1
|
Liu C, Zhou R, Chen B, Yan X, Guo L, Tang Y, Zuo X, Guo X, Yu H, Chen J, Guo Z, Wang F, Xu C. Inflammatory microenvironment-responsive nanomicelles for acute lung injury therapy: ROS-scavenging and macrophage repolarization. Mater Today Bio 2025; 31:101622. [PMID: 40104650 PMCID: PMC11919404 DOI: 10.1016/j.mtbio.2025.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/09/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
The pathogenesis of acute lung injury (ALI) is characterized by an uncontrolled inflammatory response, marked by excessive production of reactive oxygen species (ROS) and the infiltration of inflammatory cells, particularly macrophages, which play a pivotal role in disease progression. The synergistic effect of ROS scavenging and macrophage repolarization provides a promising strategy for effective ALI treatment. Herein, we developed a novel type of self-assembling nanomicelles, which were composed of poly-L-glutamic acid (PLG) and 4-Hydroxymethyl phenylboronic acid (PBA). The nanomicelles (PPDex micelles) had a high drug-loading capacity for dexamethasone (Dex) based on boronic ester bonds, which exhibited reversible cleavage under inflammatory conditions characterized by elevated levels of ROS or decreased pH values. These PPDex micelles revealed rapid drug-responsive release behavior in the inflammatory environment, and in vivo studies demonstrated their efficacy in modulating cytokines, inhibiting oxidative stress, and promoting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, which ultimately suppressed the progression of ALI. Moreover, the PPDex micelles had the effective ability to effectively suppress the NF-кB and ROS/NLRP3 inflammatory pathways. Therefore, this study presented a novel and potent therapeutic strategy for ALI treatment, which could promote the clinical application of polymer nanomicelles in the treatment of ALI.
Collapse
Affiliation(s)
- Chang Liu
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Rui Zhou
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Baiqiao Chen
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xinran Yan
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Lei Guo
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yixin Tang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xu Zuo
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xiaoping Guo
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fang Wang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Caina Xu
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| |
Collapse
|
2
|
Shamim L, Musharaf I, Nashwan AJ. Dexamethasone in coronavirus disease 2019 care: Dosage and utilization insights. World J Virol 2025; 14:98765. [PMID: 40134846 PMCID: PMC11612875 DOI: 10.5501/wjv.v14.i1.98765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2. It was declared a global pandemic on March 11, 2020, by the World Health Organization. An excessive inflammatory response is a severe respiratory manifestation of COVID-19, which becomes predominant in later stages. Due to its immunosuppressive and anti-inflammatory properties, dexamethasone is the first systemic glucocorticoid to treat severe COVID-19 patients. This editorial reviews the efficacy and safety of high-dose vs low-dose dexamethasone in patients with COVID-19. Findings indicate that using low-dose dexamethasone is beneficial and emphasize the need for additional research on the use of high-dose dexamethasone. While the study provides a robust evidence base, it is limited by the lack of long-term data, focus on specific outcomes and heterogeneity of the included studies. Future research should focus on the long-term effects of dexamethasone and its impact across varying disease severities and patient populations to refine treatment strategies and improve patient care.
Collapse
Affiliation(s)
- Laiba Shamim
- Department of Clinical Medicine, Jinnah Sindh Medical University, Karachi 75510, Sindh, Pakistan
| | - Imshaal Musharaf
- Department of Medicine, Jinnah Sindh Medical University, Karachi 75510, Sindh, Pakistan
| | - Abdulqadir J Nashwan
- Department of Nursing and Midwifery Research, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
3
|
Wang X, Zhao H, Lin W, Fan W, Zhuang T, Wang X, Li Q, Wei X, Wang Z, Chen K, Yang L, Ding L. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156513. [PMID: 40010033 DOI: 10.1016/j.phymed.2025.156513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe inflammatory condition characterized by dysregulated immune responses and high mortality rates, with limited effective therapeutic options currently available. Panax notoginseng saponins (PNS), bioactive compounds derived from Panax notoginseng, have shown promise in mitigating lipopolysaccharide (LPS)-induced ALI. However, the molecular mechanisms underlying their therapeutic effects remain poorly understood. Given the critical role of M2-like macrophage polarization in resolving inflammation and promoting tissue repair, we investigated whether PNS exerts its protective effects in ALI by modulating this process. Furthermore, we explored the specific involvement of the signal transducer and activator of transcription 6 (STAT6) pathway in mediating these effects. METHODS Chemical profiling of PNS was performed using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), followed by quantitative analysis of its major bioactive components via high-performance liquid chromatography (HPLC). To evaluate the therapeutic efficacy of PNS and its principal constituents, we established an ALI mouse model through intratracheal administration of LPS. Comprehensive assessments included lung field shadowing, oxygen saturation levels, pulmonary function, and systematic histopathological examination. The regulatory effects of PNS on macrophage polarization were examined in THP-1 cells and bone marrow-derived macrophages (BMDMs), with cellular phenotypes analyzed by flow cytometry. To elucidate the mechanistic role of STAT6 in PNS-mediated protection, experiments were conducted using Stat6-deficient BMDMs and Stat6 knockout mice. RESULTS UPLC-Q-TOF-MS and HPLC identified and quantified the principal components of PNS: Notoginsenoside R1, Ginsenoside Rg1, Ginsenoside Re, and Ginsenoside Rb1. PNS treatment dose-dependently reduced inflammatory responses in LPS-induced ALI mice, as evidenced by decreased cytokine levels. Each of the four major PNS components independently alleviated ALI symptoms in mice. Pathway analysis revealed 56 potential ALI-related targets, with Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggesting that PNS exerts its protective effects by modulating inflammatory signaling pathways. In vitro studies demonstrated that PNS promoted STAT6 phosphorylation and nuclear translocation, enhancing M2-like macrophage polarization and interleukin-10 (IL-10) secretion in a STAT6-dependent manner. Genetic ablation of Stat6 partially reversed the protective effects of PNS on ALI, macrophage polarization, and IL-10 production, confirming the pivotal role of STAT6 in mediating PNS activity. CONCLUSION This study demonstrates that PNS alleviates LPS-induced ALI by promoting STAT6-dependent M2-like macrophage polarization, highlighting its potential as a therapeutic agent for ALI. These findings provide mechanistic insights into the anti-inflammatory actions of PNS and underscore the importance of STAT6 signaling in its protective effects.
Collapse
Affiliation(s)
- Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Hanyang Zhao
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wenyuan Lin
- Endocrinology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Wenxiang Fan
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Xu Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Qi Li
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Xiaohui Wei
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Kaixian Chen
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| |
Collapse
|
4
|
Jiang Y, Fan X, Yu Y, Ge H, Liu C, Zhang Y, Yu L, Yin W, Zhou Z. USP13 overexpression in BMSCs enhances anti-apoptotic ability and guards against methylprednisolone-induced osteonecrosis in rats. Stem Cells 2025; 43:sxae069. [PMID: 39460600 DOI: 10.1093/stmcls/sxae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Methylprednisolone (MPS) use is linked to increased cases of osteonecrosis of the femoral head (ONFH). Bone marrow mesenchymal stem cells (BMSCs) have shown potential for treating MPS-induced ONFH, but their effectiveness is limited by high apoptosis rates post-transplantation. We developed a pretreatment strategy for BMSCs to improve their viability. In a rat model of MPS-induced ONFH, we evaluated the effects of USP13 overexpression in BMSCs through micro-CT, HE staining, and TUNEL staining. USP13-overexpressing BMSCs significantly reduced ONFH severity compared to plain BMSCs and direct lentivirus injection. USP13 also protected BMSCs from MPS-induced apoptosis by modulating PTEN and reducing AKT phosphorylation. This led to decreased expression of apoptotic genes and proteins in USP13-overexpressing BMSCs. Our findings highlight USP13 as a promising target for enhancing BMSC survival and efficacy in treating MPS-induced ONFH.
Collapse
Affiliation(s)
- Yixin Jiang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoli Fan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yaling Yu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hongfan Ge
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chengyin Liu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanyan Zhang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lingyun Yu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wen Yin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhenlei Zhou
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
5
|
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, Shu HQ, Peng K, Wu Y, Zhang DY, Qiu Y, Zhou X, Yao YM, Shang Y. Viral sepsis: diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res 2024; 11:78. [PMID: 39676169 PMCID: PMC11648306 DOI: 10.1186/s40779-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Sepsis, characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection, remains a significant challenge in clinical practice. Despite advancements in understanding host-bacterial interactions, molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standard evaluations typically exclude viral panels. Moreover, these viruses not only activate conventional pattern recognition receptors (PRRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) but also initiate primary antiviral pathways such as cyclic guanosine monophosphate adenosine monophosphate (GMP-AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling and interferon response mechanisms. Such activations lead to cellular stress, metabolic disturbances, and extensive cell damage that exacerbate tissue injury while leading to a spectrum of clinical manifestations. This complexity poses substantial challenges for the clinical management of affected cases. In this review, we elucidate the definition and diagnosis criteria for viral sepsis while synthesizing current knowledge regarding its etiology, epidemiology, and pathophysiology, molecular mechanisms involved therein as well as their impact on immune-mediated organ damage. Additionally, we discuss clinical considerations related to both existing therapies and advanced treatment interventions, aiming to enhance the comprehensive understanding surrounding viral sepsis.
