1
|
Diebold M, Mayer KA, Hidalgo L, Kozakowski N, Budde K, Böhmig GA. Chronic Rejection After Kidney Transplantation. Transplantation 2025; 109:610-621. [PMID: 39192468 PMCID: PMC11927446 DOI: 10.1097/tp.0000000000005187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
In kidney transplantation, ongoing alloimmune processes-commonly triggered by HLA incompatibilities-can trigger chronic transplant rejection, affecting the microcirculation and the tubulointerstitium. Continuous inflammation may lead to progressive, irreversible graft injury, culminating in graft dysfunction and accelerated transplant failure. Numerous experimental and translational studies have delineated a complex interplay of different immune mechanisms driving rejection, with antibody-mediated rejection (AMR) being an extensively studied rejection variant. In microvascular inflammation, a hallmark lesion of AMR, natural killer (NK) cells have emerged as pivotal effector cells. Their essential role is supported by immunohistologic evidence, bulk and spatial transcriptomics, and functional genetics. Despite significant research efforts, a substantial unmet need for approved rejection therapies persists, with many trials yielding negative outcomes. However, several promising therapies are currently under investigation, including felzartamab, a monoclonal antibody targeting the surface molecule CD38, which is highly expressed in NK cells and antibody-producing plasma cells. In an exploratory phase 2 trial in late AMR, this compound has demonstrated potential in resolving molecular and morphologic rejection activity and injury, predominantly by targeting NK cell effector function. These findings inspire hope for effective treatments and emphasize the necessity of further pivotal trials focusing on chronic transplant rejection.
Collapse
Affiliation(s)
- Matthias Diebold
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina A. Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Luis Hidalgo
- HLA Laboratory, Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Tian Y, Frischknecht L, Rössler F, Schachtner T, Nilsson J. De novo donor-specific HLA antibody development after kidney transplantation is impacted by PIRCHE II score and recipient age. Front Immunol 2025; 16:1508586. [PMID: 40236692 PMCID: PMC11997444 DOI: 10.3389/fimmu.2025.1508586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Background Antibody-mediated rejection (ABMR) is a major cause of graft loss in kidney transplantation, often associated with de novo donor-specific antibodies (dnDSA). The detection of clinically relevant dnDSA relies on evaluating reactivity in single antigen bead (SAB) assays. Immunogenetic mismatches between donor and recipient, particularly involving human leukocyte antigens (HLA), underpin dnDSA development. Understanding this relationship could improve pre-transplant risk assessment and organ allocation. Methods We analyzed 1296 kidney transplant patients to study dnDSA development, its relation to age, gender, and the role of HLA-derived peptide mismatches using the Predicted Indirectly Recognizable HLA Epitopes II (PIRCHE II) score. We categorized dnDSA based on bead reactivity patterns and HLA typing into true, possible, and false dnDSA. Results During follow-up, 25% of recipients developed dnDSA, 9.3% true, 7.7% possible, and 7.9% false. True dnDSA primarily targeted HLA-DQ (38%), while HLA-C and HLA-DP were uncommon (5% and 3%). Higher PIRCHE II scores were significantly associated with true and possible dnDSA against HLA Class II compared to false dnDSA, supporting our dnDSA classification. For true and possible dnDSA, the single locus PIRCHE II score strongly correlated with locus-specific dnDSA, while the total PIRCHE II score did not appear to influence locus-specific dnDSA development. Younger recipients exhibited a higher risk of dnDSA development, while gender had no impact. Conclusion Locus-specific PIRCHE II scores are useful in predicting dnDSA risk post-transplantation, particularly in younger recipients. Promoting transplants with low PIRCHE II scores against key HLA loci like HLA-DQ in younger recipients could improve outcomes.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Lukas Frischknecht
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Fabian Rössler
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Schachtner
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
| |
Collapse
|
3
|
Abbas K, Mubarak M. Expanding role of antibodies in kidney transplantation. World J Transplant 2025; 15:99220. [PMID: 40104192 PMCID: PMC11612895 DOI: 10.5500/wjt.v15.i1.99220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
The role of antibodies in kidney transplant (KT) has evolved significantly over the past few decades. This role of antibodies in KT is multifaceted, encompassing both the challenges they pose in terms of antibody-mediated rejection (AMR) and the opportunities for improving transplant outcomes through better detection, prevention, and treatment strategies. As our understanding of the immunological mechanisms continues to evolve, so too will the approaches to managing and harnessing the power of antibodies in KT, ultimately leading to improved patient and graft survival. This narrative review explores the multifaceted roles of antibodies in KT, including their involvement in rejection mechanisms, advancements in desensitization protocols, AMR treatments, and their potential role in monitoring and improving graft survival.
Collapse
Affiliation(s)
- Khawar Abbas
- Department of Transplant Immunology, Sindh Institute of Urology & Transplantation, Karachi 74200, Sindh, Pakistan
| | - Muhammed Mubarak
- Javed I. Kazi Department of Histopathology, Sindh Institute of Urology & Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
4
|
Kamoun A, Brahim RB, Charfi A, Yaich S, Masmoudi M, Hakim F, Gaddour L, Hmida MB, Makni H, Mahfoudh N. Association analysis of T and B-cell epitopes with humoral alloimmunisation in kidney transplantation: A Tunisian cohort study. Hum Immunol 2025; 86:111230. [PMID: 39793377 DOI: 10.1016/j.humimm.2025.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
INTRODUCTION HLA matching is critical for successful kidney transplantation. This study aimed to investigate the impact of eplet mismatches and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II) scores on the development of de novo donor-specific antibodies (dnDSA) and graft survival in a Tunisian cohort, characterized by a high prevalence of living donors and significant genetic diversity in HLA profiles. METHODS This retrospective study included 112 adult kidney transplant recipients who underwent transplantation between 2012 and 2018. Donor and recipient HLA typing was performed using One Lambda Labtype PCR-SSO and PCR-SSP kits, with high-resolution typing inferred using validated tools and reference datasets. Luminex DSA screening (One Lambda) was conducted at transplantation, during follow-up for graft dysfunction or proteinuria, and at the study's conclusion. Eplet mismatches and PIRCHE-II scores were calculated using EpVix and PIRCHE-II software. RESULTS Nineteen patients (17 %) developed dnDSA, predominantly targeting HLA-DQ, with a median detection timeframe of 50 months (range: 11-106 months) post-transplantation. Male donor sex was negatively associated with dnDSA development, while prolonged cold ischemia time was a significant risk factor. Molecular HLA-DQ mismatches and high PIRCHE-II scores were significantly associated with dnDSA. Factors independently associated with reduced death-censored graft survival included history of transfusion after transplantation, allelic DRB1 mismatch, dnDSA development, and elevated PIRCHE-II score. CONCLUSION Our findings highlight the critical role of HLA-DQ compatibility in kidney transplantation and suggest that molecular HLA-DQ matching should be considered in kidney allocation strategies to minimise alloimmune responses and improve long-term graft outcomes.
Collapse
Affiliation(s)
- Arwa Kamoun
- Immunology department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia; Renal Pathology Laboratory, LR19ES11, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia.
| | - Rimeh Ben Brahim
- Renal Pathology Laboratory, LR19ES11, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Aida Charfi
- Immunology department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Soumaya Yaich
- Renal Pathology Laboratory, LR19ES11, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Mondher Masmoudi
- Renal Pathology Laboratory, LR19ES11, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Faiza Hakim
- Immunology department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Lilia Gaddour
- Immunology department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Mohamed Ben Hmida
- Renal Pathology Laboratory, LR19ES11, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Hafedh Makni
- Immunology department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Nadia Mahfoudh
- Immunology department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Parajuli S, Niemann M, Dale BL, Hidalgo L, Gupta G, Kaufman D, Odorico J, Mandelbrot D. Predicted Indirectly Recognizable T-cell Epitope (PIRCHE) Load Correlates With Rejection Events After Simultaneous Pancreas-Kidney Transplantation. Transplant Direct 2025; 11:e1764. [PMID: 39936136 PMCID: PMC11810031 DOI: 10.1097/txd.0000000000001764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Background Given the lack of specificity of current blood and urine testing and the resistance/inability to perform pancreas allograft biopsies, additional noninvasive investigational tools to assess the risk for rejection are needed. This study examines the clinical impact of molecular HLA matching in a large single-center simultaneous pancreas-kidney (SPK) transplant program. Methods The study cohort comprised 238 SPK recipients between 2012 and 2021. The number of HLA mismatches, eplet, Snow (that counts the number of protein-specific surface-accessible donor HLA amino acid mismatches), and predicted indirectly recognizable T-cell epitope (PIRCHE, version 4.2; 100%) loads were calculated on the basis of 2-field HLA-A, -B, -C, -DRB1, and -DQB1 typing of recipients and donors. Univariable and multivariable Cox proportional hazard, as well as Kaplan-Meier analyses, were performed considering either first rejection events of a graft or a composite endpoint of de novo donor-specific antibodies, first rejection, and uncensored graft failure of either organ. Results Kaplan-Meier analyses considered class II PIRCHE groups separated by a threshold of 7. From the considered histocompatibility metrics, multivariable regression analysis revealed only PIRCHE-II derived from donor HLA class II as statistically significantly correlated with clinical events and rejection after SPK, mostly driven by pancreas rejections. Furthermore, longer dialysis time and the induction agent had significant negative impacts on the defined composite endpoint. Conclusions Our data support the clinical benefit of incorporating PIRCHE scores for the interpretation of class II HLA mismatches among patients undergoing SPK transplantation.
