1
|
Hakim MS, Gazali FM, Widyaningsih SA, Parvez MK. Driving forces of continuing evolution of rotaviruses. World J Virol 2024; 13:93774. [PMID: 38984077 PMCID: PMC11229848 DOI: 10.5501/wjv.v13.i2.93774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/24/2024] Open
Abstract
Rotaviruses are non-enveloped double-stranded RNA virus that causes acute diarrheal diseases in children (< 5 years). More than 90% of the global rotavirus infection in humans was caused by Rotavirus group A. Rotavirus infection has caused more than 200000 deaths annually and predominantly occurs in the low-income countries. Rotavirus evolution is indicated by the strain dynamics or the emergence of the unprecedented strain. The major factors that drive the rotavirus evolution include the genetic shift that is caused by the reassortment mechanism, either in the intra- or the inter-genogroup. However, other factors are also known to have an impact on rotavirus evolution. This review discusses the structure and types, epidemiology, and evolution of rotaviruses. This article also reviews other supplemental factors of rotavirus evolution, such as genetic reassortment, mutation rate, glycan specificity, vaccine introduction, the host immune responses, and antiviral drugs.
Collapse
Affiliation(s)
- Mohamad Saifudin Hakim
- Postgraduate School of Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam 3015GD, Netherlands
- Viral Infection Working Group, International Society of Antimicrobial Chemotherapy, London EC4R 9AN, United Kingdom
| | - Faris Muhammad Gazali
- Master Program in Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Suci Ardini Widyaningsih
- Master of Medical Sciences in Clinical Investigation, Harvard Medical School, Boston, MA 02115, United States
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Weldegebriel GG, Okot C, Majingo N, Oumer NJ, Mokomane M, Monyatsi NJ, Phologolo TM, Visagie L, Moakofh K, Seobakeng M, Masresha BG, Seheri M, Mihigo R, Mwenda JM. Resurgent rotavirus diarrhoea outbreak five years after introduction of rotavirus vaccine in Botswana, 2018. Vaccine 2024; 42:1534-1541. [PMID: 38331661 PMCID: PMC10953700 DOI: 10.1016/j.vaccine.2024.01.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Botswana had a resurgent diarrhea outbreak in 2018, mainly affecting children under five years old. Botswana introduced rotavirus vaccine (RotarixTM) into the national immunization programme in July 2012. Official rotavirus vaccine coverage estimates averaged 77.2% over the five years following introduction. MATERIALS AND METHODS The outbreak was investigated using multiple data sources, including stool laboratory testing, immunization data review, water assessment, and vaccine storage assessment. We reviewed official reports of the routine immunization data from 2013 to 2017 and compared district-level rotavirus vaccine coverage with district-level attack rates during the outbreak. RESULTS During the outbreak, a total of 228 stool samples were tested at the national health laboratory and 152 (67%) of the specimens were positive for rotavirus. A portion of adequate samples (80) were selected for referral to the Regional Reference Lab. The laboratory testing of 80 samples at the Regional Reference Laboratory in South Africa showed that 91% of the stool samples were positive for rotavirus, and the dominant strain 47/80 (58.7%) was G3P[8]. The immunization data showed that rotavirus vaccine coverage varied widely among districts, and there was no correlation between districts with high attack rates and those with low immunization coverage. Water assessment showed that some water sources were contaminated with E Coli. There was no problem with vaccine storage. CONCLUSION The outbreak was caused by rotavirus G3P[8], a strain that was not common in the country prior to the outbreak. Despite the significant pressure and anxiety that outbreaks cause, the number of diarrhea cases and deaths were less compared to pre-vaccine era due to the impact of vaccination. This highlights the need for continuous implementation of high impact child survival interventions.
Collapse
Affiliation(s)
- Goitom G Weldegebriel
- World Health Organization, Intercountry Support Team, East and Southern Africa, Harare, Zimbabwe.
