1
|
Nakazawa D. Targeting complement in kidney transplantation: Therapeutic approaches based on preclinical and experimental evidence. Transplant Rev (Orlando) 2025; 39:100887. [PMID: 39612603 DOI: 10.1016/j.trre.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
The complement system is implicated in various facets of kidney transplantation, including ischemia-reperfusion injury (IRI), delayed graft function, allograft rejection, and chronic allograft injury. IRI, prevalent in cadaveric renal transplantation, leads to acute tubular necrosis and engages innate immunity, including neutrophils and the complement system, fostering a cycle of inflammation and necrosis. Experimental and preclinical evidence suggest that targeting the complement system could offer therapeutic benefits in IRI during kidney transplantation. This article explores potential therapeutic approaches targeting complement pathways in kidney transplantation, drawing from experimental and preclinical research findings.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Stepanova G, Manzéger A, Mózes MM, Kökény G. Renal Epithelial Complement C3 Expression Affects Kidney Fibrosis Progression. Int J Mol Sci 2024; 25:12551. [PMID: 39684261 DOI: 10.3390/ijms252312551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Kidney fibrosis is a hallmark of chronic kidney diseases. Evidence shows that genetic variability and complement component 3 (C3) might influence tubulointerstitial fibrosis. Still, the role of renal C3 production in the epithelial-to-mesenchymal transition (EMT) and genetically determined fibrosis progression remains undiscovered. The kidneys of fibrosis-resistant C57Bl/6J (B6) and fibrosis-prone CBA/J (CBA) and BALB/cJ (BalbC) mice (n = 4-8/group) were subjected to unilateral ureteral obstruction (UUO) and analyzed after 1, 3, and 7 days, along with human focal glomerular sclerotic (FSGS) and healthy kidneys. Mouse primary tubular epithelial cells (PTECs) were investigated after 24 h of treatment with transforming growth factor β (TGFβ) or complement anaphylatoxin 3a (C3a) agonist (n = 4/group). UUO resulted in delayed kidney injury in fibrosis-resistant B6 mice, but very early renal C3 messenger RNA (mRNA) induction in fibrosis-prone CBA and BalbC mice, along with collagen I (Col1a1) and collagen III (Col3a1). CBA depicted the fastest fibrosis progression with the highest C3, lipocalin-2 (Lcn2), Tgfb1, and chemokine (C-C motif) ligand 2 (Ccl2) expression. Human FSGS kidneys depicted C3 mRNA over-expression and strong tubular C3 immunostaining. In PTECs, C3a agonist treatment induced pro-fibrotic early growth response protein 1 (EGR1) expression and the EMT, independent of TGFβ signaling. We conclude that de novo renal tubular C3 synthesis is associated with the genetically determined kidney fibrosis progression rate in mice and the pathogenesis of FSGS in humans. This tubular C3 overproduction can, through local pro-fibrotic effects, influence the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Ganna Stepanova
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Anna Manzéger
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Miklós M Mózes
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
3
|
Sant'Anna MRV, Pereira-Filho AA, Mendes-Sousa AF, Silva NCS, Gontijo NF, Pereira MH, Koerich LB, D'Avila Pessoa GC, Andersen J, Araujo RN. Inhibition of vertebrate complement system by hematophagous arthropods: inhibitory molecules, mechanisms, physiological roles, and applications. INSECT SCIENCE 2024; 31:1334-1352. [PMID: 38246860 DOI: 10.1111/1744-7917.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.
Collapse
Affiliation(s)
- Mauricio Roberto Vianna Sant'Anna
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Adalberto Alves Pereira-Filho
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Naylene Carvalho Sales Silva
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Marcos Horácio Pereira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Leonardo Barbosa Koerich
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Grasielle Caldas D'Avila Pessoa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - John Andersen
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ricardo Nascimento Araujo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Jiang F, Lei C, Chen Y, Zhou N, Zhang M. The complement system and diabetic retinopathy. Surv Ophthalmol 2024; 69:575-584. [PMID: 38401574 DOI: 10.1016/j.survophthal.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Diabetic retinopathy (DR) is one of the common microvascular complications of diabetes mellitus and is the main cause of visual impairment in diabetic patients. The pathogenesis of DR is still unclear. The complement system, as an important component of the innate immune system in addition to defending against the invasion of foreign microorganisms, is involved in the occurrence and development of DR through 3 widely recognized complement activation pathways, the complement regulatory system, and many other pathways. Molecules such as C3a, C5a, and membrane attacking complex, as important molecules of the complement system, are involved in the pathologenesus of DR, either through direct damaging effects or by activating cells (microglia, macroglia, etc.) in the retinal microenvironment to contribute to the pathological damage of DR indirectly. We review the integral association of the complement system and DR to further understand the pathogenesis of DR and possibly provide a new strategy for itstreatment.
Collapse
Affiliation(s)
- Feipeng Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Chunyan Lei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China.
| |
Collapse
|
5
|
Mu W, Duan C, Ao J, Du F, Zhang J. TMT-based proteomics analysis of the blood enriching mechanism of the total Tannins of Gei Herba in mice. Heliyon 2024; 10:e33212. [PMID: 39021933 PMCID: PMC11253055 DOI: 10.1016/j.heliyon.2024.e33212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Lanbuzheng (LBZ) is the traditional seedling medicine in Guizhou, which has the effect of tonifying blood. It has been found that the main active ingredient is tannin, however, the blood-replenishing effect of tannin and its mechanism are still unclear. The study was to explore the mechanisms underlying the therapeutic effects of the total Tannins of Lanbuzheng (LBZT) against anemia in mice. Anemia mice was induced by cyclophosphamide, the effect of LBZT against anemia was determined by analyzing peripheral blood and evaluating organs indexes. Tandem mass tag (TMT)-based quantitative proteomics technology coupled with bioinformatics analysis was then used to identify differentially expressed proteins (DEPs) in spleen. Compared to the model, number of RBCs, PLTs and WBCs, HCT ratio and HGB content were increased, the indexes of thymus, spleen and liver were also increased, after LBZT intervention. A total of 377 DEPs were identified in LBZT group, of which 206 DEPs were significantly up-regulated and 171 DEPs were significantly down-regulated. Bioinformatics analysis showed that hematopoietic function has been restored by activating the complement and coagulation cascade signaling pathways. Results suggest that LBZT exerts it therapeutic effects against anemia by regulating complement and coagulation cascade signaling pathways and provides scientific basis for further mechanistic studies for LBZT.
Collapse
Affiliation(s)
- Wenbi Mu
- Zunyi Product Quality Inspection and Testing Institute, Zunyi, 563000, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Jingwen Ao
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Fanpan Du
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
6
|
Liu F, Ryan ST, Fahnoe KC, Morgan JG, Cheung AE, Storek MJ, Best A, Chen HA, Locatelli M, Xu S, Schmidt E, Schmidt-Jiménez LF, Bieber K, Henderson JM, Lian CG, Verschoor A, Ludwig RJ, Benigni A, Remuzzi G, Salant DJ, Kalled SL, Thurman JM, Holers VM, Violette SM, Wawersik S. C3d-Targeted factor H inhibits tissue complement in disease models and reduces glomerular injury without affecting circulating complement. Mol Ther 2024; 32:1061-1079. [PMID: 38382529 PMCID: PMC11163200 DOI: 10.1016/j.ymthe.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Complement-mediated diseases can be treated using systemic inhibitors. However, complement components are abundant in circulation, affecting systemic inhibitors' exposure and efficacy. Furthermore, because of complement's essential role in immunity, systemic treatments raise infection risk in patients. To address these challenges, we developed antibody fusion proteins combining the alternative-pathway complement inhibitor factor H (fH1-5) with an anti-C3d monoclonal antibody (C3d-mAb-2fH). Because C3d is deposited at sites of complement activity, this molecule localizes to tissue complement while minimizing circulating complement engagement. These fusion proteins bind to deposited complement in diseased human skin sections and localize to activated complement in a primate skin injury model. We further explored the pharmacology of C3d-mAb-2fH proteins in rodent models with robust tissue complement activation. Doses of C3d-mAb-2fH >1 mg/kg achieved >75% tissue complement inhibition in mouse and rat injury models while avoiding circulating complement blockade. Glomerular-specific complement inhibition reduced proteinuria and preserved podocyte foot-process architecture in rat membranous nephropathy, indicating disease-modifying efficacy. These data indicate that targeting local tissue complement results in durable and efficacious complement blockade in skin and kidney while avoiding systemic inhibition, suggesting broad applicability of this approach in treating a range of complement-mediated diseases.
Collapse
Affiliation(s)
- Fei Liu
- Q32 Bio, Waltham, MA 02451, USA
| | | | | | | | | | | | | | - Hui A Chen
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine at Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Shuyun Xu
- Department of Pathology, Brigham & Women's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Leon F Schmidt-Jiménez
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine at Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Christine G Lian
- Department of Pathology, Brigham & Women's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Admar Verschoor
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, 81675 Munich, Germany; Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - David J Salant
- Department of Medicine, Chobanian and Avedisian School of Medicine at Boston University and Section of Nephrology, Boston Medical Center, Boston, MA 02118, USA
| | | | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - V Michael Holers
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
7
|
Witkin AJ, Jaffe GJ, Srivastava SK, Davis JL, Kim JE. Retinal Vasculitis After Intravitreal Pegcetacoplan: Report From the ASRS Research and Safety in Therapeutics (ReST) Committee. JOURNAL OF VITREORETINAL DISEASES 2024; 8:9-20. [PMID: 38223782 PMCID: PMC10786078 DOI: 10.1177/24741264231220224] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Purpose: To analyze post-marketing cases of retinal vasculitis after intravitreal pegcetacoplan. Methods: The American Society of Retina Specialists (ASRS) Research and Safety in Therapeutics (ReST) Committee as well as an expert panel performed a retrospective review of cases of retinal vasculitis reported to the ASRS. Clinical and imaging characteristics were reviewed for evidence of retinal vasculitis and analyzed. Results: Fourteen eyes of 13 patients were confirmed to have retinal vasculitis by review of imaging studies. All cases occurred after the first pegcetacoplan injection. Occlusive retinal vasculopathy was confirmed in 11 eyes (79%). Patients presented a median of 10.5 days (range, 8-23 days) after pegcetacoplan injection. All eyes had anterior chamber inflammation, and 12 eyes (86%) had vitritis. Vasculopathy involved retinal veins (100%) more than arteries (73%), and 12 eyes (86%) had retinal hemorrhages. The median visual acuity (VA) was 20/60 (range, 20/30-5/200) at baseline, 20/300 (range, 20/100-no light perception [NLP]) at vasculitis presentation, and 20/200 (range 20/70-NLP) at the last follow-up. Eight eyes (57%) had more than a 3-line decrease in VA, and 6 eyes (43%) had more than a 6-line decrease in VA from baseline to the final follow-up, including 2 eyes that were enucleated. Six eyes (43%) developed signs of anterior segment neovascularization. Conclusions: There is currently no known etiology for vasculitis in this series. Optimum treatment strategies remain unknown. Infectious etiologies should be considered, and corticosteroid treatments may hasten resolution of inflammatory findings. Continued treatment of affected patients with pegcetacoplan should be avoided.
