kempski
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Geier
- University Hospital Würzburg, Division of Hepatology, Dept. of Medicine II, Würzburg, Germany
| | - Florian P. Reiter
- University Hospital Würzburg, Division of Hepatology, Dept. of Medicine II, Würzburg, Germany
| | | | - Juliana Gödiker
- Department of Medicine B, University Hospital Münster, Münster, Germany
| | | | - Peter Buggisch
- Ifi-Institute for Interdisciplinary Medicine, Hamburg, Germany
| | - Julia Kahlhöfer
- Department of Gastroenterology, Hepatology and Endocrinology at Hannover Medical School, Hannover, Germany
| | - Kerstin Port
- Department of Gastroenterology, Hepatology and Endocrinology at Hannover Medical School, Hannover, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology and Endocrinology at Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology at Hannover Medical School, Hannover, Germany
- D-SOLVE consortium, a EU Horizon Europe funded project (No 101057917)
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology at Hannover Medical School, Hannover, Germany
- Excellence Cluster Resist, Hannover Medical School, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig, Germany
- D-SOLVE consortium, a EU Horizon Europe funded project (No 101057917)
| | - Katja Deterding
- Department of Gastroenterology, Hepatology and Endocrinology at Hannover Medical School, Hannover, Germany
- Corresponding author. Address: Department of Gastroenterology, Hepatology and Endocrinology at Hannover Medical School, Hannover, Germany.
| |
Collapse
|
28
|
Khalfi P, Kennedy PT, Majzoub K, Asselah T. Hepatitis D virus: Improving virological knowledge to develop new treatments. Antiviral Res 2023; 209:105461. [PMID: 36396025 DOI: 10.1016/j.antiviral.2022.105461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis delta virus (HDV), a satellite of hepatitis B virus (HBV), possesses the smallest viral genome known to infect animals. HDV needs HBV surface protein for secretion and entry into target liver cells. However, HBV is dispensable for HDV genome amplification, as it relies almost exclusively on cellular host factors for replication. HBV/HDV co-infections affect over 12 million people worldwide and constitute the most severe form of viral hepatitis. Co-infected individuals are at higher risk of developing liver cirrhosis and hepatocellular carcinoma compared to HBV mono-infected patients. Bulevirtide, an entry inhibitor, was conditionally approved in July 2020 in the European Union for adult patients with chronic hepatitis delta (CHD) and compensated liver disease. There are several drugs in development, including lonafarnib and interferon lambda, with different modes of action. In this review, we detail our current fundamental knowledge of HDV lifecycle and review antiviral treatments under development against this virus, outlining their respective mechanisms-of-action. Finally, we describe the antiviral effect these compounds are showing in ongoing clinical trials, discussing their promise and potential pitfalls for managing HDV infected patients.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France
| | - Patrick T Kennedy
- The Blizard Institute, Queen Mary University of London, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France.
| | - Tarik Asselah
- Université de Paris, Cité CRI, INSERM UMR 1149, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France.
| |
Collapse
|
29
|
Gillich N, Zhang Z, Binder M, Urban S, Bartenschlager R. Effect of variants in LGP2 on MDA5-mediated activation of interferon response and suppression of hepatitis D virus replication. J Hepatol 2023; 78:78-89. [PMID: 36152765 DOI: 10.1016/j.jhep.2022.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), including RIG-I, melanoma differentiation-associated protein 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), sense viral RNA to induce the antiviral interferon (IFN) response. LGP2, unable to activate the IFN response itself, modulates RIG-I and MDA5 signalling. HDV, a small RNA virus causing the most severe form of viral hepatitis, is sensed by MDA5. The mechanism underlying IFN induction and its effect on HDV replication is unclear. Here, we aimed to unveil the role of LGP2 and clinically relevant variants thereof in these processes. METHODS RLRs were depleted in HDV susceptible HepaRGNTCP cells and primary human hepatocytes. Cells were reconstituted to express different LGP2 versions. HDV and IFN markers were quantified in a time-resolved manner. Interaction studies among LGP2, MDA5, and RNA were performed by pull-down assays. RESULTS LGP2 is essential for the MDA5-mediated IFN response induced upon HDV infection. This induction requires both RNA binding and ATPase activities of LGP2. The IFN response only moderately reduced HDV replication in resting cells but profoundly suppressed cell division-mediated HDV spread. An LGP2 variant (Q425R), predominating in Africans who develop less severe chronic hepatitis D, mediated detectably higher basal and faster HDV-induced IFN response as well as stronger HDV suppression. Mechanistically, LGP2 RNA binding was a prerequisite for the formation of stable MDA5-RNA complexes. MDA5 binding to RNA was enhanced by the Q425R LGP2 variant. CONCLUSIONS LGP2 is essential to mount an antiviral IFN response induced by HDV and stabilises MDA5-RNA interaction required for downstream signalling. The natural Q425R LGP2 is a gain-of-function variant and might contribute to an attenuated course of hepatitis D. IMPACT AND IMPLICATIONS HDV is the causative pathogen of chronic hepatitis D, a severe form of viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Upon infection, the human immune system senses HDV and mounts an antiviral interferon (IFN) response. Here, we demonstrate that the immune sensor LGP2 cooperates with MDA5 to mount an IFN response that represses HDV replication. We mapped LGP2 determinants required for IFN system activation and characterised several natural genetic variants of LGP2. One of them reported to predominate in sub-Saharan Africans can accelerate HDV-induced IFN responses, arguing that genetic determinants, possibly including LGP2, might contribute to slower disease progression in this population. Our results will hopefully prompt further studies on genetic variations in LGP2 and other components of the innate immune sensing system, including assessments of their possible impact on the course of viral infection.
Collapse
Affiliation(s)
- Nadine Gillich
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response," Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany.