Collapse
Affiliation(s)
- Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Gang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Lan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Bo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Le-Hao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Qing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Ding-Yu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Meybodi SM, Rabori VS, Salkhorde D, Jafari N, Zeinaly M, Mojodi E, Kesharwani P, Saberiyan M, Sahebkar A. Dexamethasone in COVID-19 treatment: Analyzing monotherapy and combination therapy approaches. Cytokine 2024; 184:156794. [PMID: 39489912 DOI: 10.1016/j.cyto.2024.156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic has prompted the exploration of effective treatment options, with dexamethasone emerging as a key corticosteroid for severe cases. This review evaluates the efficacy and safety of dexamethasone, highlighting its ability to reduce mortality rates, alleviate acute respiratory distress syndrome (ARDS), and mitigate hyperinflammation. While dexamethasone shows therapeutic promise, potential adverse effects-including cardiovascular issues, neuropsychiatric complications, lung infections, and liver damage-necessitate careful monitoring and individualized treatment strategies. The review also addresses the debate over using dexamethasone alone versus in combination with other therapies targeting SARS-CoV-2, examining potential synergistic effects and drug resistance. In summary, dexamethasone is a valuable treatment option for COVID-19 but its risks highlight the need for tailored surveillance approaches. Further research is essential to establish clear guidelines for optimizing treatment and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Darya Salkhorde
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Science, University of Guilan
| | - Elham Mojodi
- Depatment of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Kang M, Zhuang C, Oh J, Lee M. Pulmonary Delivery of Anti-microRNA Oligonucleotide and Glycyrrhizic Acid Using Ternary Peptide Micelles for the Treatment of Acute Lung Injury. Biomater Res 2024; 28:0107. [PMID: 39524248 PMCID: PMC11544319 DOI: 10.34133/bmr.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Acute lung injury (ALI) is a devastating inflammatory disease. In lungs with inflammation, microRNA155 (miR155) induces inflammatory cytokines by inhibiting the expression of suppressor of cytokine signaling-1 (SOCS1). In addition, glycyrrhizic acid (GA) has been suggested as an anti-inflammatory drug for ALI, since it is an efficient inhibitor of nuclear factor-κB. In this study, a combined delivery system of anti-miR155 oligonucleotides (AMO155) and GA was developed with R3V6 for the treatment of ALI. R3V6s formed comicelles with cholesterol-conjugated AMO155 (AMO155c) by charge and hydrophobic interactions. GA, an amphiphilic drug, was integrated to AMO155c-R3V6 micelles, producing AMO155c-R3V6-GA ternary micelles. The size of AMO155c-R3V6-GA was smaller than that of AMO155c-R3V6, suggesting that GA integration reduced the size of the micelles effectively. In addition, AMO155c-R3V6-GA had higher delivery efficiency than AMO155c-R3V6 micelles. In the comparison of AMO155-R3V6-GA and AMO155c-R3V6-GA, cholesterol moiety of AMO155c increased the stability and delivery efficiency of the ternary micelles. For in vivo evaluation, nebulized AMO155c-R3V6-GA micelle solution were administrated into the lungs of the ALI animal models intratracheally. AMO155c-R3V6-GA micelles had improved AMO155c delivery efficiency, compared with the AMO155c-polyethylenimine complex and AMO155c-R3V6 micelles in the lungs. As a result, SOCS1 expression was increased, and proinflammatory cytokines were reduced in the AMO155c-R3V6-GA micelle groups, compared with the other groups. In conclusion, AMO155c-R3V6-GA ternary micelles may be a useful delivery system for combined therapy of AMO155 and GA for the treatment of ALI.
Collapse
Affiliation(s)
- Minji Kang
- Department of Bioengineering,
Hanyang University, 222 Wangsimni-ro, Seoul, Republic of Korea
| | - Chuanyu Zhuang
- Department of Bioengineering,
Hanyang University, 222 Wangsimni-ro, Seoul, Republic of Korea
| | - Jihun Oh
- Department of Bioengineering,
Hanyang University, 222 Wangsimni-ro, Seoul, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering,
Hanyang University, 222 Wangsimni-ro, Seoul, Republic of Korea
| |
Collapse
|
8
|
Yang Y, Huang F, Qiao X, Chen S, Zhang C, Deng X, Gu W, Peng L, Cao M, Jiang J, Gao GF, Liu Y, Jiang C. Potential COVID-19 remedies from repurposed drugs and herbal small RNAs. IUBMB Life 2024; 76:960-971. [PMID: 38923653 DOI: 10.1002/iub.2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/13/2024] [Indexed: 06/28/2024]
Abstract
To date, SARS-CoV-2 has caused millions of deaths, but the choice of treatment is limited. We previously established a platform for identifying Food and Drug Administration (FDA)-approved repurposed drugs for avian influenza A virus infections that could be used for coronavirus disease 2019 (COVID-19) treatment. In this study, we analyzed blood samples from two cohorts of 63 COVID-19 patients, including 19 patients with severe disease. Among the 39 FDA-approved drugs we identified for COVID-19 therapy in both cohorts, 23 drugs were confirmed by literature mining data, including 14 drugs already under COVID-19 clinical trials and 9 drugs reported for COVID-19 treatments, suggesting the remaining 16 FDA-approved drugs may be candidates for COVID-19 therapy. Additionally, we previously reported that herbal small RNAs (sRNAs) could be effective components in traditional Chinese medicine (TCM) for treating COVID-19. Based on the abundance of sRNAs, we screened the 245 TCMs in the Bencao (herbal) sRNA Atlas that we had previously established, and we found that the top 12 TCMs for COVID-19 treatment was consistent across both cohorts. We validated the efficiency of the top 30 sRNAs from each of the top 3 TCMs for COVID-19 treatment in poly(I:C)-stimulated human non-small cell lung cancer cells (A549 cells). In conclusion, our study recommends potential COVID-19 remedies using FDA-approved repurposed drugs and herbal sRNAs from TCMs.
Collapse
Affiliation(s)
- Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Fengming Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Qiao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng Chen
- Shenzhen Tradmonal Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Cong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingyu Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wentao Gu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ling Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Mengli Cao
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jingmei Jiang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Chengyu Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Chen TY, Chen KC, Zhang YH, Lin CA, Hsu WY, Lin NY, Lai PS. Development of a dexamethasone-hyaluronic acid conjugate with selective targeting effect for acute lung injury therapy. Int J Biol Macromol 2024; 280:136149. [PMID: 39353517 DOI: 10.1016/j.ijbiomac.2024.136149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Acute lung injury (ALI), a critical complication of COVID-19, is characterized by widespread inflammation and severe pulmonary damage, necessitating intensive care for those affected. Although glucocorticoids (GCs), such as dexamethasone (Dex), have been employed clinically to lower mortality, their nonspecific systemic distribution has led to significant side effects, limiting their use in ALI treatment. In this study, we explored the conjugation of Dex to hyaluronic acid (HA) to achieve targeted delivery to inflamed lung tissues. We achieved a conjugation efficiency exceeding 98 % using a cosolvent system, with subsequent ester bond cleavage releasing the active Dex, as verified by liquid chromatography. Biodistribution and cellular uptake studies indicated the potential of the HA conjugate for cluster of differentiation 44 (CD44)-mediated targeting and accumulation. In a lipopolysaccharide-induced ALI mouse model, intravenous (IV) HA-Dex administration showed superior anti-inflammatory effects compared to free Dex administration. Flow cytometry analysis suggested that the HA conjugate preferentially accumulated in lung macrophages, suggesting the possibility of reducing clinical Dex dosages through this targeted delivery approach.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Basic Research Division, Holy Stone Healthcare Co., Ltd., 114 Taipei, Taiwan
| | - Ke-Cheng Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Zhang
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-An Lin
- Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wan-Yun Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
10
|
Fernández JJ, Marín A, Rosales R, Penrice-Randal R, Mlcochova P, Alvarez Y, Villalón-Letelier F, Yildiz S, Pérez E, Rathnasinghe R, Cupic A, Kehrer T, Uccellini MB, Alonso S, Martínez F, McGovern BL, Clark JJ, Sharma P, Bayón Y, Alonso A, Albrecht RA, White KM, Schotsaert M, Miorin L, Stewart JP, Hiscox JA, Gupta RK, Irigoyen N, García-Sastre A, Crespo MS, Fernández N. The IRE1α-XBP1 arm of the unfolded protein response is a host factor activated in SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167193. [PMID: 38648902 DOI: 10.1016/j.bbadis.2024.167193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
SARS-CoV-2 infection can cause severe pneumonia, wherein exacerbated inflammation plays a major role. This is reminiscent of the process commonly termed cytokine storm, a condition dependent on a disproportionated production of cytokines. This state involves the activation of the innate immune response by viral patterns and coincides with the biosynthesis of the biomass required for viral replication, which may overwhelm the capacity of the endoplasmic reticulum and drive the unfolded protein response (UPR). The UPR is a signal transduction pathway composed of three branches that is initiated by a set of sensors: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6). These sensors control adaptive processes, including the transcriptional regulation of proinflammatory cytokines. Based on this background, the role of the UPR in SARS-CoV-2 replication and the ensuing inflammatory response was investigated using in vivo and in vitro models of infection. Mice and Syrian hamsters infected with SARS-CoV-2 showed a sole activation of the Ire1α-Xbp1 arm of the UPR associated with a robust production of proinflammatory cytokines. Human lung epithelial cells showed the dependence of viral replication on the expression of UPR-target proteins branching on the IRE1α-XBP1 arm and to a lower extent on the PERK route. Likewise, activation of the IRE1α-XBP1 branch by Spike (S) proteins from different variants of concern was a uniform finding. These results show that the IRE1α-XBP1 system enhances viral replication and cytokine expression and may represent a potential therapeutic target in SARS-CoV-2 severe pneumonia.
Collapse
Affiliation(s)
- Jose Javier Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arturo Marín
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebekah Penrice-Randal
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yolanda Alvarez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| | | | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Enrique Pérez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Ciencias de la Salud, Universidad Europea Miguel de Cervantes (UEMC), 47012 Valladolid, Spain
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Fernando Martínez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Briana Lynn McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jordan J Clark
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Yolanda Bayón
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Andrés Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James P Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Infectious Diseases, University of Georgia, GA 30602, USA
| | - Julian A Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore, Singapore; Department of Preventive Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain.
| | - Nieves Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| |
Collapse
|
11
|
Oliveira VLS, Queiroz-Junior CM, Hoorelbeke D, Santos FRDS, Chaves IDM, Teixeira MM, Russo RDC, Proost P, Costa VV, Struyf S, Amaral FA. The glycosaminoglycan-binding chemokine fragment CXCL9(74-103) reduces inflammation and tissue damage in mouse models of coronavirus infection. Front Immunol 2024; 15:1378591. [PMID: 38686377 PMCID: PMC11056509 DOI: 10.3389/fimmu.2024.1378591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Methods Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. Results In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. Discussion These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.