| | - Charles Okot
- World Health Organization African Regional Office, Brazzaville, Congo
| | | | | | | | | | | | | | | | | | - Balcha G Masresha
- World Health Organization African Regional Office, Brazzaville, Congo
| | - Mapaseka Seheri
- Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Richard Mihigo
- World Health Organization African Regional Office, Brazzaville, Congo
| | - Jason M Mwenda
- World Health Organization African Regional Office, Brazzaville, Congo
| |
Collapse
|
3
|
Miranda S, Tonin FS, Pinto-Sousa C, Fortes-Gabriel E, Brito M. Genetic Profile of Rotavirus Type A in Children under 5 Years Old in Africa: A Systematic Review of Prevalence. Viruses 2024; 16:243. [PMID: 38400019 PMCID: PMC10893345 DOI: 10.3390/v16020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 02/25/2024] Open
Abstract
Human type A rotavirus (RV-A) is world-recognized as the major pathogen causing viral gastroenteritis in children under 5 years of age. The literature indicates a substantial increase in the diversity of rotavirus strains across continents, especially in Africa, which can pose significant challenges including an increase of disease burden and a reduction of vaccines' effectiveness. However, few studies have mapped the variety of circulating virus strains in different regions, which may hamper decisions on epidemiological surveillance and preventive public health measures. Thus, our aim was to compile the most updated available evidence on the genetic profile of RV-A among children in Africa and determine the prevalence of different genotypes according to the geographical regions by means of a broad systematic review. Systematic searches were performed in PubMed, Scopus, Web of Science, and Scielo without language, time limits, or geographical restrictions within the African continent. We selected full-text peer-reviewed articles assessing the genetic profile (i.e., genotyping) of RV-A in children up to 5 years old in Africa. Overall, 682 records were retrieved, resulting in 75 studies included for evidence synthesis. These studies were published between 1999 and 2022, were conducted in 28 countries from the five African regions, and 48% of the studies were carried out for 24 months or more. Most studies (n = 55; 73.3%) evaluated RV-A cases before the introduction of the vaccines, while around 20% of studies (n = 13) presented data after the vaccine approval in each country. Only seven (9.3%) studies compared evidence from both periods (pre- and post-vaccine introduction). Genotyping methods to assess RV-A varied between RT-PCR, nested or multiplex RT-PCR, testing only the most common P and G-types. We observed G1 and P[8] to be the most prevalent strains in Africa, with values around 31% and 43%, respectively. Yet if all the genotypes with the following highest prevalence were added ((G1 + G2, G3, G9) and (P[8] + P[6], P[4])), these figures would represent 80% and 99% of the total prevalence. The combination G1P[8] was the most reported in the studies (around 22%). This review study demonstrated an increased strain diversity in the past two decades, which could represent a challenge to the efficacy of the current vaccine.
Collapse
Affiliation(s)
- Sandra Miranda
- Faculdade de Medicine, Universidade Agostinho Neto, Luanda, Angola; (S.M.); (C.P.-S.)
- CISA-Centro de Investigação em Saúde de Angola, Caxito, Bengo, Angola;
- Clínica Girassol, Luanda, Angola
| | - Fernanda S. Tonin
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal;
- Pharmaceutical Sciences Postgraduate Program, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Carlos Pinto-Sousa
- Faculdade de Medicine, Universidade Agostinho Neto, Luanda, Angola; (S.M.); (C.P.-S.)
- UPRA-Universidade Privada de Angola, Luanda, Angola
| | - Elsa Fortes-Gabriel
- CISA-Centro de Investigação em Saúde de Angola, Caxito, Bengo, Angola;
- ISTM- Instituto Superior Técnico Militar, Luanda, Angola
| | - Miguel Brito
- CISA-Centro de Investigação em Saúde de Angola, Caxito, Bengo, Angola;
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal;
| |
Collapse
|
4
|
Michael F, Mirambo MM, Lyimo D, Salehe A, Kyesi F, Msanga DR, Mahamba D, Nyawale H, Kwiyolecha E, Okamo B, Mwanyika PJ, Maghina V, Bendera E, Salehe M, Hokororo A, Mwipopo E, Khamis AC, Nyaki H, Magodi R, Mujuni D, Konje ET, Katembo B, Wilillo R, Mshana SE. Rotavirus genotype diversity in Tanzania during Rotavirus vaccine implementation between 2013 and 2018. Sci Rep 2023; 13:21795. [PMID: 38066194 PMCID: PMC10709589 DOI: 10.1038/s41598-023-49350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
The study aims to determine Rotavirus genotypes between 2013 and 2018 during implementation of ROTARIX vaccine in Tanzania. The analysis of surveillance data obtained between 2013 and 2018 was done to determine circulating genotypes after introduction of Rotarix vaccine. From 2013 to 2018, a total of 10,557 samples were collected and screened for Rotavirus using an enzyme immunoassay. A significant decrease in Rotavirus positivity (29.3% to 17.8%) from 2013 to 2018 (OR 0.830, 95% CI 0.803-0.857, P < 0.001) was observed. A total of 766 randomly selected Rotavirus positive samples were genotyped. Between 2013 and 2018, a total of 18 Rotavirus genotypes were detected with G1P [8] being the most prevalent. The G1P [8] strain was found to decrease from 72.3% in 2015 to 13.5% in 2018 while the G9P [4] strain increased from 1 to 67.7% in the same years. G2P [4] was found to decrease from 59.7% in 2013 to 6.8% in 2018 while G3P [6] decreased from 11.2% in 2014 to 4.1% in 2018. The data has clearly demonstrated that ROTARIX vaccine has provided protection to varieties of the wild-type Rotavirus strains. Continuous surveillance is needed to monitor the circulation of Rotavirus strains during this era of vaccine implementation.