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
30
|
Wang W, Sun L, Huang MT, Quan Y, Jiang T, Miao Z, Zhang Q. Regulatory circular RNAs in viral diseases: applications in diagnosis and therapy. RNA Biol 2023; 20:847-858. [PMID: 37882652 PMCID: PMC10730172 DOI: 10.1080/15476286.2023.2272118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
Circular RNA (circRNA) forms closed loops via back-splicing in precursor mRNA, resisting exonuclease degradation. In higher eukaryotes, protein-coding genes create circRNAs through exon back-splicing. Unlike mRNAs, circRNAs possess unique production and structural traits, bestowing distinct cellular functions and biomedical potential. In this review, we explore the pivotal roles of viral circRNAs and associated RNA in various biological processes. Analysing the interactions between viral circRNA and host cellular machinery yields fresh insights into antiviral immunity, catalysing the development of potential therapeutics. Furthermore, circRNAs serve as enduring biomarkers in viral diseases due to their stable translation within specific tissues. Additionally, a deeper understanding of translational circRNA could expedite the establishment of circRNA-based expression platforms, meeting the rising demand for broad-spectrum viral vaccines. We also highlight the applications of circular RNA in biomarker studies as well as circRNA-based therapeutics. Prospectively, we expect a technological revolution in combating viral infections using circRNA.
Collapse
Affiliation(s)
- Wei Wang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Lei Sun
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Meng-Ting Huang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun Quan
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhichao Miao
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiong Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Sausen DG, Shechter O, Bietsch W, Shi Z, Miller SM, Gallo ES, Dahari H, Borenstein R. Hepatitis B and Hepatitis D Viruses: A Comprehensive Update with an Immunological Focus. Int J Mol Sci 2022; 23:15973. [PMID: 36555623 PMCID: PMC9781095 DOI: 10.3390/ijms232415973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are highly prevalent viruses estimated to infect approximately 300 million people and 12-72 million people worldwide, respectively. HDV requires the HBV envelope to establish a successful infection. Concurrent infection with HBV and HDV can result in more severe disease outcomes than infection with HBV alone. These viruses can cause significant hepatic disease, including cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, and represent a significant cause of global mortality. Therefore, a thorough understanding of these viruses and the immune response they generate is essential to enhance disease management. This review includes an overview of the HBV and HDV viruses, including life cycle, structure, natural course of infection, and histopathology. A discussion of the interplay between HDV RNA and HBV DNA during chronic infection is also included. It then discusses characteristics of the immune response with a focus on reactions to the antigenic hepatitis B surface antigen, including small, middle, and large surface antigens. This paper also reviews characteristics of the immune response to the hepatitis D antigen (including small and large antigens), the only protein expressed by hepatitis D. Lastly, we conclude with a discussion of recent therapeutic advances pertaining to these viruses.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Oren Shechter
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - William Bietsch
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Zhenzhen Shi
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
32
|
Kim GW, Moon JS, Gudima SO, Siddiqui A. N 6-Methyladenine Modification of Hepatitis Delta Virus Regulates Its Virion Assembly by Recruiting YTHDF1. J Virol 2022; 96:e0112422. [PMID: 36102650 PMCID: PMC9555152 DOI: 10.1128/jvi.01124-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis delta virus (HDV) is a defective satellite virus that uses hepatitis B virus (HBV) envelope proteins to form its virions and infect hepatocytes via the HBV receptors. Concomitant HDV/HBV infection continues to be a major health problem, with at least 25 million people chronically infected worldwide. N6-methyladenine (m6A) modification of cellular and viral RNAs is the most prevalent internal modification that occurs cotranscriptionally, and this modification regulates various biological processes. We have previously described a wider range of functional roles of m6A methylation of HBV RNAs, including its imminent regulatory role in the encapsidation of pregenomic RNA. In this study, we present evidence that m6A methylation also plays an important role in the HDV life cycle. Using the methylated RNA immunoprecipitation (MeRIP) assay, we identified that the intracellular HDV genome and antigenome are m6A methylated in HDV- and HBV-coinfected primary human hepatocytes and HepG2 cell expressing sodium taurocholate cotransporting polypeptide (NTCP), while the extracellular HDV genome is not m6A methylated. We observed that HDV genome and delta antigen levels are significantly decreased in the absence of METTL3/14, while the extracellular HDV genome levels are increased by depletion of METTL3/14. Importantly, YTHDF1, an m6A reader protein, interacts with the m6A-methylated HDV genome and inhibits the interaction between the HDV genome and antigens. Thus, m6A of the HDV genome negatively regulates virion production by inhibiting the interaction of the HDV genome with delta antigens through the recruitment of YTHDF1. This is the first study that provides insight into the functional roles of m6A in the HDV life cycle. IMPORTANCE The functional roles of N6-methyladenine (m6A) modifications in the HBV life cycle have been recently highlighted. Here, we investigated the functional role of m6A modification in the HDV life cycle. HDV is a subviral agent of HBV, as it uses HBV envelope proteins to form its virions. We found that m6A methylation also occurs in the intracellular HDV genome and antigenome but not in the extracellular HDV genome. The m6A modification of the HDV genome recruits m6A reader protein (YTHDF1) onto the viral genome. The association of YTHDF1 with the HDV genome abrogates the interaction of delta antigens with the HDV genome and inhibits virion assembly. This study describes the unique effects of m6A on regulation of the HDV life cycle.