Collapse
Affiliation(s)
- Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | | | | | - Luis Hidalgo
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
- UWHealth Transplant Center, Madison, WI
- HLA Laboratory, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Gaurav Gupta
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Dixon Kaufman
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
- UWHealth Transplant Center, Madison, WI
| | - Jon Odorico
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
- UWHealth Transplant Center, Madison, WI
| | - Didier Mandelbrot
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| |
Collapse
|
6
|
Zhang X, Reinsmoen NL, Kobashigawa JA. HLA Mismatches Identified by a Novel Algorithm Predict Risk of Antibody-mediated Rejection From De Novo Donor-specific Antibodies. Transplantation 2025; 109:519-526. [PMID: 39049137 DOI: 10.1097/tp.0000000000005140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND The development of de novo donor-specific antibodies (dnDSA) and antibody-mediated rejection (AMR) remains a barrier to long-term graft and patient survival. Most dnDSA are directed against mismatched donor HLA-DQ antigens. Here, we describe a novel algorithm, which we have termed categorical amino acid mismatched epitope, to evaluate HLA-DQ mismatches. METHODS In this algorithm, amino acid residues of HLA-DQ protein were categorized into 4 groups based on their chemical characteristics. The likelihood of categorically mismatched peptides presented by the recipient's HLA-DRB1 was expressed as a normalized value, %Rank score. Categorical HLA-DQ mismatches were analyzed in 386 heart transplant recipients who were mismatched with their donors at the HLA-DQB1 locus. RESULTS We found that the presence of DQB1 mismatches with %Rank score ≤1 was associated with the development of dnDSA ( P = 0.002). Furthermore, dnDSA increased the risk of AMR only in recipients who had DQ mismatches with %Rank score ≤1 (hazard ratio = 5.8), but the freedom from AMR was comparable between recipients with dnDSA and those without dnDSA if %Rank scores of DQ mismatching were >1. CONCLUSIONS These results suggest that HLA-DQ mismatches evaluated by the categorical amino acid mismatched epitope algorithm can stratify the risk of development of dnDSA and AMR in heart transplant recipients.
Collapse
Affiliation(s)
- Xiaohai Zhang
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Nancy L Reinsmoen
- Independent HLA Consultant, Cedars-Sinai Medical Center, Scottsdale, AZ
| | | |
Collapse
|
7
|
Arana C, Hermida E, Rovira J, Caro JL, Cucchiari D, Larque AB, Palou E, Torres J, Montagud-Marrahi E, Cuadrado-Páyan E, Rodriguez D, Cacho J, Gonzalez A, Reinoso J, Nicolau C, Esforzado N, Torregrosa V, Piñeiro G, Revuelta I, Cofan F, Diekmann F, Ventura-Aguiar P, Oppenheimer F. Antibody-mediated rejection diagnosed in early protocol biopsies in high immunological risk kidney transplant recipients. Nephrol Dial Transplant 2025; 40:577-587. [PMID: 39257033 DOI: 10.1093/ndt/gfae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Renal transplant recipients with donor-specific anti-HLA antibodies are at an increased risk of antibody-mediated rejection (ABMR). Early protocolized renal biopsies may serve as a strategy to improve diagnosis in this patient population. METHODS We evaluated 155 highly sensitized renal transplant recipients with cPRA class I + II >90% pre-transplant from 2015 to 2022. Patients with protocol biopsies within the first 2 weeks post-transplant were included. RESULTS A total of 122 patients were included in the study. Of these, 13 (10.6%) were diagnosed with very early antibody-mediated rejection (veABMR) within the first 2 weeks post-transplant. This corresponds to 52% (13/25 patients) of all ABMR cases reported during the follow-up of this population. The graft survival rates at 1 and 3 years were significantly lower in patients with veABMR (P < .001) compared with patients without rejection in the early protocol biopsy. In terms of severity, the veABMR cohort exhibited a hazard ratio (HR) of 10.33 (95% confidence interval 3.23-33.06, P < .001) for graft failure. The presence of donor-specific antibodies class II on the day of transplantation and a higher percentage of eplet mismatch (EpMM), particularly EpMM DQA1, correlated with the development of veABMR. CONCLUSION Early protocol biopsies play a pivotal role in the early detection of veABMR in high-risk immunological patients. Patients with veABMR face significant risks of graft loss, despite early treatment of rejection.
Collapse
Affiliation(s)
- Carolt Arana
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Evelyn Hermida
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - José Luis Caro
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - David Cucchiari
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Belén Larque
- Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Eduard Palou
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Juan Torres
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Enrique Montagud-Marrahi
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Elena Cuadrado-Páyan
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Diana Rodriguez
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Judit Cacho
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Angela Gonzalez
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Johanna Reinoso
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Carlos Nicolau
- Department of Radiology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Nuria Esforzado
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Vicente Torregrosa
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Gastón Piñeiro
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Ignacio Revuelta
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Federico Cofan
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Fritz Diekmann
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Pedro Ventura-Aguiar
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Federico Oppenheimer
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Chou-Wu E, Niemann M, Youngs D, Gimferrer I. De Novo donor-specific anti-HLA antibody risk stratification in kidney transplantation using a combination of B cell and T cell molecular mismatch assessment. Front Immunol 2025; 16:1508796. [PMID: 40070832 PMCID: PMC11893832 DOI: 10.3389/fimmu.2025.1508796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction The presence of de novo donor-specific antibody (dnDSA) has detrimental effect on allograft outcomes in kidney transplantation. As humoral responses in transplantation are elicited targeting non-self-epitopes on donor HLA proteins, assessing HLA mismatches at the molecular level provides a refined means for immunological risk stratification. Methods In the present study, we utilized three HLA molecular mismatch assessment algorithms, Snow, HLAMatchmaker, and PIRCHE-II, to evaluate the independent and synergistic association of B cell and T cell epitope mismatches with dnDSA development in a cohort of 843 kidney transplant recipients. Results Our results demonstrated that B cell and T cell epitope mismatches at HLA Class I and DRB1/DQB1 loci are remarkably increased in dnDSA-positive recipients, even after normalization by allele mismatch numbers in individual study subjects. Furthermore, elevated Snow, verified eplet mismatches, and PIRCHE-II scores are significantly associated with dnDSA occurrence individually and in combination. Conclusion Our findings highlight the value of utilizing B cell and T cell epitope mismatch evaluation in living donor selection and immunological risk stratification to improve transplant outcomes.
