1
|
Liang L, Meng Y, Chang X, Li E, Huang Y, Yan L, Lou Z, Peng Y, Zhu B, Yu W, Chang J. Discovery of a 2'-α-Fluoro-2'-β- C-(fluoromethyl) Purine Nucleotide Prodrug as a Potential Oral Anti-SARS-CoV-2 Agent. J Med Chem 2025; 68:1994-2007. [PMID: 39804580 DOI: 10.1021/acs.jmedchem.4c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A novel 2'-α-fluoro-2'-β-C-(fluoromethyl) purine nucleoside phosphoramidate prodrug 15 has been designed and synthesized to treat SARS-CoV-2 infection. The SARS-CoV-2 central replication transcription complex (C-RTC, nsp12-nsp7-nsp82) catalyzed in vitro RNA synthesis was effectively inhibited by the corresponding bioactive nucleoside triphosphate (13-TP). The cryo-electron microscopy structure of the C-RTC:13-TP complex was also determined. Compound 15 exhibited potent in vitro antiviral activity against the SARS-CoV-2 20SF107 strain (EC50 = 0.56 ± 0.06 μM) and the Omicron BA.5 variant (EC50 = 0.96 ± 0.23 μM) with low cytotoxicity. Furthermore, it was well tolerated in rats at doses of up to 2000 mg/kg, and a single oral dose of this prodrug at 40 mg/kg led to high levels of 13-TP in the target organ lungs of rats with a long half-life. These findings support the further development of compound 15 as an orally available antiviral agent for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lan Liang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yonggang Meng
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyu Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ertong Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yucen Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Liming Yan
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhiyong Lou
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenquan Yu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Liu J, Luo S, Xu X, Zhang E, Liang H, Zhang JZH, Duan L. Evaluating the Synergistic Effects of Multi-Epitope Nanobodies on BA.2.86 Variant Immune Escape. J Phys Chem Lett 2025; 16:396-405. [PMID: 39780712 DOI: 10.1021/acs.jpclett.4c03028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply. Our research revealed that the Fu2-1-Fu2-2 system exhibited significant synergy, whereas the Sb#15-Sb#68 system demonstrated antagonism, in which entropy was the dominant contributor to antagonism. Conformational analysis further demonstrated that the presence of a monomeric nanobody influenced the flexibility of residues near other epitopes, thereby affecting the overall synergy of the systems. Moreover, we identified that changes in the hydrogen bond network and the charge of residues played a critical role in the binding between nanobodies and spike. We hope this study will provide novel insights into the development of multivalent nanobody combinations.
Collapse
Affiliation(s)
- Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Houde Liang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - John Z H Zhang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of AI and DL, NYU Shanghai, Shanghai 200124, China
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
3
|
McIlroy PR, Pham LTM, Sheffield T, Stefan MA, Thatcher CE, Jaryenneh J, Schwedler JL, Sinha A, Sumner CA, Jones IKA, Won S, Bruneau RC, Weilhammer DR, Liu Z, Whelan S, Negrete OA, Sale KL, Harmon B. Nanobody screening and machine learning guided identification of cross-variant anti-SARS-CoV-2 neutralizing heavy-chain only antibodies. PLoS Pathog 2025; 21:e1012903. [PMID: 39847604 PMCID: PMC11793827 DOI: 10.1371/journal.ppat.1012903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/04/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to persist, demonstrating the risks posed by emerging infectious diseases to national security, public health, and the economy. Development of new vaccines and antibodies for emerging viral threats requires substantial resources and time, and traditional development platforms for vaccines and antibodies are often too slow to combat continuously evolving immunological escape variants, reducing their efficacy over time. Previously, we designed a next-generation synthetic humanized nanobody (Nb) phage display library and demonstrated that this library could be used to rapidly identify highly specific and potent neutralizing heavy chain-only antibodies (HCAbs) with prophylactic and therapeutic efficacy in vivo against the original SARS-CoV-2. In this study, we used a combination of high throughput screening and machine learning (ML) models to identify HCAbs with potent efficacy against SARS-CoV-2 viral variants of interest (VOIs) and concern (VOCs). To start, we screened our highly diverse Nb phage display library against several pre-Omicron VOI and VOC receptor binding domains (RBDs) to identify panels of cross-reactive HCAbs. Using HCAb affinity for SARS-CoV-2 VOI and VOCs (pre-Omicron variants) and model features from other published data, we were able to develop a ML model that successfully identified HCAbs with efficacy against Omicron variants, independent of our experimental biopanning workflow. This biopanning informed ML approach reduced the experimental screening burden by 78% to 90% for the Omicron BA.5 and Omicron BA.1 variants, respectively. The combined approach can be applied to other emerging viruses with pandemic potential to rapidly identify effective therapeutic antibodies against emerging variants.
Collapse
Affiliation(s)
- Peter R. McIlroy
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America
| | - Le Thanh Mai Pham
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, California, United States of America
| | - Thomas Sheffield
- Biosecurity and Bioassurance, Sandia National Laboratories, Livermore, California, United States of America
| | - Maxwell A. Stefan
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America
| | - Christine E. Thatcher
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America
| | - James Jaryenneh
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America
| | - Jennifer L. Schwedler
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America
| | - Anupama Sinha
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America
| | - Christopher A. Sumner
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America
| | - Iris K. A. Jones
- Systems Biology, Sandia National Laboratories, Livermore, California, United States of America
| | - Stephen Won
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America
| | - Ryan C. Bruneau
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories, Livermore, California, United States of America
| | - Zhuoming Liu
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, M issouri, United States of America
| | - Sean Whelan
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, M issouri, United States of America
| | - Oscar A. Negrete
- Systems Biology, Sandia National Laboratories, Livermore, California, United States of America
| | - Kenneth L. Sale
- Biosecurity and Bioassurance, Sandia National Laboratories, Livermore, California, United States of America
| | - Brooke Harmon
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America
| |
Collapse
|
4
|
Stein SC, Hansen G, Ssebyatika G, Ströh LJ, Ochulor O, Herold E, Schwarzloh B, Mutschall D, Zischke J, Cordes AK, Schneider T, Hinrichs I, Blasczyk R, Kleine-Weber H, Hoffmann M, Klein F, Kaiser FK, Gonzalez-Hernandez M, Armando F, Ciurkiewicz M, Beythien G, Pöhlmann S, Baumgärtner W, Osterhaus A, Schulz TF, Krey T. A human monoclonal antibody neutralizing SARS-CoV-2 Omicron variants containing the L452R mutation. J Virol 2024; 98:e0122324. [PMID: 39494911 DOI: 10.1128/jvi.01223-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
The effectiveness of SARS-CoV-2 therapeutic antibodies targeting the spike (S) receptor-binding domain (RBD) has been hampered by the emergence of variants of concern (VOCs), which have acquired mutations to escape neutralizing antibodies (nAbs). These mutations are not evenly distributed on the RBD surface but cluster on several distinct surfaces, suggesting an influence of the targeted epitope on the capacity to neutralize a broad range of VOCs. Here, we identified a potent nAb from convalescent patients targeting the receptor-binding domain of a broad range of SARS-CoV-2 VOCs. Except for the Lambda and BA.2.86 variants, this nAb efficiently inhibited the entry of most tested VOCs, including Omicron subvariants BA.1, BA.2, XBB.1.5, and EG.5.1 and to a limited extent also BA.4/5, BA.4.6, and BQ.1.1. It bound recombinant S protein with picomolar affinity, reduced the viral load in the lung of infected hamsters, and prevented the severe lung pathology typical for SARS-CoV-2 infections. An X-ray structure of the nAb-RBD complex revealed an epitope that does not fall into any of the conventional classes and provided insights into its broad neutralization properties. Our findings highlight a conserved epitope within the SARS-CoV-2 RBD that should be preferably targeted by therapeutic antibodies and inform rational vaccine development.IMPORTANCETherapeutic antibodies are effective in preventing severe disease from SARS-CoV-2 infection and constitute an important option in pandemic preparedness, but mutations within the S protein of virus variants (e.g., a mutation of L452) confer resistance to many of such antibodies. Here, we identify a human antibody targeting the S protein receptor-binding domain (RBD) with an elevated escape barrier and characterize its interaction with the RBD functionally and structurally at the atomic level. A direct comparison with reported antibodies targeting the same epitope illustrates important differences in the interface, providing insights into the breadth of antibody binding. These findings highlight the relevance of an extended neutralization profiling in combination with biochemical and structural characterization of the antibody-RBD interaction for the selection of future therapeutic antibodies, which may accelerate the control of potential future pandemics.
Collapse
Affiliation(s)
- Saskia C Stein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Guido Hansen
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - George Ssebyatika
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Britta Schwarzloh
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Doris Mutschall
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Jasmin Zischke
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Cologne, Germany
| | - Anne K Cordes
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Talia Schneider
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Imke Hinrichs
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Hannah Kleine-Weber
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Franziska K Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mariana Gonzalez-Hernandez
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Stefan Pöhlmann
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- Global Virus Network, Center of Excellence, University of Veterinary Medicine, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hannover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| |
Collapse
|
5
|
Huan X, Zhan J, Gao H. Research progress of spike protein mutation of SARS-CoV-2 mutant strain and antibody development. Front Immunol 2024; 15:1407149. [PMID: 39624100 PMCID: PMC11609190 DOI: 10.3389/fimmu.2024.1407149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 01/03/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a respiratory disease with a very high infectious rate caused by the Severe Acute Respiratory Syndrome Coronavirus-2(SARS-CoV-2). Because SARS-CoV-2 is easy to mutate, the continuous emergence of SARS-CoV-2 variant strains not only enhances the infectivity of the SARS-CoV-2 but also brings great obstacles to the treatment of COVID-19. Neutralizing antibodies have achieved good results in the clinical application of the novel coronavirus pneumonia, which can be used for pre-infection protection and treatment of novel coronavirus patients. This review makes a detailed introduction to the mutation characteristics of SARS-CoV-2, focusing on the molecular mechanism of mutation affecting the infectivity of SARS-CoV-2, and the impact of mutation on monoclonal antibody therapy, providing scientific reference for the prevention of SARS-CoV-2 variant strains and the research and development of antibody drugs.
Collapse
Affiliation(s)
| | | | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
6
|
Kumar P, Zhang X, Shaha R, Kschischo M, Dobbelstein M. Identification of antibody-resistant SARS-CoV-2 mutants via N4-Hydroxycytidine mutagenesis. Antiviral Res 2024; 231:106006. [PMID: 39293594 DOI: 10.1016/j.antiviral.2024.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Monoclonal antibodies targeting the Spike protein of SARS-CoV-2 are effective against COVID-19 and might mitigate future pandemics. However, their efficacy is challenged by the emergence of antibody-resistant virus variants. We developed a method to efficiently identify such resistant mutants based on selection from mutagenized virus pools. By inducing mutations with the active compound of Molnupiravir, N4-hydroxycytidine (NHC), and subsequently passaging the virus in the presence of antibodies, we identified specific Spike mutations linked to resistance. Validation of these mutations was conducted using pseudotypes and immunofluorescence analysis. From a Wuhan-like strain of SARS-CoV-2, we identified the following mutations conferring strong resistance towards the corresponding antibodies: Bamlanivimab - E484K, F490S and S494P; Sotrovimab - E340K; Cilgavimab - K444R/E and N450D. From the Omicron B.1.1.529 variant, the strongly selected mutations were: Bebtelovimab - V445A; Sotrovimab - E340K and K356M; Cilgavimab - K444R, V445A and N450D. We also identified escape mutations in the Wuhan-like Spike for the broadly neutralizing antibodies S2K146 - combined G485S and Q493R - and S2H97 - D428G, K462E and S514F. Structural analysis revealed that the selected mutations occurred at antibody-binding residues within the receptor-binding domains of the Spike protein. Most of the selected mutants largely maintained ACE2 binding and infectivity. Notably, many of the identified resistance-conferring mutations are prevalent in real-world SARS-CoV-2 variants, but some of them (G485S, D428G, and K462E) have not yet been observed in circulating strains. Our approach offers a strategy for predicting the therapeutic efficacy of antibodies against emerging virus variants.