Collapse
Affiliation(s)
- Vivian Louise Soares Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Delphine Hoorelbeke
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Felipe Rocha da Silva Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ian de Meira Chaves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo de Castro Russo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paul Proost
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sofie Struyf
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Harvey BJ. Molecular mechanisms of dexamethasone actions in COVID-19: Ion channels and airway surface liquid dynamics. Steroids 2024; 202:109348. [PMID: 38049079 DOI: 10.1016/j.steroids.2023.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The COVID-19 pandemic has been a global health crisis of unprecedented magnitude. In the battle against the SARS-CoV-2 coronavirus, dexamethasone, a widely used corticosteroid with potent anti-inflammatory properties, has emerged as a promising therapy in the fight against severe COVID-19. Dexamethasone is a synthetic glucocorticoid that exerts its therapeutic effects by suppressing the immune system and reducing inflammation. In the context of COVID-19, the severe form of the disease is often characterized by a hyperactive immune response, known as a cytokine storm. Dexamethasone anti-inflammatory properties make it a potent tool in modulating this exaggerated immune response. Lung inflammation may lead to excessive fluid accumulation in the airways which can reduce gas exchange and mucociliary clearance. Pulmonary oedema and flooding of the airways are hallmarks of severe COVID-19 lung disease. The volume of airway surface liquid is determined by a delicate balance of salt and water secretion and absorption across the airway epithelium. In addition to its anti-inflammatory actions, dexamethasone modulates the activity of ion channels which regulate electrolyte and water transport across the airway epithelium. The observations of dexamethasone activation of sodium ion absorption via ENaC Na+ channels and inhibition of chloride ion secretion via CFTR Cl- channels to decrease airway surface liquid volume indicate a novel therapeutic action of the glucocorticoid to reverse airway flooding. This brief review delves into the early non-genomic and late genomic signaling mechanisms of dexamethasone regulation of ion channels and airway surface liquid dynamics, shedding light on the molecular mechanisms underpinning the action of the glucocorticoid in managing COVID-19.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Centro de Estudios Cientificos, Valdivia, Chile.
| |
Collapse
|
13
|
Danaiyan S, Abbasi MM, Raeisi S, Argani H, Ghorbanihaghjo A, Shanehbandi D, Roshangar L, Poursistany H, Abedi S, Mohammadian J, Bahremani M, Rashtchizadeh N. The Effects of Remdesivir and Dexamethasone on Renal Sirtuin-1 Expression and Renal Function in Male Rats. Appl Biochem Biotechnol 2024; 196:632-642. [PMID: 37166648 PMCID: PMC10172727 DOI: 10.1007/s12010-023-04529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Remdesivir (REM) and dexamethasone (DEX) both have been used to treat coronavirus disease 2019 (COVID-19). The present study aimed to evaluate the effects of REM and DEX on kidney structure and function with particular focus on the probable renal sirtuin-1 (SIRT1) expression alteration in rats. Twenty-four male Wistar rats were divided into four groups, as follows: group A (control) received normal saline (5 mL/kg/day for 10 days); group B (REM) received REM (17 mg/kg/day on the first day, and 8.5 mg/kg/day on the 2nd-10th days); group C (REM + DEX) received both REM (17 mg/kg/day on the first day, and 8.5 mg/kg/day on the 2nd-10th days) and DEX (7 mg/kg/day, for 10 days); group D (DEX) received DEX (7 mg/kg/day for 10 days). Renal SIRT1 expression and kidney structure and function-related factors were evaluated by standard methods. The mean levels of urea in the REM + DEX group (60.83 ± 6.77, mg/dL) were significantly higher than in the control (48.33 ± 3.01, mg/dL; p = 0.002) and DEX (51.22 ± 4.99, mg/dL; p = 0.018) groups. The mean levels of creatinine in the REM (0.48 ± 0.08, mg/dL) and REM + DEX (0.50 ± 0.04, mg/dL) groups were higher than in the control group (48.33 ± 3.0 mg/dL) significantly (p = 0.022 and p = 0.010, respectively). The renal SIRT1 expression was significantly (p = 0.018) lower in the REM + DEX group (0.36 ± 0.35) than in the control group (1.34 ± 0.48). Tubulointerstitial damage (TID) scores in REM + DEX-treated rats (2.60 ± 0.24) were significantly higher than in the control (0.17 ± 0.17, p = 0.001) and DEX (0.50 ± 0.29, p = 0.005) groups. The administration of DEX and REM might lead to kidney injury associated with SIRT1 downregulation.
Collapse
Affiliation(s)
- Sepideh Danaiyan
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran
| | | | - Sina Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Argani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniyeh Poursistany
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Abedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Bahremani
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran
| | - Nadereh Rashtchizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran.
| |
Collapse
|
14
|
Myasoedov AA, Shubnyakov II, Sereda AP, Karelkin VV, Yunkina EA, Berezin GV. Osteonecrosis of the Femoral Head: Another Legacy of COVID-19? TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2023; 29:49-58. [DOI: 10.17816/2311-2905-16764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background. Recovery from COVID-19 does not always proceed without complications, especially in patients who have suffered severe forms of the disease. Most researchers confirm a significant increase in the incidence of osteonecrosis of the femoral head (ONFH) after COVID-19. However, there is no clear opinion on the individual aspects of the development and course of the disease. This is an extremely important issue that allows us to identify the main risk groups for the development of post-COVID-19 osteonecrosis and, consequently, to perform the earliest possible screening of this complication.
Aims of the study: 1) To evaluate the impact of the past COVID-19 on epidemiologic parameters and clinical course of osteonecrosis of the femoral head in patients; 2) to study the causes of its development.
Methods. We have analyzed the data of medical histories of 674 patients diagnosed with osteonecrosis of the femoral head who sought medical care in 2018 and in 2022. Patients were divided into 4 groups according to the presumed causes of development of the disease. The first group enrolled 183 patients who underwent COVID-19 and received steroid therapy (ST). The second group included 78 patients who underwent COVID-19 without ST therapy. The third group consisted of 103 patients with ONFH that manifested in 2022 without COVID-19 in the previous medical history. The comparison group was made up of 310 patients who developed ONFH in 2018 before the appearance of the SARS-CoV-2 virus.
Results. The sample of patients with COVID-19-associated osteonecrosis differed significantly from patients without COVID-19, in terms of gender, age, time of disease onset, extent of the femoral head damage, and disease progression rate (p0.001). The level of early ONFH diagnosis was extremely low, not differing from that in the pre-pandemic period.
Conclusion. The COVID-19 pandemic has increased the incidence of ONFH, significantly modifying both its epidemiology and clinical picture. Nevertheless, the vigilance of practitioners remains extremely low, which affects the timely diagnosis of the disease.
Collapse
|
15
|
Ataei S, Nemati-Kande E, Bahrami A. Quantum DFT studies on the drug delivery of favipiravir using pristine and functionalized chitosan nanoparticles. Sci Rep 2023; 13:21984. [PMID: 38081997 PMCID: PMC10713654 DOI: 10.1038/s41598-023-49298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Considering the spread of the COVID-19 pandemic, finding new drugs along with the development of effective drug delivery methods can help in the treatment of this disease. For this reason, in this research work, the possibility of drug-delivery of Favipiravir (FP), one of the drugs approved in the treatment of COVID-19, by pristine chitosan (Chit) nanoparticles (NP), and functionalized chitosan nanoparticles with N-acylate, N-methyl, O-acetyl, and Oxazoline functional groups was studied using quantum mechanical DFT methods at B3LYP-D3(BJ)/6-311 + g(d,p) theoretical level in water medium. The QTAIM, NBO, DOS, frontier orbital, conceptual-DFT indices, and non-covalent interaction analysis were further implemented to investigate the possible interactions between FP and Chit NPs. The results show that the adsorption of FP on Chit NPs is done through the creation of hydrogen bonds, and the highest absorption energy of - 18.15 kcal/mol between pristine chitosan and FP. In the case of all functionalized Chit NPs, a decrease in the absorption energy is observed, which is more noticeable in the case of N-acylated and O-acetyl functionalize Chit NPs, and indicates the weakening of the van der Waals interactions for these cases. Considering the compatibility of Chit NPs with the human body and their non-toxicity, as well as the fact that factors such as pH, solubility, the ionic strength, and so on can be adjusted to control the release rate using the functionalized Chit NPs, it seems that the results of this work can be a comprehensive guide to design the drug delivery methods of FP drug using Chit NPs, to reduce the symptoms of COVID-19 disease.