Collapse
Affiliation(s)
- Elaine Chou-Wu
- Immunogenetics/HLA Laboratory, Bloodworks Northwest, Seattle, WA, United States
| | | | - Danny Youngs
- Immunogenetics/HLA Laboratory, Bloodworks Northwest, Seattle, WA, United States
| | - Idoia Gimferrer
- Immunogenetics/HLA Laboratory, Bloodworks Northwest, Seattle, WA, United States
| |
Collapse
|
9
|
Bruschi M, Granata S, Leone F, Barberio L, Candiano G, Pontrelli P, Petretto A, Bartolucci M, Spinelli S, Gesualdo L, Zaza G. Omics data integration analysis identified new biological insights into chronic antibody-mediated rejection (CAMR). J Transl Med 2025; 23:209. [PMID: 39979925 PMCID: PMC11844005 DOI: 10.1186/s12967-025-06203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND In the last two decades, many studies based on omics technologies have contributed to defining the clinical, immunological, and histological fingerprints of chronic antibody-mediated rejection (CAMR), the leading cause of long-term kidney allograft failure. However, the full biological machinery underlying CAMR has only been partially defined, likely due to the fact thatsingle-omics technologies capture only specific aspects of the biological system and fail to provide a comprehensive understanding of this clinical complication. METHODS This study integrated mass spectrometry-based proteomic profiling of serum samples from 19 patients with clinical and histological evidence of CAMR and 26 kidney transplant recipients with normal graft function and histology (CTR) with transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from an independent cohort of 10 CAMR and 8 CTR patients. Data analysis was conducted using unsupervised hierarchical clustering (multidimensional scaling with k-means) and Spearman's correlation test. Partial least squares discriminant analysis (PLS-DA) with the importance in projection (VIP) score identified key proteins differentiating CAMR from CTR. ELISA was used to validate the omics results. RESULTS Proteomic analysis identified 18 proteins that significantly differentiated CAMR from CTR (p < 0.01): five were more abundant (CHI3L1, LYZ, PRSS2, CPQ, IGLV3-32), while 13 were less abundant (SERPINA5, SERPING1, KNG1, CAMP, VNN1, BTD, WDR1, PON3, AHNAK2, MELTF, CA1, CD44, CUL1). Transcriptomic profiling revealed 6 downregulated and 33 upregulated genes in CAMR versus CTR (p < 0.01). Notably, only 2 biological elements were significantly deregulated in both omics analyses: chitinase-3-like protein 1 (CHI3L1) and plasma protease inhibitor C1 (SERPING1). CHI3L1, previously associated with the severity of tissue damage in kidney diseases, was up-regulated in CAMR in both transcriptomics and proteomics, while SERPING1, a serine esterase inhibitor that blocks the classical and lectin pathway of complement, was up-regulated in CAMR in transcriptomics but down-regulated in proteomics. ELISA validated the omics results, and the ROC curve showed that CHI3L1 has good discrimination power between CAMR and CTR (AUC of ROC curve of 0.81). CONCLUSIONS Our multi-omics data, although performed in a relatively small cohort of patients, revealed new systemic biological elements involved in the pathogenesis of CAMR and identified CHI3L1 as a new potential biomarker and/or therapeutic target for this important clinical complication. Future validation of these findings in larger patient cohorts should be conducted to better evaluate their clinical utility.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Simona Granata
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Leone
- Division of Nephrology, Dialysis and Transplantation, Annunziata Hospital, Cosenza, Italy
| | - Laura Barberio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Andrea Petretto
- Proteomics and Clinical Metabolomics Unit at the Core Facilities, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Martina Bartolucci
- Proteomics and Clinical Metabolomics Unit at the Core Facilities, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Gianluigi Zaza
- Division of Nephrology, Dialysis and Transplantation, Annunziata Hospital, Cosenza, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
10
|
Li MH, Zhou GX, Lan P, Li YX, Zhang X, Kuang PD, Zhang Y, Wang Y, Zhang MY, Ding XM, Xue WJ, Zheng J. Characteristics of mismatched eplets affecting de novo donor-specific antibody production and antibody-mediated rejection after kidney transplantation. BMC Nephrol 2025; 26:73. [PMID: 39939899 PMCID: PMC11823255 DOI: 10.1186/s12882-025-04016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
De novo donor-specific antibody (dnDSA) generation is the most important marker of antibody-mediated rejection (AMR). However, not all dnDSAs induce AMR. The effects of mismatched eplets on dnDSA production and the occurrence AMR remain controversial. We analyzed 64 cases of dnDSA positive kidney transplantation that occurred between 2017 and 2021 at our center to reveal the relationships between mismatched eplet and dnDSA generation and the characteristics of antibody-specific and AMR associated mismatched eplets. Among the 64 dnDSA positive cases, 114 dnDSA were produced. Both the average production time and medium fluorescence index (MFI) value of human leukocyte antigen (HLA) II dnDSA were higher than those of HLA I (time, p = 0.024; MFI, p = 0.032). More HLA II dnDSAs were generated in the AMR group (p < 0.001). The frequency of HLA II dnDSAs was higher in cases of longer antibody generation time, higher MFI, and AMR( p < 0.05). The differences in the numbers of mismatched HLA I and II eplets were statistically significant between the rejection and no rejection groups (p = 0.030). dnDSA-specific and AMR associated mismatched eplets were strongly correlated (p < 0.0001). The dominant mismatched eplets included 41 T, 163R, 25Q, 78 V, 47QL and 55PP. dnDSA-specific eplets accounted for majority of the total mismatched eplets of donors and recipients. The amino acids with increased proportions of dnDSA-specific eplets were mainly non-polarity amino acids (p < 0.0001). AMR-associated mismatched eplets accounted for majority of the dnDSA-specific mismatched eplets. Arginine, histidine, glutamine, glutamate, lysine and asparagine levels increased significantly in the rejection group compared with the no rejection group (p < 0.001). The amino acids with increased proportions of AMR-associated mismatched eplets were all polar (p < 0.0001) and mainly positively charged (p < 0.0001). The polarity and charge of amino acids in mismatched eplets may be the key factors affecting the occurrence of AMR after kidney transplantation.
Collapse
Affiliation(s)
- Mei-He Li
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Gu-Xiang Zhou
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Ping Lan
- Department of Nephrology, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yi-Xuan Li
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xuan Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Pei-Dan Kuang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Ying Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Min-Yue Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiao-Ming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Wu-Jun Xue
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
11
|
Niemann M, Matern BM, Gupta G, Tanriover B, Halleck F, Budde K, Spierings E. Advancing risk stratification in kidney transplantation: integrating HLA-derived T-cell epitope and B-cell epitope matching algorithms for enhanced predictive accuracy of HLA compatibility. Front Immunol 2025; 16:1548934. [PMID: 40007544 PMCID: PMC11850546 DOI: 10.3389/fimmu.2025.1548934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction The immune-mediated rejection of transplanted organs is a complex interplay between T cells and B cells, where the recognition of HLA-derived epitopes plays a crucial role. Several algorithms of molecular compatibility have been suggested, each focusing on a specific aspect of epitope immunogenicity. Methods Considering reported death-censored graft survival in the SRTR dataset, we evaluated four models of molecular compatibility: antibody-verified Eplets, Snow, PIRCHE-II and amino acid matching. We have statistically evaluated their co-dependency and synergistic effects between models systematically on 400,935 kidney transplantations using Cox proportional hazards and XGBoost models. Results Multivariable models of histocompatibility generally outperformed univariable predictors, with a combined model of HLA-A, -B, -DR matching, Snow and PIRCHE-II yielding highest AUC in XGBoost and lowest BIC in Cox models. Augmentation of a clinical prediction model of pre-transplant parameters by molecular compatibility metrics improved model performance particularly considering long-term outcomes. Discussion Our study demonstrates that the use of multiple specialized molecular HLA matching predictors improves prediction performance, thereby improving risk classification and supporting informed decision-making in kidney transplantation.
Collapse
Affiliation(s)
- Matthias Niemann
- Research and Development, PIRCHE AG, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Benedict M. Matern
- Research and Development, PIRCHE AG, Berlin, Germany
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Gaurav Gupta
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Bekir Tanriover
- Division of Nephrology, The University of Arizona, Tucson, AZ, United States
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
- Central Diagnostic Laboratory, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
12
|
Daniëls L, Beeckmans H, Zajacova A, Kerckhof P, Bos S, Naesens M, Vanaudenaerde B, Claas F, Vos R. The Clinical Significance of HLA Compatibility Scores in Lung Transplantation. Transpl Int 2025; 37:13484. [PMID: 39829718 PMCID: PMC11738610 DOI: 10.3389/ti.2024.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Lung transplantation is a life-saving therapeutic option for many chronic end-stage pulmonary diseases, but long-term survival may be limited by rejection of the transplanted organ. Since HLA disparity between donor and recipient plays a major role in rejection, we performed a single center, retrospective observational cohort analysis in our lung transplant cohort (n = 128) in which we calculated HLA compatibility scores for B-cell epitopes (HLAMatchmaker, HLA-EMMA), T-cell epitopes (PIRCHE-II) and missing self-induced NK cell activation (KIR Ligand Calculator). Adjusted Cox proportional hazards model was used to investigate the association between mismatched scores and time to development of donor-specific antibodies (DSA) post-transplant, time to first biopsy-proven acute rejection episode, freedom from CLAD, graft survival and overall survival. For time to first DSA, HLA-EMMA DQB1 scores and PIRCHE-II DQB1 scores were significantly associated with more rapidly developing anti-HLA-DQ antibodies. HLA-EMMA DQB1 score was significantly associated with worse survival. KIR ligand Host-versus-Graft (HvG) mismatches was significantly associated with worse graft survival (CLAD or death) and shorter time to first biopsy-proven rejection when 2 mismatches were present. We demonstrated that HLA-DQB1 compatibility scores and KIR ligand HvG 2 mismatches may allow for identification of recipients at risk of poor long-term outcomes after lung transplantation.