Collapse
Affiliation(s)
| | | | | | - Janet L. Davis
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judy E. Kim
- UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Dudler T, Yaseen S, Cummings WJ. Development and characterization of narsoplimab, a selective MASP-2 inhibitor, for the treatment of lectin-pathway-mediated disorders. Front Immunol 2023; 14:1297352. [PMID: 38022610 PMCID: PMC10663225 DOI: 10.3389/fimmu.2023.1297352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Overactivation of the lectin pathway of complement plays a pathogenic role in a broad range of immune-mediated and inflammatory disorders; mannan-binding lectin-associated serine protease-2 (MASP-2) is the key effector enzyme of the lectin pathway. We developed a fully human monoclonal antibody, narsoplimab, to bind to MASP-2 and specifically inhibit lectin pathway activation. Herein, we describe the preclinical characterization of narsoplimab that supports its evaluation in clinical trials. Methods and results ELISA binding studies demonstrated that narsoplimab interacted with both zymogen and enzymatically active forms of human MASP-2 with high affinity (KD 0.062 and 0.089 nM, respectively) and a selectivity ratio of >5,000-fold relative to closely related serine proteases C1r, C1s, MASP-1, and MASP-3. Interaction studies using surface plasmon resonance and ELISA demonstrated approximately 100-fold greater binding affinity for intact narsoplimab compared to a monovalent antigen binding fragment, suggesting an important contribution of functional bivalency to high-affinity binding. In functional assays conducted in dilute serum under pathway-specific assay conditions, narsoplimab selectively inhibited lectin pathway-dependent activation of C5b-9 with high potency (IC50 ~ 1 nM) but had no observable effect on classical pathway or alternative pathway activity at concentrations up to 500 nM. In functional assays conducted in 90% serum, narsoplimab inhibited lectin pathway activation in human serum with high potency (IC50 ~ 3.4 nM) whereas its potency in cynomolgus monkey serum was approximately 10-fold lower (IC50 ~ 33 nM). Following single dose intravenous administration to cynomolgus monkeys, narsoplimab exposure increased in an approximately dose-proportional manner. Clear dose-dependent pharmacodynamic responses were observed at doses >1.5 mg/kg, as evidenced by a reduction in lectin pathway activity assessed ex vivo that increased in magnitude and duration with increasing dose. Analysis of pharmacokinetic and pharmacodynamic data revealed a well-defined concentration-effect relationship with an ex vivo EC50 value of approximately 6.1 μg/mL, which was comparable to the in vitro functional potency (IC50 33 nM; ~ 5 μg/mL). Discussion Based on these results, narsoplimab has been evaluated in clinical trials for the treatment of conditions associated with inappropriate lectin pathway activation, such as hematopoietic stem cell transplantation-associated thrombotic microangiopathy.
Collapse
Affiliation(s)
- Thomas Dudler
- Discovery, Omeros Corporation, Seattle, WA, United States
| | | | | |
Collapse
|
9
|
González-Del-Barrio L, Pérez-Alós L, Cyranka L, Rosbjerg A, Nagy S, Prohászka Z, Garred P, Bayarri-Olmos R. MAP-2:CD55 chimeric construct effectively modulates complement activation. FASEB J 2023; 37:e23256. [PMID: 37823685 DOI: 10.1096/fj.202300571r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
The complement system is a complex, tightly regulated protein cascade involved in pathogen defense and the pathogenesis of several diseases. Thus, the development of complement modulators has risen as a potential treatment for complement-driven inflammatory pathologies. The enzymatically inactive MAP-2 has been reported to inhibit the lectin pathway by competing with its homologous serine protease MASP-2. The membrane-bound complement inhibitor CD55 acts on the C3/C5 convertase level. Here, we fused MAP-2 to the four N-terminal domains of CD55 generating a targeted chimeric inhibitor to modulate complement activation at two different levels of the complement cascade. Its biological properties were compared in vitro with the parent molecules. While MAP-2 and CD55 alone showed a minor inhibition of the three complement pathways when co-incubated with serum (IC50MAP-2+CD55 1-4 = 60.98, 36.10, and 97.01 nM on the classical, lectin, and alternative pathways, respectively), MAP-2:CD551-4 demonstrated a potent inhibitory activity (IC50MAP-2:CD55 1-4 = 2.94, 1.76, and 12.86 nM, respectively). This inhibitory activity was substantially enhanced when pre-complexes were formed with the lectin pathway recognition molecule mannose-binding lectin (IC50MAP-2:CD55 1-4 = 0.14 nM). MAP-2:CD551-4 was also effective at protecting sensitized sheep erythrocytes in a classical hemolytic assay (CH50 = 13.35 nM). Finally, the chimeric inhibitor reduced neutrophil activation in full blood after stimulation with Aspergillus fumigatus conidia, as well as phagocytosis of conidia by isolated activated neutrophils. Our results demonstrate that MAP-2:CD551-4 is a potent complement inhibitor reinforcing the idea that engineered fusion proteins are a promising design strategy for identifying and developing drug candidates to treat complement-mediated diseases.
Collapse
Affiliation(s)
- Lydia González-Del-Barrio
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Leon Cyranka
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Simon Nagy
- Research Laboratory, Department of Internal Medicine and Hematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Research Laboratory, Department of Internal Medicine and Hematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
10
|
Kareem S, Jacob A, Mathew J, Quigg RJ, Alexander JJ. Complement: Functions, location and implications. Immunology 2023; 170:180-192. [PMID: 37222083 PMCID: PMC10524990 DOI: 10.1111/imm.13663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
The complement system, an arm of the innate immune system plays a critical role in both health and disease. The complement system is highly complex with dual possibilities, helping or hurting the host, depending on the location and local microenvironment. The traditionally known functions of complement include surveillance, pathogen recognition, immune complex trafficking, processing and pathogen elimination. The noncanonical functions of the complement system include their roles in development, differentiation, local homeostasis and other cellular functions. Complement proteins are present in both, the plasma and on the membranes. Complement activation occurs both extra- and intracellularly, which leads to considerable pleiotropy in their activity. In order to design more desirable and effective therapies, it is important to understand the different functions of complement, and its location-based and tissue-specific responses. This manuscript will provide a brief overview into the complex nature of the complement cascade, outlining some of their complement-independent functions, their effects at different locale, and their implication in disease settings.
Collapse
Affiliation(s)
- Samer Kareem
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - John Mathew
- Department of Rheumatology, Christian Medical College, Vellore, India
| | - Richard J Quigg
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Jessy J Alexander
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
11
|
Zhang C, Cao K, Yang M, Wang Y, He M, Lu J, Huang Y, Zhang G, Liu H. C5aR1 blockade reshapes immunosuppressive tumor microenvironment and synergizes with immune checkpoint blockade therapy in high-grade serous ovarian cancer. Oncoimmunology 2023; 12:2261242. [PMID: 37791232 PMCID: PMC10543342 DOI: 10.1080/2162402x.2023.2261242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC), with a modest response to immune checkpoint blockade (ICB) targeting PD-1/PD-L1 monotherapy, is densely infiltrated by M2-polarized tumor-associated macrophages (TAMs) and regulatory T (Treg) cells. The complement C5a/C5aR1 axis contributes to the programming of the immunosuppressive phenotype of TAMs in solid tumors and represents a promising immunomodulatory target for treating HGSCs. Here, we aimed to identify the relevance of C5aR1 in prognosis, immune microenvironment, and immunotherapy response in HGSCs. The expression and relationship of C5aR1 with tumor-infiltrating immune cells were assessed by immunohistochemistry and flow cytometry in the training cohort (n = 120) and fresh HGSC tissues (n = 36). Transcriptomic analyses of the xenografts delineated the mechanisms driving the immunomodulatory activity of PMX53, an orally bioavailable C5aR1 inhibitor. Therapeutic relevance was confirmed in ex vivo tumor cultures and The Cancer Genome Atlas (TCGA) datasets. C5aR1 expression independently predicted dismal prognosis and was linked to the immunoevasive subtype of HGSC, characterized by increased infiltration of pro-tumor cells (Treg cells, M2-polarized macrophages, and neutrophils) and impaired CD8+T functions. PMX53 antagonized subcutaneous tumor growth, modulated immunosuppressive mechanisms and synergized with aPD-1 in several tumor types. Single-cell RNA-seq analysis revealed predominant C5aR1 expression in TAMs, with an immunosuppressive-related expression signature in C5aR1+TAMs. Furthermore, the combination of C5aR1 and PD-L1 was associated with specific molecular characteristics and matched clinical response annotations. Therefore, the abundance of C5aR1 could predict an inferior prognosis in HGSCs, and incorporating PD-L1 may serve as a novel predictive biomarker to guide therapeutic options.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mengdi He
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiaqi Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yan Huang
- Department of Gynecologic Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Guodong Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Daskoulidou N, Shaw B, Torvell M, Watkins L, Cope EL, Carpanini SM, Allen ND, Morgan BP. Complement receptor 1 is expressed on brain cells and in the human brain. Glia 2023; 71:1522-1535. [PMID: 36825534 PMCID: PMC10953339 DOI: 10.1002/glia.24355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Genome wide association studies (GWAS) have highlighted the importance of the complement cascade in pathogenesis of Alzheimer's disease (AD). Complement receptor 1 (CR1; CD35) is among the top GWAS hits. The long variant of CR1 is associated with increased risk for AD; however, roles of CR1 in brain health and disease are poorly understood. A critical confounder is that brain expression of CR1 is controversial; failure to demonstrate brain expression has provoked the suggestion that peripherally expressed CR1 influences AD risk. We took a multi-pronged approach to establish whether CR1 is expressed in brain. Expression of CR1 at the protein and mRNA level was assessed in human microglial lines, induced pluripotent stem cell (iPSC)-derived microglia from two sources and brain tissue from AD and control donors. CR1 protein was detected in microglial lines and iPSC-derived microglia expressing different CR1 variants when immunostained with a validated panel of CR1-specific antibodies; cell extracts were positive for CR1 protein and mRNA. CR1 protein was detected in control and AD brains, co-localizing with astrocytes and microglia, and expression was significantly increased in AD compared to controls. CR1 mRNA expression was detected in all AD and control brain samples tested; expression was significantly increased in AD. The data unequivocally demonstrate that the CR1 transcript and protein are expressed in human microglia ex vivo and on microglia and astrocytes in situ in the human brain; the findings support the hypothesis that CR1 variants affect AD risk by directly impacting glial functions.
Collapse
Affiliation(s)
| | - Bethany Shaw
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| | - Megan Torvell
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| | - Lewis Watkins
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| | - Emma L. Cope
- School of Biosciences, Cardiff UniversityCardiffUK
| | | | - Nicholas D. Allen
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
- School of Biosciences, Cardiff UniversityCardiffUK
| | - B. Paul Morgan
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| |
Collapse
|
13
|
Ikeda Z, Kamei T, Sasaki Y, Reynolds M, Sakai N, Yoshikawa M, Tawada M, Morishita N, Dougan DR, Chen CH, Levin I, Zou H, Kuno M, Arimura N, Kikukawa Y, Kondo M, Tohyama K, Sato K. Discovery of a Novel Series of Potent, Selective, Orally Available, and Brain-Penetrable C1s Inhibitors for Modulation of the Complement Pathway. J Med Chem 2023; 66:6354-6371. [PMID: 37120845 PMCID: PMC10184130 DOI: 10.1021/acs.jmedchem.3c00348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A novel series of non-amidine-based C1s inhibitors have been explored. Starting from high-throughput screening hit 3, isoquinoline was replaced with 1-aminophthalazine to enhance C1s inhibitory activity while exhibiting good selectivity against other serine proteases. We first disclose a crystal structure of a complex of C1s and a small-molecule inhibitor (4e), which guided structure-based optimization around the S2 and S3 sites to further enhance C1s inhibitory activity by over 300-fold. Improvement of membrane permeability by incorporation of fluorine at the 8-position of 1-aminophthalazine led to identification of (R)-8 as a potent, selective, orally available, and brain-penetrable C1s inhibitor. (R)-8 significantly inhibited membrane attack complex formation induced by human serum in a dose-dependent manner in an in vitro assay system, proving that selective C1s inhibition blocked the classical complement pathway effectively. As a result, (R)-8 emerged as a valuable tool compound for both in vitro and in vivo assessment.