Collapse
Affiliation(s)
- Geon-Woo Kim
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Microbiology and Molecular Biology, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Jae-Su Moon
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aleem Siddiqui
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
33
|
Whelan M, Pelchat M. Role of RNA Polymerase II Promoter-Proximal Pausing in Viral Transcription. Viruses 2022; 14:v14092029. [PMID: 36146833 PMCID: PMC9503719 DOI: 10.3390/v14092029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
The promoter-proximal pause induced by the binding of the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) to RNAP II is a key step in the regulation of metazoan gene expression. It helps maintain a permissive chromatin landscape and ensures a quick transcriptional response from stimulus-responsive pathways such as the innate immune response. It is also involved in the biology of several RNA viruses such as the human immunodeficiency virus (HIV), the influenza A virus (IAV) and the hepatitis delta virus (HDV). HIV uses the pause as one of its mechanisms to enter and maintain latency, leading to the creation of viral reservoirs resistant to antiretrovirals. IAV, on the other hand, uses the pause to acquire the capped primers necessary to initiate viral transcription through cap-snatching. Finally, the HDV RNA genome is transcribed directly by RNAP II and requires the small hepatitis delta antigen to displace NELF from the polymerase and overcome the transcriptional block caused by RNAP II promoter-proximal pausing. In this review, we will discuss the RNAP II promoter-proximal pause and the roles it plays in the life cycle of RNA viruses such as HIV, IAV and HDV.
Collapse
|
34
|
Asif B, Koh C. Hepatitis D virus (HDV): investigational therapeutic agents in clinical trials. Expert Opin Investig Drugs 2022; 31:905-920. [PMID: 34482769 PMCID: PMC11391510 DOI: 10.1080/13543784.2021.1977795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chronic Hepatitis D virus (HDV) infection is a global disease leading to rapidly progressive liver disease with increased liver-related mortality and hepatocellular carcinoma. Therapies are minimally effective; however, an increased understanding of the HDV lifecycle has provided new potential drug targets. Thus, there is a growing number of investigational therapeutics under exploration for HDV with the potential for successful viral eradication. AREAS COVERED This review discusses the clinical impact of HDV infection and offers an in-depth look at the HDV life cycle. The authors examine current and new drug targets and the investigational therapies in clinical trials. The search strategy was based on PubMed database and clinicaltrials.gov which highlight the most up-to-date aspects of investigational therapies for chronic HDV infection.
Collapse
Affiliation(s)
- Bilal Asif
- Digestive Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
35
|
Bahoussi AN, Wang PH, Guo YY, Rabbani N, Wu C, Xing L. Global Distribution and Natural Recombination of Hepatitis D Virus: Implication of Kyrgyzstan Emerging HDVs in the Clinical Outcomes. Viruses 2022; 14:v14071467. [PMID: 35891448 PMCID: PMC9323457 DOI: 10.3390/v14071467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Discrepancies in human hepatitis delta virus (HDV) genotypes impact the virus’ biological behavior, clinical manifestation, and treatment response. Herein, this report aims to explore the role of recombination in the worldwide genotypic distribution and genetic diversity of HDV. Three-hundred-forty-eight human HDV full-length genomic sequences of ~1678 nt in length, isolated in twenty-eight countries worldwide between 1986 and 2018, were analysed. Similarity analysis and recombination mapping were performed, and forty-eight recombination events were identified, twenty-nine of which were isolated from Kyrgyzstan and determined to be involved in the diversity and extension of HDV sub-genotypes. HDV recombination occurred only between the genetically close genotypes (genotype 5 and genotype 2) or mainly within genotype 1, suggesting the complex replicative molecular mechanisms of HDV-RNA. The global distribution and classification of HDV genotypes have been updated, indicating that HDV recombination is one of the driving forces behind the biodiversity and the evolution of human HDV genomes. The outcome analysis suggests that the expansion of HDV sub-genotypes and the complex recombination networks might be related to the genomic character of Kyrgyzstan circulating strains and extensive mobility within countries and across borders. These findings will be of great importance in formulating more effective public health HDV surveillance strategies and guiding future molecular and epidemiological research to achieve better clinical outcomes.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Nighat Rabbani
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- Correspondence: ; Tel.: +86-351-701-025
| |
Collapse
|
36
|
Yardeni D, Heller T, Koh C. Chronic hepatitis D-What is changing? J Viral Hepat 2022; 29:240-251. [PMID: 35122369 DOI: 10.1111/jvh.13651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 01/04/2023]
Abstract
Hepatitis D virus (HDV) infection is a chronic viral disease of the liver that is still largely considered to be incurable due to lack of effective treatment options. Without treatment, the risk for the development of advanced liver disease, cirrhosis and hepatocellular carcinoma is significantly high. Currently, new therapeutic options are emerging out of ongoing phase 3 clinical trials, promising a new hope of cure for this devastating liver infection. Recently, bulevirtide, a first in its class HDV entry inhibitor, has received conditional authorization of use from the European Medicines Agency (EMA) and was also submitted for approval in the United States. Other novel therapeutic options in clincal trials include interferon lambda, the prenylation inhibitor lonafarnib and nucleic acidic polymers (NAPs). This review describes all recent advances and ongoing changes to the field of HDV therpaeutics.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Usai C, Gill US, Riddell AC, Asselah T, Kennedy P. Review article: emerging insights into the immunopathology, clinical and therapeutic aspects of hepatitis delta virus. Aliment Pharmacol Ther 2022; 55:978-993. [PMID: 35292991 PMCID: PMC9314912 DOI: 10.1111/apt.16807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hepatitis delta virus (HDV), which causes the most severe form of viral hepatitis, is an obligated hepatitis B (HBV) satellite virus that can either infect naïve subjects simultaneously with HBV (co-infection), or chronically infect HBV carriers (super-infection). An estimated 12 million people are infected by HDV worldwide. AIMS To summarise the most relevant aspects of the molecular biology of HDV, and to discuss the latest understanding of the induced pathology, interactions with the immune system, as well as both approved and investigational treatment options. METHODS References for this review were identified through searches of PubMed with the terms "HDV" "viral hepatitis" "co-infection" and "super-infection," published between 1980 and October 2021 RESULTS: The limited access to the HDV-infected liver has hampered the investigation of the intrahepatic compartment and our understanding of the mechanisms of HDV pathogenesis. In the absence of standardised and sensitive diagnostic tools, HDV is often underdiagnosed and owing to its strong dependence on host cellular factors, the development of direct antiviral agents has been challenging. New therapeutic agents targeting different steps of the viral cycle have recently been investigated, among which bulevirtide (which was conditionally approved by EMA in July 2020) and lonafarnib; both drugs having received orphan drug designation from both the EMA and FDA. CONCLUSIONS The HBV cure programme potentially offers a unique opportunity to enhance HDV treatment strategies. In addition, a more comprehensive analysis of the intrahepatic compartment is mandated to better understand any liver-confined interaction of HDV with the host immune system.