Collapse
Affiliation(s)
- Fausta Michael
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Mariam M Mirambo
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.
| | - Dafrossa Lyimo
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Abdul Salehe
- Ministry of Health, Immunization and Vaccine Development Program, Zanzibar, Tanzania
| | - Furaha Kyesi
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Delfina R Msanga
- Department of Paediatrics and Child Health, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Dina Mahamba
- Department of Pediatrics and Child Health, College of Health Sciences, University of Dodoma, P.O. Box 395, Dodoma, Tanzania
| | - Helmut Nyawale
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Elizabeth Kwiyolecha
- Department of Paediatrics and Child Health, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Bernard Okamo
- Department of Biochemistry and Molecular Biology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Paul J Mwanyika
- Department of Pediatrics and Child Health, Mbeya Zonal Referral Hospital, P.O. Box 419, Mbeya, Tanzania
| | - Victoria Maghina
- Department of Pediatrics and Child Health, Mbeya Zonal Referral Hospital, P.O. Box 419, Mbeya, Tanzania
| | - Elice Bendera
- Department of Pediatrics and Child Health, Muheza Designated District Hospital, Tanga, Tanzania
| | - Mohammed Salehe
- Department of Pediatrics and Child Health, Bombo Regional Referral Hospital, Tanga, Tanzania
| | - Adolfine Hokororo
- Department of Paediatrics and Child Health, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Ernestina Mwipopo
- Department of Pediatrics and Child Health, Mwananyamala Regional Referral Hospital, Dar es Salaam, Tanzania
| | - Asha C Khamis
- Department of Pediatrics and Child Health, Temeke Regional Referral Hospital, Dar es Salaam, Tanzania
| | - Honest Nyaki
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Richard Magodi
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Delphius Mujuni
- Ministry of Health, Immunization and Vaccine Development Program, Dodoma, Tanzania
| | - Eveline T Konje
- Department of Epidemiology and Biostatistics, School of Public Health, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Betina Katembo
- National Public Health Laboratory, Dar es Salaam, Tanzania
| | - Ritha Wilillo
- World Health Organization, Country Office, Dar es Salaam, Tanzania
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| |
Collapse
|
5
|
Mwangi PN, Potgieter RL, Simwaka J, Mpabalwani EM, Mwenda JM, Mogotsi MT, Magagula N, Esona MD, Steele AD, Seheri ML, Nyaga MM. Genomic Analysis of G2P[4] Group A Rotaviruses in Zambia Reveals Positive Selection in Amino Acid Site 7 of Viral Protein 3. Viruses 2023; 15:501. [PMID: 36851715 PMCID: PMC9965253 DOI: 10.3390/v15020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The G2P[4] genotype is among the rotavirus strains that circulate commonly in humans. Several countries have reported its immediate upsurge after the introduction of rotavirus vaccination, raising concern about sub-optimal vaccine effectiveness against this genotype in the long term. This study aimed to gain insight into the evolution of post-vaccine Zambian G2P[4] group A rotavirus (RVA) strains and their overall genetic make-up by analysis of sequence alignments at the amino acid (AA) level. Twenty-nine Zambian G2P[4] rotavirus strains were subjected to whole-genome sequencing using the Illumina MiSeq® platform. All the strains exhibited the typical DS-1-like genotype constellation, and the nucleotide sequences of the 11 genome segments showed high nucleotide similarities (>97%). Phylogenetic analyses together with representative global G2P[4] RVA showed that Zambian strains clustered into human lineages IV (for VP2, VP4, VP7, NSP1, and NSP5), V (for VP1, VP3, VP6, NSP2, and NSP3), and XXIII (for NSP4). The AA differences between the lineages where the study strains clustered and lineages of global reference strains were identified and analyzed. Selection pressure analysis revealed that AA site seven in the Viral Protein 3 (VP3) genome segment was under positive selection. This site occurs in the region of intrinsic disorder in the VP3 protein, and Zambian G2P[4] strains could potentially be utilizing this intrinsically disordered region to survive immune pressure. The Zambian G2P[4] strains from 2012 to 2016 comprised the G2P[4] strains that have been circulating globally since the early 2000s, highlighting the epidemiological fitness of these contemporary G2P[4] strains. Continuous whole-genome surveillance of G2P[4] strains remains imperative to understand their evolution during the post-vaccination period.
