1
|
De-la-Rosa-Martínez D, Villaseñor-Echavarri R, Vilar-Compte D, Mosqueda-Larrauri V, Zinser-Peniche P, Blumberg S. Heterogeneity of Clostridioides difficile asymptomatic colonization prevalence: a systematic review and meta-analysis. Gut Pathog 2025; 17:6. [PMID: 39871276 PMCID: PMC11773978 DOI: 10.1186/s13099-024-00674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Asymptomatic carriers significantly influence the transmission dynamics of C. difficile. This study aimed to assess the prevalence of toxigenic C. difficile asymptomatic colonization (tCDAC) and investigate its heterogeneity across different populations. We searched MEDLINE, Web of Science, and Scopus for articles published between 2000 and 2023 on tCDAC. Studies including asymptomatic adults with laboratory-confirmed tCDAC were eligible. We performed a random-effects meta-analysis to estimate the pooled prevalence by clinical characteristics, settings, and geographic areas. In addition, we used outlier analyses and meta-regression to explore sources of prevalence variability. RESULTS Fifty-one studies involving 39,447 patients were included. The tCDAC prevalence ranged from 0.5 to 51.5%. Among pooled estimates, a high prevalence was observed in patients with cystic fibrosis, outbreak settings, and cancer patients, whereas the lowest rates were found in healthy individuals and healthcare workers. Similar colonization rates were observed between admitted and hospitalized patients. Our meta-regression analysis revealed lower rates in healthy individuals and higher rates in cystic fibrosis patients and studies from North America. Additionally, compared with that among healthy individuals, the prevalence significantly increased by 15-47% among different populations and settings. CONCLUSION Our study revealed that tCDAC is a common phenomenon. We found high prevalence estimates that showed significant variability across populations. This heterogeneity could be partially explained by population characteristics and settings, supporting their role in the pathogenesis and burden of this disease. This highlights the need to identify high-risk groups to improve infection control strategies, decrease transmission dynamics, and better understand the natural history of this disease.
Collapse
Affiliation(s)
- Daniel De-la-Rosa-Martínez
- Francis I Proctor Foundation, University of California San Francisco, 490 Illinois St, San Francisco, CA, 94158, USA.
| | | | - Diana Vilar-Compte
- Department of Infectious Diseases, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Paola Zinser-Peniche
- Department of Infectious Diseases, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Seth Blumberg
- Francis I Proctor Foundation, University of California San Francisco, 490 Illinois St, San Francisco, CA, 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Dong H, Li R, Zhao N, Dadhania DM, Suthanthiran M, Lee JR, Ling W. Antibiotic subclasses differentially perturb the gut microbiota in kidney transplant recipients. FRONTIERS IN TRANSPLANTATION 2024; 3:1400067. [PMID: 39371270 PMCID: PMC11451434 DOI: 10.3389/frtra.2024.1400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/27/2024] [Indexed: 10/08/2024]
Abstract
Introduction The impact of antibiotics on the gut microbiota in kidney transplant recipients is not well characterized. In this study, we determine the impact of different subclasses of antibiotics on the gut microbiota in a cohort of 168 kidney transplant recipients. Methods Gut microbiome profiling was performed on 510 fecal specimens using 16S rRNA gene sequencing of the V4-V5 hypervariable region. We classified fecal specimens by antibiotic exposure into 5 categories: Beta-lactam, Fluoroquinolone (FQ), Beta-lactam & FQ Group, Other Antibiotics, and No Antibiotic (No Abx). Mixed-effects regression models were utilized to identify changes in microbial diversity and in the centered log-ratio (CLR) transformed abundance of genera while adjusting for important covariates. Results Antibiotic administration was associated with a significant decrease in the Shannon alpha diversity index, a decreased abundance of 11 taxa including Eubacterium and Ruminococcus, and an increased abundance of 16 taxa including Enterococcus and Staphylococcus. Exposure to Beta-lactam antibiotics was associated with an increased abundance of 10 taxa including Enterococcus and a decreased abundance of 5 taxa including Eubacterium while exposure to FQ antibiotics was associated with an increased abundance of 3 taxa and a decreased abundance of 4 taxa including Ruminococcus. Conclusions Beta-lactam antibiotics and FQ antibiotics have a profound impact on the gut microbiota in kidney transplant recipients. Given the link of the gut microbiota to infectious complications, antibiotic associated changes in the microbiota may lead to an increased risk for further infections.