Collapse
MESH Headings
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/drug effects
- Cytidine/analogs & derivatives
- Cytidine/pharmacology
- Cytidine/genetics
- Humans
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Drug Resistance, Viral/genetics
- Mutation
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Mutagenesis
- COVID-19/virology
- COVID-19/immunology
- Antiviral Agents/pharmacology
- COVID-19 Drug Treatment
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Hydroxylamines
Collapse
Affiliation(s)
- Priya Kumar
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077, Göttingen, Germany
| | - Xiaoxiao Zhang
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424, Remagen, Germany; Department of Informatics, Technical University of Munich, 81675, Munich, Germany
| | - Rahul Shaha
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424, Remagen, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
7
|
Yamana TK, Rajagopal S, Hall DC, Moustafa AM, Feder A, Ahmed A, Bianco C, Harris R, Coffin S, Campbell AE, Pei S, Mell JC, Planet PJ, Shaman J. A two-variant model of SARS-COV-2 transmission: estimating the characteristics of a newly emerging strain. BMC Infect Dis 2024; 24:938. [PMID: 39251965 PMCID: PMC11386483 DOI: 10.1186/s12879-024-09823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The Covid-19 pandemic has been characterized by the emergence of novel SARS-CoV-2 variants, each with distinct properties influencing transmission dynamics, immune escape, and virulence, which, in turn, influence their impact on local populations. Swift analysis of the properties of newly emerged variants is essential in the initial days and weeks to enhance readiness and facilitate the scaling of clinical and public health system responses. METHODS This paper introduces a two-variant metapopulation compartmental model of disease transmission to simulate the dynamics of disease transmission during a period of transition to a newly dominant strain. Leveraging novel S-gene dropout analysis data and genomic sequencing data, combined with confirmed Covid-19 case data, we estimate the epidemiological characteristics of the Omicron variant, which replaced the Delta variant in late 2021 in Philadelphia, PA. We utilized a grid-search method to identify plausible combinations of model parameters, followed by an ensemble adjustment Kalman filter for parameter inference. RESULTS The model successfully estimated key epidemiological parameters; we estimated the ascertainment rate of 0.22 (95% credible interval 0.15-0.29) and transmission rate of 5.0 (95% CI 2.4-6.6) for the Omicron variant. CONCLUSIONS The study demonstrates the potential for this model-inference framework to provide real-time insights during the emergence of novel variants, aiding in timely public health responses.
Collapse
Affiliation(s)
| | | | | | - Ahmed M Moustafa
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andries Feder
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Azad Ahmed
- Drexel University, Philadelphia, PA, USA
| | - Colleen Bianco
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rebecca Harris
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan Coffin
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amy E Campbell
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sen Pei
- Columbia University, New York, NY, USA
| | | | - Paul J Planet
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
8
|
Liu WD, Feng PH, Cheng CY, Chou CL, Lee CH, Lu MC, Liu PY, Lee MH, Liao CH, Chen MC, Chen CP, Hsu SF, Tzeng YT, Lin YC, Ou TY, Qin A, Tsai CY, Shih WJ, Lee KY, Sheng WH. A Phase 3, Randomized, Controlled Trial Evaluating the Efficacy and Safety of Ropeginterferon Alfa-2b in Patients with Moderate COVID-19. Infect Dis Ther 2024; 13:1575-1588. [PMID: 38771550 PMCID: PMC11219598 DOI: 10.1007/s40121-024-00992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION Ropeginterferon alfa-2b is a novel mono-pegylated proline-interferon. This clinical study aimed to evaluate its antiviral efficacy of ropeginterferon alfa-2b against SARS-CoV-2 infection. METHODS This is a multicenter, randomized, open-label study. Adult patients with confirmed SARS-CoV-2 infection with initial cycle threshold (Ct) value < 30 and symptom onset within 4 days were enrolled. Eligible patients were randomized in a 2:1 ratio to receive a single 250-µg dose of ropeginterferon alfa-2b subcutaneously plus standard of care (SOC) or to receive SOC alone. The primary endpoint was the proportion of patients with a negative RT-PCR result for SARS-CoV-2 or discharged from the hospital before Day 8. Change in clinical status based on the World Health Organization (WHO) clinical progression scale and pulmonary infiltrations through chest radiograph were also evaluated. RESULTS A total of 132 patients were enrolled and treated with study medication. Higher percentages of patients who achieved Ct ≥ 30 or were discharged from the hospital were observed on Day 8 and every other time point of assessment, i.e., Days 5, 11, 15, and 22, in the ropeginterferon alfa-2b group compared to the SOC alone group. However, the difference was statistically significant on Day 11 but not on Day 8. The primary endpoint was not met. The ropeginterferon alfa-2b group showed a higher improvement rate in lung infiltration on Day 5 (27.6% vs. 0.0%, p = 0.0087) and a higher improvement rate in WHO clinical progression scores on Day 8 (69.4% vs. 35.3%, p = 0.03) than those in the SOC group. No ropeginterferon alfa-2b-related serious adverse event was observed. CONCLUSION Our data show that ropeginterferon alfa-2b with SOC shortened the duration of SARS-CoV-2 shedding compared with SOC alone. In addition, ropeginterferon alfa-2b as an additional therapy could be beneficial by improving lung infiltration.
Collapse
Affiliation(s)
- Wang-Da Liu
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10002, Taiwan, ROC
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei, 110, Taiwan
| | - Chien-Yu Cheng
- Division of Infectious Diseases, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chun-Liang Chou
- Division of Thoracic Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hsin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei, 110, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Hui Lee
- Division of Infectious Diseases, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsing Liao
- Division of Infectious Diseases, Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Mei-Chuan Chen
- Division of Thoracic Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Cheng-Pin Chen
- Division of Infectious Diseases, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Shang-Fu Hsu
- Division of Thoracic Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Tien Tzeng
- Division of Pulmonary Medicine, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chun Lin
- Division of Infectious Diseases, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Tsong-Yih Ou
- Division of Infectious Disease, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Albert Qin
- Department of Medical Research and Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| | - Chan-Yen Tsai
- Department of Medical Research and Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| | | | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei, 110, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Wang-Huei Sheng
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10002, Taiwan, ROC.
- School of Medicine, National Taiwan University College of Medicine, No. 1, Jen Ai Road, Section 1, Taipei, 10051, Taiwan.
| |
Collapse
|
9
|
Leite G, Mehravar S, Pimentel M, Mathur R, Melmed GY, Teagle V, Barlow GM, Rezaie A. Extracellular and intracellular antiviral effects of ultraviolet A against severe acute respiratory syndrome coronavirus-2 are variant-independent. Photodiagnosis Photodyn Ther 2024; 47:104097. [PMID: 38677499 DOI: 10.1016/j.pdpdt.2024.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Under controlled settings, narrow-band ultraviolet A (UVA) exposure exerts antiviral effects both in vivo and in vitro. The effect is thought to be mediated via direct effect on viral particles and indirectly, by modulation of metabolic pathways of host cells. We aimed to explore the extracellular and intracellular antiviral effects of UVA exposure against Alpha, Beta, and Delta variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Vero E6 kidney normal epithelial cells and human tracheal epithelial cells were infected with Alpha, Beta, and Delta variants in a BSL-3 laboratory. To assess extracellular effects, SARS-CoV-2 variants were directly exposed to a single dose of UVA prior to infection of the host cells (Vero E6 kidney normal epithelial cells and human tracheal epithelial cells) The intracellular effects of UVA were assessed by first infecting the cells with SARS-CoV-2 variants followed by UVA treatment of infected cell monolayers. Efficacy was quantified by both plaque reduction assay and quantitative real-time polymerase chain reaction. Additionally, transcriptomic analysis was performed on exposed Vero E6 cells to assess differentially expressed genes and canonical pathways as compared to controls. RESULTS SARS-CoV-2 Alpha, Beta and Delta variants are susceptible to UVA exposure prior to infection of Vero E6 cells. Importantly, the UVA-driven reduction in Delta variant load could be reproduced in human primary tracheal cells. Beta and Delta variants load also significantly decreased during Vero E6 cells intracellular experiments. UVA-driven reductions in viral loads ameliorate several host metabolic pathways, including canonical pathways related to viral infection and interferon signaling. CONCLUSION Narrow-band UVA exhibits both extracellular effects on SARS-CoV-2 viral particles and intracellular effects on infected cells with SARS-CoV-2. Efficacy appears to be variant independent.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States
| | - Sepideh Mehravar
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Gil Y Melmed
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Volha Teagle
- Eurofins Biopharma Product Testing, Lancaster, PA, United States
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States.
| |
Collapse
|
10
|
Hattab D, Amer MFA, Al-Alami ZM, Bakhtiar A. SARS-CoV-2 journey: from alpha variant to omicron and its sub-variants. Infection 2024; 52:767-786. [PMID: 38554253 PMCID: PMC11143066 DOI: 10.1007/s15010-024-02223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
The COVID-19 pandemic has affected hundreds of millions of individuals and caused more than six million deaths. The prolonged pandemic duration and the continual inter-individual transmissibility have contributed to the emergence of a wide variety of SARS-CoV-2 variants. Genomic surveillance and phylogenetic studies have shown that substantial mutations in crucial supersites of spike glycoprotein modulate the binding affinity of the evolved SARS-COV-2 lineages to ACE2 receptors and modify the binding of spike protein with neutralizing antibodies. The immunological spike mutations have been associated with differential transmissibility, infectivity, and therapeutic efficacy of the vaccines and the immunological therapies among the new variants. This review highlights the diverse genetic mutations assimilated in various SARS-CoV-2 variants. The implications of the acquired mutations related to viral transmission, infectivity, and COVID-19 severity are discussed. This review also addresses the effectiveness of human neutralizing antibodies induced by SARS-CoV-2 infection or immunization and the therapeutic antibodies against the ascended variants.
Collapse
Affiliation(s)
- Dima Hattab
- School of Pharmacy, The University of Jordan, Queen Rania Street, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Zina M Al-Alami
- Department of Basic Medical Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
11
|
Faraji N, Zeinali T, Joukar F, Aleali MS, Eslami N, Shenagari M, Mansour-Ghanaei F. Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies. Heliyon 2024; 10:e30208. [PMID: 38707429 PMCID: PMC11066641 DOI: 10.1016/j.heliyon.2024.e30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The rapid emergence of multiple strains of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has sparked profound concerns regarding the ongoing evolution of the virus and its potential impact on global health. Classified by the World Health Organization (WHO) as variants of concern (VOC), these strains exhibit heightened transmissibility and pathogenicity, posing significant challenges to existing vaccine strategies. Despite widespread vaccination efforts, the continual evolution of SARS-CoV-2 variants presents a formidable obstacle to achieving herd immunity. Of particular concern is the coronavirus spike (S) protein, a pivotal viral surface protein crucial for host cell entry and infectivity. Mutations within the S protein have been shown to enhance transmissibility and confer resistance to antibody-mediated neutralization, undermining the efficacy of traditional vaccine platforms. Moreover, the S protein undergoes rapid molecular evolution under selective immune pressure, leading to the emergence of diverse variants with distinct mutation profiles. This review underscores the urgent need for vigilance and adaptation in vaccine development efforts to combat the evolving landscape of SARS-CoV-2 mutations and ensure the long-term effectiveness of global immunization campaigns.