Collapse
Affiliation(s)
- Peter N. Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Robyn-Lee Potgieter
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Julia Simwaka
- Institute of Basic and Biomedical Sciences, Department of Biomedical Sciences, The Levy Mwanawasa Medical University, Lusaka 10101, Zambia
| | - Evans M. Mpabalwani
- Department of Paediatrics and Child Health, School of Medicine, University of Zambia, Ridgeway, Lusaka RW50000, Zambia
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 06, Congo
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nonkululeko Magagula
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Mathew D. Esona
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - A. Duncan Steele
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Mapaseka L. Seheri
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
6
|
Hamajima R, Lusiany T, Minami S, Nouda R, Nurdin JA, Yamasaki M, Kobayashi N, Kanai Y, Kobayashi T. A reverse genetics system for human rotavirus G2P[4]. J Gen Virol 2022; 103. [PMID: 36748482 DOI: 10.1099/jgv.0.001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rotaviruses (RVs) are an important cause of acute gastroenteritis in young children. Recently, versatile plasmid-based reverse genetics systems were developed for several human RV genotypes; however, these systems have not been developed for all commonly circulating human RV genotypes. In this study, we established a reverse genetics system for G2P[4] human RV strain HN126. Nucleotide sequence analysis, including that of the terminal ends of the viral double-stranded RNA genome, revealed that HN126 possessed a DS-1-like genotype constellation. Eleven plasmids, each encoding 11 gene segments of the RV genome, and expression plasmids encoding vaccinia virus RNA capping enzyme (D1R and D12L), Nelson Bay orthoreovirus FAST, and NSP2 and NSP5 of HN126, were transfected into BHK-T7 cells, and recombinant strain HN126 was generated. Using HN126 or simian RV strain SA11 as backbone viruses, reassortant RVs carrying the outer and intermediate capsid proteins (VP4, VP7 and VP6) of HN126 and/or SA11 (in various combinations) were generated. Viral replication analysis of the single, double and triple reassortant viruses suggested that homologous combination of the VP4 and VP7 proteins contributed to efficient virus infectivity and interaction between other viral or cellular proteins. Further studies of reassortant viruses between simian and other human RV strains will contribute to developing an appropriate model for human RV research, as well as suitable backbone viruses for generation of recombinant vaccine candidates.
Collapse
Affiliation(s)
- Rina Hamajima
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan.,Present address: Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Chikusa, Japan
| | - Tina Lusiany
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Jeffery A Nurdin
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Moeko Yamasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Maina MM, Faneye AO, Motayo BO, Nseabasi-Maina N, Adeniji AJ. Human rotavirus VP4 and VP7 genetic diversity and detection of GII norovirus in Ibadan as Nigeria introduces rotavirus vaccine. J Int Med Res 2022; 50:3000605221121956. [PMID: 36138570 PMCID: PMC9511342 DOI: 10.1177/03000605221121956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective This cross-sectional study investigated the circulating strains of rotavirus and screened for noravirus in Ibadan, Nigeria as the country introduces the rotavirus vaccine into its national immunization program. Methods Sixty-five stool samples were collected from children younger than 5 years with clinically diagnosed diarrhea and screened for the presence of rotavirus and norovirus using RT-PCR. Rotavirus-positive samples were further analyzed to determine the G and P genotypes using semi-nested multiplex PCR. Results The rates of rotavirus and norovirus positivity were 30.8% and 10.8%, respectively, whereas the rate of rotavirus and norovirus mixed infection was 4.6%. G1 was the predominant VP7 genotype, followed by G2, G9, and G1G2G9, whereas the predominant VP4 genotype was P[4], followed by P[6], P[8], and P[9]. The mixed P types P[4]P[8] and P[4]P[6] were also detected. G1P[4] was the most common VP4 and VP7 combination, followed by G2P[4], G1[P6], G1P[8], G2P[6], G2P[9], G9P[6], G2G9P[4], G2P[4]P[6], G1P[4]P[8], G2G9P[8], G1G2G9P[8], and G1[non-typable] P[non-typable], which were detected in at least 5% of the samples. Four samples had a combination of non-typable G and P types. Conclusions It is essential to monitor the circulation of virus strains prior to and during the implementation of the immunization program.
Collapse
Affiliation(s)
- Meshach Maunta Maina
- Department of Veterinary Microbiology, University of Maiduguri, Nigeria.,Department of Virology, College of Medicine, University of Ibadan, Nigeria
| | | | | | | | - Adekunle Johnson Adeniji
- Department of Virology, College of Medicine, University of Ibadan, Nigeria.,WHO National Poliovirus laboratory, Department of Virology, University of Ibadan, Nigeria
| |
Collapse
|
8
|
Mwangi PN, Page NA, Seheri ML, Mphahlele MJ, Nadan S, Esona MD, Kumwenda B, Kamng'ona AW, Donato CM, Steele DA, Ndze VN, Dennis FE, Jere KC, Nyaga MM. Evolutionary changes between pre- and post-vaccine South African group A G2P[4] rotavirus strains, 2003-2017. Microb Genom 2022; 8. [PMID: 35446251 PMCID: PMC9453071 DOI: 10.1099/mgen.0.000809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transient upsurge of G2P[4] group A rotavirus (RVA) after Rotarix vaccine introduction in several countries has been a matter of concern. To gain insight into the diversity and evolution of G2P[4] strains in South Africa pre- and post-RVA vaccination introduction, whole-genome sequencing was performed for RVA positive faecal specimens collected between 2003 and 2017 and samples previously sequenced were obtained from GenBank (n=103; 56 pre- and 47 post-vaccine). Pre-vaccine G2 sequences predominantly clustered within sub-lineage IVa-1. In contrast, post-vaccine G2 sequences clustered mainly within sub-lineage IVa-3, whereby a radical amino acid (AA) substitution, S15F, was observed between the two sub-lineages. Pre-vaccine P[4] sequences predominantly segregated within sub-lineage IVa while post-vaccine sequences clustered mostly within sub-lineage IVb, with a radical AA substitution R162G. Both S15F and R162G occurred outside recognised antigenic sites. The AA residue at position 15 is found within the signal sequence domain of Viral Protein 7 (VP7) involved in translocation of VP7 into endoplasmic reticulum during infection process. The 162 AA residue lies within the hemagglutination domain of Viral Protein 4 (VP4) engaged in interaction with sialic acid-containing structure during attachment to the target cell. Free energy change analysis on VP7 indicated accumulation of stable point mutations in both antigenic and non-antigenic regions. The segregation of South African G2P[4] strains into pre- and post-vaccination sub-lineages is likely due to erstwhile hypothesized stepwise lineage/sub-lineage evolution of G2P[4] strains rather than RVA vaccine introduction. Our findings reinforce the need for continuous whole-genome RVA surveillance and investigation of contribution of AA substitutions in understanding the dynamic G2P[4] epidemiology.