Collapse
Affiliation(s)
- Zenichi Ikeda
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Taku Kamei
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yusuke Sasaki
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Matthew Reynolds
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Nozomu Sakai
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masato Yoshikawa
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Michiko Tawada
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Nao Morishita
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Douglas R Dougan
- Structural Biology, Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Chien-Hung Chen
- Structural Biology, Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Irena Levin
- Structural Biology, Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Hua Zou
- Structural Biology, Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Masako Kuno
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoto Arimura
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yusuke Kikukawa
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mitsuyo Kondo
- Discovery Biology, Discovery Science, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Kimio Tohyama
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kenjiro Sato
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
14
|
Stennett A, Friston K, Harris CL, Wollman AJM, Bronowska AK, Madden KS. The case for complement component 5 as a target in neurodegenerative disease. Expert Opin Ther Targets 2023; 27:97-109. [PMID: 36786123 DOI: 10.1080/14728222.2023.2177532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Complement-based drug discovery is undergoing a renaissance, empowered by new advances in structural biology, complement biology and drug development. Certain components of the complement pathway, particularly C1q and C3, have been extensively studied in the context of neurodegenerative disease, and established as key therapeutic targets. C5 also has huge therapeutic potential in this arena, with its druggability clearly demonstrated by the success of C5-inhibitor eculizumab. AREAS COVERED We will discuss the evidence supporting C5 as a target in neurodegenerative disease, along with the current progress in developing different classes of C5 inhibitors and the gaps in knowledge that will help progress in the field. EXPERT OPINION Validation of C5 as a therapeutic target for neurodegenerative disease would represent a major step forward for complement therapeutics research and has the potential to furnish disease-modifying drugs for millions of patients suffering worldwide. Key hurdles that need to be overcome for this to be achieved are understanding how C5a and C5b should be targeted to bring therapeutic benefit and demonstrating the ability to target C5 without creating vulnerability to infection in patients. This requires greater biological elucidation of its precise role in disease pathogenesis, supported by better chemical/biological tools.
Collapse
Affiliation(s)
- Amelia Stennett
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK
| | - Kallie Friston
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK
| | - Claire L Harris
- Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle-Upon-Tyne, UK
| | - Adam J M Wollman
- Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle-Upon-Tyne, UK
| | - Agnieszka K Bronowska
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK
| | - Katrina S Madden
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK.,Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle-Upon-Tyne, UK
| |
Collapse
|
15
|
Fang Z, Li X, Liu J, Lee H, Salciccioli L, Lazar J, Zhang M. The role of complement C3 in the outcome of regional myocardial infarction. Biochem Biophys Rep 2023; 33:101434. [PMID: 36748063 PMCID: PMC9898614 DOI: 10.1016/j.bbrep.2023.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Coronary heart disease leading to myocardial ischemia is a major cause of heart failure. A hallmark of heart failure is myocardial fibrosis. Using a murine model of myocardial ischemia/reperfusion injury (IRI), we showed that, following IRI, in mice genetically deficient in the central factor of complement system, C3, myocardial necrosis was reduced compared with WT mice. Four weeks after the ischemic period, the C3-/- mice had significantly less cardiac fibrosis and better cardiac function than the WT controls. Overall, our results suggest that innate immune response through complement C3 plays an important role in necrotic cell death, which contributes to the cardiac fibrosis that underlies post-infarction heart failure.
Collapse
Affiliation(s)
| | - Xiang Li
- Department of Anesthesiology, USA
| | | | | | - Louis Salciccioli
- Department of Medicine, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Jason Lazar
- Department of Medicine, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Ming Zhang
- Department of Anesthesiology, USA,Department of Cell Biology, USA,Corresponding author. Department of Anesthesiology, MSC6 SUNY Downstate Health Science University, 450 Clarkson Avenue Brooklyn, NY, 11203, USA.
| |
Collapse
|
16
|
Nauser CL, Sacks SH. Local complement synthesis-A process with near and far consequences for ischemia reperfusion injury and transplantation. Immunol Rev 2023; 313:320-326. [PMID: 36200881 DOI: 10.1111/imr.13144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The model of the solid organ as a target for circulating complement deposited at the site of injury, for many years concealed the broader influence of complement in organ transplantation. The study of locally synthesized complement especially in transplantation cast new light on complement's wider participation in ischaemia-reperfusion injury, the presentation of donor antigen and finally rejection. The lack of clarity, however, has persisted as to which complement activation pathways are involved and how they are triggered, and above all whether the distinction is relevant. In transplantation, the need for clarity is heightened by the quest for precision therapies in patients who are already receiving potent immunosuppressives, and because of the opportunity for well-timed intervention. This review will present new evidence for the emerging role of the lectin pathway, weighed alongside the longer established role of the alternative pathway as an amplifier of the complement system, and against contributions from the classical pathway. It is hoped this understanding will contribute to the debate on precisely targeted versus broadly acting therapeutic innovation within the aim to achieve safe long term graft acceptance.
Collapse
|
17
|
Ren J, Chen L, Chen X, Zhang N, Sun X, Song J. Acylation-stimulating protein and heart failure progression in arrhythmogenic right ventricular cardiomyopathy. ESC Heart Fail 2022; 10:492-501. [PMID: 36316820 PMCID: PMC9871714 DOI: 10.1002/ehf2.14218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 01/29/2023] Open
Abstract
AIMS Our previous studies suggested that the complement system was critical in the prognosis of arrhythmogenic right ventricular cardiomyopathy (ARVC). The acylation-stimulating protein (ASP), generated through the alternate complement pathway, was reported to regulate lipogenesis and triglyceride storage. This study aimed to investigate the role of ASP in predicting adverse cardiac events in an ARVC cohort. METHODS AND RESULTS We enrolled 111 ARVC patients and 106 healthy volunteers, and measured their plasma ASP levels using enzyme-linked immunosorbent assays. Plasma ASP levels were significantly higher in the ARVC patients than in the healthy controls (2325.22 ± 20.08 vs. 2189.75 ± 15.55, P < 0.001), with a similar trend observed in the myocardial explant assay. Spearman correlation analysis indicated plasma ASP level associated with cardiac structural (right ventricular internal dimension, P = 0.006) and functional remodelling (left ventricular ejection fraction, P = 0.002) in ARVC patients. The ARVC patients were followed up for an average of 17.79 ± 1.09 months. Heart failure-associated events (HFAEs) were defined as heart transplantation, on a cardiac transplant list, or death due to end-stage heart failure. Plasma ASP levels in patients with HFAEs were significantly higher than in those without clinical events (2486.03 ± 26.70 vs. 2268.83 ± 23.51, P < 0.001) or those with malignant arrhythmic events (2486.03 ± 26.70 vs. 2297.80 ± 60.46, P = 0.008). LASSO (least absolute shrinkage and selection operator) and multivariable Cox regression analyses showed the ASP level (HR = 1.004, 95% CI [1.002,1.006], P = 0.002) was an independent predictor for adverse HFAEs in ARVC patients. The spline-fitting procedure was applied to illustrate the HFAE-free probabilities at different time points. CONCLUSIONS Our results suggest that plasma ASP may be a useful biomarker in prediction of adverse HF-associated events in ARVC patients.
Collapse
Affiliation(s)
- Jie Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaogang Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
18
|
Garrigues RJ, Thomas S, Leong JM, Garcia BL. Outer surface lipoproteins from the Lyme disease spirochete exploit the molecular switch mechanism of the complement protease C1s. J Biol Chem 2022; 298:102557. [PMID: 36183830 PMCID: PMC9637899 DOI: 10.1016/j.jbc.2022.102557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022] Open
Abstract
Proteolytic cascades comprise several important physiological systems, including a primary arm of innate immunity called the complement cascade. To safeguard against complement-mediated attack, the etiologic agent of Lyme disease, Borreliella burgdorferi, produces numerous outer surface-localized lipoproteins that contribute to successful complement evasion. Recently, we discovered a pair of B. burgdorferi surface lipoproteins of the OspEF-related protein family-termed ElpB and ElpQ-that inhibit antibody-mediated complement activation. In this study, we investigate the molecular mechanism of ElpB and ElpQ complement inhibition using an array of biochemical and biophysical approaches. In vitro assays of complement activation show that an independently folded homologous C-terminal domain of each Elp protein maintains full complement inhibitory activity and selectively inhibits the classical pathway. Using binding assays and complement component C1s enzyme assays, we show that binding of Elp proteins to activated C1s blocks complement component C4 cleavage by competing with C1s-C4 binding without occluding the active site. C1s-mediated C4 cleavage is dependent on activation-induced binding sites, termed exosites. To test whether these exosites are involved in Elp-C1s binding, we performed site-directed mutagenesis, which showed that ElpB and ElpQ binding require C1s residues in the anion-binding exosite located on the serine protease domain of C1s. Based on these results, we propose a model whereby ElpB and ElpQ exploit activation-induced conformational changes that are normally important for C1s-mediated C4 cleavage. Our study expands the known complement evasion mechanisms of microbial pathogens and reveals a novel molecular mechanism for selective C1s inhibition by Lyme disease spirochetes.
Collapse
|
19
|
de Latour RP, Szer J, Weitz IC, Röth A, Höchsmann B, Panse J, Usuki K, Griffin M, Kiladjian JJ, de Castro CM, Nishimori H, Ajayi T, Al-Adhami M, Deschatelets P, Francois C, Grossi F, Risitano AM, Hillmen P. Pegcetacoplan versus eculizumab in patients with paroxysmal nocturnal haemoglobinuria (PEGASUS): 48-week follow-up of a randomised, open-label, phase 3, active-comparator, controlled trial. Lancet Haematol 2022; 9:e648-e659. [PMID: 36055332 DOI: 10.1016/s2352-3026(22)00210-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In the PEGASUS trial, the complement C3 inhibitor, pegcetacoplan, showed superiority to eculizumab in improving haematological outcomes in adult patients with paroxysmal nocturnal haemoglobinuria and suboptimal response to eculizumab at 16 weeks. The aim of the open-label period was to evaluate the long-term efficacy and safety of pegcetacoplan through to 48 weeks. METHODS PEGASUS was a phase 3, randomised, open-label, active-comparator controlled trial conducted in 44 centres in Australia, Belgium, Canada, France, Germany, Japan, Russia, South Korea, Spain, the UK, and the USA. Eligible participants were aged 18 years or older, had paroxysmal nocturnal haemoglobinuria, and had a haemoglobin concentration of less than 10·50 g/dL after 3 months or longer of stable eculizumab treatment. After a 4-week run-in with eculizumab plus pegcetacoplan, patients were randomly assigned (1:1) by interactive response technology to pegcetacoplan (1080 mg subcutaneously twice weekly) or eculizumab (according to their regimen at enrolment) for 16 weeks and could continue to the open-label period (32 weeks of pegcetacoplan monotherapy [pegcetacoplan-to-pegcetacoplan] or 28 weeks of pegcetacoplan monotherapy [eculizumab-to-pegcetacoplan]). Randomisation was stratified by platelet count and number of previous blood transfusions. The primary endpoint was change from baseline in haemoglobin at week 16, which has previously been reported. The outcomes of the open-label period (week 16 to week 48) are reported here. At 48 weeks, efficacy (including mean haemoglobin concentration and quality of life measured on the Functional Assessment of Chronic Illness Therapy [FACIT]-Fatigue scale) was assessed in the intention-to-treat population and safety was assessed per protocol. This trial was registered with ClinicalTrials.gov, NCT03500549, and has been completed. FINDINGS Between June 14, 2018, and Nov 14, 2019, 80 patients were randomly assigned to receive treatment with pegcetacoplan (41 patients) or eculizumab (39 patients). Most participants were women (49 [61%]) and 31 (39%) were men; 12 (15%) were Asian, two (3%) were Black, 49 (61%) were White, and 17 (21%) were another race or did not report their race. The open-label period had 77 participants (38 pegcetacoplan-to-pegcetacoplan, 39 eculizumab-to-pegcetacoplan). Patients in the pegcetacoplan-to-pegcetacoplan group maintained high mean haemoglobin concentrations between 16 weeks (11·54 g/dL [SD 1·96]) and 48 weeks (11·30 g/dL [1·77]; p=0·14). Patients in the eculizumab-to-pegcetacoplan group had significantly greater mean haemoglobin concentrations at 48 weeks (11·57 g/dL [2·21]) versus 16 weeks (8·58 g/dL [0·96]; p<0·0001). Clinically meaningful improvements in FACIT-Fatigue scores were observed at 48 weeks, with a mean change from baseline for all patients receiving pegcetacoplan monotherapy of 9·89 points (SD 9·63), for patients in the pegcetacoplan-to-pegcetacoplan group mean 10·14 points (9·06), and for patients in the eculizumab-to-pegcetacoplan group mean 9·62 points (10·34). During the entire study period, 13 (16%) of 80 patients discontinued treatment (three [7%] of 41 through to week 16 due to breakthrough haemolysis, and ten [13%] of 77 due to severe treatment-emergent adverse events) and 18 patients (eight pegcetacoplan-to-pegcetacoplan, ten eculizumab-to-pegcetacoplan) had at least one serious treatment-emergent adverse event during the open-label period, four were considered to be related to pegcetacoplan treatment. The most common treatment-emergent adverse events (in ≥10% patients) among both pegcetacoplan-treated groups during the open-label period were injection site reactions (in 20 [26%] of 77 patients), haemolysis (15 [19%]), nasopharyngitis (12 [16%]), and diarrhoea (ten [13%]). No treatment-related deaths occurred throughout the duration of the study. INTERPRETATION The durability of improved haematological outcomes and favourable safety profile over 48 weeks of treatment suggests that pegcetacoplan has the potential to improve treatment benefit and alter treatment goals in patients with paroxysmal nocturnal haemoglobinuria. FUNDING Apellis Pharmaceuticals.