Collapse
Affiliation(s)
- Carla Usai
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK,Present address:
Unitat mixta d’Investigació IRTA‐UAB en Sanitat AnimalCentre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)Bellaterra08193Spain
| | - Upkar S. Gill
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK,The Royal London HospitalBarts Health NHS TrustLondonUK
| | - Anna C. Riddell
- Division of Infection, Virology DepartmentBarts Health NHS TrustLondonUK
| | - Tarik Asselah
- Centre de recherche sur l'inflammation, Inserm U1149Université́ de ParisParisFrance,Department of Hepatology, AP‐HPHôpital BeaujonClichyFrance
| | - Patrick T. Kennedy
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK,The Royal London HospitalBarts Health NHS TrustLondonUK
| |
Collapse
|
38
|
Adaptive Immune Responses, Immune Escape and Immune-Mediated Pathogenesis during HDV Infection. Viruses 2022; 14:v14020198. [PMID: 35215790 PMCID: PMC8880046 DOI: 10.3390/v14020198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance of co-infection, albeit only one partner depends on the other, raises many virological, immunological, and pathophysiological questions. In the last years, breakthroughs were made in understanding the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA) class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV co-infection was attributed to an increased immune-mediated pathology, either caused by innate pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and put into context with known well-described aspects in HBV, HCV, and HIV infections.
Collapse
|
39
|
Flores R, Navarro B, Serra P, Di Serio F. A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evol 2022; 8:veab107. [PMID: 35223083 PMCID: PMC8865084 DOI: 10.1093/ve/veab107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Viroids are tiny, circular, and noncoding RNAs that are able to replicate and systemically infect plants. The smallest known pathogens, viroids have been proposed to represent survivors from the RNA world that likely preceded the cellular world currently dominating life on the earth. Although the small, circular, and compact nature of viroid genomes, some of which are also endowed with catalytic activity mediated by hammerhead ribozymes, support this proposal, the lack of feasible evolutionary routes and the identification of hammerhead ribozymes in a large number of DNA genomes of organisms along the tree of life have led some to question such a proposal. Here, we reassess the origin and subsequent evolution of viroids by complementing phylogenetic reconstructions with molecular data, including the primary and higher-order structure of the genomic RNAs, their replication, and recombination mechanisms and selected biological information. Features of some viroid-like RNAs found in plants, animals, and possibly fungi are also considered. The resulting evolutionary scenario supports the emergence of protoviroids in the RNA world, mainly as replicative modules, followed by a further increase in genome complexity based on module/domain shuffling and combination and mutation. Such a modular evolutionary scenario would have facilitated the inclusion in the protoviroid genomes of complex RNA structures (or coding sequences, as in the case of hepatitis delta virus and delta-like agents), likely needed for their adaptation from the RNA world to a life based on cells, thus generating the ancestors of current infectious viroids and viroid-like RNAs. Other noninfectious viroid-like RNAs, such as retroviroid-like RNA elements and retrozymes, could also be derived from protoviroids if their reverse transcription and integration into viral or eukaryotic DNA, respectively, are considered as a possible key step in their evolution. Comparison of evidence supporting a general and modular evolutionary model for viroids and viroid-like RNAs with that favoring alternative scenarios provides reasonable reasons to keep alive the hypothesis that these small RNA pathogens may be relics of a precellular world.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| |
Collapse
|
40
|
Wang Y, Wu C, Du Y, Li Z, Li M, Hou P, Shen Z, Chu S, Zheng J, Bai J. Expanding uncapped translation and emerging function of circular RNA in carcinomas and noncarcinomas. Mol Cancer 2022; 21:13. [PMID: 34996480 PMCID: PMC8740365 DOI: 10.1186/s12943-021-01484-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are classified as noncoding RNAs because they are devoid of a 5' end cap and a 3' end poly (A) tail necessary for cap-dependent translation. However, increasing numbers of translated circRNAs identified through high-throughput RNA sequencing overlapping with polysome profiling indicate that this rule is being broken. CircRNAs can be translated in cap-independent mechanism, including IRES (internal ribosome entry site)-initiated pattern, MIRES (m6A internal ribosome entry site) -initiated patterns, and rolling translation mechanism (RCA). CircRNA-encoded proteins harbour diverse functions similar to or different from host proteins. In addition, they are linked to the modulation of human disease including carcinomas and noncarcinomas. CircRNA-related translatomics and proteomics have attracted increasing attention. This review discusses the progress and exclusive characteristics of circRNA translation and highlights the latest mechanisms and regulation of circRNA translatomics. Furthermore, we summarize the extensive functions and mechanisms of circRNA-derived proteins in human diseases, which contribute to a better understanding of intricate noncanonical circRNA translatomics and proteomics and their therapeutic potential in human diseases.
