Published online Mar 24, 2016. doi: 10.5500/wjt.v6.i1.206
Peer-review started: July 4, 2015
First decision: October 16, 2015
Revised: December 3, 2015
Accepted: December 29, 2015
Article in press: January 4, 2016
Published online: March 24, 2016
Processing time: 262 Days and 18.9 Hours
AIM: To investigate the interaction between castanospermine and cyclosporin A (CsA) and to provide an explanation for it.
METHODS: The alkaloid castanospermine was prepared from the seeds of Castanospermum austral consistently achieving purity. Rat heterotopic cardiac transplantation and mixed lymphocyte reactivity were done using genetically inbred strains of PVG (donor) and DA (recipient). For the mixed lymphocyte reaction stimulator cells were irradiated with 3000 rads using a linear accelerator. Cyclosporin A was administered by gavage and venous blood collected 2 h later (C2). The blood levels of CsA (Neoral) were measured by immunoassay which consisted of a homogeneous enzyme assay (EMIT) on Cobas Mira. Statistical analyses of interactions were done by an accelerated failure time model with Weibull distribution for allograft survival and logistic regression for the mixed lymphocyte reactivity.
RESULTS: Castanospermine prolonged transplant survival times as a function of dose even at relatively low doses. Cyclosporin A also prolonged transplant survival times as a function of dose particularly at doses above 2 mg/kg. There were synergistic interactions between castanospermine and CsA in the prolongation of cardiac allograft survival for dose ranges of CsA by castanospermine of (0 to 2) mg/kg by (0 to 200) mg/kg (HR = 0.986; 95%CI: 0.981-0.992; P < 0.001) and (0 to 3) mg/kg by (0 to 100) mg/kg (HR = 0.986; 95%CI: 0.981-0.992; P < 0.001) respectively. The addition of castanospermine did not significantly increase the levels of cyclosporin A on day 3 or day 6 for all doses of CsA. On the contrary, cessation of castanospermine in the presence of CsA at 2 mg/kg significantly increased the CsA level (P = 0.002). Castanospermine inhibited mixed lymphocyte reactivity in a dose dependent manner but without synergistic interaction.
CONCLUSION: There is synergistic interaction between castanospermine and CsA in rat cardiac transplantation. Neither the mixed lymphocyte reaction nor the metabolism of CsA provides an explanation.
Core tip: The authors have established that a biological, castanospermine, interacts with cyclosporin A (CsA) in a synergistic manner when prolonging the survival of cardiac allografts in inbred rats. They suggest that the explanation is not its effect on the mixed lymphocyte reaction nor interference in the metabolism of CsA but rather an inhibition of migration through the basement membrane of the vasculature. They suggest that its effect on heparanase in mononuclear cells and heparan sulphate in the allograft should now be studied. This immunosuppressant holds promise of safe dose reduction of CsA but further assessment of its safety remains.