Collapse
Affiliation(s)
- Peter N Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nicola A Page
- Centre for Enteric Disease, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa.,Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, Pretoria, South Africa
| | - Mapaseka L Seheri
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - M Jeffrey Mphahlele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa.,Office of the Deputy Vice Chancellor for Research and Innovation, North-West University, Potchefstroom 2351, South Africa.,South African Medical Research Council, Pretoria 0001, South Africa
| | - Sandrama Nadan
- Centre for Enteric Disease, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa
| | - Mathew D Esona
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - Benjamin Kumwenda
- Department of Biomedical Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Arox W Kamng'ona
- Department of Biomedical Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Celeste M Donato
- Department of Medical Laboratory Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre3, Malawi.,Enteric Diseases Group, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Melboune 3052, Australia.,Department of Paediatrics, the University of Melbourne, Parkville 3010, Australia
| | - Duncan A Steele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - Valantine N Ndze
- Faculty of Health Sciences, University of Buea, P.O Box 63 Buea, Cameroon
| | - Francis E Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O Box LG581, Legon, Ghana
| | - Khuzwayo C Jere
- Center for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L697BE, Liverpool, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi
| | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
9
|
Manjate F, João ED, Chirinda P, Garrine M, Vubil D, Nobela N, Kotloff K, Nataro JP, Nhampossa T, Acácio S, Tate JE, Parashar U, Mwenda JM, Alonso PL, Nyaga M, Cunha C, Mandomando I. Molecular Epidemiology of Rotavirus Strains in Symptomatic and Asymptomatic Children in Manhiça District, Southern Mozambique 2008-2019. Viruses 2022; 14:v14010134. [PMID: 35062336 PMCID: PMC8781303 DOI: 10.3390/v14010134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Group A rotaviruses remain the leading cause of diarrhoea in children aged <5 years. Mozambique introduced rotavirus vaccine (Rotarix®) in September 2015. We report rotavirus genotypes circulating among symptomatic and asymptomatic children in Manhiça District, Mozambique, pre- and post-vaccine introduction. Stool was collected from enrolled children and screened for rotavirus by enzyme-immuno-sorbent assay. Positive specimens were genotyped for VP7 (G genotypes) and VP4 (P genotypes) by the conventional reverse transcriptase polymerase chain reaction. The combination G12P[8] was more frequently observed in pre-vaccine than in post-vaccine introduction, in moderate to severe diarrhoea (34%, 61/177 vs. 0, p < 0.0001) and controls (23%, 26/113 vs. 0, p = 0.0013) and mixed genotypes (36%, 24/67 vs. 7% 4/58, p = 0.0003) in less severe diarrhoea. We observed changes in post-vaccine compared to pre-vaccine introduction, where G3P[4] and G3P[8] were prevalent in moderate to severe diarrhoea (10%, 5/49 vs. 0, p = 0.0002; and 14%, 7/49 vs. 1%, 1/177, p < 0.0001; respectively), and in less severe diarrhoea (21%, 12/58 vs. 0, p = 0.003; and 24%, 14/58 vs. 0, p < 0.0001; respectively). Our surveillance demonstrated the circulation of similar genotypes contemporaneously among cases and controls, as well as switching from pre- to post-vaccine introduction. Continuous surveillance is needed to evaluate the dynamics of the changes in genotypes following vaccine introduction.