Collapse
Affiliation(s)
- Liesbeth Daniëls
- Histocompatibility Laboratory (HLA), Clinical Biology, CHU UCL Namur Site Godinne, Namur, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hanne Beeckmans
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory for Respiratory Diseases and Thoracic Surgery, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Andrea Zajacova
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory for Respiratory Diseases and Thoracic Surgery, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Pieterjan Kerckhof
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory for Respiratory Diseases and Thoracic Surgery, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Saskia Bos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Brussels, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory for Respiratory Diseases and Thoracic Surgery, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Frans Claas
- Eurotransplant and Eurotransplant Reference Laboratory, Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Department of Translational Research in Immunology and Inflammation, University of Antwerp, Antwerp, Belgium
| | - Robin Vos
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory for Respiratory Diseases and Thoracic Surgery, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Brussels, Belgium
| |
Collapse
|
13
|
Halloran PF, Madill-Thomsen KS, Böhmig G, Bromberg J, Budde K, Barner M, Mackova M, Chang J, Einecke G, Eskandary F, Gupta G, Myślak M, Viklicky O, Akalin E, Alhamad T, Anand S, Arnol M, Baliga R, Banasik M, Bingaman A, Blosser CD, Brennan D, Chamienia A, Chow K, Ciszek M, de Freitas D, Dęborska-Materkowska D, Debska-Ślizień A, Djamali A, Domański L, Durlik M, Fatica R, Francis I, Fryc J, Gill J, Gill J, Glyda M, Gourishankar S, Grenda R, Gryczman M, Hruba P, Hughes P, Jittirat A, Jurekovic Z, Kamal L, Kamel M, Kant S, Kasiske B, Kojc N, Konopa J, Lan J, Mannon R, Matas A, Mazurkiewicz J, Miglinas M, Müller T, Narins S, Naumnik B, Patel A, Perkowska-Ptasińska A, Picton M, Piecha G, Poggio E, Bloudíčkova SR, Samaniego-Picota M, Schachtner T, Shin S, Shojai S, Sikosana MLN, Slatinská J, Smykal-Jankowiak K, Solanki A, Veceric Haler Ž, Vucur K, Weir MR, Wiecek A, Włodarczyk Z, Yang H, Zaky Z. Subthreshold rejection activity in many kidney transplants currently classified as having no rejection. Am J Transplant 2025; 25:72-87. [PMID: 39117038 DOI: 10.1016/j.ajt.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Most kidney transplant patients who undergo biopsies are classified as having no rejection based on consensus thresholds. However, we hypothesized that because these patients have normal adaptive immune systems, T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR) may exist as subthreshold activity in some transplants currently classified as no rejection. To examine this question, we studied genome-wide microarray results from 5086 kidney transplant biopsies (from 4170 patients). An updated molecular archetypal analysis designated 56% of biopsies as no rejection. Subthreshold molecular TCMR and/or ABMR activity molecular activity was detectable as elevated classifier scores in many biopsies classified as no rejection, with ABMR activity in many TCMR biopsies and TCMR activity in many ABMR biopsies. In biopsies classified as no rejection histologically and molecularly, molecular TCMR classifier scores correlated with increases in histologic TCMR features and molecular injury, lower estimated glomerular filtration rate, and higher risk of graft loss, and molecular ABMR activity correlated with increased glomerulitis and donor-specific antibody. No rejection biopsies with high subthreshold TCMR or ABMR activity had a higher probability of having TCMR or ABMR, respectively, diagnosed in a future biopsy. We conclude that many kidney transplant recipients have unrecognized subthreshold TCMR or ABMR activity, with significant implications for future problems.
Collapse
Affiliation(s)
- Philip F Halloran
- Department of Medicine, Division of Nephrology & Transplantation Immunology, University of Alberta, Canada
| | | | - Georg Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Austria
| | | | - Klemens Budde
- Department of Nephrology, Charite-Medical University of Berlin, Germany
| | | | | | | | - Gunilla Einecke
- Department of Nephrology, Medical University of Hannover, Germany
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Austria
| | - Gaurav Gupta
- Department of Internal Medicine, Division of Nephrology, Virginia Commonwealth University, USA
| | - Marek Myślak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation SPWSZ Hospital, Pomeranian Medical University, Poland
| | - Ondrej Viklicky
- Department of Nephrology and Transplant Center, Institute for Experimental and Clinical Medicine, Czech Republic
| | - Enver Akalin
- Albert Einstein College of Medicine, Montefiore Medical Center, USA
| | - Tarek Alhamad
- Division of Nephrology, Washington University at St. Louis, USA
| | | | - Miha Arnol
- Department of Nephrology, University of Ljubljana, Slovenia
| | | | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Medical University of Wrocław, Poland
| | - Adam Bingaman
- Department of Surgery, Methodist Transplant and Specialty Hospital, USA
| | | | - Daniel Brennan
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Andrzej Chamienia
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdańsk, Poland
| | - Kevin Chow
- Department of Nephrology, The Royal Melbourne Hospital, Australia
| | - Michał Ciszek
- Department of Immunology, Transplantology and Internal Diseases, Warsaw Medical University, Poland
| | - Declan de Freitas
- Department of Renal Research, Manchester Royal Infirmary, United Kingdom
| | | | - Alicja Debska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Poland
| | | | - Leszek Domański
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Poland
| | - Magdalena Durlik
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Warsaw Medical University, Poland
| | - Richard Fatica
- Department of Kidney Medicine, Cleveland Clinic Foundation, USA
| | | | - Justyna Fryc
- 1st Department of Nephrology and Transplantation With Dialysis Unit, Medical University in Bialystok, Poland
| | | | | | | | - Sita Gourishankar
- Department of Medicine, Division of Nephrology & Transplantation Immunology, University of Alberta, Canada
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Poland
| | - Marta Gryczman
- Department of Nephrology and Kidney Transplantation, Pomeranian Medical University, Poland
| | - Petra Hruba
- Department of Nephrology, Institute for Experimental and Clinical Medicine, Czech Republic
| | - Peter Hughes
- Department of Nephrology, The Royal Melbourne Hospital, Australia
| | | | - Zeljka Jurekovic
- Renal Replacement Therapy, Department of Nephrology, University Hospital Merkur, Croatia
| | - Layla Kamal
- Division of Nephrology, Department of Medicine, Virginia Commonwealth University, USA
| | | | - Sam Kant
- Division of Nephrology & Comprehensive Transplant Center, Department of Medicine, Johns Hopkins University School of Medicine, USA
| | | | - Nika Kojc
- Department of Pathology, University of Ljubljana, Slovenia
| | - Joanna Konopa
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdańsk, Poland
| | | | - Roslyn Mannon
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, USA
| | - Arthur Matas
- Department of Surgery, Division of Transplantation, University on Minnesota, USA
| | | | - Marius Miglinas
- Nephrology and Kidney Transplantation Unit, Nephrology Center, Vilnius University Hospital Santaros Klinikos, Lithuania
| | - Thomas Müller
- Nephrology Department, University Hospital Zurich, Switzerland
| | | | - Beata Naumnik
- 1st Department of Nephrology and Transplantation With Dialysis Unit, Medical University in Bialystok, Poland
| | | | | | - Michael Picton
- Department of Renal Medicine, Manchester Royal Infirmary, United Kingdom
| | - Grzegorz Piecha
- Department of Nephrology, Transplantation and Internal Medicine, Silesian Medical University, Poland
| | - Emilio Poggio
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, USA
| | | | | | - Thomas Schachtner
- Department of Surgery and Transplantation, University Hospital Zurich, Switzerland
| | - Sung Shin
- Department of Laboratory Medicine, University of Ulsan College of Medicine/Assan Medical Center, South Korea
| | - Soroush Shojai
- Division of Nephrology, Department of Medicine, University of Alberta, USA
| | - Majid L N Sikosana
- Department of Medicine, Division of Nephrology & Transplantation Immunology, University of Alberta, Canada
| | - Janka Slatinská
- Department of Nephrology, Institute for Experimental and Clinical Medicine, Czech Republic
| | | | | | | | - Ksenija Vucur
- Department of Nephrology, University Hospital Merkur, Croatia
| | - Matthew R Weir
- Department of Medicine, Division of Nephrology, University of Maryland, USA
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Silesian Medical University, Poland
| | | | - Harold Yang
- Department of Surgery, PinnacleHealth Transplant Associates, USA
| | | |
Collapse
|
14
|