Collapse
Affiliation(s)
- Hanbo Dong
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Runzhe Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Darshana M. Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Transplantation Medicine, New York Presbyterian Hospital–Weill Cornell Medical Center, New York, NY, United States
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Transplantation Medicine, New York Presbyterian Hospital–Weill Cornell Medical Center, New York, NY, United States
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Transplantation Medicine, New York Presbyterian Hospital–Weill Cornell Medical Center, New York, NY, United States
| | - Wodan Ling
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
3
|
Chen Z, Chang X, Ye Q, Gao Y, Deng R. Kidney transplantation and gut microbiota. Clin Kidney J 2024; 17:sfae214. [PMID: 39170931 PMCID: PMC11336673 DOI: 10.1093/ckj/sfae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 08/23/2024] Open
Abstract
Kidney transplantation is an effective way to improve the condition of patients with end-stage renal disease. However, maintaining long-term graft function and improving patient survival remain a key challenge after kidney transplantation. Dysbiosis of intestinal flora has been reported to be associated with complications in renal transplant recipients. The commensal microbiota plays an important role in the immunomodulation of the transplant recipient responses. However, several processes, such as the use of perioperative antibiotics and high-dose immunosuppressants in renal transplant recipients, can lead to gut dysbiosis and disrupt the interaction between the microbiota and the host immune responses, which in turn can lead to complications such as infection and rejection in organ recipients. In this review, we summarize and discuss the changes in intestinal flora and their influencing factors in patients after renal transplantation as well as the evidence related to the impact of intestinal dysbiosis on the prognosis of renal transplantation from in vivo and clinical studies, and conclude with a discussion of the use of microbial therapy in the transplant population. Hopefully, a deeper understanding of the function and composition of the microbiota in patients after renal transplantation may assist in the development of clinical strategies to restore a normal microbiota and facilitate the clinical management of grafts in the future.
Collapse
Affiliation(s)
- Zehuan Chen
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Xinhua Chang
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Qianyu Ye
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Yifang Gao
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Ronghai Deng
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| |
Collapse
|
4
|
Iqbal H, Patel J, Singh I, Kohli I, Thind N, Dhiman M, Sohal A, Yang J. The impact of Clostridioides difficile infection on outcomes among kidney transplant recipients. Am J Infect Control 2024; 52:795-800. [PMID: 38395312 DOI: 10.1016/j.ajic.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is a significant cause of morbidity and mortality among hospitalized patients, particularly those who are immunosuppressed. We aim to assess the outcomes of CDI among kidney transplant (KT) recipients. METHODS Nationwide Inpatient Sample from 2016 to 2020 was used to identify patients with KT and stratify based on the presence of CDI. Data were collected regarding demographics and comorbidities. Outcomes included in-hospital mortality, acute kidney injury, intensive care unit admission, transplant rejection, transplant failure, length of stay, and total hospitalization charges. The relationships between variables of interest and outcomes were analyzed using multivariate regression. RESULTS A total of 557,635 KT recipients were included. CDI prevalence was 2.4%. The majority of patients in the CDI group were age >65 (43.6%), female (51%), White (55.3%), and had Medicare insurance (74.9%). On multivariate regression analysis, CDI was associated with increased odds of acute kidney injury (aOR 2.06, p < 0.001), intensive care unit admission (aOR 2.47, p < 0.001), and mortality (aOR 1.90, p < 0.001). CDI was also associated with longer length of stay (9.35 days vs 5.42 days, p < 0.001) and higher total hospitalization charges ($110,063 vs $100,006, p < 0.001). There was no difference in transplant rejection, complication, failure, or infection among KT recipients with CDI and those without. CONCLUSIONS We found that CDI was associated with worse outcomes and higher costs. KT patients should be monitored closely for signs of CDI in order to initiate appropriate management.