Collapse
Affiliation(s)
- Yan Wang
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunjie Wu
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Du
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
| | - Zhigang Shen
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
41
|
Hepatitis delta virus genome RNA synthesis initiates at position 1646 with a non-templated guanosine. J Virol 2021; 96:e0201721. [PMID: 34878890 DOI: 10.1128/jvi.02017-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis delta virus (HDV) is a significant human pathogen that causes acute and chronic liver disease; there is no licensed therapy. HDV is a circular negative-sense ssRNA virus that produces three RNAs in infected cells: genome, antigenome and mRNA; the latter encodes hepatitis delta antigen, the viral protein. These RNAs are synthesized by host DNA-dependent RNA polymerase acting as an RNA-dependent RNA polymerase. Although HDV genome RNA accumulates to high levels in infected cells, the mechanism by which this process occurs remains poorly understood. For example, the nature of the 5' end of the genome, including the synthesis start site and its chemical composition, are not known. Analysis of this process has been challenging because the initiation site is part of an unstable precursor in the rolling circle mechanism by which HDV genome RNA is synthesized. In this study, circular HDV antigenome RNAs synthesized in vitro were used to directly initiate HDV genome RNA synthesis in transfected cells, thus enabling detection of the 5' end of the genome RNA. The 5' end of this RNA is capped, as expected for a Pol II product. Initiation begins at position 1646 on the genome, which is located near the loop end proximal to the start site for HDAg mRNA synthesis. Unexpectedly, synthesis begins with a guanosine that is not conventionally templated by the HDV RNA. IMPORTANCE Hepatitis delta virus (HDV) is a unique virus that causes severe liver disease. It uses host RNA Polymerase II to copy its circular RNA genome in a unique and poorly understood process. Although the virus RNA accumulates to high levels within infected cells, it is not known how synthesis of the viral RNA begins, nor even where on the genome synthesis starts. Here, we identify the start site for the initiation of HDV genome RNA synthesis as position 1646, which is at one end of the closed hairpin-like structure of the viral RNA. The 5' end of the RNA is capped, as expected for Pol II products. However, RNA synthesis begins with a guanosine that is not present in the genome. Thus, although HDV uses Pol II to synthesize the viral genome, some details of the initiation process are different. These differences could be important for successfully targeting virus replication.
Collapse
|
42
|
Lempp FA, Roggenbach I, Nkongolo S, Sakin V, Schlund F, Schnitzler P, Wedemeyer H, Le Gal F, Gordien E, Yurdaydin C, Urban S. A Rapid Point-of-Care Test for the Serodiagnosis of Hepatitis Delta Virus Infection. Viruses 2021; 13:2371. [PMID: 34960640 PMCID: PMC8703323 DOI: 10.3390/v13122371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis Delta virus (HDV) is a satellite of the Hepatitis B virus (HBV) and causes severe liver disease. The estimated prevalence of 15-20 million infected people worldwide may be underestimated as international diagnostic guidelines are not routinely followed. Possible reasons for this include the limited awareness among healthcare providers, the requirement for costly equipment and specialized training, and a lack of access to reliable tests in regions with poor medical infrastructure. In this study, we developed an HDV rapid test for the detection of antibodies against the hepatitis delta antigen (anti-HDV) in serum and plasma. The test is based on a novel recombinant large hepatitis delta antigen that can detect anti-HDV in a concentration-dependent manner with pan-genotypic activity across all known HDV genotypes. We evaluated the performance of this test on a cohort of 474 patient samples and found that it has a sensitivity of 94.6% (314/332) and a specificity of 100% (142/142) when compared to a diagnostic gold-standard ELISA. It also works robustly for a broad range of anti-HDV titers. We anticipate this novel HDV rapid test to be an important tool for epidemiological studies and clinical diagnostics, especially in regions that currently lack access to reliable HDV testing.
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Imme Roggenbach
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Shirin Nkongolo
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Volkan Sakin
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Franziska Schlund
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Heiner Wedemeyer
- Clinic for Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany
| | - Frédéric Le Gal
- Laboratoire de Microbiologie Clinique, Hôpital Avicenne, APHP, 93000 Bobigny, France
| | - Emmanuel Gordien
- Laboratoire de Microbiologie Clinique, Hôpital Avicenne, APHP, 93000 Bobigny, France
| | - Cihan Yurdaydin
- Department of Gastroenterology, University of Ankara, Ankara 06560, Turkey
- Department of Gastroenterology and Hepatology, Koç University Medical School, Istanbul 34450, Turkey
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Nagata S, Kiyohara R, Toh H. Constraint of Base Pairing on HDV Genome Evolution. Viruses 2021; 13:v13122350. [PMID: 34960619 PMCID: PMC8708965 DOI: 10.3390/v13122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The hepatitis delta virus is a single-stranded circular RNA virus, which is characterized by high self-complementarity. About 70% of the genome sequences can form base-pairs with internal nucleotides. There are many studies on the evolution of the hepatitis delta virus. However, the secondary structure has not been taken into account in these studies. In this study, we developed a method to examine the effect of base pairing as a constraint on the nucleotide substitutions during the evolution of the hepatitis delta virus. The method revealed that the base pairing can reduce the evolutionary rate in the non-coding region of the virus. In addition, it is suggested that the non-coding nucleotides without base pairing may be under some constraint, and that the intensity of the constraint is weaker than that by the base pairing but stronger than that on the synonymous site.