Collapse
Affiliation(s)
- Régis Peffault de Latour
- French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Université Paris Cité, Saint-Louis Hospital, Paris, France; Assistance Publique-Hôpitaux de Paris, Department of Hematology and Bone Marrow Transplantation, Saint-Louis Hospital, Université Paris Cité, Paris, France.
| | - Jeff Szer
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ilene C Weitz
- Jane Anne Nohl Division of Hematology, Keck-University of Southern California School of Medicine, Los Angeles, CA, USA
| | - Alexander Röth
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany; Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany; Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Morag Griffin
- Department of Haematology, Saint James University Hospital, Leeds, UK
| | - Jean-Jacques Kiladjian
- Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Hoôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM, CIC1427, Paris, France
| | - Carlos M de Castro
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC, USA
| | - Hisakazu Nishimori
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | | | | | | | | | | | - Antonio M Risitano
- Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy; Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Peter Hillmen
- Department of Haematology, Saint James University Hospital, Leeds, UK
| |
Collapse
|
20
|
Yu C, Li L, Liang D, Wu A, Dong Q, Jia S, Li Y, Li Y, Guo X, Zang H. Glycosaminoglycan-based injectable hydrogels with multi-functions in the alleviation of osteoarthritis. Carbohydr Polym 2022; 290:119492. [DOI: 10.1016/j.carbpol.2022.119492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
|
21
|
Wong RSM, Pullon HWH, Amine I, Bogdanovic A, Deschatelets P, Francois CG, Ignatova K, Issaragrisil S, Niparuck P, Numbenjapon T, Roman E, Sathar J, Xu R, Al-Adhami M, Tan L, Tse E, Grossi FV. Inhibition of C3 with pegcetacoplan results in normalization of hemolysis markers in paroxysmal nocturnal hemoglobinuria. Ann Hematol 2022; 101:1971-1986. [PMID: 35869170 PMCID: PMC9375762 DOI: 10.1007/s00277-022-04903-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/18/2022] [Indexed: 11/01/2022]
Abstract
AbstractParoxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired hematologic disorder characterized by complement-mediated hemolysis. C5 inhibitors (eculizumab/ravulizumab) control intravascular hemolysis but do not prevent residual extravascular hemolysis. The newly approved complement inhibitor, pegcetacoplan, inhibits C3, upstream of C5, and has the potential to improve control of complement-mediated hemolysis. The PADDOCK and PALOMINO clinical trials assessed the safety and efficacy of pegcetacoplan in complement inhibitor-naïve adults (≥ 18 years) diagnosed with PNH. Patients in PADDOCK (phase 1b open-label, pilot trial) received daily subcutaneous pegcetacoplan (cohort 1: 180 mg up to day 28 [n = 3]; cohort 2: 270–360 mg up to day 365 [n = 20]). PALOMINO (phase 2a, open-label trial) used the same dosing protocol as PADDOCK cohort 2 (n = 4). Primary endpoints in both trials were mean change from baseline in hemoglobin, lactate dehydrogenase, haptoglobin, and the number and severity of treatment-emergent adverse events. Mean baseline hemoglobin levels were below the lower limit of normal in both trials (PADDOCK: 8.38 g/dL; PALOMINO: 7.73 g/dL; normal range: 11.90–18.00 g/dL), increased to within normal range by day 85, and were sustained through day 365 (PADDOCK: 12.14 g/dL; PALOMINO: 13.00 g/dL). In PADDOCK, 3 serious adverse events (SAE) led to study drug discontinuation, 1 of which was deemed likely related to pegcetacoplan and 1 SAE, not deemed related to study drug, led to death. No SAE led to discontinuation/death in PALOMINO. Pegcetacoplan was generally well tolerated and improved hematological parameters by controlling hemolysis, while also improving other clinical PNH indicators in both trials. These trials were registered at www.clinicaltrials.gov (NCT02588833 and NCT03593200).
Collapse
|
22
|
Intertwined pathways of complement activation command the pathogenesis of lupus nephritis. Transl Res 2022; 245:18-29. [PMID: 35296451 PMCID: PMC9167748 DOI: 10.1016/j.trsl.2022.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The complement system is involved in the origin of autoimmunity and systemic lupus erythematosus. Both genetic deficiency of complement components and excessive activation are involved in primary and secondary renal diseases, including lupus nephritis. Among the pathways, the classical pathway has long been accepted as the main pathway of complement activation in systemic lupus erythematosus. However, more recent studies have shown the contribution of factors B and D which implies the involvement of the alternative pathway. While there is evidence on the role of the lectin pathway in systemic lupus erythematosus, it is yet to be demonstrated whether this pathway is protective or harmful in lupus nephritis. Complement is being explored for the development of disease biomarkers and therapeutic targeting. In the current review we discuss the involvement of complement in lupus nephritis.
Collapse
|
23
|
Ballerini C, Njamnshi AK, Juliano SL, Kalaria RN, Furlan R, Akinyemi RO. Non-Communicable Neurological Disorders and Neuroinflammation. Front Immunol 2022; 13:834424. [PMID: 35769472 PMCID: PMC9235309 DOI: 10.3389/fimmu.2022.834424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Traumatic brain injury, stroke, and neurodegenerative diseases represent a major cause of morbidity and mortality in Africa, as in the rest of the world. Traumatic brain and spinal cord injuries specifically represent a leading cause of disability in the younger population. Stroke and neurodegenerative disorders predominantly target the elderly and are a major concern in Africa, since their rate of increase among the ageing is the fastest in the world. Neuroimmunology is usually not associated with non-communicable neurological disorders, as the role of neuroinflammation is not often considered when evaluating their cause and pathogenesis. However, substantial evidence indicates that neuroinflammation is extremely relevant in determining the consequences of non-communicable neurological disorders, both for its protective abilities as well as for its destructive capacity. We review here current knowledge on the contribution of neuroinflammation and neuroimmunology to the pathogenesis of traumatic injuries, stroke and neurodegenerative diseases, with a particular focus on problems that are already a major issue in Africa, like traumatic brain injury, and on emerging disorders such as dementias.
Collapse
Affiliation(s)
- Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alfred K. Njamnshi
- Brain Research Africa Initiative (BRAIN); Neurology Department, Central Hospital Yaounde/Faculty of Medicine and Biomedical Sciences (FMBS), The University of Yaounde 1, Yaounde, Cameroon
| | - Sharon L. Juliano
- Neuroscience, Uniformed Services University Hebert School (USUHS), Bethesda, MD, United States
| | - Rajesh N. Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- *Correspondence: Roberto Furlan, ; Rufus O. Akinyemi,
| | - Rufus O. Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Roberto Furlan, ; Rufus O. Akinyemi,
| |
Collapse
|
24
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
25
|
Wang H, Peng W, Zhang G, Jiang M, Zhao J, Zhao X, Pan Y, Lin L. Role of PG0192 and PG0193 in the modulation of pro-inflammatory cytokines in macrophages in response to Porphyromonas gingivalis. Eur J Oral Sci 2022; 130:e12851. [PMID: 35049069 DOI: 10.1111/eos.12851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022]
Abstract
Porphyromonas gingivalis is the main pathogen of chronic periodontitis. However, the specific mechanisms through which P. gingivalis induces immune and inflammatory responses in periodontitis have not been completely elucidated. In this study, we investigated the effects of the P. gingivalis outer membrane protein OmpH (encoded by PG0192 and PG0193) on interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression in macrophages to assess the pro-inflammatory cytokine responses. A PG0192-PG0193 deletion mutant strain and a com△PG0192-0193 strain were constructed. Furthermore, rOmpH-1 and rOmpH-2 encoded by PG0192 and PG0193, respectively, were cloned, expressed, and purified for subsequent experiments. Notably, the expression of IL-6 and TNF-α at mRNA and protein levels was downregulated upon treatment of macrophages with the PG0192-PG0193 deletion mutant strain, whereas treatment of macrophages with P. gingivalis W83 co-incubated with rOmpH-1 or rOmpH-2 upregulated IL-6 and TNF-α mRNA levels. The addition of C5aR antagonist blocked this induction. Overall, our findings provided important insights into the roles of PG0192 and PG0193 for promoting IL-6 and TNF-α expression in macrophages exposed to P. gingivalis and revealed the involvement of C5aR in the pro-inflammatory response.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Wenying Peng
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China.,Department of Oral Medicine, Luohu District, Shenzhen Stomatological Hospital, Shenzhen, China
| | - Guangyu Zhang
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China.,China Aerospace Science & Industry Corp 731 Hospital, Beijing, China
| | - Muzhou Jiang
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Jian Zhao
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Xue Zhao
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Yaping Pan
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Li Lin
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
26
|
Promotion of the inflammatory response in mid colon of complement component 3 knockout mice. Sci Rep 2022; 12:1700. [PMID: 35105928 PMCID: PMC8807838 DOI: 10.1038/s41598-022-05708-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
To determine whether complement component 3 (C3) deficiency affects its receptor downstream-mediated inflammatory response, the current study was undertaken to measure alterations in the inducible nitric oxide synthase (iNOS)‑mediated cyclooxygenase‑2 (COX‑2) induction pathway, inflammasome pathway, nuclear factor-κB (NF-κB) activation, and inflammatory cytokine expressions in the mid colon of C3 knockout (KO) mice. Significant enhancement was observed in expressions of key components of the iNOS‑mediated COX‑2 induction pathway, and in the phosphorylation of mitogen‑activated protein (MAP) kinase members. A similar pattern of increase was also observed in the expression levels of inflammasome proteins in C3 KO mice. Moreover, compared to WT mice, C3 KO mice showed remarkably enhanced phosphorylation of NF-κB and Inhibitor of κB-α (IκB-α), which was reflected in entirety as increased expressions of Tumor necrosis factor (TNF), IL-6 and IL-1α. However, the levels of E-cadherin, tight junction channels and ion channels expressions were lower in the C3 KO mice, although myeloperoxidase (MPO) activity for neutrophils was slightly increased. Taken together, results of the current study indicate that C3 deficiency promotes inflammatory responses in the mid colon of C3 KO mice through activation of the iNOS‑mediated COX‑2 induction pathway, Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-inflammasome pathway and NF-κB signaling pathway, and the enhancement of inflammatory cytokine expressions.
Collapse
|
27
|
Complement component C3: A structural perspective and potential therapeutic implications. Semin Immunol 2022; 59:101627. [PMID: 35760703 PMCID: PMC9842190 DOI: 10.1016/j.smim.2022.101627] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
As the most abundant component of the complement system, C3 and its proteolytic derivatives serve essential roles in the function of all three complement pathways. Central to this is a network of protein-protein interactions made possible by the sequential proteolysis and far-reaching structural changes that accompany C3 activation. Beginning with the crystal structures of C3, C3b, and C3c nearly twenty years ago, the physical transformations underlying C3 function that had long been suspected were finally revealed. In the years that followed, a compendium of crystallographic information on C3 derivatives bound to various enzymes, regulators, receptors, and inhibitors generated new levels of insight into the structure and function of the C3 molecule. This Review provides a concise classification, summary, and interpretation of the more than 50 unique crystal structure determinations for human C3. It also highlights other salient features of C3 structure that were made possible through solution-based methods, including Hydrogen/Deuterium Exchange and Small Angle X-ray Scattering. At this pivotal time when the first C3-targeted therapeutics begin to see use in the clinic, some perspectives are also offered on how this continually growing body of structural information might be leveraged for future development of next-generation C3 inhibitors.