Collapse
Affiliation(s)
- Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
12
|
Klingler J, Kowdle S, Bandres JC, Emami-Gorizi R, Alvarez RA, Rao PG, Amanat F, Gleason C, Kleiner G, Simon V, Edelstein A, Perandones C, Upadhyay C, Lee B, Hioe CE. Heterologous Ad26/Ad5 adenovirus-vectored vaccines elicited SARS-CoV-2-specific antibody responses with potent Fc activities. Front Immunol 2024; 15:1382619. [PMID: 38779671 PMCID: PMC11109367 DOI: 10.3389/fimmu.2024.1382619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Antibodies against the SARS-CoV-2 spike protein are a critical immune determinant for protection against the virus. While virus neutralization is a key function of spike-specific antibodies, antibodies also mediate Fc-dependent activities that can play a role in protection or pathogenesis. Methods This study characterized serum antibody responses elicited after two doses of heterologous adenovirus-vectored (Ad26/ Ad5) vaccines. Results Vaccine-induced antibody binding titers and Fc-mediated functions decreased over six months, while neutralization titers remained stable. Comparison of antibody isotypes elicited after Ad26/Ad5 vs. LNP-mRNA vaccination and after infection showed that anti-spike IgG1 were dominant and produced to high levels in all groups. The Ad26/Ad5 vaccines also induced IgG4 but not IgG2 and IgG3, whereas the LNP-mRNA vaccines elicited a full Ig spectrum (IgM, IgG1-4, IgA1-2). Convalescent COVID-19 patients had mainly IgM and IgA1 alongside IgG1. Despite these differences, the neutralization potencies against early variants were similar. However, both vaccine groups had antibodies with greater Fc potencies of binding complement and Fcg receptors than the COVID-19 group. The Ad26/Ad5 group also displayed a greater potency of RBD-specific antibody-mediated cellular phagocytosis. Discussion Antibodies with distinctive quality were induced by different vaccines and infection. The data imply the utility of different vaccine platforms to elicit antibody responses with fine-tuned Fc activities.
Collapse
Affiliation(s)
- Jéromine Klingler
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, Bronx, NY, United States
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Raymond A. Alvarez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priyanka G. Rao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Giulio Kleiner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Viviana Simon
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexis Edelstein
- Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Claudia Perandones
- Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
13
|
Yang ZH, Song YL, Pei J, Li SZ, Liu RL, Xiong Y, Wu J, Liu YL, Fan HF, Wu JH, Wang ZJ, Guo J, Meng SL, Chen XQ, Lu J, Shen S. Measles Virus-Based Vaccine Expressing Membrane-Anchored Spike of SARS-CoV-2 Inducing Efficacious Systemic and Mucosal Humoral Immunity in Hamsters. Viruses 2024; 16:559. [PMID: 38675901 PMCID: PMC11054861 DOI: 10.3390/v16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
As SARS-CoV-2 continues to evolve and COVID-19 cases rapidly increase among children and adults, there is an urgent need for a safe and effective vaccine that can elicit systemic and mucosal humoral immunity to limit the emergence of new variants. Using the Chinese Hu191 measles virus (MeV-hu191) vaccine strain as a backbone, we developed MeV chimeras stably expressing the prefusion forms of either membrane-anchored, full-length spike (rMeV-preFS), or its soluble secreted spike trimers with the help of the SP-D trimerization tag (rMeV-S+SPD) of SARS-CoV-2 Omicron BA.2. The two vaccine candidates were administrated in golden Syrian hamsters through the intranasal or subcutaneous routes to determine the optimal immunization route for challenge. The intranasal delivery of rMeV-S+SPD induced a more robust mucosal IgA antibody response than the subcutaneous route. The mucosal IgA antibody induced by rMeV-preFS through the intranasal routine was slightly higher than the subcutaneous route, but there was no significant difference. The rMeV-preFS vaccine stimulated higher mucosal IgA than the rMeV-S+SPD vaccine through intranasal or subcutaneous administration. In hamsters, intranasal administration of the rMeV-preFS vaccine elicited high levels of NAbs, protecting against the SARS-CoV-2 Omicron BA.2 variant challenge by reducing virus loads and diminishing pathological changes in vaccinated animals. Encouragingly, sera collected from the rMeV-preFS group consistently showed robust and significantly high neutralizing titers against the latest variant XBB.1.16. These data suggest that rMeV-preFS is a highly promising COVID-19 candidate vaccine that has great potential to be developed into bivalent vaccines (MeV/SARS-CoV-2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jia Lu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, China; (Z.-H.Y.); (Y.-L.S.); (J.P.); (S.-Z.L.); (R.-L.L.); (Y.X.); (J.W.); (Y.-L.L.); (H.-F.F.); (J.-H.W.); (Z.-J.W.); (J.G.); (S.-L.M.); (X.-Q.C.)
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, China; (Z.-H.Y.); (Y.-L.S.); (J.P.); (S.-Z.L.); (R.-L.L.); (Y.X.); (J.W.); (Y.-L.L.); (H.-F.F.); (J.-H.W.); (Z.-J.W.); (J.G.); (S.-L.M.); (X.-Q.C.)
| |
Collapse
|
14
|
Thümmler L, Beckmann N, Sehl C, Soddemann M, Braß P, Bormann M, Brochhagen L, Elsner C, Hoertel N, Cougoule C, Ciesek S, Widera M, Dittmer U, Lindemann M, Horn PA, Witzke O, Kadow S, Kamler M, Gulbins E, Becker KA, Krawczyk A. Fluoxetine and Sertraline Potently Neutralize the Replication of Distinct SARS-CoV-2 Variants. Viruses 2024; 16:545. [PMID: 38675888 PMCID: PMC11053511 DOI: 10.3390/v16040545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The pandemic caused by SARS-CoV-2 is still a major health problem. Newly emerging variants and long-COVID-19 represent a challenge for the global health system. In particular, individuals in developing countries with insufficient health care need easily accessible, affordable and effective treatments of COVID-19. Previous studies have demonstrated the efficacy of functional inhibitors of acid sphingomyelinase against infections with various viruses, including early variants of SARS-CoV-2. This work investigated whether the acid sphingomyelinase inhibitors fluoxetine and sertraline, usually used as antidepressant molecules in clinical practice, can inhibit the replication of the former and recently emerged SARS-CoV-2 variants in vitro. Fluoxetine and sertraline potently inhibited the infection with pseudotyped virus-like particles and SARS-CoV-2 variants D614G, alpha, delta, omicron BA.1 and omicron BA.5. These results highlight fluoxetine and sertraline as priority candidates for large-scale phase 3 clinical trials at different stages of SARS-CoV-2 infections, either alone or in combination with other medications.
Collapse
Affiliation(s)
- Laura Thümmler
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.L.); (P.A.H.)
| | - Nadine Beckmann
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Carolin Sehl
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Matthias Soddemann
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Peer Braß
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
| | - Maren Bormann
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
| | - Leonie Brochhagen
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (C.E.); (U.D.)
| | - Nicolas Hoertel
- Institute Psychiatry and Neuroscience de Paris, INSERM U1266, Paris Cité University, 75014 Paris, France;
- Psychiatry and Addiction Department Corentin-Celton Hospital (AP-HP), 92130 Paris, France
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology (IPBS), CNRS, University of Toulouse, UPS, 31000 Toulouse, France;
| | - Sandra Ciesek
- Institute of Medical Virology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (S.C.); (M.W.)
- Institute of Pharmaceutical Biology, Goethe-University, 60323 Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, 60311 Frankfurt am Main, Germany
| | - Marek Widera
- Institute of Medical Virology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (S.C.); (M.W.)
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (C.E.); (U.D.)
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.L.); (P.A.H.)
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.L.); (P.A.H.)
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart Center, University Hospital Essen, 45147 Essen, Germany;
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Katrin Anne Becker
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany (C.S.); (M.S.); (S.K.); (E.G.); (K.A.B.)
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (L.T.); (P.B.); (M.B.); (L.B.); (O.W.)
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (C.E.); (U.D.)
| |
Collapse
|
15
|
Amani B, Khodavirdilou L, Rajabkhah K, Kardan Moghaddam V, Akbarzadeh A, Amani B. Efficacy and safety of bamlanivimab in patients with COVID-19: A systematic review and meta-analysis. World J Virol 2024; 13:88660. [PMID: 38616851 PMCID: PMC11008398 DOI: 10.5501/wjv.v13.i1.88660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Monoclonal antibodies (mAbs) have shown clinical benefits against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies have reported the use of bamlanivimab as a promising treatment option for COVID-19. AIM To synthesize the latest evidence for the efficacy and safety of bamlanivimab alone in the treatment of adult patients with COVID-19. METHODS A literature search was conducted in PubMed, Cochrane Library, Web of Science, medRxiv, and Google Scholar using "SARS-CoV-2", "COVID-19", "LY-CoV555", and "Bamlanivimab" keywords up to January 25, 2023. The quality of included studies was assessed using the Cochrane bias tools. The Comprehensive Meta-Analysis software version 3.0 was used to analyze the data. RESULTS A total of 30 studies involving 47368 patients were included. A significant difference was observed between the bamlanivimab and standard of care/placebo groups in terms of mortality rate [risk ratio (RR) = 50, 95% confidence interval (CI): 0.36-0.70], hospitalization rate (RR = 0.51; 95%CI: 0.39-0.68), and emergency department (ED) visits (RR = 0.69; 95%CI: 0.47-0.99); while the two groups exhibited no significant difference in terms of intensive care unit (ICU) admission (P > 0.05). Compared to other mAbs, bamlanivimab was associated with a higher rate of hospitalization (RR = 1.44; 95%CI: 1.07-1.94). However, no significant difference was detected between the bamlanivimab and other mAbs groups in terms of mortality rate, ICU admission, and ED (P > 0.05). The incidence of any adverse events was similar between the bamlanivimab and control groups (P > 0.05). CONCLUSION Although the results suggest the efficacy and safety of bamlanivimab in COVID-19 patients, further research is required to confirm the efficacy of this drug for the current circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Behnam Amani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Lida Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States
| | - Kourosh Rajabkhah
- Deputy of Research and Technology, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Vida Kardan Moghaddam
- School of Medicine and Dentistry, Griffith University, Queensland, Brisbane 4222, Australia
| | - Arash Akbarzadeh
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Bahman Amani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| |
Collapse
|
16
|
Ahmed N, Athavale A, Tripathi AH, Subramaniam A, Upadhyay SK, Pandey AK, Rai RC, Awasthi A. To be remembered: B cell memory response against SARS-CoV-2 and its variants in vaccinated and unvaccinated individuals. Scand J Immunol 2024; 99:e13345. [PMID: 38441373 DOI: 10.1111/sji.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 03/07/2024]
Abstract
COVID-19 disease has plagued the world economy and affected the overall well-being and life of most of the people. Natural infection as well as vaccination leads to the development of an immune response against the pathogen. This involves the production of antibodies, which can neutralize the virus during future challenges. In addition, the development of cellular immune memory with memory B and T cells provides long-lasting protection. The longevity of the immune response has been a subject of intensive research in this field. The extent of immunity conferred by different forms of vaccination or natural infections remained debatable for long. Hence, understanding the effectiveness of these responses among different groups of people can assist government organizations in making informed policy decisions. In this article, based on the publicly available data, we have reviewed the memory response generated by some of the vaccines against SARS-CoV-2 and its variants, particularly B cell memory in different groups of individuals.