Collapse
Affiliation(s)
- Sheyda Ataei
- Department of Physical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Ebrahim Nemati-Kande
- Department of Physical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Aidin Bahrami
- Department of Physical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
16
|
Li L, Sassen S, Hunfeld N, Smeets T, Ewoldt T, van den Berg SAA, Koch BCP, Endeman H. Population pharmacokinetics of dexamethasone in critically ill COVID-19 patients: Does inflammation play a role? J Crit Care 2023; 78:154395. [PMID: 37542750 DOI: 10.1016/j.jcrc.2023.154395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
PURPOSE The aim of this study is to design a population pharmacokinetic study to gain a deeper understanding of the pharmacokinetics of dexamethasone in critically ill COVID-19 patients in order to identify relevant covariates that can be used to personalize dosing regimens. METHODS Blood samples from critically ill patients receiving fixed-dose intravenous dexamethasone (6 mg/day) for the treatment of COVID-19 were sampled in a retrospective pilot study. The data were analyzed using Nonlinear Mixed Effects Modeling (NONMEM) software for population pharmacokinetic analysis and clinically relevant covariates were selected and evaluated. RESULTS A total of 51 dexamethasone samples from 18 patients were analyzed and a two-compartment model fit the data best. The mean population estimates were 2.85 L/h (inter-individual-variability 62.9%) for clearance, 15.4 L for the central volume of distribution, 12.3 L for the peripheral volume of distribution and 2.1 L/h for the inter-compartmental distribution clearance. The covariate analysis showed a significant negative correlation between dexamethasone clearance and CRP. CONCLUSIONS Dexamethasone PK parameters in ICU COVID patients were substantially different from those from non-ICU non-COVID patients, and inflammation may play an important role in dexamethasone exposure. This finding suggests that fixed-dose dexamethasone over several days may not be appropriate for ICU COVID patients.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Sebastiaan Sassen
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nicole Hunfeld
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tim Smeets
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tim Ewoldt
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sjoerd A A van den Berg
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henrik Endeman
- Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
17
|
Bakirhan EG, Parlar A. An evaluation of the effects of glabridin and dexamethasone in bleomycin-induced pulmonary fibrosis: The role of BK Ca channels. Tissue Cell 2023; 85:102246. [PMID: 39491402 DOI: 10.1016/j.tice.2023.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/01/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
Pulmonary fibrosis is a refractory entity with a progressive course and no effective therapeutic options. The purpose of this study was to investigate the potential involvement of both glabridin and dexamethasone (Dex) in inflammatory and fibrotic responses in a bleomycin (BLM)-induced pulmonary fibrosis model. The role of Ca+2-activated K+ channels (BKCa) in the anti-inflammatory effects of glabridin was also examined. Adult female Wistar rats were divided into six groups: saline control, BLM, BLM+Gla (BLM+glabridin), BLM+IbTX+Gla (BLM+iberiotoxin+Gla, BKCa channel blocker), BLM+Dex, and BLM+Veh (BLM+dimethylsulfoxide). Inflammatory cell count values, and interleukin (IL)- 6, tumor necrosis factor (TNF)-α, glutathione (GSH), and malondialdehyde (MDA) levels were measured in bronchoalveolar lavage (BAL) fluid in order to measure fibrosis and the extent of tissue damage, in addition to stereological, immunohistochemical and histopathological examinations. Whole-body plethysmography was used to evaluate pulmonary function. Treatments with glabridin and Dex significantly reduced pathological injury and fibrosis in lung tissue, levels of TNF-α and IL-6 increased by BLM, oxidative stress, and fibrillin-1 scoring. Glabridin and Dex also reversed the increases observed in neutrophil, lymphocyte, and macrophage counts in BAL fluid induced by BLM. Glabridin and Dex were found to ameliorate the abnormal course of PIF, PEF, EV, TV, f, and Penh values caused by BLM. Our findings suggest that glabridin and Dex may exert anti-fibrotic effects by suppressing oxidative stress and inhibiting the inflammatory response, and that glabridin may improve pulmonary function through activation of BKCa channels. Both glabridin and Dex may therefore be of therapeutic use in pulmonary fibrosis.
Collapse
Affiliation(s)
- Elfide Gizem Bakirhan
- Department of Histology and Embryology, Faculty of Medicine, Adıyaman University, Turkey.
| | - Ali Parlar
- Department of Pharmacology, Faculty of Medicine, Adıyaman University, Turkey
| |
Collapse
|
18
|
Inceu AI, Neag MA, Catinean A, Bocsan CI, Craciun CI, Melincovici CS, Muntean DM, Onofrei MM, Pop RM, Buzoianu AD. The Effects of Probiotic Bacillus Spores on Dexamethasone-Treated Rats. Int J Mol Sci 2023; 24:15111. [PMID: 37894792 PMCID: PMC10606902 DOI: 10.3390/ijms242015111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Glucocorticoids are effective anti-inflammatory and immunosuppressive agents. Long-term exposure is associated with multiple metabolic side effects. Spore-forming probiotic bacteria have shown modulatory properties regarding glycolipid metabolism and inflammation. The aim of this study was to evaluate, for the first time, the effects of Bacillus species spores (B. licheniformis, B. indicus, B. subtilis, B. clausii, and B. coagulans) alone and in combination with metformin against dexamethasone-induced systemic disturbances. A total of 30 rats were randomly divided into 5 groups: group 1 served as control (CONTROL), group 2 received dexamethasone (DEXA), group 3 received DEXA and MegaSporeBiotic (MSB), group 4 received DEXA and metformin (MET), and group 5 received DEXA, MSB, and MET. On the last day of the experiment, blood samples and liver tissue samples for histopathological examination were collected. We determined serum glucose, total cholesterol, triglycerides, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), catalase, total antioxidant capacity (TAC), and metformin concentration. DEXA administration caused hyperglycemia and hyperlipidemia, increased inflammation cytokines, and decreased antioxidant markers. Treatment with MSB reduced total cholesterol, suggesting that the administration of Bacillus spores-based probiotics to DEXA-treated rats could ameliorate metabolic parameters.
Collapse
Affiliation(s)
- Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| | - Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Corina Ioana Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| | - Cristian Ioan Craciun
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| | - Carmen Stanca Melincovici
- Department of Histology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (C.S.M.); (M.M.O.)
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Mădălin Mihai Onofrei
- Department of Histology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (C.S.M.); (M.M.O.)
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| |
Collapse
|
19
|
Kolloli A, Ramasamy S, Kumar R, Nisa A, Kaplan G, Subbian S. A phosphodiesterase-4 inhibitor reduces lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Front Immunol 2023; 14:1270414. [PMID: 37854602 PMCID: PMC10580809 DOI: 10.3389/fimmu.2023.1270414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection involves pulmonary inflammation that can progress to acute respiratory distress syndrome, a primary cause of lung damage/fibrosis in patients with Coronavirus Disease-2019 (COVID-19). Currently, there is no efficacious therapy available to alleviate lung fibrosis in COVID-19 cases. In this proof-of-concept study, we evaluated the effect of CC-11050, a small molecule phosphodiesterase-4 inhibitor, in dampening lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Methods Following intranasal inoculation with SARS-CoV-2/WA- 1/2000 strain, hamsters were treated with CC-11050 or placebo by gavage from day-1 until day-16 post-infection (dpi). Animals were monitored for body weight changes, virus titers, histopathology, fibrotic remodeling, cellular composition in the lungs between 2 and 16 dpi. Results We observed significant reduction in lung viral titer with concomitant reduction in inflammation and fibrotic remodeling in CC-11050 treated hamsters compared to untreated animals. The reductions in immunopathologic manifestations were associated with significant downregulation of inflammatory and fibrotic remodeling gene expression, reduced infiltration of activated monocytes, granulocytes, and reticular fibroblasts in CC-11050 treated animals. Cellular studies indicate a link between TNF-α and fibrotic remodeling during CC-11050 therapy. Discussion These findings suggest that CC-11050 may be a potential host-directed therapy to dampen inflammation and fibrosis in COVID-19 cases.
Collapse
Affiliation(s)
- Afsal Kolloli
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Annuurun Nisa
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Gilla Kaplan
- University of Cape Town, Cape Town, South Africa
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
20
|
Tirunavalli SK, Pramatha S, Eedara AC, Walvekar KP, Immanuel C, Potdar P, Nayak PG, Chamallamudi MR, Sistla R, Chilaka S, Andugulapati SB. Protective effect of β-glucan on Poly(I:C)-induced acute lung injury/inflammation: Therapeutic implications of viral infections in the respiratory system. Life Sci 2023; 330:122027. [PMID: 37597767 DOI: 10.1016/j.lfs.2023.122027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
AIMS Acute lung inflammation, particularly acute respiratory distress syndrome (ARDS), is caused by a variety of pathogens including bacteria and viruses. β-Glucans have been reported to possess both anti-inflammatory and immunomodulatory properties. The current study evaluated the therapeutic effect of β-glucans on polyinosinic:polycytidylic acid (Poly(I:C)) induced lung inflammation in both hamster and mice models. MAIN METHODS Poly(I:C)-induced ALI/inflammation models were developed in hamsters (2.5 mg/kg) and mice (2 mg/kg) by delivering the Poly(I:C) intratracheally, and followed with and without β-glucan administration. After treatment, lung mechanics were assessed and lung tissues were isolated and analyzed for mRNA/protein expression, and histopathological examinations. KEY FINDINGS Poly(I:C) administration, caused a significant elevation of inflammatory marker's expression in lung tissues and showed abnormal lung mechanics in mice and hamsters. Interestingly, treatment with β-glucan significantly (p < 0.001) reversed the Poly(I:C)-induced inflammatory events and inflammatory markers expression in both mRNA (IL-6, IL-1β, TNF-α, CCL2 and CCL7) and protein levels (TNF-α, CD68, myeloperoxidase, neutrophil elastase, MUC-5Ac and iNOS). Lung functional assays revealed that β-glucan treatment significantly improved lung mechanics. Histopathological analysis showed that β-glucan treatment significantly attenuated the Poly(I:C) induced inflammatory cell infiltration, injury and goblet cell population in lung tissues. Consistent with these findings, β-glucan treatment markedly reduced the number of neutrophils and macrophages in lung tissues. Our findings further demonstrated that β-glucan could reduce inflammation by suppressing the MAPK pathway. SIGNIFICANCE These results suggested that β-glucan may attenuate the pathogenic effects of Poly(I:C)-induced ALI/ARDS via modulating the MAPK pathway, indicating β-glucan as a possible therapeutic agent for the treatment of viral-pulmonary inflammation/injury.