Choi H, Choi EJ, Kim HJ, Baek IC, Won A, Park SJ, Kim TG, Chung YJ. A walk through the development of human leukocyte antigen typing: from serologic techniques to next-generation sequencing. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:294-308. [PMID: 39658458 PMCID: PMC11732764 DOI: 10.4285/ctr.24.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Human leukocyte antigen (HLA) is a group of glycoproteins encoded by the major histocompatibility complex (MHC) that plays a pivotal role in the host's immune defense. Given that the MHC represents the most polymorphic region in the human genome, HLA typing is crucial in organ transplantation. It significantly influences graft rejection, graft-versus-host disease, and the overall patient outcome by mediating the discrimination between self and nonself. HLA typing technology began with serological methods and has evolved rapidly alongside advances in molecular technologies, progressing from DNA-based typing to next- or third-generation sequencing. These advancements have increased the accuracy of HLA typing and reduced ambiguities, leading to marked improvements in transplantation outcomes. Additionally, numerous novel HLA alleles have been identified. In this review, we explore the developmental history and future prospects of HLA typing technology, which promises to further benefit the field of transplantation.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Korea
| | - Eun-Jeong Choi
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyoung-Jae Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Aegyeong Won
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Jin Park
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Yeun-Jun Chung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
15
|
Amaya-Ramirez D, Devriese M, Lhotte R, Usureau C, Smaïl-Tabbone M, Taupin JL, Devignes MD. HLA-EpiCheck: novel approach for HLA B-cell epitope prediction using 3D-surface patch descriptors derived from molecular dynamic simulations. BIOINFORMATICS ADVANCES 2024; 4:vbae186. [PMID: 39659590 PMCID: PMC11631505 DOI: 10.1093/bioadv/vbae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Motivation The human leukocyte antigen (HLA) system is the main cause of organ transplant loss through the recognition of HLAs present on the graft by donor-specific antibodies raised by the recipient. It is therefore of key importance to identify all potentially immunogenic B-cell epitopes on HLAs in order to refine organ allocation. Such HLAs epitopes are currently characterized by the presence of polymorphic residues called "eplets". However, many polymorphic positions in HLAs sequences are not yet experimentally confirmed as eplets associated with a HLA epitope. Moreover, structural studies of these epitopes only consider 3D static structures. Results We present here a machine-learning approach for predicting HLA epitopes, based on 3D-surface patches and molecular dynamics simulations. A collection of 3D-surface patches labeled as Epitope (2117) or Nonepitope (4769) according to Human Leukocyte Antigen Eplet Registry information was derived from 207 HLAs (61 solved and 146 predicted structures). Descriptors derived from static and dynamic patch properties were computed and three tree-based models were trained on a reduced non-redundant dataset. HLA-Epicheck is the prediction system formed by the three models. It leverages dynamic descriptors of 3D-surface patches for more than half of its prediction performance. Epitope predictions on unconfirmed eplets (absent from the initial dataset) are compared with experimental results and notable consistency is found. Availability and implementation Structural data and MD trajectories are deposited as open data under doi: 10.57745/GXZHH8. In-house scripts and machine-learning models for HLA-EpiCheck are available from https://gitlab.inria.fr/capsid.public_codes/hla-epicheck.
Collapse
|
16
|
Yamane H, Ide K, Tanaka Y, Ohira M, Tahara H, Shimizu S, Sakai H, Nakano R, Ohdan H. Association of PIRCHE-II score with anti-donor T-cell response and risk of de novo donor-specific antibody production in kidney transplant recipients. Transpl Immunol 2024; 87:102145. [PMID: 39500398 DOI: 10.1016/j.trim.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/12/2024]
Abstract
BACKGROUND De novo donor-specific antibodies (dnDSAs) affect long-term outcomes of kidney transplantation (KT). A higher Predicted Indirectly ReCognizable Human Leukocyte Antigen (HLA) Epitopes (PIRCHE-II) score correlates with various clinical outcomes, including dnDSA formation. However, a detailed analysis of the relationship between the PIRCHE-II score and anti-donor T-cell response is lacking. Therefore, this study investigated the relationship between PIRCHE-II scores associated with dnDSA formation and mixed lymphocyte reaction results of anti-donor T-cell response. METHODS Data of 105 adult living-donor KT recipients were retrospectively assessed. RESULTS Of the 105 patients, 13.3 % developed dnDSAs during the observation period. The PIRCHE-II score at the HLA-DQ locus (PIRCHE-DQ) was significantly higher in patients with dnDSA formation than in those without. The incidence of dnDSA formation was significantly higher in the PIRCHE-DQ ≥ 77 group than in the PIRCHE-DQ < 77 group. The proportion of patients with increased anti-donor T-cell response was significantly higher in the PIRCHE-DQ ≥ 77 group than in the PIRCHE-DQ < 77 group before KT and at 4 and 5 years after KT. CONCLUSIONS PIRCHE-DQ may predict dnDSA formation and anti-donor T-cell response. Reducing the immunosuppressive drug dose in cases of high PIRCHE-DQ might not be prudent.
Collapse
Affiliation(s)
- Hiroaki Yamane
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kentaro Ide
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Yuka Tanaka
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masahiro Ohira
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hiroyuki Tahara
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Seiichi Shimizu
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hiroshi Sakai
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Ryosuke Nakano
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hideki Ohdan
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
17
|
Cucchiari D, Podestà MA, Ponticelli C. Pathophysiology of rejection in kidney transplantation. Expert Rev Clin Immunol 2024; 20:1471-1481. [PMID: 39467249 DOI: 10.1080/1744666x.2024.2421310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Rejection remains a major obstacle to successful kidney transplantation. The complex pathophysiology of rejection depends on a fine-tuned interplay between the innate and adaptive immune systems. AREAS COVERED This review provides a comprehensive analysis of the pathophysiology of rejection of kidney grafts, performed through careful selection of most relevant papers available on the topic in the PubMed database. The two types of rejection usually observed at the kidney biopsy, i.e. cellular and humoral rejection, are described with an accurate outline of the biological processes that lead to their development. EXPERT OPINION The incidence of T-cell-mediated rejection is decreasing, and most cases promptly respond to appropriate immunosuppression. However, late diagnosis or incomplete response to treatment may have deleterious consequences in the long term. The main issue is represented by antibody-mediated rejection, which unsatisfactorily responds to aggressive immunosuppression, especially when diagnosed late. Prevention of acute ABMR rests on HLA-specific antibody detection prior to transplantation, adequate immunosuppression, and optimal patients' compliance. Late diagnosis and poor response to treatment inevitably lead to chronic ABMR, for which no therapies are currently available.
Collapse
Affiliation(s)
- David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
| | - Manuel Alfredo Podestà
- Transplantation Research Center, Renal Division, Brigham and Women's Hopsital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
18
|
Arches C, Usureau C, Anglicheau D, Hertig A, Jalal-Eddine A, Zaidan M, Taupin JL, Snanoudj R. Donor-Specific Antibodies Targeting a Repeated Eplet Mismatch and Outcome After Kidney Retransplantation. Transpl Int 2024; 37:13639. [PMID: 39679067 PMCID: PMC11637850 DOI: 10.3389/ti.2024.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Kidney retransplantations are associated with an increased risk of rejection and reduced graft survival compared to first transplantations, notably due to HLA sensitization. The impact of repeated eplet mismatches on retransplantation outcome has not been investigated. We retrospectively assessed the risk of antibody-mediated rejection (ABMR) and graft loss associated with preformed DSA targeting Repeated Eplet MisMatches (DREMM) in sensitized patients undergoing kidney retransplantation. We included 45 retransplanted patients with preformed DSA against the second donor. We determined HLA incompatibilities at the eplet levels, and the eplet target of the DSA using HLAMatchmaker®. Repeated mismatches were more frequent at the eplet (87%) than at the antigenic level (22%), but were not associated with the risk of ABMR. The eplet specificity of the DSA revealed that 60% of patients (n = 27) had DREMM. The presence of DREMM was associated with a higher frequency of ABMR (70% versus 28%, P = 0.005) and with a lower death-censored graft survival (log-rank test, P = 0.01). However, in multivariate Cox model, we could not show that DREMM were associated with the risk of ABMR. In conclusion, this study suggests that identifying DREMM may be an interesting clinical tool, however further larger studies are necessary to precise their exact predictive value.