Collapse
Affiliation(s)
- Nafees Ahmed
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Atharv Athavale
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ankita H Tripathi
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Adarsh Subramaniam
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | | | - Ramesh Chandra Rai
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
17
|
Acar DD, Witkowski W, Wejda M, Wei R, Desmet T, Schepens B, De Cae S, Sedeyn K, Eeckhaut H, Fijalkowska D, Roose K, Vanmarcke S, Poupon A, Jochmans D, Zhang X, Abdelnabi R, Foo CS, Weynand B, Reiter D, Callewaert N, Remaut H, Neyts J, Saelens X, Gerlo S, Vandekerckhove L. Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warranted. EBioMedicine 2024; 100:104960. [PMID: 38232633 PMCID: PMC10803917 DOI: 10.1016/j.ebiom.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. METHODS Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. FINDINGS Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. INTERPRETATION Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. FUNDING Full list of funders is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Delphine Diana Acar
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Wojciech Witkowski
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Magdalena Wejda
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Ruifang Wei
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Tim Desmet
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent 9000, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sieglinde De Cae
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Hannah Eeckhaut
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Daria Fijalkowska
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sandrine Vanmarcke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | | | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Xin Zhang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Caroline S Foo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven 3000, Belgium
| | - Dirk Reiter
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Han Remaut
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels 1050, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sarah Gerlo
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
18
|
Li Y, Choudhary MC, Regan J, Boucau J, Nathan A, Speidel T, Liew MY, Edelstein GE, Kawano Y, Uddin R, Deo R, Marino C, Getz MA, Reynolds Z, Barry M, Gilbert RF, Tien D, Sagar S, Vyas TD, Flynn JP, Hammond SP, Novack LA, Choi B, Cernadas M, Wallace ZS, Sparks JA, Vyas JM, Seaman MS, Gaiha GD, Siedner MJ, Barczak AK, Lemieux JE, Li JZ. SARS-CoV-2 viral clearance and evolution varies by type and severity of immunodeficiency. Sci Transl Med 2024; 16:eadk1599. [PMID: 38266109 PMCID: PMC10982957 DOI: 10.1126/scitranslmed.adk1599] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Despite vaccination and antiviral therapies, immunocompromised individuals are at risk for prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the immune defects that predispose an individual to persistent coronavirus disease 2019 (COVID-19) remain incompletely understood. In this study, we performed detailed viro-immunologic analyses of a prospective cohort of participants with COVID-19. The median times to nasal viral RNA and culture clearance in individuals with severe immunosuppression due to hematologic malignancy or transplant (S-HT) were 72 and 40 days, respectively, both of which were significantly longer than clearance rates in individuals with severe immunosuppression due to autoimmunity or B cell deficiency (S-A), individuals with nonsevere immunodeficiency, and nonimmunocompromised groups (P < 0.01). Participants who were severely immunocompromised had greater SARS-CoV-2 evolution and a higher risk of developing resistance against therapeutic monoclonal antibodies. Both S-HT and S-A participants had diminished SARS-CoV-2-specific humoral responses, whereas only the S-HT group had reduced T cell-mediated responses. This highlights the varied risk of persistent COVID-19 across distinct immunosuppressive conditions and suggests that suppression of both B and T cell responses results in the highest contributing risk of persistent infection.
Collapse
Affiliation(s)
- Yijia Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Manish C. Choudhary
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James Regan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Anusha Nathan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA 02115, USA
| | - Tessa Speidel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - May Yee Liew
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gregory E. Edelstein
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yumeko Kawano
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rockib Uddin
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rinki Deo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Caitlin Marino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew A. Getz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zahra Reynolds
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mamadou Barry
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rebecca F. Gilbert
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dessie Tien
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shruti Sagar
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tammy D. Vyas
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James P. Flynn
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah P. Hammond
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lewis A. Novack
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bina Choi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manuela Cernadas
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary S. Wallace
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey A. Sparks
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jatin M. Vyas
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gaurav D. Gaiha
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mark J. Siedner
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Amy K. Barczak
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Zeng YC, Young OJ, Si L, Ku MW, Isinelli G, Rajwar A, Jiang A, Wintersinger CM, Graveline AR, Vernet A, Sanchez M, Ryu JH, Kwon IC, Goyal G, Ingber DE, Shih WM. DNA origami vaccine (DoriVac) nanoparticles improve both humoral and cellular immune responses to infectious diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573647. [PMID: 38260393 PMCID: PMC10802255 DOI: 10.1101/2023.12.29.573647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Current SARS-CoV-2 vaccines have demonstrated robust induction of neutralizing antibodies and CD4+ T cell activation, however CD8+ responses are variable, and the duration of immunity and protection against variants are limited. Here we repurposed our DNA origami vaccine platform, DoriVac, for targeting infectious viruses, namely SARS-CoV-2, HIV, and Ebola. The DNA origami nanoparticle, conjugated with infectious-disease-specific HR2 peptides, which act as highly conserved antigens, and CpG adjuvant at precise nanoscale spacing, induced neutralizing antibodies, Th1 CD4+ T cells, and CD8+ T cells in naïve mice, with significant improvement over a bolus control. Pre-clinical studies using lymph-node-on-a-chip systems validated that DoriVac, when conjugated with antigenic peptides or proteins, induced promising cellular immune responses in human cells. These results suggest that DoriVac holds potential as a versatile, modular vaccine platform, capable of inducing both humoral and cellular immunities. The programmability of this platform underscores its potential utility in addressing future pandemics.
Collapse
Affiliation(s)
- Yang C. Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Olivia J. Young
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Longlong Si
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Min Wen Ku
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Giorgia Isinelli
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Anjali Rajwar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Chris M. Wintersinger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Amanda R. Graveline
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Melinda Sanchez
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Ju Hee Ryu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA
| | - William M. Shih
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
20
|
Gonzalez-Alba JM, Rojo-Alba S, Perez-Martinez Z, Boga JA, Alvarez-Arguelles ME, Gomez J, Herrero P, Costales I, Alba LM, Martin-Rodriguez G, Campo R, Castelló-Abietar C, Sandoval M, Abreu-Salinas F, Coto E, Rodriguez M, Rubianes P, Sanchez ML, Vazquez F, Antuña L, Álvarez V, Melón García S. Monitoring and tracking the spread of SARS-CoV-2 in Asturias, Spain. Access Microbiol 2023; 5:000573.v4. [PMID: 37841093 PMCID: PMC10569657 DOI: 10.1099/acmi.0.000573.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mutational analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can quantify the relative importance of variants over time, enable dominant mutations to be identified, and facilitate near real-time detection, comparison and tracking of evolving variants. SARS-CoV-2 in Asturias, an autonomous community of Spain with a large ageing population, and high levels of migration and tourism, was monitored and tracked from the beginning of the pandemic in February 2020 until its decline and stabilization in August 2021, and samples were characterized using whole genomic sequencing and single nucleotide polymorphisms. Data held in the GISAID database were analysed to establish patterns in the appearance and persistence of SARS-CoV-2 strains. Only 138 non-synonymous mutations occurring in more than 1 % of the population with SARS-CoV-2 were found, identifying ten major variants worldwide (seven arose before January 2021), 19 regional and one local. In Asturias only 17 different variants were found. After vaccination, no further regional major variants were found. Only half of the defined variants circulated and no new variants were generated, indicating that infection control measures such as rapid diagnosis, isolation and vaccination were efficient.
Collapse
Affiliation(s)
- Jose Maria Gonzalez-Alba
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Susana Rojo-Alba
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Zulema Perez-Martinez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Jose A. Boga
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Marta Elena Alvarez-Arguelles
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan Gomez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Genética Molecular, Oviedo, Spain
| | - Pablo Herrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Urgencias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Isabel Costales
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luz Maria Alba
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Gabriel Martin-Rodriguez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rainer Campo
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Cristian Castelló-Abietar
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Marta Sandoval
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Fátima Abreu-Salinas
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Eliecer Coto
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Genética Molecular, Oviedo, Spain
| | - Mercedes Rodriguez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pablo Rubianes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Urgencias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Maria Luisa Sanchez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Fernando Vazquez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Antuña
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Urgencias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Victoria Álvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Genética Molecular, Oviedo, Spain
| | - Santiago Melón García
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
21
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
22
|
Bostanghadiri N, Ziaeefar P, Mofrad MG, Yousefzadeh P, Hashemi A, Darban-Sarokhalil D. COVID-19: An Overview of SARS-CoV-2 Variants-The Current Vaccines and Drug Development. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1879554. [PMID: 37674935 PMCID: PMC10480030 DOI: 10.1155/2023/1879554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
The world is presently in crisis facing an outbreak of a health-threatening microorganism known as COVID-19, responsible for causing uncommon viral pneumonia in humans. The virus was first reported in Wuhan, China, in early December 2019, and it quickly became a global concern due to the pandemic. Challenges in this regard have been compounded by the emergence of several variants such as B.1.1.7, B.1.351, P1, and B.1.617, which show an increase in transmission power and resistance to therapies and vaccines. Ongoing researches are focused on developing and manufacturing standard treatment strategies and effective vaccines to control the pandemic. Despite developing several vaccines such as Pfizer/BioNTech and Moderna approved by the U.S. Food and Drug Administration (FDA) and other vaccines in phase 4 clinical trials, preventive measures are mandatory to control the COVID-19 pandemic. In this review, based on the latest findings, we will discuss different types of drugs as therapeutic options and confirmed or developing vaccine candidates against SARS-CoV-2. We also discuss in detail the challenges posed by the variants and their effect on therapeutic and preventive interventions.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pardis Ziaeefar
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morvarid Golrokh Mofrad
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parsa Yousefzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Findlay-Wilson S, Easterbrook L, Smith S, Pope N, Aldridge M, Humphries G, Schuhmann H, Ngabo D, Rayner E, Otter A, Coleman T, Hicks B, Halkerston R, Apostolakis K, Taylor S, Fotheringham S, Horton A, CanoCejas I, Wand M, Tree JA, Sutton M, Graham V, Hewson R, Dowall S. Refinement of an ovine-based immunoglobulin therapy against SARS-CoV-2, with comparison of whole IgG versus F(ab') 2 fragments. Sci Rep 2023; 13:13912. [PMID: 37626085 PMCID: PMC10457378 DOI: 10.1038/s41598-023-40277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The development of new therapies against SARS-CoV-2 is required to extend the toolkit of intervention strategies to combat the global pandemic. In this study, hyperimmune plasma from sheep immunised with whole spike SARS-CoV-2 recombinant protein has been used to generate candidate products. In addition to purified IgG, we have refined candidate therapies by removing non-specific IgG via affinity binding along with fragmentation to eliminate the Fc region to create F(ab')2 fragments. These preparations were evaluated for in vitro activity and demonstrated to be strongly neutralising against a range of SARS-CoV-2 strains, including Omicron B2.2. In addition, their protection against disease manifestations and viral loads were assessed using a hamster SARS-CoV-2 infection model. Results demonstrated protective effects of both IgG and F(ab')2, with the latter requiring sequential dosing to maintain in vivo activity due to rapid clearance from the circulation.