Collapse
|
28
|
Kennelly MA, Killeen SL, Phillips CM, Alberdi G, Lindsay KL, Mehegan J, Cronin M, McAuliffe FM. Maternal C3 complement and C-reactive protein and pregnancy and fetal outcomes: A secondary analysis of the PEARS RCT-An mHealth-supported, lifestyle intervention among pregnant women with overweight and obesity. Cytokine 2021; 149:155748. [PMID: 34700074 PMCID: PMC9070411 DOI: 10.1016/j.cyto.2021.155748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Objectives: Elevated circulating levels of complement component 3 (C3) and C-reactive protein (CRP) have been linked with adverse pregnancy outcomes. Lifestyle interventions may hold potential to ameliorate these effects. We investigated the effect of an antenatal healthy lifestyle intervention on maternal C3 and CRP concentrations and assessed their relationship with maternal and fetal metabolic markers and outcomes. Study design: Secondary analysis of data from the Pregnancy Exercise And Nutrition Research Study (PEARS) randomized controlled trial. Methods: Women (n = 406) with C3 and CRP concentrations determined in early pregnancy (14–16 weeks) and/or late pregnancy (28-weeks) with corresponding fasting glucose, insulin, c-peptide, and lipid profiles were included in the analysis. Pregnancy outcomes included: diagnoses of gestational diabetes (GDM), pre-eclampsia (PET) or pregnancy induced hypertension (PIH), pre-term birth (delivery < 37 weeks), low birth weight (<2500 g), small-for-gestational age (SGA) defined using < 5th or 10th centile for birthweight and cord blood measures of glucose and lipid metabolism. T-tests investigated changes in C3 and CRP over time. Chi-square, Pearson’s’ correlations and multiple regression investigated relationships with outcomes. Results: The PEARS intervention did not influence maternal C3 or CRP concentrations in pregnancy. There was no relationship between CRP concentrations and any maternal or infant outcome. Women who developed GDM had higher C3 concentrations in early (p = 0.01) and late pregnancy (p = 0.02). Women who developed PIH/PET had lower C3 concentrations in early (p = 0.02), but not late (p = 0.10) pregnancy. Maternal C3 concentrations in early pregnancy were a small but significant predictor of maternal insulin concentrations in early (β = 0.40, 95% CI 0.27, 0.53; p < 0.001) and late (β = 0.30, 95% CI 0.17, 0.43p < 0.001) pregnancy, early total cholesterol (TC), and both early and late triglycerides, LDL and HDL Cholesterol concentrations (all p < 0.001). Women who delivered SGA babies (<10th centile) had lower C3 concentrations than women who did not in both early (p < 0.001) and late pregnancy (p = 0.01). No relationship between maternal C3 or CRP and fetal glucose concentrations or lipid profiles was observed. Conclusion: Maternal C3 may play a role in multiple adverse pregnancy outcomes including cardiometabolic ill-health. Further research on this, and strategies to reduce C3 in a pregnant population, are warranted.
Collapse
Affiliation(s)
- Maria A Kennelly
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Sarah Louise Killeen
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Catherine M Phillips
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Ireland
| | - Gouiri Alberdi
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Karen L Lindsay
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland; Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Susan Samueli Integrative Health Institute, UCI College of Health Sciences, Irvine, CA, USA
| | - John Mehegan
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Ireland
| | | | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland.
| |
Collapse
|
29
|
Mannes M, Schmidt CQ, Nilsson B, Ekdahl KN, Huber-Lang M. Complement as driver of systemic inflammation and organ failure in trauma, burn, and sepsis. Semin Immunopathol 2021; 43:773-788. [PMID: 34191093 PMCID: PMC8243057 DOI: 10.1007/s00281-021-00872-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
Complement is one of the most ancient defense systems. It gets strongly activated immediately after acute injuries like trauma, burn, or sepsis and helps to initiate regeneration. However, uncontrolled complement activation contributes to disease progression instead of supporting healing. Such effects are perceptible not only at the site of injury but also systemically, leading to systemic activation of other intravascular cascade systems eventually causing dysfunction of several vital organs. Understanding the complement pathomechanism and its interplay with other systems is a strict requirement for exploring novel therapeutic intervention routes. Ex vivo models exploring the cross-talk with other systems are rather limited, which complicates the determination of the exact pathophysiological roles that complement has in trauma, burn, and sepsis. Literature reporting on these three conditions is often controversial regarding the importance, distribution, and temporal occurrence of complement activation products further hampering the deduction of defined pathophysiological pathways driven by complement. Nevertheless, many in vitro experiments and animal models have shown beneficial effects of complement inhibition at different levels of the cascade. In the future, not only inhibition but also a complement reconstitution therapy should be considered in prospective studies to expedite how meaningful complement-targeted interventions need to be tailored to prevent complement augmented multi-organ failure after trauma, burn, and sepsis. This review summarizes clinically relevant studies investigating the role of complement in the acute diseases trauma, burn, and sepsis with important implications for clinical translation.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Helmholtzstr. 8/2, 89081, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Helmholtzstr. 8/2, 89081, Ulm, Germany.
| |
Collapse
|
30
|
Sultan EY, Rizk DE, Kenawy HI, Hassan R. A small fragment of factor B as a potential inhibitor of complement alternative pathway activity. Immunobiology 2021; 226:152106. [PMID: 34147816 DOI: 10.1016/j.imbio.2021.152106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The complement system is a key player in innate immunity and a modulator of the adaptive immune system. Among the three pathways of complement, the alternative pathway (AP) accounts for most of the complement activation. Factor B (FB) is a major protease of the AP, making it a promising target to inhibit the AP activity in conditions of uncontrolled complement activation. METHODS Based on the data obtained from sequence analysis and conformational changes associated with FB, we expressed and purified a recombinant FB fragment (FBfr). We tested the inhibitory activity of the protein against the AP by in vitro assays. RESULTS FBfr protein was proven to inhibit the complement AP activity when tested by C3b deposition assay and rabbit erythrocyte hemolytic assay. CONCLUSION Our recombinant FBfr was able to compete with the native human FB, which allowed it to inhibit the AP activity. This novel compound is a good candidate for further characterization and testing to be used in complement diagnostic tests and as a drug lead in the field of complement therapeutics.
Collapse
Affiliation(s)
- Enas Yasser Sultan
- Department of Microbiology & Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Dina Eid Rizk
- Department of Microbiology & Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Hany Ibrahim Kenawy
- Department of Microbiology & Immunology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Ramadan Hassan
- Department of Microbiology & Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
31
|
Rognes IN, Pischke SE, Ottestad W, Røislien J, Berg JP, Johnson C, Eken T, Mollnes TE. Increased complement activation 3 to 6 h after trauma is a predictor of prolonged mechanical ventilation and multiple organ dysfunction syndrome: a prospective observational study. Mol Med 2021; 27:35. [PMID: 33832430 PMCID: PMC8028580 DOI: 10.1186/s10020-021-00286-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Background Complement activation is a central mechanism in systemic inflammation and remote organ dysfunction following major trauma. Data on temporal changes of complement activation early after injury is largely missing. We aimed to describe in detail the kinetics of complement activation in individual trauma patients from admission to 10 days after injury, and the association with trauma characteristics and outcome. Methods In a prospective cohort of 136 trauma patients, plasma samples obtained with high time resolution (admission, 2, 4, 6, 8 h, and thereafter daily) were assessed for terminal complement complex (TCC). We studied individual TCC concentration curves and calculated a summary measure to obtain the accumulated TCC response 3 to 6 h after injury (TCC-AUC3–6). Correlation analyses and multivariable linear regression analyses were used to explore associations between individual patients’ admission TCC, TCC-AUC3–6, daily TCC during the intensive care unit stay, trauma characteristics, and predefined outcome measures. Results TCC concentration curves showed great variability in temporal shapes between individuals. However, the highest values were generally seen within the first 6 h after injury, before they subsided and remained elevated throughout the intensive care unit stay. Both admission TCC and TCC-AUC3–6 correlated positively with New Injury Severity Score (Spearman’s rho, p-value 0.31, 0.0003 and 0.21, 0.02) and negatively with admission Base Excess (− 0.21, 0.02 and − 0.30, 0.001). Multivariable analyses confirmed that deranged physiology was an important predictor of complement activation. For patients without major head injury, admission TCC and TCC-AUC3–6 were negatively associated with ventilator-free days. TCC-AUC3–6 outperformed admission TCC as a predictor of Sequential Organ Failure Assessment score at day 0 and 4. Conclusions Complement activation 3 to 6 h after injury was a better predictor of prolonged mechanical ventilation and multiple organ dysfunction syndrome than admission TCC. Our data suggest that the greatest surge of complement activation is found within the first 6 h after injury, and we argue that this time period should be in focus in the design of future experimental studies and clinical trials using complement inhibitors. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00286-3.
Collapse
Affiliation(s)
- Ingrid Nygren Rognes
- Department of Research, The Norwegian Air Ambulance Foundation, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Søren Erik Pischke
- Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.,Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - William Ottestad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Jo Røislien
- Department of Research, The Norwegian Air Ambulance Foundation, Oslo, Norway.,Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| | - Jens Petter Berg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christina Johnson
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Torsten Eken
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway. .,Research Laboratory, Nordland Hospital, K.G. Jebsen TREC, Faculty of Health Sciences, The Arctic University of Norway, Bodø and Tromsø, Norway. .,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
32
|
Hillmen P, Szer J, Weitz I, Röth A, Höchsmann B, Panse J, Usuki K, Griffin M, Kiladjian JJ, de Castro C, Nishimori H, Tan L, Hamdani M, Deschatelets P, Francois C, Grossi F, Ajayi T, Risitano A, Peffault de Latour R. Pegcetacoplan versus Eculizumab in Paroxysmal Nocturnal Hemoglobinuria. N Engl J Med 2021; 384:1028-1037. [PMID: 33730455 DOI: 10.1056/nejmoa2029073] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired disease characterized by chronic complement-mediated hemolysis. C5 inhibition controls intravascular hemolysis in untreated PNH but cannot address extravascular hemolysis. Pegcetacoplan, a pegylated peptide targeting proximal complement protein C3, potentially inhibits both intravascular and extravascular hemolysis. METHODS We conducted a phase 3 open-label, controlled trial to assess the efficacy and safety of pegcetacoplan as compared with eculizumab in adults with PNH and hemoglobin levels lower than 10.5 g per deciliter despite eculizumab therapy. After a 4-week run-in phase in which all patients received pegcetacoplan plus eculizumab, we randomly assigned patients to subcutaneous pegcetacoplan monotherapy (41 patients) or intravenous eculizumab (39 patients). The primary end point was the mean change in hemoglobin level from baseline to week 16. Additional clinical and hematologic markers of hemolysis and safety were assessed. RESULTS Pegcetacoplan was superior to eculizumab with respect to the change in hemoglobin level from baseline to week 16, with an adjusted (least squares) mean difference of 3.84 g per deciliter (P<0.001). A total of 35 patients (85%) receiving pegcetacoplan as compared with 6 patients (15%) receiving eculizumab no longer required transfusions. Noninferiority of pegcetacoplan to eculizumab was shown for the change in absolute reticulocyte count but not for the change in lactate dehydrogenase level. Functional Assessment of Chronic Illness Therapy-Fatigue scores improved from baseline in the pegcetacoplan group. The most common adverse events that occurred during treatment in the pegcetacoplan and eculizumab groups were injection site reactions (37% vs. 3%), diarrhea (22% vs. 3%), breakthrough hemolysis (10% vs. 23%), headache (7% vs. 23%), and fatigue (5% vs. 15%). There were no cases of meningitis in either group. CONCLUSIONS Pegcetacoplan was superior to eculizumab in improving hemoglobin and clinical and hematologic outcomes in patients with PNH by providing broad hemolysis control, including control of intravascular and extravascular hemolysis. (Funded by Apellis Pharmaceuticals; PEGASUS ClinicalTrials.gov, NCT03500549.).