Collapse
Affiliation(s)
- Caroline Arches
- Faculté de Médecine, Sorbonne Universités, Paris, France
- Department of Nephrology-Dialysis-Transplantation, Bicêtre Hospital, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Cédric Usureau
- Immunology and Histocompatibility Laboratory, Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Transplantation, Necker Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
| | | | | | - Mohamad Zaidan
- Department of Nephrology-Dialysis-Transplantation, Bicêtre Hospital, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale U1184 Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Le Kremlin-Bicêtre, France
| | - Jean-Luc Taupin
- Immunology and Histocompatibility Laboratory, Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Renaud Snanoudj
- Department of Nephrology-Dialysis-Transplantation, Bicêtre Hospital, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale U1184 Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Mujić Franić A, Lilić M, Katalinić N, Glavaš-Obrovac L. Comprehensive Characterization of Anti-HLA and Non-HLA Antibodies in Patients on Kidney Transplant Waiting List and Evaluation of Their Impact on Alloimmunization Risk and Dialysis Treatment. Int J Mol Sci 2024; 25:12103. [PMID: 39596170 PMCID: PMC11593988 DOI: 10.3390/ijms252212103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Alloimmunization remains a major obstacle to successful kidney transplantation, mainly due to the formation of anti-HLA antibodies. In recent years, non-HLA antibodies have emerged as additional immunologic factors that can potentially contribute to graft rejection. The aim of this study was to investigate the prevalence and specificity of both anti-HLA and non-HLA antibodies in patients with end-stage renal disease on a waiting list for kidney transplantation. Serum samples from 74 patients were analyzed using complement-dependent cytotoxicity and solid-phase assays. IgG anti-HLA antibodies were identified in 43.2% of participants, while IgG non-HLA antibodies were detected in 91.9%. The most frequent non-HLA antibodies included anti-ENO1 (28.4%), anti-FIBR1 (23.0%) and anti-PRKCZ (23.0%). A significant difference was found between the number of distinct IgG anti-HLA and IgG non-HLA antibody specificities. However, no significant correlation was found between the number of IgG non-HLA antibody specificities and previous alloimmunization events or dialysis treatments. These results suggest that non-HLA antibodies, although often overlooked, can sometimes play a critical role in transplant outcomes. Routine testing for non-HLA antibodies, in addition to mandatory anti-HLA antibody screening and identification, could improve immunologic risk assessment in transplant patients and post-transplant care.
Collapse
Affiliation(s)
- Aida Mujić Franić
- Laboratory for Tissue Typing, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (A.M.F.); (N.K.)
| | - Marko Lilić
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Nataša Katalinić
- Laboratory for Tissue Typing, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (A.M.F.); (N.K.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
20
|
Jäger C, Niemann M, Hönger G, Wehmeier C, Hopfer H, Menter T, Amico P, Dickenmann M, Schaub S. Combined Molecular Mismatch Approaches to Predict Immunological Events Within the First Year After Renal Transplantation. HLA 2024; 104:e15748. [PMID: 39501813 PMCID: PMC11586251 DOI: 10.1111/tan.15748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Several molecular mismatch assessment approaches exist, but data on their combined use are limited. In this study, we aimed to define distinct risk groups for rejection based on the combination of three molecular mismatch assessment approaches (i.e., eplet mismatch count, the number of highly immunogenic eplets and PIRCHE-II score) in 439 consecutive immunological standard risk transplantations. For each molecular mismatch assessment approach, ROC analyses were used to define cut-offs for prediction of (sub) clinical rejection according to Banff 2019 classification within the first year post-transplant as a reference. If all three scores were below the cut-off, the patient was assigned to the low-risk group (19% of patients); if all three scores were above the cut-off, the patient was assigned to the high-risk group (21% of patients). The one-year incidence of (sub) clinical rejection was 12% in the low-risk group and 33% in the high-risk group (p = 0.003). Internal validation of the assigned risk groups for prediction of other outcomes revealed a high consistency: clinical rejection (6% vs. 24%; p = 0.004), ATG-treated rejection (1% vs. 16%; p < 0.001) and development of de novo HLA-DSA at 5 years post-transplant (6% vs. 25%; p = 0.003). The molecular mismatch risk group was an independent predictor for (sub) clinical rejection (high-risk vs. low-risk: hazard ratio 3.11 [95%-CI 1.50-6.45]; p = 0.002). We conclude that combining molecular mismatch approaches allows us to distinguish low- and high-risk groups among standard renal allograft recipients. Independent validation in other patient populations and different ethnicities is required.
Collapse
Affiliation(s)
- Cäcilia Jäger
- Clinic for Transplantation Immunology and NephrologyUniversity Hospital BaselBaselSwitzerland
| | | | - Gideon Hönger
- Clinic for Transplantation Immunology and NephrologyUniversity Hospital BaselBaselSwitzerland
- Molecular Immune Regulation, Department of BiomedicineUniversity of BaselBaselSwitzerland
- HLA‐Diagnostics and Immunogenetics, Department of Laboratory MedicineUniversity Hospital BaselBaselSwitzerland
| | - Caroline Wehmeier
- Clinic for Transplantation Immunology and NephrologyUniversity Hospital BaselBaselSwitzerland
| | - Helmut Hopfer
- Pathology, Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Patrizia Amico
- Clinic for Transplantation Immunology and NephrologyUniversity Hospital BaselBaselSwitzerland
| | - Michael Dickenmann
- Clinic for Transplantation Immunology and NephrologyUniversity Hospital BaselBaselSwitzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and NephrologyUniversity Hospital BaselBaselSwitzerland
- Molecular Immune Regulation, Department of BiomedicineUniversity of BaselBaselSwitzerland
- HLA‐Diagnostics and Immunogenetics, Department of Laboratory MedicineUniversity Hospital BaselBaselSwitzerland
| |
Collapse
|
21
|
Mattoo A, Jaffe IS, Keating B, Montgomery RA, Mangiola M. Improving long-term kidney allograft survival by rethinking HLA compatibility: from molecular matching to non-HLA genes. Front Genet 2024; 15:1442018. [PMID: 39415982 PMCID: PMC11480002 DOI: 10.3389/fgene.2024.1442018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Optimizing immunologic compatibility in organ transplantation extends beyond the conventional approach of Human Leukocyte Antigen (HLA) antigen matching, which exhibits significant limitations. A broader comprehension of the roles of classical and non-classical HLA genes in transplantation is imperative for enhancing long-term graft survival. High-resolution molecular HLA genotyping, despite its inherent challenges, has emerged as the cornerstone for precise patient-donor compatibility assessment. Leveraging understanding of eplet biology and indirect immune activation, eplet mismatch calculators and the PIRCHE-II algorithm surpass traditional methods in predicting allograft rejection. Understanding minor histocompatibility antigens may also present an opportunity to personalize the compatibility process. While the application of molecular matching in deceased donor organ allocation presents multiple technical, logistical, and conceptual barriers, rendering it premature for mainstream use, several other areas of donor-recipient matching and post-transplant management are ready to incorporate molecular matching. Provision of molecular mismatch scores to physicians during potential organ offer evaluations could potentially amplify long-term outcomes. The implementation of molecular matching in living organ donation and kidney paired exchange programs is similarly viable. This article will explore the current understanding of immunologic matching in transplantation and the potential applications of epitope and non-epitope molecular biology and genetics in clinical transplantation.
Collapse
Affiliation(s)
- Aprajita Mattoo
- *Correspondence: Aprajita Mattoo, ; Ian S. Jaffe, ; Massimo Mangiola,
| | - Ian S. Jaffe
- *Correspondence: Aprajita Mattoo, ; Ian S. Jaffe, ; Massimo Mangiola,
| | | | | | - Massimo Mangiola
- NYU Langone Transplant Institute, New York University Langone Health, New York, NY, United States
| |
Collapse
|
22
|
Peereboom ETM, de Marco R, Geneugelijk K, Jairam J, Verduyn Lunel FM, Blok AJ, Medina-Pestana J, Gerbase-DeLima M, van Zuilen AD, Spierings E. Peptide Sharing Between CMV and Mismatched HLA Class I Peptides Promotes Early T-Cell-Mediated Rejection After Kidney Transplantation. HLA 2024; 104:e15719. [PMID: 39435970 DOI: 10.1111/tan.15719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Cytomegalovirus (CMV) infection is related to acute rejection and graft loss after kidney transplantation, though the underlying mechanism remains largely unknown. Some CMV strains produce a peptide that is identical to a peptide sequence found in the leader peptide of specific HLA-A and -C alleles. In this retrospective study of 351 kidney transplantations, we explored whether CMV-seropositive recipients without the VMAPRTLIL, VMAPRTLLL or VMAPRTLVL HLA class I leader peptide receiving a transplant from a donor with this peptide, faced an increased risk of T-cell-mediated rejection (TCMR) in the first 90 days after transplantation. An independent case-control cohort was used for validation (n = 122). The combination of recipient CMV seropositivity with the VMAPRTLIL peptide mismatch was associated with TCMR with a hazard ratio (HR) of 3.06 (p = 0.001) in a multivariable analysis. Similarly, the VMAPRTLLL peptide mismatch was associated with TCMR revealing a HR of 2.61 (p = 0.008). Transplantations featuring either a VMAPRTLIL or a VMAPRTLLL peptide mismatch had a significantly higher cumulative TCMR incidence (p < 0.0001), with the primary impact observed in the first 2 weeks post-transplantation. The findings could be validated in an independent cohort. Together, our data strongly suggest that CMV-positive recipients without an HLA peptide identical to a CMV peptide yet transplanted with a donor who does possess this peptide, have a significantly increased risk of early TCMR. Considering the prevention of such an leader peptide mismatch in these patients or adjusting immunosuppression protocols accordingly may hold promise in reducing the incidence of early TCMR.