Collapse
Affiliation(s)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Sandra Smith
- International Therapeutic Proteins Ltd, Longford, TAS, 7301, Australia
| | - Neville Pope
- International Therapeutic Proteins Ltd, Goleigh Farm, Selborne, GU34 3SE, Hampshire, UK
| | | | - Gareth Humphries
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Holger Schuhmann
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Didier Ngabo
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Ashley Otter
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Thomas Coleman
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Bethany Hicks
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Rachel Halkerston
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Kostis Apostolakis
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stephen Taylor
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Amanda Horton
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Irene CanoCejas
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Matthew Wand
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Julia A Tree
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Mark Sutton
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
24
|
Nagaraja M, Sireesha K, Srikar A, Sudheer Kumar K, Mohan A, Vengamma B, Tirumala C, Verma A, Kalawat U. Mutation Analysis of SARS-CoV-2 Variants Isolated from Symptomatic Cases from Andhra Pradesh, India. Viruses 2023; 15:1656. [PMID: 37631999 PMCID: PMC10458099 DOI: 10.3390/v15081656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
There has been a continuous evolution in the SARS-CoV-2 genome; therefore, it is necessary to monitor the shifts in the SARS-CoV-2 variants. This study aimed to detect various SARS-CoV-2 variants circulating in the state of Andhra Pradesh, India. The study attempted to sequence the complete S-gene of SARS-CoV-2 of 104 clinical samples using Sanger's method to analyze and compare the mutations with the global prevalence. The method standardized in this study was able to amplify the complete length of the S-gene (3822 bp). The resulting nucleotide and amino acid mutations were analyzed and compared with the local and global SARS-CoV-2 databases using Nextclade and GISAID tools. The Delta variant was the most common variant reported in the present study, followed by the Omicron variant. A variant name was not assigned to thirteen samples using the Nextclade tool. There were sixty-nine types of amino acid substitutions reported (excluding private mutations) throughout the spike gene. The T95I mutation was observed predominantly in Delta variants (15/38), followed by Kappa (3/8) and Omicron (1/31). Nearly all Alpha and Omicron lineages had the N501Y substitution; Q493R was observed only in the Omicron lineage; and other mutations (L445, F486, and S494) were not observed in the present study. Most of these mutations found in the Omicron variant are located near the furin cleavage site, which may play a role in the virulence, pathogenicity, and transmission of the virus. Phylogenetic analysis showed that the 104 complete CDS of SARS-CoV-2 belonged to different phylogenetic clades like 20A, 20B, 20I (Alpha), 21A (Delta), 21B (Kappa), 21I (Delta), 21J (Delta), and 21L (Omicron).
Collapse
Affiliation(s)
- Mudhigeti Nagaraja
- State-Level VRDL, Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Kodavala Sireesha
- Regional Center for ISCP-NCDC, Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Anagoni Srikar
- State-Level VRDL, Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Katari Sudheer Kumar
- State-Level VRDL, Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Alladi Mohan
- Department of Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Bhuma Vengamma
- Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Chejarla Tirumala
- Department of Tuberculosis and Respiratory Diseases, Sri Balaji Medical College Hospital and Research Institute, Renigunta, Tirupati 517 507, Andhra Pradesh, India
| | - Anju Verma
- Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Usha Kalawat
- Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| |
Collapse
|
25
|
Devaux CA, Fantini J. ACE2 receptor polymorphism in humans and animals increases the risk of the emergence of SARS-CoV-2 variants during repeated intra- and inter-species host-switching of the virus. Front Microbiol 2023; 14:1199561. [PMID: 37520374 PMCID: PMC10373931 DOI: 10.3389/fmicb.2023.1199561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Like other coronaviruses, SARS-CoV-2 has ability to spread through human-to-human transmission and to circulate from humans to animals and from animals to humans. A high frequency of SARS-CoV-2 mutations has been observed in the viruses isolated from both humans and animals, suggesting a genetic fitness under positive selection in both ecological niches. The most documented positive selection force driving SARS-CoV-2 mutations is the host-specific immune response. However, after electrostatic interactions with lipid rafts, the first contact between the virus and host proteins is the viral spike-cellular receptor binding. Therefore, it is likely that the first level of selection pressure impacting viral fitness relates to the virus's affinity for its receptor, the angiotensin I converting enzyme 2 (ACE2). Although sufficiently conserved in a huge number of species to support binding of the viral spike with enough affinity to initiate fusion, ACE2 is highly polymorphic both among species and within a species. Here, we provide evidence suggesting that when the viral spike-ACE2 receptor interaction is not optimal, due to host-switching, mutations can be selected to improve the affinity of the spike for the ACE2 expressed by the new host. Notably, SARS-CoV-2 is mutation-prone in the spike receptor binding domain (RBD), allowing a better fit for ACE2 orthologs in animals. It is possibly that this may also be true for rare human alleles of ACE2 when the virus is spreading to billions of people. In this study, we present evidence that human subjects expressing the rare E329G allele of ACE2 with higher allele frequencies in European populations exhibit a improved affinity for the SARS-CoV-2 spike N501Y variant of the virus. This may suggest that this viral N501Y variant emerged in the human population after SARS-CoV-2 had infected a human carrying the rare E329G allele of ACE2. In addition, this viral evolution could impact viral replication as well as the ability of the adaptive humoral response to control infection with RBD-specific neutralizing antibodies. In a shifting landscape, this ACE2-driven genetic drift of SARS-CoV-2 which we have named the 'boomerang effect', could complicate the challenge of preventing COVID with a SARS-CoV-2 spike-derived vaccine.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S1072, Marseille, France, Aix-Marseille Université, Marseille, France
| |
Collapse
|
26
|
Radion EI, Mukhin VE, Kholodova AV, Vladimirov IS, Alsaeva DY, Zhdanova AS, Ulasova NY, Bulanova NV, Makarov VV, Keskinov AA, Yudin SM. Functional Characteristics of Serum Anti-SARS-CoV-2 Antibodies against Delta and Omicron Variants after Vaccination with Sputnik V. Viruses 2023; 15:1349. [PMID: 37376648 DOI: 10.3390/v15061349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Anti-SARS-CoV-2 vaccination leads to the production of neutralizing as well as non-neutralizing antibodies. In the current study, we investigated the temporal dynamics of both sides of immunity after vaccination with two doses of Sputnik V against SARS-CoV-2 variants Wuhan-Hu-1 SARS-CoV-2 G614-variant (D614G), B.1.617.2 (Delta), and BA.1 (Omicron). First, we constructed a SARS-CoV-2 pseudovirus assay to assess the neutralization activity of vaccine sera. We show that serum neutralization activity against BA.1 compared to D614G is decreased by 8.16-, 11.05-, and 11.16- fold in 1, 4, and 6 months after vaccination, respectively. Moreover, previous vaccination did not increase serum neutralization activity against BA.1 in recovered patients. Next, we used the ADMP assay to evaluate the Fc-mediated function of vaccine-induced serum antibodies. Our results show that the antibody-dependent phagocytosis triggered by S-proteins of the D614G, B.1.617.2 and BA.1 variants did not differ significantly in vaccinated individuals. Moreover, the ADMP efficacy was retained over up to 6 months in vaccine sera. Our results demonstrate differences in the temporal dynamics of neutralizing and non-neutralizing antibody functions after vaccination with Sputnik V.
Collapse
Affiliation(s)
- Elizaveta I Radion
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Vladimir E Mukhin
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Alyona V Kholodova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Ivan S Vladimirov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Darya Y Alsaeva
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Anastasia S Zhdanova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Natalya Y Ulasova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Natalya V Bulanova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Valentin V Makarov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Anton A Keskinov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Sergey M Yudin
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| |
Collapse
|
27
|
Patil R, Palkar S, Mishra A, Patil R, Arankalle V. Variable neutralizing antibody responses to 10 SARS-CoV-2 variants in natural infection with wild- type (B.1) virus, Kappa (B.1.617.1), and Delta (B.1.617.2) variants and COVISHIELD vaccine immunization in India: utility of the MSD platform. Front Immunol 2023; 14:1181991. [PMID: 37342350 PMCID: PMC10277512 DOI: 10.3389/fimmu.2023.1181991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023] Open
Abstract
For the efficacy of COVID-19 vaccines, emergence of variants accumulating immune-escape mutations remains a major concern. We analyzed the anti-variant (n = 10) neutralization activity of sera from COVID-19 patients infected with Wuhan (B.1), Kappa, and Delta variants and COVISHIELD vaccine recipients with (prepositives) or without (prenegatives) prior antibody positivity using V- PLEX ACE2 Neutralization Kit from MSD. MSD and PRNT50 correlated well (r = 0.76-0.83, p < 0.0001). Despite the least antibody positivity in Kappa patients, anti-variant neutralizing antibody (Nab) levels in the responders were comparable with Delta patients. Vaccinees sampled at 1 month (PD2-1) and 6 months (PD2-6) post-second dose showed the highest seropositivity and Nab levels against the Wuhan strain. At PD2-1, the responder rate was variant-dependent and 100% respectively in prenegatives and prepositives. Nab levels against B.1.135.1, B.1.620, B.1.1.7+E484K (both groups), AY.2 (prenegatives), and B.1.618 (prepositives) were lower than that of Wuhan. At PD2-6, positivity decreased to 15.6%-68.8% in the prenegatives; 3.5%-10.7% of prepositives turned negative for the same four variants. As against the decline in Nab levels in 9/10 variants (prenegatives), a further reduction was seen against the same four variants in the prepositives. These variants possess immune-evasion-associated mutations in the RBD/S region. In conclusion, our data show that the Nab response of patients to multiple variants depends on the infecting variant. We confirm superiority of hybrid immunity in neutralizing multiple variants. Depending on the infecting variant pre- or postvaccination, immune response to different vaccines in different populations will vary and impact protection against emerging variants. The MSD platform provides an excellent alternative to live virus/pseudovirus neutralization tests.
Collapse
Affiliation(s)
- Rajashree Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Sonali Palkar
- Department of Pediatrics, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Akhileshchandra Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Rahul Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Vidya Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| |
Collapse
|
28
|
Delli Gatti D, Reissl S, Turco E. V for vaccines and variants. JOURNAL OF EVOLUTIONARY ECONOMICS 2023:1-56. [PMID: 37362350 PMCID: PMC10233200 DOI: 10.1007/s00191-023-00818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 06/28/2023]
Abstract
In the context of the Covid-19 pandemic, we evaluate the effects of vaccines and virus variants on epidemiological and macroeconomic outcomes by means of Monte Carlo simulations of a macroeconomic-epidemiological agent-based model calibrated using data from the Lombardy region of Italy. From simulations we infer that vaccination plays the role of a mitigating factor, reducing the frequency and the amplitude of contagion waves and significantly improving macroeconomic performance with respect to a scenario without vaccination. The emergence of a variant, on the other hand, plays the role of an accelerating factor, leading to a deterioration of both epidemiological and macroeconomic outcomes and partly negating the beneficial impacts of the vaccine. A new and improved vaccine in turn can redress the situation. Vaccinations and variants, therefore, can be conceived of as drivers of an intertwined cycle impacting both epidemiological and macroeconomic developments.