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Complement C3/antagonists & inhibitors
- Complement C5/antagonists & inhibitors
- Complement Inactivating Agents/adverse effects
- Complement Inactivating Agents/therapeutic use
- Diarrhea/chemically induced
- Drug Therapy, Combination
- Erythrocyte Transfusion
- Hemoglobins/analysis
- Hemoglobinuria, Paroxysmal/blood
- Hemoglobinuria, Paroxysmal/drug therapy
- Hemoglobinuria, Paroxysmal/therapy
- Humans
- Injections, Subcutaneous/adverse effects
- Middle Aged
- Peptides/adverse effects
- Peptides/therapeutic use
- Peptides, Cyclic
Collapse
Affiliation(s)
- Peter Hillmen
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Jeff Szer
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Ilene Weitz
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Alexander Röth
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Britta Höchsmann
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Jens Panse
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Kensuke Usuki
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Morag Griffin
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Jean-Jacques Kiladjian
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Carlos de Castro
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Hisakazu Nishimori
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Lisa Tan
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Mohamed Hamdani
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Pascal Deschatelets
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Cedric Francois
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Federico Grossi
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Temitayo Ajayi
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Antonio Risitano
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| | - Régis Peffault de Latour
- From the Department of Haematology, St. James's University Hospital, Leeds (P.H., M.G.), and Lisa Tan Pharma Consulting, Cambridge (L.T.) - both in the United Kingdom; the Department of Clinical Haematology, Peter MacCallum Cancer Center and Royal Melbourne Hospital, Melbourne, VIC, Australia (J.S.); Jane Anne Nohl Division of Hematology, Keck School of Medicine of USC, Los Angeles (I.W.); the Department of Hematology, West German Cancer Center University Hospital Essen, University of Duisburg-Essen, Essen (A. Röth), the Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm (B.H.), and the Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen (J.P.) - all in Germany; the Department of Hematology, NTT Medical Center Tokyo, Tokyo (K.U.), and the Department of Hematology and Oncology, Okayama University Hospital, Okayama (H.N.) - both in Japan; Centre d'Investigations Cliniques (J.-J.K.) and the French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria (R.P.T.), Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris; the Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC (C.C.); Apellis Pharmaceuticals, Waltham, MA (M.H., P.D., C.F., F.G., T.A.); and the Hematology and BMT Unit, AORN San Giuseppe Moscati, Avellino, Italy (A. Risitano)
| |
Collapse
|
33
|
Invasive Bacterial Infections in Subjects with Genetic and Acquired Susceptibility and Impacts on Recommendations for Vaccination: A Narrative Review. Microorganisms 2021; 9:microorganisms9030467. [PMID: 33668334 PMCID: PMC7996259 DOI: 10.3390/microorganisms9030467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
The WHO recently endorsed an ambitious plan, “Defeating Meningitis by 2030”, that aims to control/eradicate invasive bacterial infection epidemics by 2030. Vaccination is one of the pillars of this road map, with the goal to reduce the number of cases and deaths due to Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus agalactiae. The risk of developing invasive bacterial infections (IBI) due to these bacterial species includes genetic and acquired factors that favor repeated and/or severe invasive infections. We searched the PubMed database to identify host risk factors that increase the susceptibility to these bacterial species. Here, we describe a number of inherited and acquired risk factors associated with increased susceptibility to invasive bacterial infections. The burden of these factors is expected to increase due to the anticipated decrease in cases in the general population upon the implementation of vaccination strategies. Therefore, detection and exploration of these patients are important as vaccination may differ among subjects with these risk factors and specific strategies for vaccination are required. The aim of this narrative review is to provide information about these factors as well as their impact on vaccination against the four bacterial species. Awareness of risk factors for IBI may facilitate early recognition and treatment of the disease. Preventive measures including vaccination, when available, in individuals with increased risk for IBI may prevent and reduce the number of cases.
Collapse
|
34
|
Zarantonello A, Pedersen H, Laursen NS, Andersen GR. Nanobodies Provide Insight into the Molecular Mechanisms of the Complement Cascade and Offer New Therapeutic Strategies. Biomolecules 2021; 11:biom11020298. [PMID: 33671302 PMCID: PMC7922070 DOI: 10.3390/biom11020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/22/2023] Open
Abstract
The complement system is part of the innate immune response, where it provides immediate protection from infectious agents and plays a fundamental role in homeostasis. Complement dysregulation occurs in several diseases, where the tightly regulated proteolytic cascade turns offensive. Prominent examples are atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria and Alzheimer’s disease. Therapeutic intervention targeting complement activation may allow treatment of such debilitating diseases. In this review, we describe a panel of complement targeting nanobodies that allow modulation at different steps of the proteolytic cascade, from the activation of the C1 complex in the classical pathway to formation of the C5 convertase in the terminal pathway. Thorough structural and functional characterization has provided a deep mechanistic understanding of the mode of inhibition for each of the nanobodies. These complement specific nanobodies are novel powerful probes for basic research and offer new opportunities for in vivo complement modulation.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
| | - Nick S. Laursen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Gregers R. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
- Correspondence: ; Tel.: +45-30256646
| |
Collapse
|
35
|
Xu X, Zhang C, Denton DT, O’Connell D, Drolet DW, Geisbrecht BV. Inhibition of the Complement Alternative Pathway by Chemically Modified DNA Aptamers That Bind with Picomolar Affinity to Factor B. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:861-873. [PMID: 33419768 PMCID: PMC7851746 DOI: 10.4049/jimmunol.2001260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023]
Abstract
The complement system is a conserved component of innate immunity that fulfills diverse roles in defense and homeostasis. Inappropriate activation of complement contributes to many inflammatory diseases, however, which has led to a renewed emphasis on development of therapeutic complement inhibitors. Activation of complement component C3 is required for amplification of complement and is achieved through two multisubunit proteases called C3 convertases. Of these, the alternative pathway (AP) C3 convertase is responsible for a majority of the C3 activation products in vivo, which renders it an attractive target for inhibitor discovery. In this study, we report the identification and characterization of two related slow off-rate modified DNA aptamers (SOMAmer) reagents that inhibit formation of the AP C3 convertase by binding to the proprotease, factor B (FB). These aptamers, known as SL1102 (31 bases) and SL1103 (29 bases), contain uniform substitutions of 5-(N-2-naphthylethylcarboxyamide)-2'-deoxyuridine for deoxythymidine. SL1102 and SL1103 bind FB with K d values of 49 and 88 pM, respectively, and inhibit activation of C3 and lysis of rabbit erythrocytes under AP-specific conditions. Cocrystal structures of SL1102 (3.4 Å) and SL1103 (3.1 Å) bound to human FB revealed that SL1102 and SL1103 recognize a site at the juncture of the CCP1, CCP3, and vWF domains of FB. Consistent with these structures and previously published information, these aptamers inhibited FB binding to C3b and blocked formation of the AP C3 convertase. Together, these results demonstrate potent AP inhibition by modified DNA aptamers and expand the pipeline of FB-binding molecules with favorable pharmacologic properties.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Chi Zhang
- SomaLogic, Inc., Boulder, CO 80301; and
| | - Dalton T. Denton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | | | | | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
36
|
Youssef L, Miranda J, Blasco M, Paules C, Crovetto F, Palomo M, Torramade-Moix S, García-Calderó H, Tura-Ceide O, Dantas AP, Hernandez-Gea V, Herrero P, Canela N, Campistol JM, Garcia-Pagan JC, Diaz-Ricart M, Gratacos E, Crispi F. Complement and coagulation cascades activation is the main pathophysiological pathway in early-onset severe preeclampsia revealed by maternal proteomics. Sci Rep 2021; 11:3048. [PMID: 33542402 PMCID: PMC7862439 DOI: 10.1038/s41598-021-82733-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia is a pregnancy-specific multisystem disorder and a leading cause of maternal and perinatal morbidity and mortality. The exact pathogenesis of this multifactorial disease remains poorly defined. We applied proteomics analysis on maternal blood samples collected from 14 singleton pregnancies with early-onset severe preeclampsia and 6 uncomplicated pregnancies to investigate the pathophysiological pathways involved in this specific subgroup of preeclampsia. Maternal blood was drawn at diagnosis for cases and at matched gestational age for controls. LC-MS/MS proteomics analysis was conducted, and data were analyzed by multivariate and univariate statistical approaches with the identification of differential pathways by exploring the global human protein-protein interaction network. The unsupervised multivariate analysis (the principal component analysis) showed a clear difference between preeclamptic and uncomplicated pregnancies. The supervised multivariate analysis using orthogonal partial least square discriminant analysis resulted in a model with goodness of fit (R2X = 0.99, p < 0.001) and a strong predictive ability (Q2Y = 0.8, p < 0.001). By univariate analysis, we found 17 proteins statistically different after 5% FDR correction (q-value < 0.05). Pathway enrichment analysis revealed 5 significantly enriched pathways whereby the activation of the complement and coagulation cascades was on top (p = 3.17e-07). To validate these results, we assessed the deposits of C5b-9 complement complex and on endothelial cells that were exposed to activated plasma from an independent set of 4 cases of early-onset severe preeclampsia and 4 uncomplicated pregnancies. C5b-9 and Von Willbrand factor deposits were significantly higher in early-onset severe preeclampsia. Future studies are warranted to investigate potential therapeutic targets for early-onset severe preeclampsia within the complement and coagulation pathway.
Collapse
Affiliation(s)
- Lina Youssef
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jezid Miranda
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Miquel Blasco
- Nephrology and Renal Transplantation Department, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Cristina Paules
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Francesca Crovetto
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona Campus, Barcelona, Spain
- Hematopathology, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team (BET), Barcelona, Spain
| | - Sergi Torramade-Moix
- Hematopathology, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Héctor García-Calderó
- Barcelona Hepatic Hemodynamics Laboratory, Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Girona Biomedical Research Institute - IDIBGI, Girona, Spain
| | - Ana Paula Dantas
- Cardiovascular Institute, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Virginia Hernandez-Gea
- Barcelona Hepatic Hemodynamics Laboratory, Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204, Reus, Spain
| | - Nuria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204, Reus, Spain
| | - Josep Maria Campistol
- Nephrology and Renal Transplantation Department, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Joan Carles Garcia-Pagan
- Barcelona Hepatic Hemodynamics Laboratory, Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hematopathology, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team (BET), Barcelona, Spain
| | - Eduard Gratacos
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain.
- Department of Maternal-Fetal Medicine (ICGON), Hospital Clínic, Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Fatima Crispi
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| |
Collapse
|
37
|
Valproic acid influences the expression of genes implicated with hyperglycaemia-induced complement and coagulation pathways. Sci Rep 2021; 11:2163. [PMID: 33495488 PMCID: PMC7835211 DOI: 10.1038/s41598-021-81794-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
Because the liver plays a major role in metabolic homeostasis and secretion of clotting factors and inflammatory innate immune proteins, there is interest in understanding the mechanisms of hepatic cell activation under hyperglycaemia and whether this can be attenuated pharmacologically. We have previously shown that hyperglycaemia stimulates major changes in chromatin organization and metabolism in hepatocytes, and that the histone deacetylase inhibitor valproic acid (VPA) is able to reverse some of these metabolic changes. In this study, we have used RNA-sequencing (RNA-seq) to investigate how VPA influences gene expression in hepatocytes. Interesting, we observed that VPA attenuates hyperglycaemia-induced activation of complement and coagulation cascade genes. We also observe that many of the gene activation events coincide with changes to histone acetylation at the promoter of these genes indicating that epigenetic regulation is involved in VPA action.
Collapse
|
38
|
Rodrigues PRS, Picco N, Morgan BP, Ghazal P. Sepsis target validation for repurposing and combining complement and immune checkpoint inhibition therapeutics. Expert Opin Drug Discov 2020; 16:537-551. [PMID: 33206027 DOI: 10.1080/17460441.2021.1851186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Sepsis is a disease that occurs due to an adverse immune response to infection by bacteria, viruses and fungi and is the leading pathway to death by infection. The hallmarks for maladapted immune reactions in severe sepsis, which contribute to multiple organ failure and death, are bookended by the exacerbated activation of the complement system to protracted T-cell dysfunction states orchestrated by immune checkpoint control. Despite major advances in our understanding of the condition, there remains to be either a definitive test or an effective therapeutic intervention.Areas covered: The authors consider a combinational drug therapy approach using new biologics, and mathematical modeling for predicting patient responses, in targeting innate and adaptive immune mediators underlying sepsis. Special consideration is given for emerging complement and immune checkpoint inhibitors that may be repurposed for sepsis treatment.Expert opinion: In order to overcome the challenges inherent to finding new therapies for the complex dysregulated host response to infection that drives sepsis, it is necessary to move away from monotherapy and promote precision for personalized combinatory therapies. Notably, combinatory therapy should be guided by predictive systems models of the immune-metabolic characteristics of an individual's disease progression.