Collapse
Affiliation(s)
- Emma T M Peereboom
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Renato de Marco
- Immunogenetics Institute - IGEN, Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Kirsten Geneugelijk
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasvir Jairam
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frans M Verduyn Lunel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna J Blok
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - José Medina-Pestana
- Nephrology Division, Hospital Do Rim, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Gerbase-DeLima
- Immunogenetics Institute - IGEN, Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Arjan D van Zuilen
- Department of Nephrology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
Basu S, Dudreuilh C, Shah S, Sanchez-Fueyo A, Lombardi G, Dorling A. Activation and Regulation of Indirect Alloresponses in Transplanted Patients With Donor Specific Antibodies and Chronic Rejection. Transpl Int 2024; 37:13196. [PMID: 39228658 PMCID: PMC11368725 DOI: 10.3389/ti.2024.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Following transplantation, human CD4+T cells can respond to alloantigen using three distinct pathways. Direct and semi-direct responses are considered potent, but brief, so contribute mostly to acute rejection. Indirect responses are persistent and prolonged, involve B cells as critical antigen presenting cells, and are an absolute requirement for development of donor specific antibody, so more often mediate chronic rejection. Novel in vitro techniques have furthered our understanding by mimicking in vivo germinal centre processes, including B cell antigen presentation to CD4+ T cells and effector cytokine responses following challenge with donor specific peptides. In this review we outline recent data detailing the contribution of CD4+ T follicular helper cells and antigen presenting B cells to donor specific antibody formation and antibody mediated rejection. Furthermore, multi-parametric flow cytometry analyses have revealed specific endogenous regulatory T and B subsets each capable of suppressing distinct aspects of the indirect response, including CD4+ T cell cytokine production, B cell maturation into plasmablasts and antibody production, and germinal centre maturation. These data underpin novel opportunities to control these aberrant processes either by targeting molecules critical to indirect alloresponses or potentiating suppression via exogenous regulatory cell therapy.
Collapse
Affiliation(s)
- Sumoyee Basu
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Caroline Dudreuilh
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Transplantation, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Sapna Shah
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Renal Unit, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, King’s College London, London, United Kingdom
- Liver Sciences, King’s College London, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| |
Collapse
|
24
|
Gramkow AM, Baatrup JH, Gramkow ET, Thiesson HC, Koefoed-Nielsen P. Association of HLA B- and T-cell molecular mismatches with HLA antibodies, rejection, and graft survival in pediatric kidney transplantation. Pediatr Transplant 2024; 28:e14773. [PMID: 38808702 DOI: 10.1111/petr.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Optimizing graft survival and diminishing human leukocyte antigen (HLA) sensitization are essential for pediatric kidney transplant recipients. More precise HLA matching predicting epitope mismatches could reduce alloreactivity. We investigated the association of predicted HLA B- and T-cell molecular mismatches with the formation of de novo donor-specific antibodies, HLA antibodies, rejection, and graft survival. METHODS Forty-nine pediatric kidney transplant recipients transplanted from 2009 to 2020 were retrospectively studied. Donors and recipients were high-resolution HLA typed, and recipients were screened for HLA antibodies posttransplant. HLA-EMMA (HLA Epitope MisMatch Algorithm) and PIRCHE-II (Predicted Indirectly ReCognizable HLA Epitopes) predicted the molecular mismatches. The association of molecular mismatches and the end-points was explored with logistic regression. RESULTS Five recipients (11%) developed de novo donor-specific antibodies. All five had de novo donor-specific antibodies against HLA class II, with four having HLA-DQ antibodies. We found no associations between PIRCHE-II or HLA-EMMA with de novo donor-specific antibodies, HLA sensitization, graft loss, or rejection. However, we did see a tendency towards an increased odds ratio in PIRCHE-II predicting de novo donor-specific antibodies formation, with an odds ratio of 1.12 (95% CI: 0.99; 1.28) on HLA class II. CONCLUSION While the study revealed no significant associations between the number of molecular mismatches and outcomes, a notable trend was observed - indicating a reduced risk of dnDSA formation with improved molecular match. It is important to acknowledge, however, that the modest population size and limited observed outcomes preclude us from making definitive conclusions.
Collapse
Affiliation(s)
- Ann-Maria Gramkow
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Johanne H Baatrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Emilie T Gramkow
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Molecular Medicine - Cancer and Inflammation, University of Southern Denmark, Odense, Denmark
| | - Helle C Thiesson
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
25
|
Jucaud V. Allogeneic HLA Humoral Immunogenicity and the Prediction of Donor-Specific HLA Antibody Development. Antibodies (Basel) 2024; 13:61. [PMID: 39189232 PMCID: PMC11348167 DOI: 10.3390/antib13030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
The development of de novo donor-specific HLA antibodies (dnDSAs) following solid organ transplantation is considered a major risk factor for poor long-term allograft outcomes. The prediction of dnDSA development is a boon to transplant recipients, yet the assessment of allo-HLA immunogenicity remains imprecise. Despite the recent technological advances, a comprehensive evaluation of allo-HLA immunogenicity, which includes both B and T cell allorecognition, is still warranted. Recent studies have proposed using mismatched HLA epitopes (antibody and T cell) as a prognostic biomarker for humoral alloimmunity. However, the identification of immunogenic HLA mismatches has not progressed despite significant improvements in the identification of permissible mismatches. Certainly, the prediction of dnDSA development may benefit permissible HLA mismatched organ transplantations, personalized immunosuppression, and clinical trial design. However, characteristics that go beyond the listing of mismatched HLA antibody epitopes and T cell epitopes, such as the generation of HLA T cell epitope repertoires, recipient's HLA class II phenotype, and immunosuppressive regiments, are required for the precise assessment of allo-HLA immunogenicity.
Collapse
Affiliation(s)
- Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
| |
Collapse
|
26
|
Zhanzak Z, Cina D, Johnson AC, Larsen CP. Implications of MHC-restricted immunopeptidome in transplantation. Front Immunol 2024; 15:1436233. [PMID: 39035001 PMCID: PMC11257886 DOI: 10.3389/fimmu.2024.1436233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
The peptide presentation by donor and recipient major histocompatibility complex (MHC) molecules is the major driver of T-cell responses in transplantation. In this review, we address an emerging area of interest, the application of immunopeptidome in transplantation, and describe the potential opportunities that exist to use peptides for targeting alloreactive T cells. The immunopeptidome, the set of peptides presented on an individual's MHC, plays a key role in immune surveillance. In transplantation, the immunopeptidome is heavily influenced by MHC-derived peptides, delineating a key subset of the diverse peptide repertoire implicated in alloreactivity. A better understanding of the immunopeptidome in transplantation has the potential to open up new approaches to identify, characterize, longitudinally quantify, and therapeutically target donor-specific T cells and ultimately support more personalized immunotherapies to prevent rejection and promote allograft tolerance.
Collapse
Affiliation(s)
- Zhuldyz Zhanzak
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Davide Cina
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Aileen C. Johnson
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christian P. Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
27
|
Santos E, Spensley K, Gunby N, Worthington J, Roufosse C, Anand A, Willicombe M. Application of HLA molecular level mismatching in ethnically diverse kidney transplant recipients receiving a steroid-sparing immunosuppression protocol. Am J Transplant 2024; 24:1218-1232. [PMID: 38403189 DOI: 10.1016/j.ajt.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Defining HLA mismatch at the molecular compared with the antigen level has been shown to be superior in predicting alloimmune responses, although data from across different patient populations are lacking. Using HLA-Matchmaker, HLA-EMMA and PIRCHE-II, this study reports on the association between molecular mismatch (MolMM) and de novo donor-specific antibody (dnDSA) in an ethnically diverse kidney transplant population receiving a steroid-sparing immunosuppression protocol. Of the 419 patients, 51 (12.2%) patients had dnDSA. De novo DSA were seen more frequently with males, primary transplants, patients receiving tacrolimus monotherapy, and unfavorably HLA-matched transplants. There was a strong correlation between MolMM load and antigen mismatch, although significant variation of MolMM load existed at each antigen mismatch. MolMM loads differed significantly by recipient ethnicity, although ethnicity alone was not associated with dnDSA. On multivariate analysis, increasing MolMM loads associated with dnDSA, whereas antigen mismatch did not. De novo DSA against 8 specific epitopes occurred at high frequency; of the 51 patients, 47 (92.1%) patients with dnDSA underwent a pretreatment biopsy, with 21 (44.7%) having evidence of alloimmune injury. MolMM has higher specificity than antigen mismatching at identifying recipients who are at low risk of dnDSA while receiving minimalist immunosuppression. Immunogenicity consideration is important, with more work needed on identification, especially across different ethnic groups.
