Published online Dec 18, 2023. doi: 10.5500/wjt.v13.i6.368
Peer-review started: August 30, 2023
First decision: September 29, 2023
Revised: October 16, 2023
Accepted: October 26, 2023
Article in press: October 26, 2023
Published online: December 18, 2023
Processing time: 109 Days and 20.3 Hours
Tacrolimus extended-release tablets have been Food and Drug Administration-approved for use in the de novo kidney transplant population. Dosing requi
To obtain target trough concentrations of extended-release tacrolimus in de novo kidney transplant recipients according to CYP3A5 genotype.
Single-arm, prospective, single-center, open-label, observational study (ClinicalTrials.gov: NCT037
Mean time to therapeutic tacrolimus trough concentration was longer in CYP3A5 intermediate and extensive metabolizers vs CYP3A5 non-expressers (6 d vs 13.5 d vs 4.5 d; P = 0.025). Mean tacrolimus doses and weight-based doses to achieve therapeutic concentration were higher in CYP3A5 intermediate and extensive metabolizers vs CYP3A5 non-expressers (16 mg vs 16 mg vs 12 mg; P = 0.010) (0.20 mg/kg vs 0.19 mg/kg vs 0.13 mg/kg; P = 0.018). CYP3A5 extensive metabolizers experienced lower mean tacrolimus trough concentrations throughout the study period compared to CYP3A5 intermediate metabolizers and non-expressers (7.98 ng/mL vs 9.18 ng/mL vs 10.78 ng/mL; P = 0 0.008). No differences were identified with regards to kidney graft function at 30-d post-transplant. Serious adverse events were reported for 13 (36%) patients.
Expression of CYP3A5 leads to higher starting doses and incremental dosage titration of extended-release tacro
Core Tip: In this single-arm, prospective, observational study we study once-daily, extended release tacrolimus dosing. Here we find that the expression of the cyctrochrome P450 enzyme, CYP3A5, is an important clinical factor to determine optimal dosage requirements after kidney transplantation. In kidney transplant recipients who express CYP3A5 activity, higher doses of extended-release tacrolimus are required to attain therapeutic trough concentrations. Delays in achieving therapeutic trough concentrations has been linked to increase rates of acute rejection which highlights the importance of this research in identifying dosing considerations for extended-release tacrolimus in the de novo kidney transplant setting.