Collapse
Affiliation(s)
- Patrícia R S Rodrigues
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Noemi Picco
- Department of Mathematics, Swansea University, Swansea, UK
| | - B Paul Morgan
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Peter Ghazal
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
39
|
de Castro C, Grossi F, Weitz IC, Maciejewski J, Sharma V, Roman E, Brodsky RA, Tan L, Di Casoli C, El Mehdi D, Deschatelets P, Francois C. C3 inhibition with pegcetacoplan in subjects with paroxysmal nocturnal hemoglobinuria treated with eculizumab. Am J Hematol 2020; 95:1334-1343. [PMID: 33464651 PMCID: PMC7693064 DOI: 10.1002/ajh.25960] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired, life-threatening hematologic disease characterized by chronic complement-mediated hemolysis and thrombosis. Despite treatment with eculizumab, a C5 inhibitor, 72% of individuals remain anemic. Pegcetacoplan (APL-2), a PEGylated C3 inhibitor, has the potential to provide more complete hemolysis control in patients with PNH. This open-label, phase Ib study was designed to assess the safety, tolerability, and pharmacokinetics of pegcetacoplan in subjects with PNH who remained anemic during treatment with eculizumab. Pharmacodynamic endpoints were also assessed as an exploratory objective of this study. Data are presented for six subjects in cohort 4 who received treatment for up to 2 years. In total, 427 treatment-emergent adverse events (TEAEs) were reported, 68 of which were possibly related to the study drug. Eight serious TEAEs occurred in two subjects; three of these events were considered possibly related to the study drug. Pegcetacoplan pharmacokinetic concentrations accumulated with repeated dosing, and steady state was reached at approximately 6-8 weeks. Lactate dehydrogenase levels were well controlled by eculizumab at baseline. Pegcetacoplan increased hemoglobin levels and decreased both reticulocyte count and total bilirubin in all six subjects. Improvements were observed in Functional Assessment of Chronic Illness Therapy Fatigue scores. Two subjects discontinued for reasons unrelated to pegcetacoplan. All four subjects who completed the study transitioned to pegcetacoplan monotherapy following eculizumab discontinuation and avoided transfusions. In this small study, pegcetacoplan therapy was generally well-tolerated, and resulted in an improved hematological response by achieving broad hemolysis control, enabling eculizumab discontinuation.
Collapse
MESH Headings
- Adult
- Anemia, Hemolytic/drug therapy
- Anemia, Hemolytic/etiology
- Anemia, Hemolytic/prevention & control
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Bilirubin/blood
- Chemical and Drug Induced Liver Injury/etiology
- Complement C3/antagonists & inhibitors
- Complement C5/antagonists & inhibitors
- Drug Substitution
- Female
- Fever/chemically induced
- Hemoglobins/analysis
- Hemoglobinuria, Paroxysmal/blood
- Hemoglobinuria, Paroxysmal/drug therapy
- Hemoglobinuria, Paroxysmal/immunology
- Hemolysis/drug effects
- Humans
- L-Lactate Dehydrogenase/blood
- Male
- Middle Aged
- Pancreatitis/chemically induced
- Prospective Studies
- Reticulocyte Count
Collapse
Affiliation(s)
| | | | | | - Jaroslaw Maciejewski
- Translational Hematology and Oncology ResearchTaussig Cancer InstituteClevelandOhioUSA
| | | | | | | | - Lisa Tan
- Lisa Tan Pharma Consulting LtdCambridgeUK
| | | | | | | | | |
Collapse
|
40
|
Targeting the Initiator Protease of the Classical Pathway of Complement Using Fragment-Based Drug Discovery. Molecules 2020; 25:molecules25174016. [PMID: 32899120 PMCID: PMC7504721 DOI: 10.3390/molecules25174016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
The initiating protease of the complement classical pathway, C1r, represents an upstream and pathway-specific intervention point for complement-related autoimmune and inflammatory diseases. Yet, C1r-targeted therapeutic development is currently underrepresented relative to other complement targets. In this study, we developed a fragment-based drug discovery approach using surface plasmon resonance (SPR) and molecular modeling to identify and characterize novel C1r-binding small-molecule fragments. SPR was used to screen a 2000-compound fragment library for binding to human C1r. This led to the identification of 24 compounds that bound C1r with equilibrium dissociation constants ranging between 160–1700 µM. Two fragments, termed CMP-1611 and CMP-1696, directly inhibited classical pathway-specific complement activation in a dose-dependent manner. CMP-1611 was selective for classical pathway inhibition, while CMP-1696 also blocked the lectin pathway but not the alternative pathway. Direct binding experiments mapped the CMP-1696 binding site to the serine protease domain of C1r and molecular docking and molecular dynamics studies, combined with C1r autoactivation assays, suggest that CMP-1696 binds within the C1r active site. The group of structurally distinct fragments identified here, along with the structure–activity relationship profiling of two lead fragments, form the basis for future development of novel high-affinity C1r-binding, classical pathway-specific, small-molecule complement inhibitors.
Collapse
|
41
|
Zarantonello A, Presumey J, Simoni L, Yalcin E, Fox R, Hansen A, Olesen HG, Thiel S, Johnson MB, Stevens B, Laursen NS, Carroll MC, Andersen GR. An Ultrahigh-Affinity Complement C4b-Specific Nanobody Inhibits In Vivo Assembly of the Classical Pathway Proconvertase. THE JOURNAL OF IMMUNOLOGY 2020; 205:1678-1694. [PMID: 32769120 DOI: 10.4049/jimmunol.2000528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
The classical and lectin pathways of the complement system are important for the elimination of pathogens and apoptotic cells and stimulation of the adaptive immune system. Upon activation of these pathways, complement component C4 is proteolytically cleaved, and the major product C4b is deposited on the activator, enabling assembly of a C3 convertase and downstream alternative pathway amplification. Although excessive activation of the lectin and classical pathways contributes to multiple autoimmune and inflammatory diseases and overexpression of a C4 isoform has recently been linked to schizophrenia, a C4 inhibitor and structural characterization of the convertase formed by C4b is lacking. In this study, we present the nanobody hC4Nb8 that binds with picomolar affinity to human C4b and potently inhibits in vitro complement C3 deposition through the classical and lectin pathways in human serum and in mouse serum. The crystal structure of the C4b:hC4Nb8 complex and a three-dimensional reconstruction of the C4bC2 proconvertase obtained by electron microscopy together rationalize how hC4Nb8 prevents proconvertase assembly through recognition of a neoepitope exposed in C4b and reveals a unique C2 conformation compared with the alternative pathway proconvertase. On human induced pluripotent stem cell-derived neurons, the nanobody prevents C3 deposition through the classical pathway. Furthermore, hC4Nb8 inhibits the classical pathway-mediated immune complex delivery to follicular dendritic cells in vivo. The hC4Nb8 represents a novel ultrahigh-affinity inhibitor of the classical and lectin pathways of the complement cascade under both in vitro and in vivo conditions.
Collapse
Affiliation(s)
| | - Jessy Presumey
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Léa Simoni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Esra Yalcin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Rachel Fox
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Annette Hansen
- Department of Biomedicine, Aarhus University, DK8000 Aarhus, Denmark
| | - Heidi Gytz Olesen
- Department of Molecular Biology and Genetics, Aarhus University, DK8000 Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, DK8000 Aarhus, Denmark
| | - Matthew B Johnson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115
| | - Beth Stevens
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115.,Department of Neurology, Harvard Medical School, Boston, MA 02115.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115; and
| | - Nick Stub Laursen
- Department of Molecular Biology and Genetics, Aarhus University, DK8000 Aarhus, Denmark
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, DK8000 Aarhus, Denmark;
| |
Collapse
|
42
|
Rimmer LJ, Moughal S, Bashir M. Immunological therapeutics in acute aortic syndrome. Asian Cardiovasc Thorac Ann 2020; 28:512-519. [PMID: 32674584 DOI: 10.1177/0218492320943350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute aortic syndrome is a group of interlinked conditions with common presenting symptoms, including aortic dissection, penetrating atherosclerotic ulcer, and intramural hematoma. Pharmacological management of acute aortic syndrome is a growing area, with key themes to address the underlying inflammatory pathways believed to be the cause. Research into interleukins, matrix metalloproteinases, and granulocyte macrophage colony-stimulating factor are just some of the many immunological properties being investigated and translated into medical therapies. Stem cell experiments may indicate further advances in the pathologies of acute aortic syndrome. The study of pharmacogenomics to improve treatment across different genomes is also a novel area outlined in this paper.
Collapse
Affiliation(s)
- Lara Jane Rimmer
- Vascular Surgery Department, 155510Royal Blackburn Teaching Hospital, Blackburn, UK
| | - Saad Moughal
- Vascular Surgery Department, 155510Royal Blackburn Teaching Hospital, Blackburn, UK
| | - Mohamad Bashir
- Vascular Surgery Department, 155510Royal Blackburn Teaching Hospital, Blackburn, UK
| |
Collapse
|
43
|
Comparison of Normal and Metaplastic Epithelium in Patients with Stable versus Persistently Symptomatic Severe Asthma Using Laser-Capture Microdissection and Data-Independent Acquisition-Mass Spectrometry. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 189:2358-2365. [PMID: 31761031 DOI: 10.1016/j.ajpath.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
A proportion of patients with severe asthma (SA) show poor responses to traditional asthma medications; however, it remains unknown why some patients remain persistently symptomatic. Our objective was to explore the use of laser-capture microdissection of specific epithelial structures combined with quantitative data-independent acquisition mass spectrometry to elucidate differences in protein composition in patients with SA with varying symptom control. Unbiased label-free quantitative proteome analyses were performed on laser-capture-microdissected areas of specific epithelial structures from patients with SA with varying degrees of symptom control. A total of 1993 stable SA and 1652 symptomatic SA proteins in normal epithelium and 1458 stable SA and 1647 symptomatic SA proteins in metaplastic epithelium were quantified. When comparing proteome profiles based on symptom control, 33 proteins in patients with stable SA (≥twofold change; P ≤ 0.05) and 13 proteins in patients with persistently symptomatic SA (≥twofold change; P ≤ 0.05) were enriched significantly. When comparing proteome profiles based on epithelial status, 21 proteins in normal epithelium (≥twofold change; P ≤ 0.05) and 6 proteins in metaplastic epithelium (≥twofold change; P ≤ 0.05) were enriched significantly. New treatment strategies are needed for patients with severe asthma and exploratory studies of unbiased nature such as this may help when searching for new mechanisms and potential targets involved in the disease pathology.
Collapse
|
44
|
Hammers CM, Stanley JR. Recent Advances in Understanding Pemphigus and Bullous Pemphigoid. J Invest Dermatol 2020; 140:733-741. [DOI: 10.1016/j.jid.2019.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
|
45
|
Bhutta MF, Lambie J, Hobson L, Williams D, Tyrer HE, Nicholson G, Brown SDM, Brown H, Piccinelli C, Devailly G, Ramsden J, Cheeseman MT. Transcript Analysis Reveals a Hypoxic Inflammatory Environment in Human Chronic Otitis Media With Effusion. Front Genet 2020; 10:1327. [PMID: 32153623 PMCID: PMC7047850 DOI: 10.3389/fgene.2019.01327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic otitis media with effusion (COME) is the most common cause of childhood hearing loss in the developed world. Underlying pathophysiology is not well understood, and in particular the factors that lead to the transition from acute to chronic inflammation. Here we present the first genome-wide transcript analysis of white blood cells in the effusion of children with COME. Analysis of microarray data for enriched pathways reveals upregulation of hypoxia pathways, which is confirmed using real-time PCR and determining VEGF protein titres. Other pathways upregulated in both mucoid and serous effusions include Toll-like receptor signaling, complement, and RANK-RANKL. Cytology reveals neutrophils and macrophages predominated in both serous and mucoid effusions, however, serous samples had higher lymphocyte and eosinophil differential counts, while mucoid samples had higher neutrophil differential counts. Transcript analysis indicates serous fluids have CD4+ and CD8+ T-lymphocyte, and NK cell signatures. Overall, our findings suggest that inflammation and hypoxia pathways are important in the pathology of COME, and targets for potential therapeutic intervention, and that mucoid and serous COME may represent different immunological responses.