Collapse
Affiliation(s)
- Humzah Iqbal
- Department of Internal Medicine, University of California San Francisco, Fresno, CA
| | - Jay Patel
- Department of Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, OH
| | - Ishandeep Singh
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, India
| | - Isha Kohli
- Graduate School of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nuhar Thind
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, India
| | - Mukul Dhiman
- Department of Internal Medicine, Punjab Institute of Medical Sciences, Jalandhar, India
| | - Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, WA.
| | - Juliana Yang
- Department of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
5
|
Bharati J, Anandh U, Kotton CN, Mueller T, Shingada AK, Ramachandran R. Diagnosis, Prevention, and Treatment of Infections in Kidney Transplantation. Semin Nephrol 2023; 43:151486. [PMID: 38378396 DOI: 10.1016/j.semnephrol.2023.151486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Kidney transplant often is complicated by infections in the recipient from therapy-related and patient-related risk factors. Infections in kidney transplant recipients are associated with increased morbidity, mortality, and allograft dysfunction. There is a predictable timeline after kidney transplant regarding the types of pathogens causing infections, reflecting the net state of immunosuppression. In the early post-transplant period, bacterial infections comprise two thirds of all infections, followed by viral and fungal infections. Infections occurring early after kidney transplantation are generally the result of postoperative complications. In most cases, opportunistic infections occur within 6 months after kidney transplantation. They may be caused by a new infection, a donor-derived infection, or reactivation of a latent infection. Community-acquired pneumonia, upper respiratory tract infections, urinary tract infections, and gastrointestinal infections are the most common infections in the late period after transplantation when the net immunosuppression is minimal. It is crucial to seek information on the time after transplant, reflecting the net state of immunosuppression, previous history of exposure/infections, geography, and seasonal outbreaks. It is imperative that we develop regionally specific guidelines on screening, prevention, and management of infections after kidney transplantation.
Collapse
Affiliation(s)
- Joyita Bharati
- Section of Nephrology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA.
| | - Urmila Anandh
- Department of Nephrology, Amrita Hospitals, Faridabad, Delhi National Capital Region, India
| | - Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Thomas Mueller
- Renal Transplant Program, University Hospital of Zurich, Zurich, Switzerland
| | | | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
6
|
Ye J, Yao J, He F, Sun J, Zhao Z, Wang Y. Regulation of gut microbiota: a novel pretreatment for complications in patients who have undergone kidney transplantation. Front Cell Infect Microbiol 2023; 13:1169500. [PMID: 37346031 PMCID: PMC10280007 DOI: 10.3389/fcimb.2023.1169500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Kidney transplantation is an effective method to improve the condition of patients with end-stage renal disease. The gut microbiota significantly affects the immune system and can be used as an influencing factor to change the prognoses of patients who have undergone kidney transplantation. Recipients after kidney transplantation showed a lower abundance of Firmicutes and Faecalibacterium prausnitzii and a higher proportion of Bacteroidetes and Proteobacteria. After using prebiotics, synbiotics, and fecal microbiota transplantation to regulate the microbial community, the prognoses of patients who underwent kidney transplantation evidently improved. We aimed to determine the relationship between gut microbiota and various postoperative complications inpatients who have undergone kidney transplantation in recent years and to explore how gut microecology affects post-transplant complications. An in-depth understanding of the specific functions of gut microbiota and identification of the actual pathogenic flora during complications in patients undergoing kidney transplantation can help physicians develop strategies to restore the normal intestinal microbiome of transplant patients to maximize their survival and improve their quality of life.
