Retrospective Study
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Transplant. Sep 24, 2015; 5(3): 110-128
Published online Sep 24, 2015. doi: 10.5500/wjt.v5.i3.110
Effectiveness of repeated transplantations of hematopoietic stem cells in spinal cord injury
Andrey S Bryukhovetskiy, Igor S Bryukhovetskiy
Andrey S Bryukhovetskiy, Federal Research Center for Specialized Types of Medical Assistance and Medical Technologies of FMBA of Russia, 115682 Moscow, Russia
Andrey S Bryukhovetskiy, NeuroVita Clinic of Restorative and Interventional Neurology and Therapy, 115478 Moscow, Russia
Igor S Bryukhovetskiy, School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia
Author contributions: Both authors contributed equally to this work.
Institutional review board statement: The study was reviewed and approved by Ethics Committee Russian State Medical University (Moscow, Russia). Since 2005 the method was approved for clinical practice.
Informed consent statement: All study participants, or their legal guardian, provided an informed written consent prior to study involvement.
Conflict-of-interest statement: Professor Andrey S Bryukhovetskiy PhD, MD, is an employee of the Federal Research Center for Specialized Types of Medical Assistance and Medical Technologies of FMBA of Russia. Professor Andrey S Bryukhovetskiy PhD, MD, owns stocks and shares in the NeuroVita Clinic of Restorative and Interventional Neurology and Therapy. Professor Andrey S Bryukhovetskiy PhD, MD, owns patent Preparation of Autologous Hematopoietic Stem Cells, Method of Production, Cryopreservation and Application for Treatment of Traumatic Diseases of Central Nervous System, Patent of Russian Federation RU No. 2283119 C1 dated 10.09.2006; International Application No. PCT/EP 2005108721 filed on 29.03.2005 Preparation of autologous stem cells, the methods of production, cryopreservation and use for therapy of traumatic diseases of central nervous system.
Data sharing statement: Technical appendix, statistical code, and dataset available from the corresponding author at neurovitaclinic@gmail.com. Participants gave written informed consent for data sharing, and the data are anonymized.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Andrey S Bryukhovetskiy, MD, PhD, Professor, NeuroVita Clinic of Restorative and Interventional Neurology and Therapy, 23 Kashirskoye shosse, 115478 Moscow, Russia. neurovitaclinic@gmail.com
Telephone: +7-495-3249339 Fax: +7-495-9801373
Received: April 20, 2015
Peer-review started: April 21, 2015
First decision: May 13, 2015
Revised: July 16, 2015
Accepted: August 20, 2015
Article in press: August 21, 2015
Published online: September 24, 2015
Processing time: 156 Days and 21.3 Hours
Abstract

AIM: To evaluate the short and long-term effects of the complex cell therapy of 202 cases of spinal cord injury (SCI).

METHODS: The main arm included 202 cases of SCI and the control arm included 20 SCI cases. For the therapy the hematopoietic stem cells (HSCs) and progenitor cells (PCs) were mobilized to peripheral blood by 8 subcutaneous injections of granulocyte colony-stimulating factor (G-CSF) for 4 d and are harvested at day 5. The cells were administered to the main arm intrathecally every 3 mo for a long term (3-5 years) according to the internal research protocol international medical institute of tissue engineering. Magnetic resonance imaging of the site of injury and urodynamic tests were performed every 6 mo. Motor evoked potentials (MEP), somatosensory evoked potentials (SSEP) were evaluated every 3 mo. The patients were evaluated with american spianl injury association (ASIA) index, functional independence measure index, the Medical Research Council Scale, the International Standards for Neurological Classification of Spinal Cord Injury (ISCSCI-92) and specifically developed scales. The function of bladder was evaluated by a specifically developed clinical scale. The long-term clinical outcomes were assessed for the SCI patients who received no less than 20 intrathecal transplantations of HSCs and hematopoietic precursors (HPs).

RESULTS: The restoration of neurologic deficit after HSCs and HPs transplantations was proved stable and evident in 57.4% of the cases. In 42.6% cases no neurologic improvement has been observed. In 50% of the cases the motor restoration began after the first transplantation, which is confirmed in average by 9.9 points improvement in neurologic impairment as compared to the baseline (P < 0.05). Repair of the urinary system was observed in 47.7% of the cases. The sensitivity improved from baseline 124.3 points to 138.4 after the first and to 153.5 points after the second transplantations of HSCs and HPs (P < 0.05, between the stages of research). The evaluation with ASIA index demonstrated regress of neurologic symptoms in 23 cases. Motor progress was also assessed with the ISCISCI-92 motor and sensory scores, and the data coincided with those received with the specifically developed scale. The number of the patients with the signs of locomotive repair was 56.9%. No life threatening complications or adverse effects have been observed.

CONCLUSION: The method is safe, effective and considerably improves the life quality of SCI patients. The therapy is approved for clinical use as the treatment of choice.

Keywords: Spinal cord injury; Paraplegia; Tetraplegia; Hematopoietic stem cells; Stem cells; Cell therapy

Core tip: The work summarizes the 12 year experience of stem cell therapy for chronic spinal cord injury. The unique preparation of autologous hematopoietic stem cells and hematopoietic precursors was multiply administered to 202 patients. The article analyzes short and long-term benefits, short and long-term complications and the instruments that were used for their evaluation.