Collapse
Affiliation(s)
- Mahmood F Bhutta
- Department of ENT, Brighton & Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Jane Lambie
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lindsey Hobson
- Department of ENT, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Debbie Williams
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, United Kingdom
| | - Hayley E Tyrer
- Faculty of Health and Wellbeing, University of Lancashire, Preston, United Kingdom
| | - George Nicholson
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, United Kingdom
| | - Helen Brown
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Chiara Piccinelli
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | | | - James Ramsden
- Department of ENT, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michael T Cheeseman
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
46
|
Park JW, Kim JE, Kang MJ, Choi HJ, Bae SJ, Hwang DY. Compensatory role of C3 convertase on the strain difference for C3 protein expression in FVB/N, C3H/HeN and C57BL/6N mice. Lab Anim Res 2020; 36:4. [PMID: 32206611 PMCID: PMC7081674 DOI: 10.1186/s42826-020-0036-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/03/2020] [Indexed: 11/29/2022] Open
Abstract
To investigate the role of complement C3 (C3) convertase on the strain difference for C3 protein expression in three inbred mice strains, we compared the levels of C2, C3 and C4 mRNA, as well as C3 protein and C3 convertase activity in the serum and liver tissue of FVB/N, C3H/HeN and C57BL/6N mice. The level of mRNA, inactive form (InACF) and active form (ACF) for C3 showed a regular pattern, which they were higher in the FVB/N and C57BL/6N mice than C3H/HeN mice. However, the level of C3b fragments (C3bα and β) derived from C3 protein were constantly maintained in the liver of FVB/N, C3H/HeN and C57BL/6N mice in spite of the strain difference on the transcriptional and translation level of C3. Especially, a reverse pattern of the level of mRNA, InACF and ACF for C3 was observed on the activity level of C3 convertase activity. The highest level of C3 convertase activity was measured in C3H/HeN mice, followed by C57BL/6N and FVB/N mice. In case of C3 convertase components, the level of C2 mRNA was higher in C3H/HeN mice than FVB/N and C57BL/6 N mice, while levels of C4 mRNA were higher in FVB/N and C57BL/6N mice than C3H/HeN mice. The current study results provide the first scientific evidence that C3 convertase may play complementary role to overcome the strain difference on the C3 protein expression in FVB/N, C3H/HeN and C57BL/6N mice.
Collapse
Affiliation(s)
- Ji Won Park
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea.,2Laboratory Animals Resources Center, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| | - Ji Eun Kim
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea.,2Laboratory Animals Resources Center, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| | - Mi Ju Kang
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| | - Hyeon Jun Choi
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| | - Su Ji Bae
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| | - Dae Youn Hwang
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea.,2Laboratory Animals Resources Center, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| |
Collapse
|
47
|
Shim K, Begum R, Yang C, Wang H. Complement activation in obesity, insulin resistance, and type 2 diabetes mellitus. World J Diabetes 2020; 11:1-12. [PMID: 31938469 PMCID: PMC6927818 DOI: 10.4239/wjd.v11.i1.1] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/07/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
Amplified inflammatory reaction has been observed to be involved in cardiometabolic diseases such as obesity, insulin resistance, diabetes, dyslipidemia, and atherosclerosis. The complement system was originally viewed as a supportive first line of defense against microbial invaders, and research over the past decade has come to appreciate that the functions of the complement system extend beyond the defense and elimination of microbes, involving in such diverse processes as clearance of the immune complexes, complementing T and B cell immune functions, tissue regeneration, and metabolism. The focus of this review is to summarize the role of the activation of complement system and the initiation and progression of metabolic disorders including obesity, insulin resistance and diabetes mellitus. In addition, we briefly describe the interaction of the activation of the complement system with diabetic complications such as diabetic retinopathy, nephropathy and neuropathy, highlighting that targeting complement system therapeutics could be one of possible routes to slow down those aforementioned diabetic complications.
Collapse
Affiliation(s)
- Kyumin Shim
- Department of Basic Science, California Northstate University College of Medicine, Elk Grove, CA 95757, United States
| | - Rayhana Begum
- Department of Pharmacy, Primeasia University, Dhaka 1213, Bangladesh
| | - Catherine Yang
- Department of Basic Science, California Northstate University College of Medicine, Elk Grove, CA 95757, United States
- California Northstate University College of Graduate Studies, Elk Grove, CA 95757, United States
| | - Hongbin Wang
- Department of Basic Science, California Northstate University College of Medicine, Elk Grove, CA 95757, United States
- California Northstate University College of Graduate Studies, Elk Grove, CA 95757, United States
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, United States
| |
Collapse
|
48
|
Winnicki W, Pichler P, Mechtler K, Imre R, Steinmacher I, Sengölge G, Knafl D, Beilhack G, Wagner L. A novel approach to immunoapheresis of C3a/C3 and proteomic identification of associates. PeerJ 2019; 7:e8218. [PMID: 31871840 PMCID: PMC6921979 DOI: 10.7717/peerj.8218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background Complement factor C3 represents the central component of the complement cascade and its activation split product C3a plays an important role in inflammation and disease. Many human disorders are linked to dysregulation of the complement system and alteration in interaction molecules. Therefore, various therapeutic approaches to act on the complement system have been initiated. Methods and Results Aiming to develop a tool to eliminate C3a/C3 from the circulation, in a first step a high affine murine monoclonal antibody (mAb) (3F7E2-mAb) was generated against complement factor C3 and selected for binding to the C3a region to serve as immunoaffinity reagent. Functional testing of the 3F7E2-mAb revealed an inhibition of Zymosan-induced cleavage of C3a from C3. Subsequently, a C3a/C3 specific 3F7E2-immunoaffinity column was developed and apheresis of C3a/C3 and associates was performed. Finally, a proteomic analysis was carried out for identification of apheresis products. C3a/C3 was liberated from the 3F7E2-column together with 278 proteins. C3a/C3 interaction specificity was validated by using a haptoglobin immunoaffinity column as control and biostatistic analysis revealed 39 true C3a/C3 interactants. Conclusion A novel and functionally active mAb was developed against complement factor C3a/C3 and used in a specific immunoaffinity column that allows apheresis of C3a/C3 and associates and their identification by proteomic analysis. This methodological approach of developing specific antibodies that can be used as immunoaffinity reagents to design immunoaffinity columns for elimination and further identification of associated proteins could open new avenues for the development of tailored immunotherapy in various complement-mediated or autoimmune diseases.
Collapse
Affiliation(s)
- Wolfgang Winnicki
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Peter Pichler
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Karl Mechtler
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Richard Imre
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Ines Steinmacher
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Gürkan Sengölge
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Daniela Knafl
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Georg Beilhack
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Ludwig Wagner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
van Dijk BJ, Meijers JCM, Kloek AT, Knaup VL, Rinkel GJE, Morgan BP, van der Kamp MJ, Osuka K, Aronica E, Ruigrok YM, van de Beek D, Brouwer M, Pekna M, Hol EM, Vergouwen MDI. Complement C5 Contributes to Brain Injury After Subarachnoid Hemorrhage. Transl Stroke Res 2019; 11:678-688. [PMID: 31811640 PMCID: PMC7340633 DOI: 10.1007/s12975-019-00757-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Previous studies showed that complement activation is associated with poor functional outcome after aneurysmal subarachnoid hemorrhage (SAH). We investigated whether complement activation is underlying brain injury after aneurysmal SAH (n = 7) and if it is an appropriate treatment target. We investigated complement expression in brain tissue of aneurysmal SAH patients (n = 930) and studied the role of common genetic variants in C3 and C5 genes in outcome. We analyzed plasma levels (n = 229) to identify the functionality of a single nucleotide polymorphism (SNP) associated with outcome. The time course of C5a levels was measured in plasma (n = 31) and CSF (n = 10). In an SAH mouse model, we studied the extent of microglia activation and cell death in wild-type mice, mice lacking the C5a receptor, and in mice treated with C5-specific antibodies (n = 15 per group). Brain sections from aneurysmal SAH patients showed increased presence of complement components C1q and C3/C3b/iC3B compared to controls. The complement component 5 (C5) SNP correlated with C5a plasma levels and poor disease outcome. Serial measurements in CSF revealed that C5a was > 1400-fold increased 1 day after aneurysmal SAH and then gradually decreased. C5a in plasma was 2-fold increased at days 3–10 after aneurysmal SAH. In the SAH mouse model, we observed a ≈ 40% reduction in both microglia activation and cell death in mice lacking the C5a receptor, and in mice treated with C5-specific antibodies. These data show that C5 contributes to brain injury after experimental SAH, and support further study of C5-specific antibodies as novel treatment option to reduce brain injury and improve prognosis after aneurysmal SAH.
Collapse
Affiliation(s)
- Bart J van Dijk
- UMC Utrecht Brain Center, Department of Translational Neurosciences, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, Amsterdam, The Netherlands
| | - Anne T Kloek
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Veronique L Knaup
- Department of Experimental Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Gabriel J E Rinkel
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - B Paul Morgan
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff, UK
| | - Marije J van der Kamp
- UMC Utrecht Brain Center, Department of Translational Neurosciences, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, 1-1 Karimatayazako, Aichi, Japan
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ynte M Ruigrok
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Matthijs Brouwer
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marcela Pekna
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 9A, Gothenburg, Sweden
| | - Elly M Hol
- UMC Utrecht Brain Center, Department of Translational Neurosciences, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, The Netherlands
| | - Mervyn D I Vergouwen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.
| |
Collapse
|
50
|
Xavier S, Sahu RK, Bontha SV, Mass V, Taylor RP, Megyesi J, Thielens NM, Portilla D. Complement C1r serine protease contributes to kidney fibrosis. Am J Physiol Renal Physiol 2019; 317:F1293-F1304. [PMID: 31509012 PMCID: PMC6879941 DOI: 10.1152/ajprenal.00357.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
We have previously reported that complement activation precedes the development of kidney fibrosis; however, little is known about the cellular mechanisms involved in this transition. We hypothesized that increased expression of C1 complex protease C1r, the initiator of complement activation, contributes to tubulointerstitial fibrosis and tested this idea in mice with global deletion of C1r. Although expression of C1r in untreated wild-type (WT) mice was higher in the liver compared with kidney tissue, administration of folic acid (FA) led to upregulation of C1r mRNA and protein levels only in kidney tissue. Immunohistochemistry and in situ hybridization experiments localized increased expression of C1r and C1s proteases to renal tubular epithelial cells. C1r-null mice had reduced acute tubular injury and inflammation measured 2 days after FA administration compared with WT mice. C1r deletion reduced expression of C1s, C3 fragment formation, and organ fibrosis measured 14 days after FA administration. Differential gene expression performed in kidney tissue demonstrated that C1r-null mice had reduced expression of genes associated with the acute phase response, complement, proliferation of connective tissue cells (e.g., platelet-derived growth factor receptor-β), and reduced expression of genes associated with inflammation compared with FA-treated WT mice. In vitro experiments in renal epithelial cells demonstrated that C1s expression is dependent on increased C1r expression and that interferon-γ induces the expression of these two proteases. We conclude that increased expression of C1 complex proteases is associated with increased tissue inflammation and complement C3 formation and represents an important pathogenic mechanism leading to FA-mediated tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Sandhya Xavier
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Ranjit K Sahu
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Sai Vineela Bontha
- Methodist University of Tennessee Transplant Institute, Memphis, Tennessee
| | - Valeria Mass
- Methodist University of Tennessee Transplant Institute, Memphis, Tennessee
| | - Ronald P Taylor
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia
| | - Judit Megyesi
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nicole M Thielens
- University of Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'énergie Atomique et aux Énergies Alternatives, L'Institut de Biologie Structurale, Grenoble, France
| | - Didier Portilla
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
- Salem Veterans Affairs Medical Center, Salem, Virginia
| |
Collapse
|