Collapse
Affiliation(s)
- Jiajia Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junxia Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Sun
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Zhao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Azar MM, Turbett S, Gaston D, Gitman M, Razonable R, Koo S, Hanson K, Kotton C, Silveira F, Banach DB, Basu SS, Bhaskaran A, Danziger-Isakov L, Bard JD, Gandhi R, Hanisch B, John TM, Odom John AR, Letourneau AR, Luong ML, Maron G, Miller S, Prinzi A, Schwartz I, Simner P, Kumar D. A consensus conference to define the utility of advanced infectious disease diagnostics in solid organ transplant recipients. Am J Transplant 2022; 22:3150-3169. [PMID: 35822346 DOI: 10.1111/ajt.17147] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2023]
Abstract
The last decade has seen an explosion of advanced assays for the diagnosis of infectious diseases, yet evidence-based recommendations to inform their optimal use in the care of transplant recipients are lacking. A consensus conference sponsored by the American Society of Transplantation (AST) was convened on December 7, 2021, to define the utility of novel infectious disease diagnostics in organ transplant recipients. The conference represented a collaborative effort by experts in transplant infectious diseases, diagnostic stewardship, and clinical microbiology from centers across North America to evaluate current uses, unmet needs, and future directions for assays in 5 categories including (1) multiplex molecular assays, (2) rapid antimicrobial resistance detection methods, (3) pathogen-specific T-cell reactivity assays, (4) next-generation sequencing assays, and (5) mass spectrometry-based assays. Participants reviewed and appraised available literature, determined assay advantages and limitations, developed best practice guidance largely based on expert opinion for clinical use, and identified areas of future investigation in the setting of transplantation. In addition, attendees emphasized the need for well-designed studies to generate high-quality evidence needed to guide care, identified regulatory and financial barriers, and discussed the role of regulatory agencies in facilitating research and implementation of these assays. Findings and consensus statements are presented.
Collapse
Affiliation(s)
- Marwan M Azar
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sarah Turbett
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Gaston
- John's Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa Gitman
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Sophia Koo
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kimberly Hanson
- University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Camille Kotton
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fernanda Silveira
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David B Banach
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Sankha S Basu
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lara Danziger-Isakov
- Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer Dien Bard
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Ronak Gandhi
- Department of Pharmacy Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin Hanisch
- Children's National Hospital, Washington, District of Columbia, USA
| | - Teny M John
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Audrey R Odom John
- Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa R Letourneau
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Me-Linh Luong
- Department of Microbiology, University of Montreal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Gabriela Maron
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steve Miller
- University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Andrea Prinzi
- Infectious Disease Medical Science Liaison, Denver, Colorado, USA
| | - Ilan Schwartz
- Faculty of Medicine and Dentistry, University of Alberta, University of Alberta, Alberta, Canada
| | - Patricia Simner
- John's Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
8
|
Mongodin EF, Saxena V, Iyyathurai J, Lakhan R, Ma B, Silverman E, Lee ZL, Bromberg JS. Chronic rejection as a persisting phantom menace in organ transplantation: a new hope in the microbiota? Curr Opin Organ Transplant 2021; 26:567-581. [PMID: 34714788 PMCID: PMC8556501 DOI: 10.1097/mot.0000000000000929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The microbiota plays an important role in health and disease. During organ transplantation, perturbations in microbiota influence transplant outcome. We review recent advances in characterizing microbiota and studies on regulation of intestinal epithelial barrier function and mucosal and systemic immunity by microbiota and their metabolites. We discuss implications of these interactions on transplant outcomes. RECENT FINDINGS Metagenomic approaches have helped the research community identify beneficial and harmful organisms. Microbiota regulates intestinal epithelial functions. Signals released by epithelial cells or microbiota trigger pro-inflammatory or anti-inflammatory effects on innate and adaptive immune cells, influencing the structure and function of the immune system. Assessment and manipulation of microbiota can be used for biomarkers for diagnosis, prognosis, and therapy. SUMMARY The bidirectional dialogue between the microbiota and immune system is a major influence on immunity. It can be targeted for biomarkers or therapy. Recent studies highlight a close association of transplant outcomes with microbiota, suggesting exciting potential avenues for management of host physiology and organ transplantation.