Collapse
|
44
|
Pflüger LS, Nörz D, Volz T, Giersch K, Giese A, Goldmann N, Glebe D, Bockmann JH, Pfefferle S, Dandri M, Schulze Zur Wiesch J, Lütgehetmann M. Clinical establishment of a laboratory developed quantitative HDV PCR assay on the cobas6800 high-throughput system. JHEP Rep 2021; 3:100356. [PMID: 34712932 PMCID: PMC8531665 DOI: 10.1016/j.jhepr.2021.100356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background & Aims Currently available HDV PCR assays are characterized by considerable run-to-run and inter-laboratory variability. Hence, we established a quantitative reverse transcription real-time PCR (RT-qPCR) assay on the open channel of a fully automated PCR platform (cobas6800, Roche) offering improved consistency and reliability. Methods A primer/probe-set targeting a highly conserved region upstream of the HDV antigen was adapted for use on the cobas6800. The lower limit of detection (LLOD) was determined using a dilution panel of the HDV WHO standard (n = 21/dilution). Linearity and inclusivity were tested by preparing 10-fold dilution series of cell culture-derived virus (genotype [GT]1-8; n = 5/dilution). Patient samples containing a variety of bloodborne viral pathogens were tested to confirm exclusivity (n = 60). Results The LLOD of the HDV utility-channel (HDV_UTC) assay was determined as 3.86 IU/ml (95% CI 2.95-5.05 IU/ml) with a linear range from 10-10ˆ8 IU/ml (GT1). Linear relationships were observed for all HDV GTs with slopes ranging from -3.481 to -4.134 cycles/log and R2 from 0.918 to 0.994. Inter-run and intra-run variability were 0.3 and 0.6 Ct (3xLLOD), respectively. No false-positive results were observed. To evaluate clinical performance, 110 serum samples of anti-HDV-Ab+ patients were analyzed using the HDV_UTC and CE-IVD RoboGene assays. 58/110 and 49/110 samples were concordant positive or negative, respectively (overall agreement 97.3%). Quantitative comparison demonstrated a strong correlation (R2 0.8733; 95% CI 0.8914-0.9609; p value <0.0001). Conclusion The use of highly automated, sample-to-result solutions for molecular diagnostics holds many inherent benefits over manual workflows, including improved reliability, reproducibility and dynamic scaling of testing capacity. The assay we established showed excellent analytical and clinical performance, with inclusivity for all HDV GTs and a limit of quantification of 10 IU/ml, making it a sensitive new tool for HDV screening and viral load monitoring. Lay summary The hepatitis delta virus (HDV) causes a severe form of inflammation in the liver. We developed a tool for molecular diagnostics, a polymerase chain reaction HDV assay that showed great performance. It can be used to improve diagnosis of HDV, as well as for monitoring treatment responses. The assay allows for quantification of the virus in the tested samples and is performed on a fully automated platform (cobas6800), which provides various benefits including less hands-on time and excellent comparability of test results.
Collapse
Key Words
- CE-IVD, CE-marked in vitro diagnostics
- EQA, external quality assessment
- GT, genotypes
- HDV, Hepatitis delta virus
- HDV_UCT, HDV utility-channel
- LLOD, lower limit of detection
- RT-qPCR, Real time reverse transcription polymerase chain reaction
- RT-qPCR, reverse transcription quantitative real-time PCR
- WHO, world health organization
- cHDV, chronic HDV infection
- cobas6800
- molecular diagnostics
- quantification
- viral hepatitis
Collapse
Affiliation(s)
- Lisa Sophie Pflüger
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dominik Nörz
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Tassilo Volz
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Katja Giersch
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Annika Giese
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, Giessen, Germany.,German Center for Infection Research (DZIF), Giessen-Marburg-Langen, Germany
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, Giessen, Germany.,German Center for Infection Research (DZIF), Giessen-Marburg-Langen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, Giessen, Germany.,German Center for Infection Research (DZIF), Giessen-Marburg-Langen, Germany
| | - Jan-Hendrik Bockmann
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Susanne Pfefferle
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Julian Schulze Zur Wiesch
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Marc Lütgehetmann
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| |
Collapse
|
45
|
Chen LY, Pang XY, Goyal H, Yang RX, Xu HG. Hepatitis D: challenges in the estimation of true prevalence and laboratory diagnosis. Gut Pathog 2021; 13:66. [PMID: 34717740 PMCID: PMC8557527 DOI: 10.1186/s13099-021-00462-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective single negative chain RNA virus, as its envelope protein synthesis is dependent on hepatitis B virus (HBV). Studies have consistently shown that coinfection of HBV and HDV is the most serious form of viral hepatitis, with accelerated progression to liver cirrhosis and hepatocellular carcinoma. About 74 million of HBV surface antigen (HBsAg) positive patients worldwide are also co-infected with HDV. Besides, patients with intravenous drug use and high-risk sexual behavior are at higher risk of HDV infection. Therapeutic schedules for HDV are limited, and relapse of HDV has been observed after treatment with pegylated interferon alpha. To reduce the transmission of HDV, all people infected with HBV should be screened for HDV. At present, several serological and molecular detection methods are widely used in the diagnosis of HDV. However, due to the lack of international standards diagnostic results from different laboratories are often not comparable. Therefore, the true prevalence of HDV is still unclear. In this manuscript, we have analyzed various factors influencing the estimation of HDV prevalence. We have also discussed about the advantages and disadvantages of currently available HDV laboratory diagnostic methods, in order to provide some ideas for improving the detection of HDV.
Collapse
Affiliation(s)
- Lin-Yuan Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Yu Pang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hemant Goyal
- Department of Internal Medicine Macon, Mercer University School of Medicine, Georgia, USA
| | - Rui-Xia Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
46
|
Dziri S, Rodriguez C, Gerber A, Brichler S, Alloui C, Roulot D, Dény P, Pawlotsky JM, Gordien E, Le Gal F. Variable In Vivo Hepatitis D Virus (HDV) RNA Editing Rates According to the HDV Genotype. Viruses 2021; 13:v13081572. [PMID: 34452437 PMCID: PMC8402866 DOI: 10.3390/v13081572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Human hepatitis delta virus (HDV) is a small defective RNA satellite virus that requires hepatitis B virus (HBV) envelope proteins to form its own virions. The HDV genome possesses a single coding open reading frame (ORF), located on a replicative intermediate, the antigenome, encoding the small (s) and the large (L) isoforms of the delta antigen (s-HDAg and L-HDAg). The latter is produced following an editing process, changing the amber/stop codon on the s-HDAg-ORF into a tryptophan codon, allowing L-HDAg synthesis by the addition of 19 (or 20) C-terminal amino acids. The two delta proteins play different roles in the viral cell cycle: s-HDAg activates genome replication, while L-HDAg blocks replication and favors virion morphogenesis and propagation. L-HDAg has also been involved in HDV pathogenicity. Understanding the kinetics of viral editing rates in vivo is key to unravel the biology of the virus and understand its spread and natural history. We developed and validated a new assay based on next-generation sequencing and aimed at quantifying HDV RNA editing in plasma. We analyzed plasma samples from 219 patients infected with different HDV genotypes and showed that HDV editing capacity strongly depends on the genotype of the strain.