Collapse
Affiliation(s)
- Filomena Manjate
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal;
- Correspondence: (F.M.); (I.M.)
| | - Eva D. João
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
| | - Percina Chirinda
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal;
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
| | - Karen Kotloff
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene 1120, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene 1120, Mozambique
| | - Jacqueline E. Tate
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.E.T.); (U.P.)
| | - Umesh Parashar
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.E.T.); (U.P.)
| | - Jason M. Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 2465, Congo;
| | - Pedro L. Alonso
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
- Global Malaria Program, World Health Organization, 1211 Geneva, Switzerland
| | - Martin Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa;
| | - Celso Cunha
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal;
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene 1120, Mozambique
- Correspondence: (F.M.); (I.M.)
| |
Collapse
|
10
|
Kawata K, Hoque SA, Nishimura S, Yagyu F, Islam MT, Sharmin LS, Pham NTK, Onda-Shimizu Y, Quang TD, Takanashi S, Okitsu S, Khamrin P, Maneekarn N, Hayakawa S, Ushijima H. Role of rotavirus vaccination on G9P[8] rotavirus strain during a seasonal outbreak in Japan. Hum Vaccin Immunother 2021; 17:3613-3618. [PMID: 34033735 DOI: 10.1080/21645515.2021.1925060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although two live oral rotavirus (RV) vaccines, Rotarix and RotaTeq, play a critical role toward reducing disease severity, hospitalization, and death rate in RV infections, regular monitoring of vaccine effectiveness (VE) is yet necessary because the segmented genome structure and reassortment capability of RVs pose considerable threats toward waning VE. In this study, we examined the VE by a test-negative study design against G9P[8]I2 strain during a seasonal outbreak in February-May, 2018, in an outpatient clinic in Kyoto Prefecture, Japan. It remains important because G9P[8]I2 strain remains partially heterotypic to these vaccines and predominating in post-vaccination era. During year-long surveillance, RV infections were detected only from February to May. During this outbreak, 33 (42.3%) children out of 78 with acute gastroenteritis (AGE) remained RV-positive, of which 29 (87.8%) children were infected with G9P[8]I2. Two immunochromatographic (IC) assay kits exhibited 100% sensitivity and specificity to detect G9P[8]I2 strain. Only 23.2% children were found to be vaccinated. Yet, significant VE 69.7% (95% CI: 2.5%-90.6%) was recognized against all RV strains that increased with disease severity. Similar significant VE 71.8% (95% CI: 1%-92%) was determined against G9P[8]I2 strain. The severity score remained substantially low in vaccinated children. Our data reveal that vaccine-preventable G9P[8]I2 strain yet may cause outbreak where vaccination coverage remains low. Thus, this study emphasizes the necessity of global introduction of RV-vaccines in national immunization programs of every country.
Collapse
Affiliation(s)
- Kimiko Kawata
- Division on Nursing Sciences, Midwifery, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Cell and Tissue Culture Research, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | | | - Fumihiro Yagyu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | | | | | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yuko Onda-Shimizu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Trinh Duy Quang
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sayaka Takanashi
- Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine and Emerging and Re-emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine and Emerging and Re-emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Mwanga MJ, Verani JR, Omore R, Tate JE, Parashar UD, Murunga N, Gicheru E, Breiman RF, Nokes DJ, Agoti CN. Multiple Introductions and Predominance of Rotavirus Group A Genotype G3P[8] in Kilifi, Coastal Kenya, 4 Years after Nationwide Vaccine Introduction. Pathogens 2020; 9:pathogens9120981. [PMID: 33255256 PMCID: PMC7761311 DOI: 10.3390/pathogens9120981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023] Open
Abstract
Globally, rotavirus group A (RVA) remains a major cause of severe childhood diarrhea, despite the use of vaccines in more than 100 countries. RVA sequencing for local outbreaks facilitates investigation into strain composition, origins, spread, and vaccine failure. In 2018, we collected 248 stool samples from children aged less than 13 years admitted with diarrheal illness to Kilifi County Hospital, coastal Kenya. Antigen screening detected RVA in 55 samples (22.2%). Of these, VP7 (G) and VP4 (P) segments were successfully sequenced in 48 (87.3%) and phylogenetic analysis based on the VP7 sequences identified seven genetic clusters with six different GP combinations: G3P[8], G1P[8], G2P[4], G2P[8], G9P[8] and G12P[8]. The G3P[8] strains predominated the season (n = 37, 67.2%) and comprised three distinct G3 genetic clusters that fell within Lineage I and IX (the latter also known as equine-like G3 Lineage). Both the two G3 lineages have been recently detected in several countries. Our study is the first to document African children infected with G3 Lineage IX. These data highlight the global nature of RVA transmission and the importance of increasing global rotavirus vaccine coverage.
Collapse
Affiliation(s)
- Mike J. Mwanga
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, off Hospital Road, Kilifi 80108, Kenya; (M.J.M.); (N.M.); (E.G.); (D.J.N.)
| | - Jennifer R. Verani
- Centers for Disease Control and Prevention (CDC), KEMRI Complex, off Mbagathi Way, Village Market, Nairobi 00621, Kenya;
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA; (J.E.T.); (U.D.P.)
| | - Richard Omore
- KEMRI, Center for Global Health Research (KEMRI-CGHR), Kisumu 00202, Kenya;
| | - Jacqueline E. Tate
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA; (J.E.T.); (U.D.P.)
| | - Umesh D. Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA; (J.E.T.); (U.D.P.)
| | - Nickson Murunga
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, off Hospital Road, Kilifi 80108, Kenya; (M.J.M.); (N.M.); (E.G.); (D.J.N.)
| | - Elijah Gicheru
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, off Hospital Road, Kilifi 80108, Kenya; (M.J.M.); (N.M.); (E.G.); (D.J.N.)
| | - Robert F. Breiman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - D. James Nokes
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, off Hospital Road, Kilifi 80108, Kenya; (M.J.M.); (N.M.); (E.G.); (D.J.N.)