Collapse
Affiliation(s)
- Satya Krishna Tirunavalli
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Shashidhar Pramatha
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi 576104, Karnataka, India
| | - Abhisheik Chowdary Eedara
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Komal Paresh Walvekar
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Christiana Immanuel
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Pooja Potdar
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi 576104, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi 576104, Karnataka, India
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Sabarinadh Chilaka
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
21
|
Boopathi V, Nahar J, Murugesan M, Subramaniyam S, Kong BM, Choi SK, Lee CS, Ling L, Yang DU, Yang DC, Mathiyalagan R, Chan Kang S. In silico and in vitro inhibition of host-based viral entry targets and cytokine storm in COVID-19 by ginsenoside compound K. Heliyon 2023; 9:e19341. [PMID: 37809955 PMCID: PMC10558348 DOI: 10.1016/j.heliyon.2023.e19341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that emerged as an epidemic, causing a respiratory disease with multiple severe symptoms and deadly consequences. ACE-2 and TMPRSS2 play crucial and synergistic roles in the membrane fusion and viral entry of SARS-CoV-2 (COVID-19). The spike (S) protein of SARS-CoV-2 binds to the ACE-2 receptor for viral entry, while TMPRSS2 proteolytically cleaves the S protein into S1 and S2 subunits, promoting membrane fusion. Therefore, ACE-2 and TMPRSS2 are potential drug targets for treating COVID-19, and their inhibition is a promising strategy for treatment and prevention. This study proposes that ginsenoside compound K (G-CK), a triterpenoid saponin abundant in Panax Ginseng, a dietary and medicinal herb highly consumed in Korea and China, effectively binds to and inhibits ACE-2 and TMPRSS2 expression. We initially conducted an in-silico evaluation where G-CK showed a high affinity for the binding sites of the two target proteins of SARS-CoV-2. Additionally, we evaluated the stability of G-CK using molecular dynamics (MD) simulations for 100 ns, followed by MM-PBSA calculations. The MD simulations and free energy calculations revealed that G-CK has stable and favorable energies, leading to strong binding with the targets. Furthermore, G-CK suppressed ACE2 and TMPRSS2 mRNA expression in A549, Caco-2, and MCF7 cells at a concentration of 12.5 μg/mL and in LPS-induced RAW 264.7 cells at a concentration of 6.5 μg/mL, without significant cytotoxicity.ACE2 and TMPRSS2 expression were significantly lower in A549 and RAW 264.7 cells following G-CK treatment. These findings suggest that G-CK may evolve as a promising therapeutic against COVID-19.
Collapse
Affiliation(s)
- Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Jinnatun Nahar
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | | | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Sung-Keun Choi
- Daedong Korea Ginseng Co., Ltd, 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun, Chungcheongnam-do 32718 Republic of Korea
| | - Chang-Soon Lee
- Daedong Korea Ginseng Co., Ltd, 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun, Chungcheongnam-do 32718 Republic of Korea
| | - Li Ling
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Dong Uk Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| |
Collapse
|
22
|
Abstract
Platelet-derived extracellular vesicles (PEVs) are a subset of EVs that are released from platelets, which are small nuclear cell fragments that play a critical role in hemostasis and thrombosis. PEVs have been shown to have important roles in a variety of physiological and pathological processes, including inflammation, angiogenesis, and cancer. Recently, researchers, including our group have utilized PEVs as drug delivery platforms as PEVs could target inflammatory sites both passively and actively. This review summarizes the biological function of PEVs, introduces recent applications of PEVs in targeted drug delivery, and provides an outlook for the further development of utilizing PEVs for drug delivery.
Collapse
Affiliation(s)
- Chenlu Yao
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
23
|
Zhuang C, Kang M, Lee M. Delivery systems of therapeutic nucleic acids for the treatment of acute lung injury/acute respiratory distress syndrome. J Control Release 2023; 360:1-14. [PMID: 37330013 DOI: 10.1016/j.jconrel.2023.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) is a devastating inflammatory lung disease with a high mortality rate. ALI/ARDS is induced by various causes, including sepsis, infections, thoracic trauma, and inhalation of toxic reagents. Corona virus infection disease-19 (COVID-19) is also a major cause of ALI/ARDS. ALI/ARDS is characterized by inflammatory injury and increased vascular permeability, resulting in lung edema and hypoxemia. Currently available treatments for ALI/ARDS are limited, but do include mechanical ventilation for gas exchange and treatments supportive of reduction of severe symptoms. Anti-inflammatory drugs such as corticosteroids have been suggested, but their clinical effects are controversial with possible side-effects. Therefore, novel treatment modalities have been developed for ALI/ARDS, including therapeutic nucleic acids. Two classes of therapeutic nucleic acids are in use. The first constitutes knock-in genes for encoding therapeutic proteins such as heme oxygenase-1 (HO-1) and adiponectin (APN) at the site of disease. The other is oligonucleotides such as small interfering RNAs and antisense oligonucleotides for knock-down expression of target genes. Carriers have been developed for efficient delivery for therapeutic nucleic acids into the lungs based on the characteristics of the nucleic acids, administration routes, and targeting cells. In this review, ALI/ARDS gene therapy is discussed mainly in terms of delivery systems. The pathophysiology of ALI/ARDS, therapeutic genes, and their delivery strategies are presented for development of ALI/ARDS gene therapy. The current progress suggests that selected and appropriate delivery systems of therapeutic nucleic acids into the lungs may be useful for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chuanyu Zhuang
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minji Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
24
|
Mani BI, Kishore PV, Khine WY, Thottacherry DJ, Chong PL, Abdullah MS, Asli R, Momin NR, Rahman NA, Chong CF, Chong VH. COVID-19 and Mycobacterium coinfection in Brunei Darussalam: case series. Western Pac Surveill Response J 2023; 14:1-7. [PMID: 37955034 PMCID: PMC10632094 DOI: 10.5365/wpsar.2023.14.3.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Affiliation(s)
- Babu Ivan Mani
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
| | | | - Wai Yan Khine
- Raja Isteri Pengiran Anak Saleha Hospital, Bandar Seri Begawan, Brunei Darussalam
| | | | - Pui Lin Chong
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
| | - Muhamad Syafiq Abdullah
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
| | - Rosmonaliza Asli
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
| | - Natalie Raimiza Momin
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Raja Isteri Pengiran Anak Saleha Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Noor Affizan Rahman
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
- Raja Isteri Pengiran Anak Saleha Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Chee Fui Chong
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
| | - Vui Heng Chong
- National Isolation Centre, Ministry of Health, Tutong, Brunei Darussalam
- Pengiran Muda Mahkota Pengiran Muda Haji Al-Muhtadee Billah Hospital, Tutong, Brunei Darussalam
- Raja Isteri Pengiran Anak Saleha Hospital, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
25
|
Ceja-Gálvez HR, Renteria-Flores FI, Nicoletti F, Hernández-Bello J, Macedo-Ojeda G, Muñoz-Valle JF. Severe COVID-19: Drugs and Clinical Trials. J Clin Med 2023; 12:2893. [PMID: 37109231 PMCID: PMC10142549 DOI: 10.3390/jcm12082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including "Convalescent plasma therapy in COVID-19" or "Viral polymerase inhibitors" and "COVID-19" in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables-such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate-in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Collapse
Affiliation(s)
- Hazael Ramiro Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gabriela Macedo-Ojeda
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
26
|
Paramythiotis D, Karlafti E, Veroplidou K, Fafouti M, Kaiafa G, Netta S, Michalopoulos A, Savopoulos C. Drug-Induced Acute Pancreatitis in Hospitalized COVID-19 Patients. Diagnostics (Basel) 2023; 13:diagnostics13081398. [PMID: 37189499 DOI: 10.3390/diagnostics13081398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease-19 (COVID-19), caused by SARS-CoV-2, is a systemic disease that affects not only the respiratory system, but also other systems, including gastrointestinal. A great number of different drugs have been used on hospitalized patients for the management of COVID-19, and acute pancreatitis (AP) has been reported as a complication or side effect of these drugs. The development of drug-induced acute pancreatitis (DIAP) follows a complex of pathophysiological mechanisms, and particular risk factors play a key role. Diagnosis of DIAP depends on specific criteria, and based on these, a drug may be characterized as having a definite, probable or possible connection with AP. The aim of this review is to present the medications that are used for COVID-19 management and are associated with AP in hospitalized patients. The list of these drugs mainly includes corticosteroids, glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), antiviral agents, antibiotics, monoclonal antibodies, estrogens and anesthetic agents. Moreover, the prevention of the development of DIAP is vital, especially for critically ill patients who may receive multiple drugs. DIAP management is mainly non-invasive and the first step concerns the exception of the suspicious drug from patients therapy.
Collapse
Affiliation(s)
- Daniel Paramythiotis
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Karlafti
- Emergency Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Kalliopi Veroplidou
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Fafouti
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgia Kaiafa
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Smaro Netta
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Antonios Michalopoulos
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christos Savopoulos
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
27
|
Rocha MP, Oliveira DP, de Oliveira VLS, Zaidan I, Grossi LC, Campana PRV, Amaral FA, Sousa LP, Teixeira MM, Braga FC. Ouratea spectabilis and its Biflavanone Ouratein D Exert Potent Anti-inflammatory Activity in MSU Crystal-induced Gout in Mice. PLANTA MEDICA 2023. [PMID: 36626932 DOI: 10.1055/a-2009-9809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gouty arthritis (GA) is an inflammatory arthritis triggered by the deposition of monosodium urate monohydrate (MSU) crystals, causing pain, inflammation, and joint damage. Several drugs are currently employed to manage acute flares of GA, but they either have limited effectiveness or induce severe adverse reactions. Ouratea spectabilis is traditionally used in Brazil to treat gastric ulcers and rheumatism. The ethanolic extract of O. spectabilis stems (OSpC) and four biflavanones (ouratein A - D) isolated thereof were evaluated in a murine model of GA induced by the injection of MSU crystals. The underlying mechanism of action of ouratein D was investigated in vitro in cell cultures by measurement of IL-1β levels by ELISA and Western blot analysis. The administration of OSpC (10, 30 or 100 mg/Kg, p. o.) reduced the migration of total inflammatory cells, monocytes, and neutrophils and diminished the levels of IL-1β and CXCL1 in the synovial tissue. Among the tested compounds, only ouratein D (1 mg/Kg) reduced the migration of the inflammatory cells and it was shown to be active up to 0.01 mg/Kg (equivalent to 0.34 nM/Kg, p. o.). Treatment of pre-stimulated THP-1 cells (differentiated into macrophages) or BMDMs with ouratein D reduced the release of IL-1β in both macrophage lines. This biflavanone reduced the activation of caspase-1 (showed by the increase in the cleaved form) in supernatants of cultured BMDMs, evidencing its action in modulating the inflammasome pathway. The obtained results demonstrate the anti-gout properties of O. spectabilis and point out ouratein D as the bioactive component of the assayed extract.