Collapse
Affiliation(s)
- Samira Dziri
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
| | - Christophe Rodriguez
- Centre National de référence des Hépatites Virales B, C et Delta, Département de Virologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, 94000 Créteil, France; (C.R.); (J.M.P.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Athenaïs Gerber
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
| | - Ségolène Brichler
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Chakib Alloui
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Dominique Roulot
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
- Unité d’hépatologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Université Sorbonne-Paris-Cité, 93000 Bobigny, France
| | - Paul Dény
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-UMR CNRS 5286, 69001 Lyon, France
| | - Jean Michel Pawlotsky
- Centre National de référence des Hépatites Virales B, C et Delta, Département de Virologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, 94000 Créteil, France; (C.R.); (J.M.P.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Emmanuel Gordien
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Frédéric Le Gal
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
- Correspondence:
| |
Collapse
|
47
|
Heuschkel MJ, Baumert TF, Verrier ER. Cell Culture Models for the Study of Hepatitis D Virus Entry and Infection. Viruses 2021; 13:v13081532. [PMID: 34452397 PMCID: PMC8402901 DOI: 10.3390/v13081532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis D is one of the most severe and aggressive forms of chronic viral hepatitis with a high risk of developing hepatocellular carcinoma (HCC). It results from the co-infection of the liver with the hepatitis B virus (HBV) and its satellite, the hepatitis D virus (HDV). Although current therapies can control HBV infection, no treatment that efficiently eliminates HDV is available and novel therapeutic strategies are needed. Although the HDV cycle is well described, the lack of simple experimental models has restricted the study of host–virus interactions, even if they represent relevant therapeutic targets. In the last few years, the discovery of the sodium taurocholate co-transporting polypeptide (NTCP) as a key cellular entry factor for HBV and HDV has allowed the development of new cell culture models susceptible to HBV and HDV infection. In this review, we summarize the main in vitro model systems used for the study of HDV entry and infection, discuss their benefits and limitations and highlight perspectives for future developments.
Collapse
Affiliation(s)
- Margaux J. Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 1 Place de L’Hôpital, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
- Correspondence: ; Tel.: +33-3-68-85-37-06
| |
Collapse
|
48
|
Wang W, Lempp FA, Schlund F, Walter L, Decker CC, Zhang Z, Ni Y, Urban S. Assembly and infection efficacy of hepatitis B virus surface protein exchanges in 8 hepatitis D virus genotype isolates. J Hepatol 2021; 75:311-323. [PMID: 33845061 DOI: 10.1016/j.jhep.2021.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Chronic HDV infections cause the most severe form of viral hepatitis. HDV requires HBV envelope proteins for hepatocyte entry, particle assembly and release. Eight HDV and 8 HBV genotypes have been identified. However, there are limited data on the replication competence of different genotypes and the effect that different HBV envelopes have on virion assembly and infectivity. METHODS We subcloned complementary DNAs (cDNAs) of all HDV and HBV genotypes and systematically studied HDV replication, assembly and infectivity using northern blot, western blot, reverse-transcription quantitative PCR, and in-cell ELISA. RESULTS The 8 HDV cDNA clones initiated HDV replication with noticeable differences regarding replication efficacy. The 8 HBV-HBsAg-encoding constructs all supported secretion of subviral particles, however variations in envelope protein stoichiometry and secretion efficacy were observed. Co-transfection of all HDV/HBV combinations supported particle assembly, however, the respective pseudo-typed HDVs differed with respect to assembly kinetics. The most productive combinations did not correlate with the natural geographic distribution, arguing against an evolutionary adaptation of HDV ribonucleoprotein complexes to HBV envelopes. All HDVs elicited robust and comparable innate immune responses. HBV envelope-dependent differences in the activity of the EMA-approved entry inhibitor bulevirtide were observed, however efficient inhibition could be achieved at therapeutically applied doses. Lonafarnib also showed pan-genotypic activity. CONCLUSIONS HDVs from different genotypes replicate with variable efficacies. Variations in HDV genomes and HBV envelope proteins are both major determinants of HDV egress and entry efficacy, and consequently assembly inhibition by lonafarnib or entry inhibition by bulevirtide. These differences possibly influence HDV pathogenicity, immune responses and the efficacy of novel drug regimens. LAY SUMMARY HDV requires the envelope protein of HBV for assembly and to infect human cells. We investigated the ability of different HDV genotypes to infect cells and replicate. We also assessed the effect that envelope proteins from different HBV genotypes had on HDV infectivity and replication. Herein, we confirmed that genotypic differences in HDV and HBV envelope proteins are major determinants of HDV assembly, de novo cell entry and consequently the efficacy of novel antivirals.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Franziska Schlund
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lisa Walter
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Charlotte C Decker
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
49
|
Silva RJS, do Nascimento RS, Oliveira-Neto JAJ, Silva FQ, Piauiense JNF, Gomes CM, Pinheiro LML, Resque RL, Pinho JRR, Kupek E, Fischer B, Machado LFA, Martins LC, Lemos JAR, Oliveira-Filho AB. Detection and Genetic Characterization of Hepatitis B and D Viruses: A Multi-Site Cross-Sectional Study of People Who Use Illicit Drugs in the Amazon Region. Viruses 2021; 13:v13071380. [PMID: 34372586 PMCID: PMC8310228 DOI: 10.3390/v13071380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B (HBV) and delta (HDV) viruses are endemic in the Amazon region, but vaccine coverage against HBV is still limited. People who use illicit drugs (PWUDs) represent a high-risk group due to common risk behavior and socioeconomic factors that facilitate the acquisition and transmission of pathogens. The present study assessed the presence of HBV and HBV-HDV co-infection, identified viral sub-genotypes, and verified the occurrence of mutations in coding regions for HBsAg and part of the polymerase in HBV-infected PWUDs in municipalities of the Brazilian states of Amapá and Pará, in the Amazon region. In total, 1074 PWUDs provided blood samples and personal data in 30 municipalities of the Brazilian Amazon. HBV and HDV were detected by enzyme-linked immunosorbent assay and polymerase chain reaction. Viral genotypes were identified by nucleotide sequencing followed by phylogenetic analysis, whereas viral mutations were analyzed by specialized software. High rates of serological (32.2%) and molecular (7.2%) markers for HBV were detected, including cases of occult HBV infection (2.5%). Sub-genotypes A1, A2, D4, and F2a were most frequently found. Escape mutations due to vaccine and antiviral resistance were identified. Among PWUDs with HBV DNA, serological (19.5%) and molecular (11.7%) HDV markers were detected, such as HDV genotypes 1 and 3. These are worrying findings, presenting clear implications for urgent prevention and treatment needs for the carriers of these viruses.