Collapse
Affiliation(s)
- Domenico Delli Gatti
- Department of Economics and Finance, Catholic University, Milan, Italy
- Complexity Lab in Economics, Catholic University, Milan, Italy
- CESifo, Munich, Germany
| | - Severin Reissl
- RFF-CMCC European Institute on Economics and the Environment, Milan, Italy
| | - Enrico Turco
- Department of Economics and Finance, Catholic University, Milan, Italy
- Fondazione Eni Enrico Mattei, Milan, Italy
| |
Collapse
|
29
|
Bhardwaj P, Mishra SK, Behera SP, Zaman K, Kant R, Singh R. Genomic evolution of the SARS-CoV-2 Variants of Concern: COVID-19 pandemic waves in India. EXCLI JOURNAL 2023; 22:451-465. [PMID: 37534220 PMCID: PMC10390896 DOI: 10.17179/excli2023-6098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023]
Abstract
SARS-CoV-2 has mutated rapidly since its first case report in Wuhan, China, leading to the emergence of an indefinite number of variants. India has witnessed three waves of the COVID-19 pandemic. The country saw its first wave of SARS-CoV-2 illness from late January 2020 to February 2021. With a peak surge of cases in mid-September 2020, India recorded more than 11 million cases and a death toll of more than 0.165 million at this time. India faced a brutal second wave driven by the emergence of highly infectious SARS-CoV-2 variants B.1.617.2 (Delta variant) and the third wave with the leading cause of BA.2 (Omicron variant), which has led to an unprecedented rise in COVID-19 cases in the country. On September 14, 2022, India recorded a cumulative 44.51 million cases of COVID-19 with more than 0.528 million deaths. The discovery of common circulating mutants is facilitated by genome sequencing. The changes in the Spike surface glycoprotein recombinant binding domains served as the critical alterations, resulting in enhanced infectivity and transmissibility, with severe clinical effects. Further, the predominant mutation in the SARS-CoV-2 spike protein; the D614G strains served as a model for vaccine development. The mutation of the Wuhan strain to the Variant of Concern led to a significant increase in SARS-CoV-2 infections. In addition, there was a shift in the age group affected by SARS-CoV-2 variant infection. The current review summarized the COVID-19 pandemic's Variant of Concern and the advent of SARS-CoV-2 in India.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| | - Shailendra Kumar Mishra
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| | - Sthita Pragnya Behera
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| | - Kamran Zaman
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| | - Rajni Kant
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| | - Rajeev Singh
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| |
Collapse
|
30
|
Adolescents’ perceived stress of COVID-19 and self-compassion in Saudi Arabia: A cross-sectional study. Int J Nurs Sci 2023; 10:215-220. [PMID: 37095851 PMCID: PMC10037312 DOI: 10.1016/j.ijnss.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
Objectives Worldwide, the COVID-19 pandemic has significantly impacted mental health challenges for adolescent populations. The current study aims to examine the levels of perceived stress of COVID-19 and self-compassion and their relationship among adolescents in Saudi Arabia. Methods This study employed a cross-sectional online survey of adolescents from secondary schools in Asir, Saudi Arabia. Instruments we distributed online included the modified Perceived Stress Scale (PSS-10) and the Self-Compassion Scale (SCS), in addition to demographic and health-related questions. A total of 500 adolescents completed the survey. Results Adolescents in the study reported an average moderate perceived stress level of 18.6 (SD = 6.67) and an average moderate self-compassion level of 3.22 (SD = 0.53). A significant correlation is also found between the two variables (r = −0.460, P < 0.001). This negative correlation indicates that lower levels of perceived stress are significantly correlated with higher levels of self-compassion. Conclusion The study results show that the perceived stress of COVID-19 is inversely correlated with self-compassion in Saudi adolescents. Further research is needed to explore how to enhance adolescents' self-compassion. School nurses’ role should be given full play in this area.
Collapse
|
31
|
Hariharan VN, Shin M, Chang CW, O’Reilly D, Biscans A, Yamada K, Guo Z, Somasundaran M, Tang Q, Monopoli K, Krishnamurthy PM, Devi G, McHugh N, Cooper DA, Echeverria D, Cruz J, Chan IL, Liu P, Lim SY, McConnell J, Singh SP, Hildebrand S, Sousa J, Davis SM, Kennedy Z, Ferguson C, Godinho BMDC, Thillier Y, Caiazzi J, Ly S, Muhuri M, Kelly K, Humphries F, Cousineau A, Parsi KM, Li Q, Wang Y, Maehr R, Gao G, Korkin D, McDougall WM, Finberg RW, Fitzgerald KA, Wang JP, Watts JK, Khvorova A. Divalent siRNAs are bioavailable in the lung and efficiently block SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2023; 120:e2219523120. [PMID: 36893269 PMCID: PMC10089225 DOI: 10.1073/pnas.2219523120] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/05/2023] [Indexed: 03/11/2023] Open
Abstract
The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.
Collapse
Affiliation(s)
- Vignesh N. Hariharan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Minwook Shin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Ching-Wen Chang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Daniel O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Zhiru Guo
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Mohan Somasundaran
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Kathryn Monopoli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | | | - Gitali Devi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - David A. Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - John Cruz
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Io Long Chan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Ping Liu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Sun-Young Lim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jill McConnell
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Satya Prakash Singh
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Sarah M. Davis
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Chantal Ferguson
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Bruno M. D. C. Godinho
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Yann Thillier
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jillian Caiazzi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Manish Muhuri
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Fiachra Humphries
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Alyssa Cousineau
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Krishna Mohan Parsi
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Qi Li
- MassBiologics, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Yang Wang
- MassBiologics, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - René Maehr
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Guangping Gao
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA01655
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Dmitry Korkin
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA01609
| | - William M. McDougall
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Robert W. Finberg
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| |
Collapse
|
32
|
Shafaati M, Bagherzadeh K, Lotfinia M, Karimi H, Teimoori A, Razazian M, Meidaninikjeh S, Hosseini H, Jamshidi HR, Jalili H, Abdoli A. The protection quest is a primary key to sharing the neutralizing antibody response to cover against all emerging VOCs based on BIV1-CovIran studies. Heliyon 2023; 9:e14108. [PMID: 36873499 PMCID: PMC9968494 DOI: 10.1016/j.heliyon.2023.e14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Over time, the antigenic evolution of emerging variants of SARS-CoV-2 has demanded the development of potential protective vaccines. Administration of additional doses of current vaccines based on the WT spike protein may boost immunity, but their effectiveness has dwindled for patients with more recent variants. Here, we studied the neutralization activity of post-WT strain-based vaccination and a structural simulation in-silico based on the interactions of the RBD-hACE2 as the key to initiating infection among the VOCs of SARS-CoV-2. Our data display shows that WT sera showed a markedly greater reduction in Delta and Omicron, suggesting that the Wuhan-based vaccines may be more susceptible to breakthrough and new VOCs. According to the MD simulation, mutations of Omicron result in a significant change in the variant charge distribution throughout the binding interface that consequently alters the critical interface electrostatic potential in comparison to other variants. This observation provides new insights into immunization policy and next-generation vaccine development.
Collapse
Affiliation(s)
- Maryam Shafaati
- Department of Microbiology, Faculty Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hesam Karimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Razazian
- Universite Paris Saclay, INSERM U1193, AP-HP, Hôpital Paul Brousse, Virology Department, France.,Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamed Hosseini
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Jamshidi
- Department of Pharmacology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hasan Jalili
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Amirabad Virology Laboratory, Vaccine Unit, Tehran, Iran
| |
Collapse
|
33
|
Hamad M, AlKhamach DMH, Alsayadi LM, Sarhan SA, Saeed BQ, Sokovic M, Ben Hadda T, Soliman SSM. Alpha to Omicron (Variants of Concern): Mutation Journey, Vaccines, and Therapy. Viral Immunol 2023; 36:83-100. [PMID: 36695729 DOI: 10.1089/vim.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initially emerged in December 2019 and has subsequently expanded globally, leading to the ongoing pandemic. The extensive spread of various SARS-CoV-2 variants possesses a serious public health threat. An extensive literature search along with deep analysis was performed to describe and evaluate the characteristics of SARS-CoV-2 variants of concern in relation to the effectiveness of the current vaccines and therapeutics. The obtained results showed that several significant mutations have evolved during the COVID-19 pandemic. The developed variants and their various structural mutations can compromise the effectiveness of several vaccines, escape the neutralizing antibodies, and limit the efficiency of available therapeutics. Furthermore, deep analysis of the available data enables the prediction of the future impact of virus mutations on the ongoing pandemic along with the selection of appropriate vaccines and therapeutics.
Collapse
Affiliation(s)
- Mohamad Hamad
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M H AlKhamach
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Beograd, Serbia
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
34
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
35
|
Cox M, Peacock TP, Harvey WT, Hughes J, Wright DW, Willett BJ, Thomson E, Gupta RK, Peacock SJ, Robertson DL, Carabelli AM. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat Rev Microbiol 2023; 21:112-124. [PMID: 36307535 PMCID: PMC9616429 DOI: 10.1038/s41579-022-00809-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 01/20/2023]
Abstract
Monoclonal antibodies (mAbs) offer a treatment option for individuals with severe COVID-19 and are especially important in high-risk individuals where vaccination is not an option. Given the importance of understanding the evolution of resistance to mAbs by SARS-CoV-2, we reviewed the available in vitro neutralization data for mAbs against live variants and viral constructs containing spike mutations of interest. Unfortunately, evasion of mAb-induced protection is being reported with new SARS-CoV-2 variants. The magnitude of neutralization reduction varied greatly among mAb-variant pairs. For example, sotrovimab retained its neutralization capacity against Omicron BA.1 but showed reduced efficacy against BA.2, BA.4 and BA.5, and BA.2.12.1. At present, only bebtelovimab has been reported to retain its efficacy against all SARS-CoV-2 variants considered here. Resistance to mAb neutralization was dominated by the action of epitope single amino acid substitutions in the spike protein. Although not all observed epitope mutations result in increased mAb evasion, amino acid substitutions at non-epitope positions and combinations of mutations also contribute to evasion of neutralization. This Review highlights the implications for the rational design of viral genomic surveillance and factors to consider for the development of novel mAb therapies.
Collapse
Affiliation(s)
- MacGregor Cox
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Derek W Wright
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Emma Thomson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
36
|
Plant Extracts and SARS-CoV-2: Research and Applications. Life (Basel) 2023; 13:life13020386. [PMID: 36836744 PMCID: PMC9965937 DOI: 10.3390/life13020386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
The recent pandemic of COVID-19 caused by the SARS-CoV-2 virus has brought upon the world an unprecedented challenge. During its acute dissemination, a rush for vaccines started, making the scientific community come together and contribute to the development of efficient therapeutic agents and vaccines. Natural products have been used as sources of individual molecules and extracts capable of inhibiting/neutralizing several microorganisms, including viruses. Natural extracts have shown effective results against the coronavirus family, when first tested in the outbreak of SARS-CoV-1, back in 2002. In this review, the relationship between natural extracts and SARS-CoV is discussed, while also providing insight into misinformation regarding the use of plants as possible therapeutic agents. Studies with plant extracts on coronaviruses are presented, as well as the main inhibition assays and trends for the future regarding the yet unknown long-lasting effects post-infection with SARS-CoV-2.
Collapse
|
37
|
Liu W, Chen D, Pian H, Su F, Wang H, Zhang P, Li Z. One-by-one single-molecule counting method for digital quantification of SARS-CoV-2 RNA. NANO TODAY 2022; 47:101664. [PMID: 36340244 PMCID: PMC9618441 DOI: 10.1016/j.nantod.2022.101664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Digital counting individual nucleic acid molecule is of great significance for fundamental biological research and accurate diagnosis of genetic diseases, which is hard to achieve with existing single-molecule detection technologies. Herein, we report a novel one-by-one single-molecule counting method for digital quantification of SARS-Cov-2 RNA. This method uses one fluorescent micromotor functionalized with peptide nucleic acids (PNAs) to specially capture one target RNA molecule. The RNA-micromotors can be propelled by the electric field to target district and accurately counted. Moreover, the method can also clearly discriminate one-base mutation in the target RNAs, indicating the great potential for clinical diagnostics and virus traceability survey.