Collapse
Affiliation(s)
- Marina P Rocha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego P Oliveira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian L S de Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Zaidan
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís C Grossi
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Priscilla R V Campana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio A Amaral
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernão C Braga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
28
|
Świerczek A, Jusko WJ. Pharmacokinetic/Pharmacodynamic Modeling of Dexamethasone Anti-Inflammatory and Immunomodulatory Effects in LPS-Challenged Rats: A Model for Cytokine Release Syndrome. J Pharmacol Exp Ther 2023; 384:455-472. [PMID: 36631280 PMCID: PMC9976795 DOI: 10.1124/jpet.122.001477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Dexamethasone (DEX) is a potent synthetic glucocorticoid used for the treatment of variety of inflammatory and immune-mediated disorders. The RECOVERY clinical trial revealed benefits of DEX therapy in COVID-19 patients. Severe SARS-CoV-2 infection leads to an excessive inflammatory reaction commonly known as a cytokine release syndrome that is associated with activation of the toll like receptor 4 (TLR4) signaling pathway. The possible mechanism of action of DEX in the treatment of COVID-19 is related to its anti-inflammatory activity arising from inhibition of cytokine production but may be also attributed to its influence on immune cell trafficking and turnover. This study, by means of pharmacokinetic/pharmacodynamic modeling, aimed at the comprehensive quantitative assessment of DEX effects in lipopolysaccharide-challenged rats and to describe interrelations among relevant signaling molecules in this animal model of cytokine release syndrome induced by activation of TLR4 pathway. DEX was administered in a range of doses from 0.005 to 2.25 mg·kg-1 in LPS-challenged rats. Serum DEX, corticosterone (CST), tumor necrosis factor α, interleukin-6, and nitric oxide as well as lymphocyte and granulocyte counts in peripheral blood were quantified at different time points. A minimal physiologically based pharmacokinetic/pharmacodynamic (mPBPK/PD) model was proposed characterizing the time courses of plasma DEX and the investigated biomarkers. A high but not complete inhibition of production of inflammatory mediators and CST was produced in vivo by DEX. The mPBPK/PD model, upon translation to humans, may help to optimize DEX therapy in patients with diseases associated with excessive production of inflammatory mediators, such as COVID-19. SIGNIFICANCE STATEMENT: A mPBPK/PD model was developed to describe concentration-time profiles of plasma DEX, mediators of inflammation, and immune cell trafficking and turnover in LPS-challenged rats. Interrelations among DEX and relevant biomarkers were reflected in the mechanistic model structure. The mPBPK/PD model enabled quantitative assessment of in vivo potency of DEX and, upon translation to humans, may help optimize dosing regimens of DEX for the treatment of immune-related conditions associated with exaggerated immune response.
Collapse
Affiliation(s)
- Artur Świerczek
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
29
|
Choi W, Lee HP, Manilack P, Saysavanh V, Lee BH, Lee S, Kim E, Cho JY. Antiallergic Effects of Callerya atropurpurea Extract In Vitro and in an In Vivo Atopic Dermatitis Model. PLANTS (BASEL, SWITZERLAND) 2023; 12:860. [PMID: 36840208 PMCID: PMC9959980 DOI: 10.3390/plants12040860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
(1) Background: Callerya atropurpurea is found in Laos, Thailand, and Vietnam. Although the anti-inflammatory action of C. atropurpurea has been investigated, the functions of this plant in allergic responses are not understood. Here, we explored the antiallergic mechanism of C. atropurpurea ethanol extract (Ca-EE) using in vitro assays and an in vivo atopic model. (2) Methods: The constituents of Ca-EE were analyzed using GC/MS. Inhibition of lipoxygenase and β-hexosaminidase activity was examined, and the expression of inflammatory genes was measured by quantitative real-time PCR. The regulatory roles of Ca-EE in IgE/FcεRI signaling were examined by Western blotting. The DNCB-induced atopic dermatitis mouse model was performed with histological analysis. (3) Results: Ca-EE comprised cis-raphasatin, lupeol, some sugars, and fatty acids. In RBL-2H3 cells, treatment with Ca-EE significantly reduced the activities of lipoxygenase and β-hexosaminidase, as well as cytokine gene expression. IgE-mediated signaling was downregulated by blocking Lyn kinases. Moreover, Ca-EE effectively inhibited allergic symptoms in the DNCB-induced atopic dermatitis model without toxicity. (4) Conclusions: Ca-EE displayed antiallergic activities through regulating IgE/Lyn signaling in RBL-2H3 cells and a contact dermatitis model. These results indicate that Ca-EE could be effective for allergic disease treatment.
Collapse
Affiliation(s)
- Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Philaxay Manilack
- Department of Forestry, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Veosavanh Saysavanh
- Department of Forestry, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Republic of Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- R&D Center, Yungjin Pharmaceutical Co., Ltd., Suwon 16229, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
30
|
Chen D, Zhong D, Mei R, Qian S, Wang P, Chen K, Yu X. Screening and identification of potential key biomarkers for glucocorticoid-induced osteonecrosis of the femoral head. J Orthop Surg Res 2023; 18:28. [PMID: 36631868 PMCID: PMC9832261 DOI: 10.1186/s13018-022-03465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common disease in osteoarticular surgery, with a high disability rate, which brings great physical and mental pain and economic burden to patients. Its specific pathogenesis has not been fully demonstrated, and there is a lack of recognized effective biomarkers for earlier detection and prompt treatment. This has become an urgent clinical problem for orthopedic scholars. MATERIALS AND METHODS We downloaded the gene expression profile dataset GSE123568 from the Gene Expression Omnibus database, used STRING and Cytoscape to carry out module analysis and built a gene interaction network. The four core genes most related to GIONFH in this network were ultimately found out by precise analysis and animal experiment were then conducted for verification. In this verification process, thirty-six New Zealand white rabbits were randomly divided into blank control group, model group and drug group. Except for the blank control group, the animal model of GIONFH was established by lipopolysaccharide and methylprednisolone, while the drug group was given the lipid-lowering drugs for intervention as planned. The rabbits were taken for magnetic resonance imaging at different stages, and their femoral head specimens were taken for pathological examination, then the expression of target genes in the femoral head specimens of corresponding groups was detected. Validation methods included RT-PCR and pathological examination. RESULTS A total of 679 differential genes were selected at first, including 276 up-regulated genes and 403 down-regulated genes. Finally, four genes with the highest degree of correlation were screened. Animal experiment results showed that ASXL1 and BNIP3L were in low expression, while FCGR2A and TYROBP were highly expressed. CONCLUSION Through animal experiments, it was confirmed that ASXL1, BNIP3L, FCGR2A and TYROBP screened from the comparative analysis of multiple genes in the database were closely related to GIONFH, which is important for early diagnosis of Glucocorticoid-induced osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Dan Chen
- grid.260463.50000 0001 2182 8825Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Duming Zhong
- grid.260463.50000 0001 2182 8825Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China ,grid.507988.bDepartment of Orthopaedics, Xiang Yang No.1 People’s Hospital, Xiangyang, 441100 Hubei China
| | - Runhong Mei
- grid.260463.50000 0001 2182 8825Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China ,grid.412604.50000 0004 1758 4073Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Shida Qian
- grid.260463.50000 0001 2182 8825Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Peng Wang
- grid.260463.50000 0001 2182 8825Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Kaiyun Chen
- Department of Drug Clinical Trial, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China.
| | - Xuefeng Yu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
31
|
Schwendinger F, Knaier R, Radtke T, Schmidt-Trucksäss A. Low Cardiorespiratory Fitness Post-COVID-19: A Narrative Review. Sports Med 2023; 53:51-74. [PMID: 36115933 PMCID: PMC9483283 DOI: 10.1007/s40279-022-01751-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 01/12/2023]
Abstract
Patients recovering from COVID-19 often report symptoms of exhaustion, fatigue and dyspnoea and present with exercise intolerance persisting for months post-infection. Numerous studies investigated these sequelae and their possible underlying mechanisms using cardiopulmonary exercise testing. We aimed to provide an in-depth discussion as well as an overview of the contribution of selected organ systems to exercise intolerance based on the Wasserman gears. The gears represent the pulmonary system, cardiovascular system, and periphery/musculature and mitochondria. Thirty-two studies that examined adult patients post-COVID-19 via cardiopulmonary exercise testing were included. In 22 of 26 studies reporting cardiorespiratory fitness (herein defined as peak oxygen uptake-VO2peak), VO2peak was < 90% of predicted value in patients. VO2peak was notably below normal even in the long-term. Given the available evidence, the contribution of respiratory function to low VO2peak seems to be only minor except for lung diffusion capacity. The prevalence of low lung diffusion capacity was high in the included studies. The cardiovascular system might contribute to low VO2peak via subnormal cardiac output due to chronotropic incompetence and reduced stroke volume, especially in the first months post-infection. Chronotropic incompetence was similarly present in the moderate- and long-term follow-up. However, contrary findings exist. Peripheral factors such as muscle mass, strength and perfusion, mitochondrial function, or arteriovenous oxygen difference may also contribute to low VO2peak. More data are required, however. The findings of this review do not support deconditioning as the primary mechanism of low VO2peak post-COVID-19. Post-COVID-19 sequelae are multifaceted and require individual diagnosis and treatment.