- School of Life Sciences and Zeeman Institute (SBIDER), The University of Warwick, Coventry CV4 7AL, UK
| | - Charles N. Agoti
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, off Hospital Road, Kilifi 80108, Kenya; (M.J.M.); (N.M.); (E.G.); (D.J.N.)
- School of Health and Human Sciences, Pwani University, Kilifi 80108, Kenya
- Correspondence:
| |
Collapse
|
12
|
Kurenzvi L, Sebunya TK, Coetzee T, Paganotti GM, Teye MV. Prevalence of Cryptosporidium parvum, Giardia intestinalis and molecular characterization of group A rotavirus associated with diarrhea in children below five years old in Gaborone, Botswana. Pan Afr Med J 2020; 37:159. [PMID: 33425192 PMCID: PMC7757325 DOI: 10.11604/pamj.2020.37.159.25392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/26/2020] [Indexed: 11/11/2022] Open
Abstract
Introduction Cryptosporidium, Giardia and rotaviruses are amongst the leading causes of acute gastroenteritis in children ≤5 years worldwide. The purpose of this study was to determine the occurrence of Cryptosporidium parvum, Giardia intestinalis and molecular characteristics of rotaviruses after Rotarix® introduction in Botswana. Methods in this case study, 200 diarrheic stool specimens and 100 control samples from children under five years old were collected between March and November, 2017. Samples were analyzed by modified Ziehl Neelsen staining technique for cryptosporidium, wet mount procedure for Giardia and negative samples were confirmed by immunochromatographic assay. Specimens were analyzed for rotavirus by ELISA, PAGE, RT-PCR, sequencing of VP7 and VP4 antigen followed by phylogenetic analysis. Results prevalence rates of 20.5%, 16.5% and 11.0% in diarrhea cases were observed for Cryptosporidium parvum, Giardia intestinalis and rotavirus, respectively. Four percent of diarrheic specimens had multiple infections. The predominant rotavirus genotype was GIP[8] (7/15) followed by G2P[4] (2/15) and G3P[8] (1/15). Twenty percent of specimens were non-typeable. One mixed strain, G1+G2P[4,8] (2/15), was detected. Phylogenetic analysis of VP4 and VP7 sequences clustered Botswana rotavirus strains within G1 lineages 1 and 2, G3 lineage 1, P[8] lineage 3 and P[4] lineage 5 together with Southern African strains. Conclusion this study provides important information on occurrence and demographic risk groups for Cryptosporidium parvum, Giardia intestinalis and rotavirus in young children as well as genetic diversity of rotaviruses after vaccine introduction in Botswana. Constant monitoring of circulating rotavirus strains is essential in assessing effectiveness of current vaccines in Botswana.
Collapse
Affiliation(s)
- Lineage Kurenzvi
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Teresa Kibirige Sebunya
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Tidimalo Coetzee
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Mathias Vondee Teye
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| |
Collapse
|
13
|
Molecular Epidemiology of Rotavirus A Strains Pre- and Post-Vaccine (Rotarix ®) Introduction in Mozambique, 2012-2019: Emergence of Genotypes G3P[4] and G3P[8]. Pathogens 2020; 9:pathogens9090671. [PMID: 32824938 PMCID: PMC7557584 DOI: 10.3390/pathogens9090671] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022] Open
Abstract
Group A rotavirus (RVA) remains the most important etiological agent associated with severe acute diarrhea in children. Rotarix® monovalent vaccine was introduced into Mozambique’s Expanded Program on Immunization in September 2015. In the present study, we report the diversity and prevalence of rotavirus genotypes, pre- (2012–2015) and post-vaccine (2016–2019) introduction in Mozambique, among diarrheic children less than five years of age. Genotyping data were analyzed for five sentinel sites for the periods indicated. The primary sentinel site, Mavalane General Hospital (HGM), was analyzed for the period 2012–2019, and for all five sites (country-wide analyses), 2015–2019. During the pre-vaccine period, G9P[8] was the most predominant genotype for both HGM (28.5%) and the country-wide analysis (46.0%). However, in the post-vaccine period, G9P[8] was significantly reduced. Instead, G3P[8] was the most common genotype at HGM, while G1P[8] predominated country-wide. Genotypes G9P[4] and G9P[6] were detected for the first time, and the emergence of G3P[8] and G3P[4] genotypes were observed during the post-vaccine period. The distribution and prevalence of rotavirus genotypes were distinct in pre- and post-vaccination periods, while uncommon genotypes were also detected in the post-vaccine period. These observations support the need for continued country-wide surveillance to monitor changes in strain diversity, due to possible vaccine pressure, and consequently, the effect on vaccine effectiveness.