Collapse
Affiliation(s)
- Emmanuel F. Mongodin
- University of Maryland School of Medicine, Institute for Genome Sciences and Department of Microbiology & Immunology, Baltimore, MD, USA
| | - Vikas Saxena
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| | - Jegan Iyyathurai
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| | - Ram Lakhan
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| | - Bing Ma
- University of Maryland School of Medicine, Institute for Genome Sciences and Department of Microbiology & Immunology, Baltimore, MD, USA
| | - Emma Silverman
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| | - Zachariah L. Lee
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| | - Jonathan S. Bromberg
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| |
Collapse
|
9
|
Winichakoon P, Chaiwarith R, Chattipakorn N, Chattipakorn SC. Impact of gut microbiota on kidney transplantation. Transplant Rev (Orlando) 2021; 36:100668. [PMID: 34688985 DOI: 10.1016/j.trre.2021.100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022]
Abstract
Kidney transplantation is recognized as one of the most effective treatments for patients who suffer from end-stage renal disease. The major potential outcomes following kidney transplantation include engraftment, rejection, and associated complications. The outcomes are dependent on a variety of factors in those who underwent renal grafts or kidney transplant recipients. Those factors include the administration of immunosuppressive drugs and prophylactic antimicrobial agents to recipients. Recent studies have shown that gut microbiota play an important role in the outcome of subjects with kidney transplantation. An imbalance of the components/diversity of gut microbiota, known as gut dysbiosis, has been shown to have a big impact on the immune system of the host and the modification of host inflammatory cytokines. Although gut dysbiosis is affected by variation in diet and medication, a substantial amount of evidence showing a link between alteration in human gut microbiota and outcomes of kidney transplantation has recently been reported. Therefore, the objective of this review is to comprehensively summarize and discuss the major findings from in vivo and clinical data pertaining to the impact of gut microbiota on kidney transplantation. Any controversial findings are compiled to enable a clear overview of the role of gut microbiota and the outcome of kidney transplantation.
Collapse
Affiliation(s)
- Poramed Winichakoon
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Romanee Chaiwarith
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
10
|
Kubiak J, Davidson E, Soave R, Kodiyanplakkal RP, Robertson A, Besien KV, Shore TB, Lee JR, Westblade LF, Satlin MJ. Colonization with Gastrointestinal Pathogens Prior to Hematopoietic Cell Transplantation and Associated Clinical Implications. Transplant Cell Ther 2021; 27:499.e1-499.e6. [PMID: 33811020 DOI: 10.1016/j.jtct.2021.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/29/2022]
Abstract
Infectious diarrhea following hematopoietic cell transplantation (HCT) significantly contributes to morbidity and mortality. Most HCT recipients experience diarrhea in the post-transplantation period, and infectious pathogens are frequently detected during diarrheal episodes. However, little is known about how frequently these patients are colonized with gastrointestinal (GI) pathogens before their transplantation and whether colonization predicts future diarrheal illness. We sought to determine how frequently HCT recipients are colonized with GI pathogens before HCT and the degree to which pre-HCT colonization predicts post-transplantation infectious diarrheal illness. We conducted a prospective cohort study of allogeneic and autologous HCT recipients at a single center between December 2016 and January 2019. Stool samples were collected during the week before HCT, and formed samples were evaluated for the presence of 22 diarrheal pathogens using the BioFire FilmArray GI panel. We determined the frequency with which participants were colonized with each pathogen and identified factors associated with colonization. We then determined how frequently pretransplantation colonization led to post-transplantation diarrheal infections due to the colonizing pathogen and whether colonization was associated with increased number of days of post-transplantation diarrhea during the transplant hospitalization. We enrolled 112 asymptomatic patients (allogeneic, 61%; autologous, 39%) who had a formed stool specimen before HCT, of whom 41 (37%) had a GI pathogen detected. The most commonly detected organisms were Clostridioides difficile (n = 21; 19%), Yersinia enterocolitica (n = 9; 8%), enteropathogenic Escherichia coli (EPEC) (n = 6; 6%), and norovirus (n = 5; 4%). Female sex and previous C. difficile infection were associated with C. difficile colonization, and having non-Hodgkin lymphoma was associated with being colonized with a diarrheal pathogen other than C. difficile. Thirteen of 21 patients (62%) with pretransplantation C. difficile colonization developed a clinical C. difficile infection post-transplantation, and 8 of 10 patients (80%) colonized with EPEC or enteroaggregative E. coli developed post-transplantation infections due to their colonizing pathogen. Pretransplantation C. difficile colonization was also associated with an increased duration of post-transplantation diarrhea (P = .048). Conversely, none of the 9 patients with pretransplantation Yersinia enterocolitica colonization developed a post-transplantation Y. enterocolitica infection. Patients admitted for HCT are frequently colonized with a diverse range of GI pathogens. Colonization with C. difficile colonization and diarrheagenic E. coli is frequently associated with post-transplantation diarrheal infections caused by these organisms, but the clinical significance of colonization with other GI pathogens is not clear.
