1
|
Salvadori M, Tsalouchos A. Pharmacogenetics of immunosuppressant drugs: A new aspect for individualized therapy. World J Transplant 2020; 10:90-103. [PMID: 32864355 PMCID: PMC7428791 DOI: 10.5500/wjt.v10.i5.90] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, pharmacogenetics has emerged as an important tool for choosing the right immunosuppressant drug and its appropriate dose. Indeed, pharmacogenetics may exert its action on immunosuppressant drugs at three levels. Pharmacogenetics identifies and studies the genes involved in encoding the proteins involved in drug pharmacokinetics and in encoding the enzymes involved in drug degradation. Pharmacogenetics is also relevant in encoding the enzymes and proteins involved in codifying the transmembrane proteins involved in transmembrane passage favoring the absorption and intracellular action of several immunosuppressants. Pharmacogenetics concern the variability of genes encoding the proteins involved as immunosuppressant triggers in the pharmacodynamic pathways. Of course, not all genes have been discovered and studied, but some of them have been clearly examined and their relevance together with other factors such as age and race has been defined. Other genes on the basis of relevant studies have been proposed as good candidates for future studies. Unfortunately, to date, clear conclusions may be drawn only for those drugs that are metabolized by CYP3A5 and its genotyping before kidney, heart and lung transplantation is recommended. The conclusions of the studies on the recommended candidate genes, together with the development of omics techniques could in the future allow us to choose the right dose of the right immunosuppressant for the right patient.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Nephrology and Dialysis Unit, Saints Cosmas and Damian Hospital, Pescia 51017, Italy
| |
Collapse
|
2
|
Mo X, Li J, Liu Y, Liao X, Tan M, Chen Y, He F, He Y, Li Y, Huang M. Kidney podocyte-associated gene polymorphisms affect tacrolimus concentration in pediatric patients with refractory nephrotic syndrome. THE PHARMACOGENOMICS JOURNAL 2020; 20:543-552. [PMID: 31902946 DOI: 10.1038/s41397-019-0141-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Few studies have investigated the correlation between pharmacogenomics and tacrolimus pharmacokinetics in patients with nephrotic syndrome (NS). This study evaluated the influences of genetic polymorphisms of metabolic enzymes, transporters, and podocyte-associated proteins on tacrolimus concentration in Chinese pediatric patients with refractory NS. A total of 167 pediatric patients with refractory NS were included from July 2013 to December 2017. Age of onset was restricted to <14 years of age. Dose-adjusted tacrolimus trough concentration (C0/D) on the third month was calculated, and 20 single-nucleotide polymorphisms in sixteen genes were genotyped. Age was correlated with tacrolimus C0/D (p = 0.006, r = 0.213). Tacrolimus C0/D was higher in CYP3A5 nonexpressers than in CYP3A5 expressers (p = 0.003). ACTN4 rs62121818, MYH9 rs2239781, CYP3A5*3, and age explained 20.5% interindividual variability of tacrolimus concentration in the total cohort. In CYP3A5 nonexpressers, ACTN4 rs62121818 and MYH9 rs2239781 together explained 14.6% variation of tacrolimus C0/D. MYH9 rs2239781, LAMB2 rs62119873 and age together explained 22.3% variability of tacrolimus level in CYP3A5 expressers. CYP3A5*3 was still an important factor affecting tacrolimus concentration in patients with NS. Podocyte-associated gene polymorphisms, especially ACTN4 rs62121818 and MYH9 rs2239781, were the other most important biomarkers for tacrolimus whole blood levels. Genotyping of CYP3A5, ACTN4, and MYH9 polymorphisms may be helpful for better guiding tacrolimus dosing in pediatric patients with refractory NS.
Collapse
Affiliation(s)
- Xiaolan Mo
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, Guangzhou Women and Children's medical center, Guangzhou Medical University, Guangzhou, China
| | - Jiali Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yunfeng Liu
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xin Liao
- Division of nephrology, Guangzhou Women and Children's medical center, Guangzhou Medical University, Guangzhou, China
| | - Mei Tan
- Division of nephrology, Guangzhou Women and Children's medical center, Guangzhou Medical University, Guangzhou, China
| | - Yilu Chen
- Department of Pharmacy, Guangzhou Women and Children's medical center, Guangzhou Medical University, Guangzhou, China
| | - Fan He
- Department of Pharmacy, Guangzhou Women and Children's medical center, Guangzhou Medical University, Guangzhou, China
| | - Yanling He
- Department of Pharmacy, Guangzhou Women and Children's medical center, Guangzhou Medical University, Guangzhou, China.
| | - Yingjie Li
- Division of nephrology, Guangzhou Women and Children's medical center, Guangzhou Medical University, Guangzhou, China.
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|