Collapse
|
14
|
Cantelli CP, Velloso AJ, Assis RMSD, Barros JJ, Mello FCDA, Cunha DCD, Brasil P, Nordgren J, Svensson L, Miagostovich MP, Leite JPG, Moraes MTBD. Rotavirus A shedding and HBGA host genetic susceptibility in a birth community-cohort, Rio de Janeiro, Brazil, 2014-2018. Sci Rep 2020; 10:6965. [PMID: 32332841 PMCID: PMC7181595 DOI: 10.1038/s41598-020-64025-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/19/2020] [Indexed: 11/18/2022] Open
Abstract
Recent studies have investigated whether the human histo-blood group antigen (HBGAs) could affect the effectiveness of the oral rotavirus vaccines, suggesting secretor positive individuals develop a more robust response. We investigated the Rotavirus A (RVA) shedding in association with the host susceptibility profile in children from a birth community-cohort in Rio de Janeiro, Brazil, from 2014 to 2018. A total of 132 children were followed-up between 0 to 11-month-old, stool samples were collected before/after the 1st/2nd RV1 vaccination doses and saliva samples were collected during the study. RVA shedding was screened by RT-qPCR and G/P genotypes determined by multiplex RT-PCR and/or Sanger nucleotide sequencing. The sequencing indicated an F167L amino acid change in the RV1 VP8* P[8] in 20.5% of shedding follow-ups and these mutant subpopulations were quantified by pyrosequencing. The HBGA/secretor status was determined and 80.3% of the children were secretors. Twenty-one FUT2 gene SNPs were identified and two new mutations were observed. The mutant F167L RV1 VP8* P[8] was detected significantly more in Le (a+b+) secretors (90.5%) compared to non-secretors and even to secretors Le (a-b+) (9.5%). The study highlights the probable association between RV1 shedding and HBGAs as a marker for evaluating vaccine strain host susceptibility.
Collapse
Affiliation(s)
- Carina Pacheco Cantelli
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Alvaro Jorge Velloso
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - José Júnior Barros
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | | | - Denise Cotrim da Cunha
- Sérgio Arouca National School of Public Health, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Patricia Brasil
- Evandro Chagas National Institute of Infectious Diseases, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Distribution of rotavirus genotypes in Japan from 2015 to 2018: Diversity in genotypes before and after introduction of rotavirus vaccines. Vaccine 2020; 38:3980-3986. [PMID: 32307276 DOI: 10.1016/j.vaccine.2020.03.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Diversity in group A rotavirus (RVA) strains after introduction of RV-vaccines remains an emerging concern worldwide. In this study, we investigated the prevalence and distribution of RVA genotypes in Japanese children with acute gastroenteritis (AGE) from 2015 to 2018. In addition, a comparison of the genotypes in pre-vaccination (2006-2012) and post-vaccination (2012-2018) periods was conducted to understand the impact of these vaccines on genotype distribution. METHODS Fecal samples were collected regularly from outpatient clinics in six localities: Hokkaido, Tokyo, Shizuoka, Osaka, Kyoto, and Saga. RVA were screened and genotyped by RT-PCR and sequence-based genotyping. RESULTS During the period 2015-2018, RVA was detected in 307 (19.7%) samples out of 1557 specimens: 29.9% (95% CI: 25.8% to 34.3%), 17.9% (95% CI: 14.7% to 21.5%), and 13% (95% CI: 10.3% to 16.0%) were detected RVA-positive in 2015-2016, 2016-2017 and 2017-2018, respectively. The average detection of RVA in pre-vaccination (2006-2012) and post-vaccination (2012-2018) era remained almost similar (18%-20%). The G2P[4]I2 (52.1%, 95% CI: 43.5%-60.6%) remained the most common genotype in 2015-2016, whereas G8P[8]I2 (55.9%, 95% CI: 45.2%-66.2%) dominated in 2016-2017. In 2017-2018, G9P[8]I2 (42.0%, 95% CI: 30.5%-53.9%) prevailed, followed by G9P[8]I1 (23.0%, 95% CI: 14.0%-34.2%). The detection rate of some common genotypes of pre-vaccination era like G1P[8] and G3P[8] has been reduced after introduction of RV-vaccine, whereas genotypes that were sporadic before the introduction of vaccines like G2P[4], G2P[8], G9P[8] and G8P[8] were emerged/reemerged in post-vaccination period. CONCLUSIONS Our study presented the diversity in circulating RVA genotypes in Japan before and after introduction of RV-vaccines. Sudden emergence of DS-1-like (I2) unusual strains in post-vaccination era remains alarming. Continuous monitoring of RVA genotypes is therefore indispensable to refine future vaccine strategy.
Collapse
|