Collapse
Affiliation(s)
- Jeffrey Kubiak
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - Emily Davidson
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Rosemary Soave
- Department of Medicine, Weill Cornell Medicine, New York, New York; New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - Rosy Priya Kodiyanplakkal
- Department of Medicine, Weill Cornell Medicine, New York, New York; New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - Amy Robertson
- New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - Koen van Besien
- Department of Medicine, Weill Cornell Medicine, New York, New York; New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - Tsiporah B Shore
- Department of Medicine, Weill Cornell Medicine, New York, New York; New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - John R Lee
- Department of Medicine, Weill Cornell Medicine, New York, New York; New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - Lars F Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; Department of Medicine, Weill Cornell Medicine, New York, New York; New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - Michael J Satlin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; Department of Medicine, Weill Cornell Medicine, New York, New York; New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York.
| |
Collapse
|
11
|
Zhang LT, Westblade LF, Iqbal F, Taylor MR, Chung A, Satlin MJ, Magruder M, Edusei E, Albakry S, Botticelli B, Robertson A, Alston T, Dadhania DM, Lubetzky M, Hirota SA, Greenway SC, Lee JR. Gut microbiota profiles and fecal beta-glucuronidase activity in kidney transplant recipients with and without post-transplant diarrhea. Clin Transplant 2021; 35:e14260. [PMID: 33605497 DOI: 10.1111/ctr.14260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
Post-transplant diarrhea is a common complication after solid organ transplantation and is frequently attributed to the widely prescribed immunosuppressant mycophenolate mofetil (MMF). Given recent work identifying the relationship between MMF toxicity and gut bacterial β-glucuronidase activity, we evaluated the relationship between gut microbiota composition, fecal β-glucuronidase activity, and post-transplant diarrhea. We recruited 97 kidney transplant recipients and profiled the gut microbiota in 273 fecal specimens using 16S rRNA gene sequencing. We further characterized fecal β-glucuronidase activity in a subset of this cohort. Kidney transplant recipients with post-transplant diarrhea had decreased gut microbial diversity and decreased relative gut abundances of 12 genera when compared to those without post-transplant diarrhea (adjusted p value < .15, Wilcoxon rank sum test). Among the kidney transplant recipients with post-transplant diarrhea, those with higher fecal β-glucuronidase activity had a more prolonged course of diarrhea (≥7 days) compared to patients with lower fecal β-glucuronidase activity (91% vs 40%, p = .02, Fisher's exact test). Our data reveal post-transplant diarrhea as a complex phenomenon with decreased gut microbial diversity and commensal gut organisms. This study further links commensal bacterial metabolism with an important clinical outcome measure, suggesting fecal β-glucuronidase activity could be a novel biomarker for gastrointestinal-related MMF toxicity.