Collapse
Affiliation(s)
- Fabian Schwendinger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Raphael Knaier
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland.
| |
Collapse
|
32
|
Burgos C, Alvarenga N, Sotelo PH, Langjahr P. Anti-inflammatory activity of Baccharis notosergila against lipopolysaccharide (LPS)-induced inflammation and identification of active fractions and their chemical constituents. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
The effectiveness of dexamethasone as a combination therapy for COVID-19. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:345-358. [PMID: 36651541 DOI: 10.2478/acph-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 01/26/2023]
Abstract
Coronavirus disease 2019 (COVID-19) was reported as a global pandemic in March 2020 after invading many countries and leaving behind tens of thousands of infected patients in a brief time span. Approval of a few vaccines has been obtained and their efficacy of varying degrees established. Still, there is no effective pharmaceutical agent for the treatment of COVID-19 though several drugs are undergoing clinical trials. Recent studies have shown that dexamethasone, a corticosteroid, can reduce the rate of COVID-19-related mortality in the intensive care unit by 35 % for patients who are on mechanical ventilation. Although variable efficacy of other combination therapies has been reported for treating COVID-19 associated with acute respiratory distress syndrome (ARDS), dexamethasone is an extensively used drug in many treatment regimens against COVID-19. The current review aims to explore the role of dexamethasone as an efficient combination treatment for COVID-19.
Collapse
|
34
|
Cognitive phenotyping of post-infectious SARS-CoV-2 patients. Neurol Sci 2022; 43:4599-4604. [PMID: 35604618 PMCID: PMC9125346 DOI: 10.1007/s10072-022-06130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Background SARS-CoV-2 infection entails neuroinvasive, neuroinflammatory, and treatment-related features accounting for cognitive deficits in COVID-19-recovered patients. Although screening for such dysfunctions in this population is considered clinically relevant, contributions to cognitive phenotyping including premorbid and disease-related confounders are scarcely represented. This study thus aimed at describing the cognitive outcome at the function-/domain-level of post-infectious SARS-CoV-2 patients being already at risk (RCD +) or not (RCD −) for cognitive decline. Methods Fifty-four COVID-19-recovered individuals were classified as either RCD + or RCD − according to medical records. The Mini-Mental State Examination (MMSE), Addebrooke Cognitive Examination-Revised (ACE-R), Frontal Assessment Battery (FAB), and Attentive Matrices (AM) were administered (N = 54, 34, 28, and 28 patients, respectively). Results Prevalence of defective (cutoff = 24.89) MMSE scores was 24.3% in RCD + patients and 5.9% in the RCD − group. ACE-R-total below cutoff scores were less frequent (RCD + : 5.4%; RCD − : 5.9%). Abnormal performances at the FAB an AM were respectively detected in 18.9% and 8.1% of RCD + patients and 0% and 11.8% of the RCD − group. Within the ACE-R subtests, those assessing orientation, attention, and fluency were the most frequently impaired in both groups. Disease-related variables were mostly unassociated with cognitive measures. Discussion Both RCD + and RCD − COVID-19-recovered individuals might show cognitive deficits within the dysexecutive-inattentive and amnesic spectrum. Non-instrumental, executive/attentive dysfunctions are predominant in this population and can be detected by both screening and domain-specific psychometric tests—although the latter might be more sensitive in RCD − patients.
Collapse
|
35
|
Dexamethasone Increases the Anesthetic Success in Patients with Symptomatic Irreversible Pulpitis: A Meta-Analysis. Pharmaceuticals (Basel) 2022; 15:ph15070878. [PMID: 35890176 PMCID: PMC9315658 DOI: 10.3390/ph15070878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Inferior alveolar nerve block (IANB) has a high failure rate in subjects with symptomatic irreversible pulpitis (SIP). It has been suggested that drugs with anti-inflammatory activity could improve the efficacy of the anesthetic used for IANB. The aim of this study was to assess the effect of dexamethasone on the success of dental anesthesia in patients with SIP. An information search was performed using PubMed and Google Scholar. The risk of bias of the included studies was evaluated with the Cochrane Collaboration’s risk-of-bias tool. The anesthetic success rate, pain intensity (VAS), and adverse effects were extracted. Data were analyzed using the Mantel−Haenszel test and odds ratio or the inverse variance and standardized mean difference. Dexamethasone increased the anesthetic success in comparison with placebo (n = 502; p < 0.001; OR = 2.59; 95% CIs: 1.46 to 4.59). Moreover, patients who were given dexamethasone had lower pain scores at 6 h (n = 302; p < 0.001; MD= −1.43; 95% CIs: −2.28 to −0.58), 12 h (n = 302; p < 0.0001; MD = −1.65; 95% CIs: −2.39 to −0.92), and 24 h (n = 302; p < 0.0008; MD = −1.27; 95% CIs: −2.01 to −0.53) when compared with placebo. In conclusion, the systemic administration of dexamethasone increases the anesthetic success rate and improves pain management in patients with SIP.
Collapse
|
36
|
Barros RM, Da Silva CG, Nicolau Costa KM, Da Silva-Junior AA, Scardueli CR, Marcantonio RAC, Chiavacci LA, Oshiro-Junior JA. Dexamethasone-Loaded Ureasil Hydrophobic Membrane for Bone Guided Regeneration. Pharmaceutics 2022; 14:1027. [PMID: 35631613 PMCID: PMC9146579 DOI: 10.3390/pharmaceutics14051027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023] Open
Abstract
Physical barrier membranes have been used to release active substances to treat critical bone defects; however, hydrophilic membranes do not present a prolonged release capacity. In this sense, hydrophobic membranes have been tested. Thus, this study aimed to develop hydrophobic membranes based on mixtures of ureasil-polyether-type materials containing incorporated dexamethasone (DMA) for the application in guided bone regeneration. The physicochemical characterization and biological assays were carried out using small-angle X-ray scattering (SAXS), an in vitro DMA release study, atomic force microscopy (AFM), a hemolysis test, and in vivo bone formation. The swelling degree, SAXS, and release results revealed that the u-PPO400/2000 membrane in the proportion of 70:30 showed swelling (4.69% ± 0.22) similar to the proportions 90:10 and 80:20, and lower than the proportion 60:40 (6.38% ± 0.49); however, an equal release percentage after 134 h was observed between the proportions 70:30 and 60:40. All u-PPO materials presented hemocompatibility (hemolysis ≤2.8%). AFM results showed that the treatments with or without DMA did not present significant differences, revealing a flat/smooth surface, with no pores and/or crystalline precipitates. Finally, in vivo results revealed that for both the commercial hydrophilic membrane and u-PPO400/2000 (70:30) after 60 days, the bone formation volume was 21%. In conclusion, hybrid membranes present unique characteristics for treating critical bone defects, considering the delayed and prolonged release results associated with the physical barrier capacity.
Collapse
Affiliation(s)
- Rafaella Moreno Barros
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Paraíba, Brazil; (R.M.B.); (K.M.N.C.)
| | - Camila Garcia Da Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Highway Araraquara-Jaú, Araraquara 14801-902, São Paulo, Brazil;
| | - Kammila Martins Nicolau Costa
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Paraíba, Brazil; (R.M.B.); (K.M.N.C.)
| | - Arnóbio A. Da Silva-Junior
- Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Rio Grande do Norte, Brazil;
| | - Cássio Rocha Scardueli
- Faculty of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, São Paulo, Brazil; (C.R.S.); (R.A.C.M.)
| | | | - Leila Aparecida Chiavacci
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Highway Araraquara-Jaú, Araraquara 14801-902, São Paulo, Brazil;
| | - João Augusto Oshiro-Junior
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Paraíba, Brazil; (R.M.B.); (K.M.N.C.)
| |
Collapse
|
37
|
Mei R, Chen D, Zhong D, Li G, Lin S, Zhang G, Chen K, Yu X. Metabolic Profiling Analysis of the Effect and Mechanism of Gushiling Capsule in Rabbits With Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Front Pharmacol 2022; 13:845856. [PMID: 35586045 PMCID: PMC9108178 DOI: 10.3389/fphar.2022.845856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/07/2022] [Indexed: 01/03/2023] Open
Abstract
Gushiling capsule (GSLC) is an effective traditional Chinese medicine for the treatment of glucocorticoid-induced osteonecrosis of the femoral head (GIONFH). This study established the serum metabolite profiles of GSLC in rabbits and explored the metabolic mechanism and effect of GSLC on GIONFH. Seventy-five Japanese white rabbits were randomly divided into the control, model, and GSLC groups. The rabbits in the model group and the GSLC group received injection of prednisolone acetate. Meanwhile, rabbits in the GSLC group were treated by gavage at a therapeutic dose of GSLC once a day. The control group and the model group received the same volume of normal saline gavage. Three groups of serum samples were collected at different time points, and the changes in the metabolic spectrum were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The resulting data set was analyzed using multivariate statistical analysis to identify potential biomarkers related to GSLC treatment. The metabolic pathway was analyzed by MetaboAnalyst 4.0 and a heatmap was constructed using the HEML1.0.3.7 software package. In addition, histopathological and radiography studies were carried out to verify the anti-GIONFH effects of GSLC. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) score plots revealed a significant separation trend between the control group and the model group and the GSLC group (1-3 weeks), but there were no significant differences in the GSLC group (4-6 weeks). Orthogonal PLS-DA (OPLS-DA) score plots also revealed an obvious difference between the model and the GSLC groups (4-6 weeks). Ten potential metabolite biomarkers, mainly phospholipids, were identified in rabbit serum samples and demonstrated to be associated with GIONFH. Hematoxylin and eosin staining and magnetic resonance imaging indicated that the pathological changes in femoral head necrosis in the GSLC group were less than in the model group, which was consistent with the improved serum metabolite spectrum. GSLC regulated the metabolic disorder of endogenous lipid components in GIONFH rabbits. GSLC may prevent and treat GIONFH mainly by regulating phospholipid metabolism in vivo.