Collapse
Affiliation(s)
- Weiliang Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Desheng Chen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Hongru Pian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Fengxia Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Hui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Pengbo Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| |
Collapse
|
38
|
Bian L, Liu J, Gao F, Gao Q, He Q, Mao Q, Wu X, Xu M, Liang Z. Research progress on vaccine efficacy against SARS-CoV-2 variants of concern. Hum Vaccin Immunother 2022; 18:2057161. [PMID: 35438600 PMCID: PMC9115786 DOI: 10.1080/21645515.2022.2057161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 01/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate worldwide and a variety of variants have emerged. Variants of concern (VOC) designated by the World Health Organization (WHO) have triggered epidemic waves due to their strong infectivity or pathogenicity and potential immune escape, among other reasons. Although large-scale vaccination campaigns undertaken globally have contributed to the improved control of SARS-CoV-2, the efficacies of current vaccines against VOCs have declined to various degrees. In particular, the highly infectious Delta and Omicron variants have caused recent epidemics and prompted concerns about control measures. This review summarizes current VOCs, the protective efficacy of vaccines against VOCs, and the shortcomings in methods for evaluating vaccine efficacy. In addition, strategies for responding to variants are proposed for future epidemic prevention and control as well as for vaccine research and development.
Collapse
Affiliation(s)
- Lianlian Bian
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyang Liu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qiushuang Gao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qian He
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xing Wu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
39
|
Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. Development of therapeutic antibodies for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:35. [PMID: 36418786 PMCID: PMC9684400 DOI: 10.1186/s43556-022-00100-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Since the first monoclonal antibody drug, muromonab-CD3, was approved for marketing in 1986, 165 antibody drugs have been approved or are under regulatory review worldwide. With the approval of new drugs for treating a wide range of diseases, including cancer and autoimmune and metabolic disorders, the therapeutic antibody drug market has experienced explosive growth. Monoclonal antibodies have been sought after by many biopharmaceutical companies and scientific research institutes due to their high specificity, strong targeting abilities, low toxicity, side effects, and high development success rate. The related industries and markets are growing rapidly, and therapeutic antibodies are one of the most important research and development areas in the field of biology and medicine. In recent years, great progress has been made in the key technologies and theoretical innovations provided by therapeutic antibodies, including antibody-drug conjugates, antibody-conjugated nuclides, bispecific antibodies, nanobodies, and other antibody analogs. Additionally, therapeutic antibodies can be combined with technologies used in other fields to create new cross-fields, such as chimeric antigen receptor T cells (CAR-T), CAR-natural killer cells (CAR-NK), and other cell therapy. This review summarizes the latest approved or in regulatory review therapeutic antibodies that have been approved or that are under regulatory review worldwide, as well as clinical research on these approaches and their development, and outlines antibody discovery strategies that have emerged during the development of therapeutic antibodies, such as hybridoma technology, phage display, preparation of fully human antibody from transgenic mice, single B-cell antibody technology, and artificial intelligence-assisted antibody discovery.
Collapse
Affiliation(s)
- Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjian Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Mei Tang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
40
|
In Silico Genome Analysis Reveals the Evolution and Potential Impact of SARS-CoV-2 Omicron Structural Changes on Host Immune Evasion and Antiviral Therapeutics. Viruses 2022; 14:v14112461. [PMID: 36366559 PMCID: PMC9697451 DOI: 10.3390/v14112461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
New variants of SARS-CoV-2 continue to evolve. The novel SARS-CoV-2 variant of concern (VOC) B.1.1.529 (Omicron) was particularly menacing due to the presence of numerous consequential mutations. In this study, we reviewed about 12 million SARS-CoV-2 genomic and associated metadata using extensive bioinformatic approaches to understand how evolutionary and mutational changes affect Omicron variant properties. Subsampled global data based analysis of molecular clock in the phylogenetic tree showed 29.56 substitutions per year as the evolutionary rate of five VOCs. We observed extensive mutational changes in the spike structural protein of the Omicron variant. A total of 20% of 7230 amino acid and structural changes exclusive to Omicron's spike protein were detected in the receptor binding domain (RBD), suggesting differential selection pressures exerted during evolution. Analyzing key drug targets revealed mutation-derived differential binding affinities between Delta and Omicron variants. Nine single-RBD substitutions were detected within the binding site of approved therapeutic monoclonal antibodies. T-cell epitope prediction revealed eight immunologically important functional hotspots in three conserved non-structural proteins. A universal vaccine based on these regions may likely protect against all these SARS-CoV-2 variants. We observed key structural changes in the spike protein, which decreased binding affinities, indicating that these changes may help the virus escape host cellular immunity. These findings emphasize the need for continuous genomic surveillance of SARS-CoV-2 to better understand how novel mutations may impact viral spread and disease outcome.
Collapse
|
41
|
Nowroozi A, Rezaei N. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) delta variant of concern breakthrough infections: Are vaccines failing us? Infect Control Hosp Epidemiol 2022; 43:1754-1755. [PMID: 34353385 PMCID: PMC8387681 DOI: 10.1017/ice.2021.363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ali Nowroozi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Niemeyer D, Stenzel S, Veith T, Schroeder S, Friedmann K, Weege F, Trimpert J, Heinze J, Richter A, Jansen J, Emanuel J, Kazmierski J, Pott F, Jeworowski LM, Olmer R, Jaboreck MC, Tenner B, Papies J, Walper F, Schmidt ML, Heinemann N, Möncke-Buchner E, Baumgardt M, Hoffmann K, Widera M, Thao TTN, Balázs A, Schulze J, Mache C, Jones TC, Morkel M, Ciesek S, Hanitsch LG, Mall MA, Hocke AC, Thiel V, Osterrieder K, Wolff T, Martin U, Corman VM, Müller MA, Goffinet C, Drosten C. SARS-CoV-2 variant Alpha has a spike-dependent replication advantage over the ancestral B.1 strain in human cells with low ACE2 expression. PLoS Biol 2022; 20:e3001871. [PMID: 36383605 PMCID: PMC9710838 DOI: 10.1371/journal.pbio.3001871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.
Collapse
Affiliation(s)
- Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
| | - Saskia Stenzel
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Talitha Veith
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
| | - Simon Schroeder
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Kirstin Friedmann
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Friderike Weege
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Julian Heinze
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jackson Emanuel
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Fabian Pott
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Lara M. Jeworowski
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH — Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Mark-Christian Jaboreck
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH — Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Beate Tenner
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Papies
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Walper
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Marie L. Schmidt
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Möncke-Buchner
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Morris Baumgardt
- Department of Infectious Diseases and Respiratory Medicine, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Hoffmann
- Department of Infectious Diseases and Respiratory Medicine, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | | | - Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jessica Schulze
- Unit 17 “Influenza and other Respiratory Viruses", Robert Koch Institute, Berlin, Germany
| | - Christin Mache
- Unit 17 “Influenza and other Respiratory Viruses", Robert Koch Institute, Berlin, Germany
| | - Terry C. Jones
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morkel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- BIH Bioportal Single Cells, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Center for Infection Research, DZIF, Braunschweig, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité — Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Marcus A. Mall
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), associated partner Charité, Berlin, Germany
| | - Andreas C. Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
| | - Klaus Osterrieder
- Berlin Institute of Health, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Thorsten Wolff
- Unit 17 “Influenza and other Respiratory Viruses", Robert Koch Institute, Berlin, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH — Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Victor M. Corman
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
- Labor Berlin – Charité Vivantes GmbH, Berlin, Germany
| | - Marcel A. Müller
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Labor Berlin – Charité Vivantes GmbH, Berlin, Germany
| |
Collapse
|
43
|
Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Monoclonal antibody therapies against SARS-CoV-2. THE LANCET. INFECTIOUS DISEASES 2022; 22:e311-e326. [PMID: 35803289 PMCID: PMC9255948 DOI: 10.1016/s1473-3099(22)00311-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the spike protein of SARS-CoV-2 have been widely used in the ongoing COVID-19 pandemic. In this paper, we review the properties of mAbs and their effect as therapeutics in the pandemic, including structural classification, outcomes in clinical trials that led to the authorisation of mAbs, and baseline and treatment-emergent immune escape. We show how the omicron (B.1.1.529) variant of concern has reset treatment strategies so far, discuss future developments that could lead to improved outcomes, and report the intrinsic limitations of using mAbs as therapeutic agents.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Emiliano Cappello
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
44
|
Noor R. How do the severe acute respiratory coronavirus 2 (SARS-CoV-2) and its variants escape the host protective immunity and mediate pathogenesis? BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:255. [PMID: 36254244 PMCID: PMC9556142 DOI: 10.1186/s42269-022-00945-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/06/2022] [Indexed: 05/10/2023]
Abstract
Background To protect the global population from the ongoing COVID-19 pandemic caused by the severe acute respiratory β-coronavirus 2 (SARS-CoV-2), a number of vaccines are currently being used in three dosages (i.e., along with the booster dose) to induce the immunity required to combat the SARS-CoV-2 and its variants. So far, several antivirals and the commercial vaccines have been found to evoke the required humoral and cellular immunity within a huge population around world. However, an important aspect to consider is the avoidance mechanism of the host protective immunity by SARS-CoV-2 variants. Main body of the abstract Indeed, such an immune escape strategy has been noticed previously in case of SARS-CoV-1 and the Middle East Respiratory Syndrome coronavirus (MERS-CoV). Regarding the SARS-CoV-2 variants, the most important aspect on vaccine development is to determine whether the vaccine is actually capable to elicit the immune response or not, especially the viral spike (S) protein. Short conclusion Present review thus focused on such elicitation of immunity as well as pondered to the avoidance of host immunity by the SARS-CoV-2 Wuhan strain and its variants.
Collapse
Affiliation(s)
- Rashed Noor
- Department of Life Sciences (DLS), School of Environment and Life Sciences (SELS), Independent University, Bangladesh (IUB), Plot 16, Block B, Aftabuddin Ahmed Road, Bashundhara, Dhaka 1229 Bangladesh
| |
Collapse
|
45
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Yang X, Chi H, Wu M, Wang Z, Lang Q, Han Q, Wang X, Liu X, Li Y, Wang X, Huang N, Bi J, Liang H, Gao Y, Zhao Y, Feng N, Yang S, Wang T, Xia X, Ge L. Discovery and characterization of SARS-CoV-2 reactive and neutralizing antibodies from humanized CAMouseHG mice through rapid hybridoma screening and high-throughput single-cell V(D)J sequencing. Front Immunol 2022; 13:992787. [PMID: 36211410 PMCID: PMC9545174 DOI: 10.3389/fimmu.2022.992787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease 2019 pandemic has caused more than 532 million infections and 6.3 million deaths to date. The reactive and neutralizing fully human antibodies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective detection tools and therapeutic measures. During SARS-CoV-2 infection, a large number of SARS-CoV-2 reactive and neutralizing antibodies will be produced. Most SARS-CoV-2 reactive and neutralizing fully human antibodies are isolated from human and frequently encoded by convergent heavy-chain variable genes. However, SARS-CoV-2 viruses can mutate rapidly during replication and the resistant variants of neutralizing antibodies easily survive and evade the immune response, especially in the face of such focused antibody responses in humans. Therefore, additional tools are needed to develop different kinds of fully human antibodies to compensate for current deficiency. In this study, we utilized antibody humanized CAMouseHG mice to develop a rapid antibody discovery method and examine the antibody repertoire of SARS-CoV-2 RBD-reactive hybridoma cells derived from CAMouseHG mice by using high-throughput single-cell V(D)J sequencing analysis. CAMouseHG mice were immunized by 28-day rapid immunization method. After electrofusion and semi-solid medium screening on day 12 post-electrofusion, 171 hybridoma clones were generated based on the results of SARS-CoV-2 RBD binding activity assay. A rather obvious preferential usage of IGHV6-1 family was found in these hybridoma clones derived from CAMouseHG mice, which was significantly different from the antibodies found in patients with COVID-19. After further virus neutralization screening and antibody competition assays, we generated a noncompeting two-antibody cocktail, which showed a potent prophylactic protective efficacy against SARS-CoV-2 in cynomolgus macaques. These results indicate that humanized CAMouseHG mice not only provide a valuable platform to obtain fully human reactive and neutralizing antibodies but also have a different antibody repertoire from humans. Thus, humanized CAMouseHG mice can be used as a good complementary tool in discovery of fully human therapeutic and diagnostic antibodies.