Collapse
Affiliation(s)
- Lisa T Zhang
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Lars F Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Fatima Iqbal
- Departments of Pediatrics and Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael R Taylor
- Departments of Pediatrics and Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alice Chung
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Satlin
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Magruder
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Emmanuel Edusei
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Shady Albakry
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Brittany Botticelli
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Amy Robertson
- New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| | - Tricia Alston
- New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| | - Darshana M Dadhania
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
- Department of Transplantation Medicine, NewYork-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| | - Michelle Lubetzky
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
- Department of Transplantation Medicine, NewYork-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| | - Simon A Hirota
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Departments of Pediatrics and Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John R Lee
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
- Department of Transplantation Medicine, NewYork-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
12
|
Salvadori M, Tsalouchos A. Microbiota, renal disease and renal transplantation. World J Transplant 2021; 11:16-36. [PMID: 33816144 PMCID: PMC8009061 DOI: 10.5500/wjt.v11.i3.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Aim of this frontier review has been to highlight the role of microbiota in healthy subjects and in patients affected by renal diseases with particular reference to renal transplantation. The microbiota has a relevant role in conditioning the healthy status and the diseases. In particular gut microbiota is essential in the metabolism of food and has a relevant role for its relationship with the immune system. The indigenous microbiota in patients with chronic renal failure is completely different than that of the healthy subjects and pathobionts appear. This abnormality in microbiota composition is called dysbiosis and may cause a rapid deterioration of the renal function both for activating the immune system and producing large quantity of uremic toxins. Similarly, after renal trans-plantation the microbiota changes with the appearance of pathobionts, principally in the first period because of the assumption of immunosuppressive drugs and antibiotics. These changes may deeply interfere with the graft outcome causing acute rejection, renal infections, diarrhea, and renal interstitial fibrosis. In addition, change in the microbiota may modify the metabolism of immuno-suppressive drugs causing in some patients the need of modifying the immunosuppressant dosing. The restoration of the indigenous microbiota after transplantation is important, either to avoiding the complications that impair the normal renal graft, and because recent studies have documented the role of an indigenous microbiota in inducing tolerance towards the graft. The use of prebiotics, probiotics, smart bacteria and diet modification may restore the indigenous microbiota, but these studies are just at their beginning and more data are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Transplantation Renal Unit, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Nephrology and Dialysis Unit, Saints Cosmas and Damian Hospital, Pescia 51017, Italy
| |
Collapse
|
13
|
Vyas VD, Parameswaran SA, Paramasivan P, Sankaranarayanan K, Palaniswamy KR, Mohan AT, Srinivas U, Dhus U, Muthuswamy H, Revathy MS, Natarajan M, Karunakaran P, Venkatesh S, Mahalingam P, Patel A. Etiological profile of diarrhea in solid organ transplant recipients at a tertiary care center in Southern India. Transpl Infect Dis 2021; 23:e13584. [PMID: 33594745 DOI: 10.1111/tid.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diarrhea is one of the common gastrointestinal (GI) adverse events after solid organ transplantation. Diarrhea may be caused by infectious or non-infectious etiology. The infectious etiology of diarrhea varies according to the location and duration of diarrhea. Non-infectious etiologies include drugs, inflammatory bowel disease, neoplasia. The objective of this study was to evaluate the etiological profile of diarrhea in solid organ transplant recipients presenting to a tertiary care center in Southern India. METHODS This was a retrospective analysis of prospectively collected data of all solid organ transplantation recipients referred to the Department of Medical Gastroenterology for evaluation of diarrhea from April 2012 till May 2014. All patients had stool evaluated by wet mount examination, modified acid fast (AFB) stain, trichrome stain, culture, and Clostridium difficile toxin assay. EDTA plasma was collected for quantitative Cytomegalovirus (CMV) detection by real-time PCR. If the diarrhea was acute (<2 wk), and no etiological agent was identified, empirical antibiotic therapy was instituted and followed up. If persistent or chronic diarrhea (>2-4 wk), endoscopic evaluation (upper GI endoscopy and/or colonoscopy with biopsies), depending on the clinical type of diarrhea was done. If no specific etiological diagnosis was established after endoscopic evaluation, breath test for SIBO and celiac serology were done. If no specific etiology was identified after the above investigations, dose of immunosuppressive drugs was reduced. If diarrhea responded to dose reduction, it was considered to be drug related. RESULTS Fifty-eight episodes of diarrhea occurred in 55 solid organ transplant recipients during the study period. Renal transplant recipients constituted the majority (70%). Most (79%) of patients included in the study had their transplant > 6 mo ago. Infective diarrhea was the etiology in 46%, drug-related diarrhea in 29.3%. No specific etiology was identified in 22.4% of patients. Parasites accounted for 69% of all infective diarrhea. Stool evaluation was the main investigation in establishing diagnosis in acute diarrhea. Endoscopic evaluation was required in two thirds of patients to establish diagnosis in chronic diarrhea. CONCLUSION GI infections and drug-related diarrhea were the common causes of diarrhea in solid organ transplant recipients. Parasites were the most common infectious etiology of diarrhea. Step-wise evaluation was able to identify the etiology in ~ 77% of patients. Overall, 98% of diarrheal episodes resolved.