Collapse
Affiliation(s)
- Runhong Mei
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Chen
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Duming Zhong
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guoyong Li
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaobai Lin
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangquan Zhang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kaiyun Chen
- Department of Drug Clinical Trial, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuefeng Yu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
38
|
Aiello EN, Fiabane E, Manera MR, Radici A, Grossi F, Ottonello M, Vassallo C, Pain D, Pistarini C. Episodic long-term memory in post-infectious SARS-CoV-2 patients. Neurol Sci 2022; 43:785-788. [PMID: 34791568 PMCID: PMC8598275 DOI: 10.1007/s10072-021-05752-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Episodic long-term memory (LTM) difficulties/deficits are frequent in COVID-19-recovered patients and negatively impact on prognosis and outcome. However, little is known about their semiology and prevalence, also being still debated whether they arise from primary amnesic features or are secondary to dysexecutive/inattentive processes and disease-related/premorbid status. Hence, this study aimed at (1) assessing LTM functioning in post-infectious SARS-CoV-2 patients by accounting for premorbid and disease-related confounders and (2) exploring its cognitive etiology. METHODS Measures of global cognition (Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)) and LTM (Babcock Memory Test (BMT)) of fifty-four COVID-19-recovered patients were retrospectively collected. Patients were subdivided into those being already at risk or not for cognitive decline (RCD + ; RCD -). Cognitive measures were converted into equivalent scores (ESs). RESULTS LTM sub-clinical/clinical deficits (ESs = 0/1) were mildly-to-moderately prevalent in both RCD + (MoCA-Memory, 31.8%; BMT, 31.8%) and RCD - (MoCA-Memory, 28.6%; BMT, 39.3%) patients. MMSE and MoCA total scores, but not the MoCA-Attention subtest, were associated with the BMT. RCD + asymptomatic patients performed better on the BMT (p = .033) than those requiring O2 therapy (but not ventilation). DISCUSSION COVID-19-recovered individuals might show LTM deficits of both primary and secondary etiology and should be thus screened for them, especially those having suffered mid-to-moderate COVID-19 and those already being at risk for cognitive decline. Both I- and II-level measures of verbal LTM can be adopted, although the former might be more sensitive.
Collapse
Affiliation(s)
- Edoardo Nicolò Aiello
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Fiabane
- Istituti Clinici Scientifici Maugeri, Department of Physical and Rehabilitation Medicine of Genova Nervi Institute, Genova, Italy
| | - Marina Rita Manera
- Istituti Clinici Scientifici Maugeri, IRCCS, Psychology Unit of Pavia Institute, Pavia, Italy
| | - Alice Radici
- Istituti Clinici Scientifici Maugeri, IRCCS, Neurorehabilitation Department of Milano Institute, Milano, Italy
| | - Federica Grossi
- Istituti Clinici Scientifici Maugeri, IRCCS, Psychology Unit of Pavia Institute, Pavia, Italy
| | - Marcella Ottonello
- Istituti Clinici Scientifici Maugeri, Department of Physical and Rehabilitation Medicine of Genova Nervi Institute, Genova, Italy
| | - Claudio Vassallo
- Istituti Clinici Scientifici Maugeri, Department of Physical and Rehabilitation Medicine of Genova Nervi Institute, Genova, Italy
| | - Debora Pain
- Istituti Clinici Scientifici Maugeri, IRCCS, Neurorehabilitation Department of Milano Institute, Milano, Italy
| | - Caterina Pistarini
- Istituti Clinici Scientifici Maugeri, IRCCS, Department of Neurorehabilitation of Pavia Institute, Pavia, Italy
| |
Collapse
|
39
|
Abstract
PURPOSE Low dose radiation therapy (LDRT) using doses in the range of 30-150 cGy has been proposed as a means of mitigating the pneumonia associated with COVID-19. However, preliminary results from ongoing clinical trials have been mixed. The aim of this work is to develop a mathematical model of the viral infection and associated systemic inflammation in a patient based on the time evolution of the viral load. The model further proposes an immunomodulatory response to LDRT based on available data. Inflammation kinetics are then explored and compared to clinical results. METHODS The time evolution of a viral infection, inflammatory signaling factors, and inflammatory response are modeled by a set of coupled differential equations. Adjustable parameters are taken from the literature where available and otherwise iteratively adjusted to fit relevant data. Simple functions modeling both the suppression of pro-inflammatory signal factors and the enhancement of anti-inflammatory factors in response to low doses of radiation are developed. The inflammation response is benchmarked against C-reactive protein (CRP) levels measured for cohorts of patients with severe COVID-19. RESULTS The model fit the time-evolution of viral load data, cytokine data, and inflammation (CRP) data. When LDRT was applied early, the model predicted a reduction in peak inflammation consistent with the difference between the non-surviving and surviving cohorts. This reduction of peak inflammation diminished as the application of LDRT was delayed. CONCLUSION The model tracks the available data on viral load, cytokine levels, and inflammatory biomarkers well. An LDRT effect is large enough in principle to provide a life-saving immunomodulatory effect, though patients treated with LDRT already near the peak of their inflammation trajectory are unlikely to see drastic reductions in that peak. This result potentially explains some discrepancies in the preliminary clinical trial data.
Collapse
Affiliation(s)
- Charles Kirkby
- Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta, Canada.,Department of Oncology, University of Calgary, Calgary, Alberta, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Treatment paradigms in Parkinson's Disease and Covid-19. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:135-171. [PMID: 36208898 PMCID: PMC9148185 DOI: 10.1016/bs.irn.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
People with Parkinson's Disease (PwP) may be at higher risk for complications from the Coronavirus Disease 2019 (Covid-19) due to older age and to the multi-faceted nature of Parkinson's Disease (PD) per se, presenting with a variety of motor and non-motor symptoms. Those on advanced therapies may be particularly vulnerable. Taking the above into consideration, along with the potential multi-systemic impact of Covid-19 on affected patients and the complications of hospitalization, we are providing an evidence-based guidance to ensure a high standard of care for PwP affected by Covid-19 with varying severity of the condition. Adherence to the dopaminergic medication of PwP, without abrupt modifications in dosage and frequency, is of utmost importance, while potential interactions with newly introduced drugs should always be considered. Treating physicians should be cautious to acknowledge and timely address any potential complications, while consultation by a neurologist, preferably with special knowledge on movement disorders, is advised for patients admitted in non-neurological wards. Non-pharmacological approaches, including the patient's mobilization, falls prevention, good sleep hygiene, emotional support, and adequate nutritional and fluid intake, are essential and the role of telemedicine services should be strengthened and encouraged.
Collapse
|
41
|
Isaka Y, Hirasawa Y, Terada J, Shionoya Y, Takeshita Y, Kinouchi T, Koshikawa K, Tajima H, Kinoshita T, Tada Y, Tatsumi K, Tsushima K. Preliminary study regarding the predicted body weight-based dexamethasone therapy in patients with COVID-19 pneumonia. Pulm Pharmacol Ther 2021; 72:102108. [PMID: 34923122 PMCID: PMC8677429 DOI: 10.1016/j.pupt.2021.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The RECOVERY clinical trial reported that 6 mg of dexamethasone once daily for up to 10 days reduces the 28-day mortality in patients with coronavirus disease 2019 (COVID-19) receiving respiratory support. In our clinical setting, a fixed dose of dexamethasone has prompted the question of whether inflammatory modulation effects sufficiently reduce lung injury. Therefore, preliminary verification on the possibility of predicted body weight (PBW)-based dexamethasone therapy was conducted in patients with COVID-19 pneumonia. METHODS This single-center retrospective study was conducted in a Japanese University Hospital to compare the treatment strategies/management in different periods. Consecutive patients (n = 90) with COVID-19 pneumonia requiring oxygen therapy and were treated with dexamethasone between June 2020 and May 2021 were analyzed. Initially, 60 patients administered a fixed dexamethasone dose of 6.6 mg/day were defined as the conventional group, and then, 30 patients were changed to PBW-based therapy. The 30-day discharged alive rate and duration of oxygen therapy were analyzed using the Kaplan-Meier method and compared using the log-rank test. The multivariable Cox regression was used to evaluate the effects of PBW-based dexamethasone therapy on high-flow nasal cannula (HFNC), noninvasive ventilation (NIV), or mechanical ventilation (MV). RESULTS In the PBW-based group, 9, 13, and 8 patients were administered 6.6, 9.9, and 13.2 mg/day of dexamethasone, respectively. Additional respiratory support including HFNC, NIV, or MV was significantly less frequently used in the PBW-based group (P = 0.0046), with significantly greater cumulative incidence of being discharged alive and shorter oxygen demand within 30 days (92 vs. 89%, log-rank P = 0.0094, 90 vs. 92%, log-rank P = 0.0002, respectively). Patients treated with PBW-based therapy significantly decreased the use of additional respiratory support after adjusting for baseline imbalances (adjusted odds ratio, 0.224; 95% confidence interval, 0.062-0.813, P = 0.023). Infection occurred in 13 (21%) and 2 (7%) patients in the conventional and PBW-based groups, respectively (P = 0.082). CONCLUSIONS In patients with COVID-19 pneumonia requiring oxygen therapy, PBW-based dexamethasone therapy may potentially shorten the length of hospital stay and duration of oxygen therapy and risk of using HFNC, NPPV, or MV without increasing serious adverse events or 30-day mortality.
Collapse
Affiliation(s)
- Yuri Isaka
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan; Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yasutaka Hirasawa
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan.
| | - Jiro Terada
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan
| | - Yu Shionoya
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan
| | - Yuichiro Takeshita
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan
| | - Toru Kinouchi
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan; Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ken Koshikawa
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan; Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hiroshi Tajima
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan
| | - Taku Kinoshita
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan
| | - Yuji Tada
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan
| | - Koichiro Tatsumi
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan; Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kenji Tsushima
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Narita, Chiba, 286-8520, Japan
| |
Collapse
|