Collapse
Affiliation(s)
- Ronylson José S. Silva
- Programa de Pós-Graduação em Biologia Ambiental, Universidade Federal do Pará, Bragança 68600-000, PA, Brazil; (R.J.S.S.); (R.S.d.N.); (C.M.G.)
| | - Raquel Silva do Nascimento
- Programa de Pós-Graduação em Biologia Ambiental, Universidade Federal do Pará, Bragança 68600-000, PA, Brazil; (R.J.S.S.); (R.S.d.N.); (C.M.G.)
| | - José Augusto J. Oliveira-Neto
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança 68600-000, PA, Brazil; (J.A.J.O.-N.); (F.Q.S.)
| | - Fabricio Quaresma Silva
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança 68600-000, PA, Brazil; (J.A.J.O.-N.); (F.Q.S.)
| | - Juliana Nádia F. Piauiense
- Programa de Pós-Graduação em Saúde na Amazônia, Universidade Federal do Pará, Belém 66055-240, PA, Brazil; (J.N.F.P.); (L.C.M.)
| | - Camila Moraes Gomes
- Programa de Pós-Graduação em Biologia Ambiental, Universidade Federal do Pará, Bragança 68600-000, PA, Brazil; (R.J.S.S.); (R.S.d.N.); (C.M.G.)
| | - Luiz Marcelo L. Pinheiro
- Faculdade de Ciências Biológicas, Campus do Marajó, Universidade Federal do Pará, Soure 68870-000, PA, Brazil;
| | - Rafael Lima Resque
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil;
| | - João Renato R. Pinho
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil;
| | - Emil Kupek
- Departamento de Saúde Pública, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Benedikt Fischer
- Centre for Applied Research in Mental Health and Addiction, Faculty of Health Sciences, Simon Fraser University, Vancouver, BC V6B 5K3, Canada;
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo 04038-000, SP, Brazil
| | - Luiz Fernando A. Machado
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (L.F.A.M.); (J.A.R.L.)
| | - Luísa Caricio Martins
- Programa de Pós-Graduação em Saúde na Amazônia, Universidade Federal do Pará, Belém 66055-240, PA, Brazil; (J.N.F.P.); (L.C.M.)
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, PA, Brazil
| | - José Alexandre R. Lemos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (L.F.A.M.); (J.A.R.L.)
| | - Aldemir B. Oliveira-Filho
- Programa de Pós-Graduação em Biologia Ambiental, Universidade Federal do Pará, Bragança 68600-000, PA, Brazil; (R.J.S.S.); (R.S.d.N.); (C.M.G.)
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança 68600-000, PA, Brazil; (J.A.J.O.-N.); (F.Q.S.)
- Correspondence: ; Tel.: +55-91-3425-1209
| |
Collapse
|
50
|
Giersch K, Hermanussen L, Volz T, Volmari A, Allweiss L, Sureau C, Casey J, Huang J, Fischer N, Lütgehetmann M, Dandri M. Strong Replication Interference Between Hepatitis Delta Viruses in Human Liver Chimeric Mice. Front Microbiol 2021; 12:671466. [PMID: 34305837 PMCID: PMC8297590 DOI: 10.3389/fmicb.2021.671466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hepatitis D Virus (HDV) is classified into eight genotypes with distinct clinical outcomes. Despite the maintenance of highly conserved functional motifs, it is unknown whether sequence divergence between genotypes, such as HDV-1 and HDV-3, or viral interference mechanisms may affect co-infection in the same host and cell, thus hindering the development of HDV inter-genotypic recombinants. We aimed to investigate virological differences of HDV-1 and HDV-3 and assessed their capacity to infect and replicate within the same liver and human hepatocyte in vivo. Methods Human liver chimeric mice were infected with hepatitis B virus (HBV) and with one of the two HDV genotypes or with HDV-1 and HDV-3 simultaneously. In a second set of experiments, HBV-infected mice were first infected with HDV-1 and after 9 weeks with HDV-3, or vice versa. Also two distinct HDV-1 strains were used to infect mice simultaneously and sequentially. Virological parameters were determined by strain-specific qRT-PCR, RNA in situ hybridization and immunofluorescence staining. Results HBV/HDV co-infection studies indicated faster spreading kinetics and higher intrahepatic levels of HDV-3 compared to HDV-1. In mice that simultaneously received both HDV strains, HDV-3 became the dominant genotype. Interestingly, antigenomic HDV-1 and HDV-3 RNA were detected within the same liver but hardly within the same cell. Surprisingly, sequential super-infection experiments revealed a clear dominance of the HDV strain that was inoculated first, indicating that HDV-infected cells may acquire resistance to super-infection. Conclusion Infection with two largely divergent HDV genotypes could be established in the same liver, but rarely within the same hepatocyte. Sequential super-infection with distinct HDV genotypes and even with two HDV-1 isolates was strongly impaired, suggesting that virus interference mechanisms hamper productive replication in the same cell and hence recombination events even in a system lacking adaptive immune responses.
Collapse
Affiliation(s)
- Katja Giersch
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Volmari
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - John Casey
- Georgetown University Medical Center, Washington, DC, United States
| | - Jiabin Huang
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| |
Collapse
|