Collapse
Affiliation(s)
| | | | | | | | | | - Arumugam T Mohan
- Department of Medical Gastroenterology, Apollo Hospitals, Chennai-600006, India
| | - Usha Srinivas
- Department of Medical Gastroenterology, Apollo Hospitals, Chennai-600006, India
| | - Ubal Dhus
- Department of Medical Gastroenterology, Apollo Hospitals, Chennai-600006, India
| | | | - Marimuthu S Revathy
- Department of Medical Gastroenterology, Apollo Hospitals, Chennai-600006, India
| | - Murugan Natarajan
- Department of Medical Gastroenterology, Apollo Hospitals, Chennai-600006, India
| | | | - Seshadri Venkatesh
- Department of Medical Gastroenterology, Apollo Hospitals, Chennai-600006, India
| | - Preethi Mahalingam
- Department of Medical Gastroenterology, Apollo Hospitals, Chennai-600006, India
| | - Ankit Patel
- Department of Medical Gastroenterology, Apollo Hospitals, Chennai-600006, India
| |
Collapse
|
14
|
Mohandas S, Soma VL, Tran TDB, Sodergren E, Ambooken T, Goldman DL, Weinstock G, Herold BC. Differences in Gut Microbiome in Hospitalized Immunocompetent vs. Immunocompromised Children, Including Those With Sickle Cell Disease. Front Pediatr 2020; 8:583446. [PMID: 33282798 PMCID: PMC7690629 DOI: 10.3389/fped.2020.583446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Gut microbial diversity and composition play important roles in health. This cross-sectional study was designed to test the hypothesis that hospitalized children who may be relatively immunocompromised (IC), defined as those with cancer, sickle cell disease (SCD), transplantation, or receiving immunosuppressive therapy) would have decreased microbial diversity, increased Clostridioides difficile colonization and different species composition compared to non-immunocompromised (Non-IC) children admitted to the same pediatric unit. Methods: A stool sample was obtained within 72 h of admission to a single unit at The Children's Hospital at Montefiore, Bronx, NY from March 2016 to February 2017 and the microbiome assessed by 16S rRNA sequencing. C. difficile colonization was assessed by glutamate dehydrogenase antigen and toxin polymerase chain reaction assays. Results: Stool samples were obtained from 69 IC (32 SCD, 19 cancer, 9 transplantation and 9 other) and 37 Non-IC patients. There were no significant differences in microbial alpha diversity and C. difficile colonization comparing IC vs. non-IC patients. Lower alpha diversity, however, was independently associated with the use of proton pump inhibitors or antibiotics, including prophylactic penicillin in patients with SCD. Differences in specific species abundances were observed when comparing IC vs. non-IC patients, particularly children with SCD. Non-IC patients had increased abundance of commensals associated with health including Alistipes putredinis, Alistipes ihumii, Roseburia inulinivorans, Roseburia intestinalis, and Ruminococcus albus (p < 0.005). Conclusions: Antibiotics and proton pump inhibitors, which were more commonly used in IC children, were identified as risk factors for lower microbial diversity. Non-IC patients had higher abundance of several bacterial species associated with health. Longitudinal studies are needed to determine the clinical significance of these differences in gut microbiome.
Collapse
Affiliation(s)
- Sindhu Mohandas
- Division of Pediatric Infectious Diseases, The Children's Hospital at Montefiore, Bronx, NY, United States.,Albert Einstein College of Medicine, Bronx, NY, United States.,Division of Infectious Diseases, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vijaya L Soma
- Division of Pediatric Infectious Diseases, The Children's Hospital at Montefiore, Bronx, NY, United States.,Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thi Dong Binh Tran
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Erica Sodergren
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Tresa Ambooken
- Division of Pediatric Infectious Diseases, The Children's Hospital at Montefiore, Bronx, NY, United States
| | - David L Goldman
- Division of Pediatric Infectious Diseases, The Children's Hospital at Montefiore, Bronx, NY, United States.,Albert Einstein College of Medicine, Bronx, NY, United States
| | - George Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Betsy C Herold
- Division of Pediatric Infectious Diseases, The Children's Hospital at Montefiore, Bronx, NY, United States.,Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|