Collapse
Affiliation(s)
- Xi Yang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Meng Wu
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Qiaoli Lang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Xinyue Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xueqin Liu
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiwen Wang
- Food and Drug Inspection Laboratory, Administration for Drug and Instrument Supervision and Inspection, Beijing, China
| | - Nan Huang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Jinhao Bi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Hao Liang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Liangpeng Ge, ; Tiecheng Wang, ; Xianzhu Xia,
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Liangpeng Ge, ; Tiecheng Wang, ; Xianzhu Xia,
| | - Liangpeng Ge
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
- *Correspondence: Liangpeng Ge, ; Tiecheng Wang, ; Xianzhu Xia,
| |
Collapse
|
47
|
Zhang K, Wang Z, Liu H, Perea-López N, Ranasinghe JC, Bepete G, Minns AM, Rossi RM, Lindner SE, Huang SX, Terrones M, Huang S. Understanding the Excitation Wavelength Dependence and Thermal Stability of the SARS-CoV-2 Receptor-Binding Domain Using Surface-Enhanced Raman Scattering and Machine Learning. ACS PHOTONICS 2022; 9:2963-2972. [PMID: 37552735 PMCID: PMC9438456 DOI: 10.1021/acsphotonics.2c00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 05/28/2023]
Abstract
COVID-19 has cost millions of lives worldwide. The constant mutation of SARS-CoV-2 calls for thorough research to facilitate the development of variant surveillance. In this work, we studied the fundamental properties related to the optical identification of the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, a key component of viral infection. The Raman modes of the SARS-CoV-2 RBD were captured by surface-enhanced Raman spectroscopy (SERS) using gold nanoparticles (AuNPs). The observed Raman enhancement strongly depends on the excitation wavelength as a result of the aggregation of AuNPs. The characteristic Raman spectra of RBDs from SARS-CoV-2 and MERS-CoV were analyzed by principal component analysis that reveals the role of secondary structures in the SERS process, which is corroborated with the thermal stability under laser heating. We can easily distinguish the Raman spectra of two RBDs using machine learning algorithms with accuracy, precision, recall, and F1 scores all over 95%. Our work provides an in-depth understanding of the SARS-CoV-2 RBD and paves the way toward rapid analysis and discrimination of complex proteins of infectious viruses and other biomolecules.
Collapse
Affiliation(s)
- Kunyan Zhang
- Department of Electrical Engineering, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
| | - Ziyang Wang
- Department of Electrical Engineering, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
- Department of Electrical and Computer Engineering,
Rice University, Houston, Texas77005, United
States
| | - He Liu
- Department of Chemistry, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
| | - Néstor Perea-López
- Department of Physics, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
- Center for 2-Dimensional and Layered Materials,
The Pennsylvania State University, University Park,
Pennsylvania16802, United States
| | - Jeewan C. Ranasinghe
- Department of Electrical Engineering, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
- Department of Electrical and Computer Engineering,
Rice University, Houston, Texas77005, United
States
| | - George Bepete
- Department of Chemistry, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
- Department of Physics, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
- Center for 2-Dimensional and Layered Materials,
The Pennsylvania State University, University Park,
Pennsylvania16802, United States
| | - Allen M. Minns
- Department of Biochemistry and Molecular Biology, Center for
Infectious Disease Dynamics, The Pennsylvania State University,
University Park, Pennsylvania16802, United States
- Huck Institutes of the Life Sciences, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
| | - Randall M. Rossi
- Huck Institutes of the Life Sciences, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Center for
Infectious Disease Dynamics, The Pennsylvania State University,
University Park, Pennsylvania16802, United States
- Huck Institutes of the Life Sciences, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
| | - Sharon X. Huang
- College of Information Sciences and Technology,
The Pennsylvania State University, University Park,
Pennsylvania16802, United States
| | - Mauricio Terrones
- Department of Chemistry, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
- Department of Physics, The Pennsylvania
State University, University Park, Pennsylvania16802, United
States
- Center for 2-Dimensional and Layered Materials,
The Pennsylvania State University, University Park,
Pennsylvania16802, United States
- Department of Materials Science and Engineering,
The Pennsylvania State University, University Park,
Pennsylvania16802, United States
- Research Initiative for Supra Materials,
Shinshu University, 4-17-1 Wakasato, Nagano380-8553,
Japan
| | - Shengxi Huang
- Department of Electrical Engineering, The
Pennsylvania State University, University Park, Pennsylvania16802,
United States
- Department of Electrical and Computer Engineering,
Rice University, Houston, Texas77005, United
States
| |
Collapse
|
48
|
Zhang L, Chen H, Yang S, Zhao Y, Shen X, He X, Ye H, Wang D, Lou J, Wang Y, Wu S. The impact of CoronaVac on the neutralization breadth and magnitude of the antibody response to SARS-CoV-2 viruses. Front Immunol 2022; 13:990071. [PMID: 36203574 PMCID: PMC9530635 DOI: 10.3389/fimmu.2022.990071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Although immune response enhancement has been reported after primary and booster vaccines of CoronaVac, neutralization breadth of SARS-CoV-2 variants is still unclear. In the present study, we examined the neutralization magnitude and breadth of SARS-CoV-2 variants including Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529) in 33 convalescent COVID-19 patients and a cohort of 55 medical staff receiving primary CoronaVac vaccines and an additional homologous booster dose. Results showed that, as compared with the two-dose primary vaccination, the homologous booster dose achieved 2.24-, 3.98-, 4.58- and 2.90-fold increase in neutralization titer against wild-type, Beta, Delta, and Omicron, respectively. After booster dose, neutralization titer reduction for variants was less than that after the primary vaccine or that for convalescents. The proportion of recipients able to neutralize 2 or more variants increased from 36.36% post the primary vaccination to 87.27% after the booster. Significant increase in neutralization breadth of 1.24 (95% confidence interval (CI), 0.89–1.59) variants was associated with a log10 increase in neutralization titer against the wild-type. In addition, anti-RBD IgG level was identified as an excellent surrogate for positive neutralization of SARS-CoV-2 and neutralization breadth of variants. These findings highlight the value of an additional homologous CoronaVac dose in broadening the cross-neutralization against SARS-CoV-2 variants, and are critical for informing the booster dose vaccination efforts.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Hongquan Chen
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Su Yang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yang Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Xiaoyun Shen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaowen He
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Haohui Ye
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Deqin Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Jiazhou Lou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yinshan Wang
- Health Care Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Shengjun Wu,
| |
Collapse
|
49
|
Yang X, Zhu Y, Xun J, Liu J, Wen Q, Lin Y, Shen X, Chen J, Yuan S, Zhao X, Wang J, Pan H, Yang J, Liang Z, Liang Y, Lin Q, Liang H, Zhou C, Jin L, Xie W, Liu J, Lu D, Ying T, Shen Y, Zhang X, Xu J, Yin C, Wang P, Jiang S, Lu H, Zhu H. The neutralization of B.1.617.1 and B.1.1.529 sera from convalescent patients and BBIBP-CorV vaccines. iScience 2022; 25:105016. [PMID: 36062074 PMCID: PMC9420027 DOI: 10.1016/j.isci.2022.105016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/12/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The SARS-CoV-2 variants B.1.617.1 (Kappa) contain multiple mutations in the spike protein. However, the effect of B.1.617.1 lineage-related mutants on viral infectivity and inactivated-virus vaccine efficacy remains to be defined. We therefore constructed 12 B.1.617.1-related pseudoviruses and systematically studied the effects of mutations on virus infectivity and neutralization resistance to convalescent and inactivated virus vaccine sera. Our results show that the B.1.617.1 variant exhibited both higher infectivity and neutralization resistance in sera at 1 or 3 months after vaccination of 28 individuals and at 14 and 200 days after discharge of 15 convalescents. Notably, 89% of vaccines and 100% of the convalescent serum samples showed more than 2.5-fold reduction in neutralization against one single mutation: E484Q. Besides, we found a significant decrease in neutralizing activity in convalescent patients and BBIBP-CorV vaccines for B.1.1.529. These findings demonstrate that inactivated-virus vaccination or convalescent sera showed reduced, but still significant, neutralization against the B.1.617.1 variant.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingna Xun
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
- Fubio (Suzhou) Biomedical Technology Co., Ltd, Suzhou, China
| | - Qing Wen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yixiao Lin
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Songhua Yuan
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinlong Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunyan Zhou
- Fubio (Suzhou) Biomedical Technology Co., Ltd, Suzhou, China
| | - Li Jin
- Fubio (Suzhou) Biomedical Technology Co., Ltd, Suzhou, China
| | - Weijian Xie
- Fubio (Suzhou) Biomedical Technology Co., Ltd, Suzhou, China
| | - Jianping Liu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Pengfei Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- The Third People’s Hospital of Shenzhen, Shenzhen, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
50
|
Long-term memory CD8 + T cells specific for SARS-CoV-2 in individuals who received the BNT162b2 mRNA vaccine. Nat Commun 2022; 13:5251. [PMID: 36068240 PMCID: PMC9447987 DOI: 10.1038/s41467-022-32989-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term memory T cells have not been well analyzed in individuals vaccinated with a COVID-19 vaccine although analysis of these T cells is necessary to evaluate vaccine efficacy. Here, investigate HLA-A*24:02-restricted CD8+ T cells specific for SARS-CoV-2-derived spike (S) epitopes in individuals immunized with the BNT162b2 mRNA vaccine. T cells specific for the S-QI9 and S-NF9 immunodominant epitopes have higher ability to recognize epitopes than other epitope-specific T cell populations. This higher recognition of S-QI9-specific T cells is due to the high stability of the S-QI9 peptide for HLA-A*24:02, whereas that of S-NF9-specific T cells results from the high affinity of T cell receptor. T cells specific for S-QI9 and S-NF9 are detectable >30 weeks after the second vaccination, indicating that the vaccine induces long-term memory T cells specific for these epitopes. Because the S-QI9 epitope is highly conserved among SARS-CoV-2 variants, S-QI9-specific T cells may help prevent infection with SARS-CoV-2 variants. mRNA vaccines have been shown to prevent SARS-CoV-2 infection and reduce hospitalization and mortality rates. Here, the authors show evidence of long-term memory CD8 + T cells in individuals who received the BNT162b2 SARS-CoV-2 mRNA vaccine.
Collapse
|