Collapse
Affiliation(s)
- Eva Santos
- Histocompatibility and Immunogenetics Laboratory, Northwest London Pathology NHS Trust, Hammersmith Hospital, London, UK
| | - Katrina Spensley
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK; Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, UK
| | - Nicola Gunby
- Histocompatibility and Immunogenetics Laboratory, Northwest London Pathology NHS Trust, Hammersmith Hospital, London, UK
| | - Judith Worthington
- Transplantation Laboratory, Manchester Royal Infirmary, Oxford Road, Manchester, UK
| | - Candice Roufosse
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, UK; Department of Histopathology, Northwest London Pathology NHS Trust, Charing Cross Hospital, London, UK
| | - Arthi Anand
- Histocompatibility and Immunogenetics Laboratory, Northwest London Pathology NHS Trust, Hammersmith Hospital, London, UK
| | - Michelle Willicombe
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK; Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, UK.
| |
Collapse
|
28
|
Strehler Y, Lachmann N, Niemann M, Halleck F, Budde K, Pruß A. Positive Long-Term Outcome of Kidney Allocation via Acceptable Mismatch Program in Highly Sensitized Patients. Transfus Med Hemother 2024; 51:140-151. [PMID: 38867807 PMCID: PMC11166408 DOI: 10.1159/000536533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/29/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Eurotransplant established the acceptable mismatch (AM) program to facilitate timely kidney transplantations of highly sensitized patients, but long-term granular clinical and immunological outcomes regarding overall graft survival and de novo DSA (dnDSA) formation are still intensively researched. The right choice of induction therapy in patients with differing immunological risk is not conclusively determined, as well as the impact of human leukocyte antigen (HLA) epitope matching on dnDSA formation. Methods This monocentric, retrospective study analyzed 94 patients transplanted within the AM program between 2000 and 2019 compared to case-control matched cohorts of non- (PRA 0-5%; PRA-0) and intermediately sensitized (PRA 6-84%; PRA-6/84) patients transplanted through Eurotransplant Kidney Allocation System. Results Estimated 10-year overall graft survival between the PRA-0 and AM cohorts was similar, whereas PRA-6/84 was significantly disadvantageous compared to PRA-0. Estimated 10-year incidence of antibody-mediated rejection rates was significantly lower in the PRA-0 group compared to AM and PRA-6/84 groups. Compared to the AM group, estimated incidence of de novo donor-specific antibody (dnDSA) was significantly lower in PRA-0 patients, with no differences between the AM and PRA-6/84 cohorts. The PRA-6/84 cohort was the only subgroup in which interleukin-2 receptor antagonist (IL2RA) induction was associated with longer overall graft survival, patient survival, and graft survival compared to depleting induction (ATG or OKT3). Broad HLA-A, -B, -DR mismatches (mmABDR) and HLA epitope mismatches determined by Eplets and PIRCHE-II were predictive for dnDSA formation in the total cohort, and the AM subgroup. Discussion The high efforts expended on AM patients are justified to allow timely organ transplantation with acceptable risk profile and non-inferior outcomes. IL2RA induction in intermediately sensitized patients is associated with superior overall graft survival, patient survival, and graft survival compared to ATG/OKT3 induction, without negative effects on rejection episodes or dnDSA formation. In silico epitope matching might further help reduce dnDSA formation, particularly in high-risk AM patients.
Collapse
Affiliation(s)
- Yara Strehler
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Lachmann
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Matern BM, Niemann M. PIRCHE application major versions 3 and 4 lead to equivalent T cell epitope mismatch scores in solid organ and stem cell transplantation modules. Hum Immunol 2024; 85:110789. [PMID: 38521663 DOI: 10.1016/j.humimm.2024.110789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
PIRCHE scores in organ and stem cell transplantation have been shown to correlate with increased risk of donor-specific HLA antibodies and graft-versus-host disease, respectively. With advancements of the PIRCHE application server, it is critical to compare the predicted scores with previous versions. This manuscript compares the newly introduced PIRCHE version 4.2 with its predecessor version 3.3, which was widely used in retrospective studies, using a virtual cohort of 10,000 transplant pairs. In the stem cell transplantation module, both versions yield identical results in 100% of the test population. In the solid organ module, 97% of the test population has identical PIRCHE scores. The deviating cases (3%) were attributed to refinements in the PIRCHE algorithm's specification. Furthermore, the magnitude of the difference is likely to be below the detection limit for clinical effects, confirming the equivalence in PIRCHE scores between versions 3.3 and 4.2.
Collapse
|
30
|
Crane C, Niemann M, Dale B, Gragert L, Shah M, Ingulli E, Morris GP. High-resolution HLA genotyping improves PIRCHE-II assessment of molecular mismatching in kidney transplantation. Hum Immunol 2024; 85:110813. [PMID: 38749805 DOI: 10.1016/j.humimm.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
HLA matching in solid organ transplant is performed with the aim of assessing immunologic compatibility in order to avoid hyperacute rejection and assess the risk of future rejection events. Molecular mismatch algorithms are intended to improve granularity in histocompatibility assessment and risk stratification. PIRCHE-II uses HLA genotyping to predict indirectly presented mismatched donor HLA peptides, though most clinical validation studies rely on imputing high resolution (HR) genotypes from low resolution (LR) typing data. We hypothesized that use of bona fide HR typing could overcome limitations in imputation, improving accuracy and predictive ability for donor-specific antibody development and acute rejection. We performed a retrospective analysis of adult and pediatric kidney transplant donor/recipient pairs (N = 419) with HR typing and compared the use of imputed LR genotyping verses HR genotyping for PIRCHE-II analysis and outcomes. Imputation success was highly dependent on the reference population used, as using historic Caucasian reference populations resulted in 10 % of pairs with unsuccessful imputation while multiethnic reference populations improved successful imputation with only 1 % unable to be imputed. Comparing PIRCHE-II analysis with HR and LR genotyping produced notably different results, with 20 % of patients discrepantly classified to immunologic risk groups. These data emphasize the importance of using multiethnic reference panels when performing imputation and indicate HR HLA genotyping has clinically meaningful benefit for PIRCHE-II analysis compared to imputed LR typing.
Collapse
Affiliation(s)
- Clarkson Crane
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Loren Gragert
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mita Shah
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Ingulli
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Niemann M, Matern BM, Spierings E. PIRCHE-II Risk and Acceptable Mismatch Profile Analysis in Solid Organ Transplantation. Methods Mol Biol 2024; 2809:171-192. [PMID: 38907898 DOI: 10.1007/978-1-0716-3874-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
To optimize outcomes in solid organ transplantation, the HLA genes are regularly compared and matched between the donor and recipient. However, in many cases a transplant cannot be fully matched, due to widespread variation across populations and the hyperpolymorphism of HLA alleles. Mismatches of the HLA molecules in transplanted tissue can be recognized by immune cells of the recipient, leading to immune response and possibly organ rejection. These adverse outcomes are reduced by analysis using epitope-focused models that consider the immune relevance of the mismatched HLA.PIRCHE, an acronym for Predicted Indirectly ReCognizable HLA Epitopes, aims to categorize and quantify HLA mismatches in a patient-donor pair by predicting HLA-derived T cell epitopes. Specifically, the algorithm predicts and counts the HLA-derived peptides that can be presented by the host HLA, known as indirectly-presented T cell epitopes. Looking at the immune-relevant epitopes within HLA allows a more biologically relevant understanding of immune response, and provides an expanded donor pool for a more refined matching strategy compared with allele-level matching. This PIRCHE algorithm is available for analysis of single transplantations, as well as bulk analysis for population studies and statistical analysis for comparison of probability of organ availability and risk profiles.
Collapse
Affiliation(s)
| | - Benedict M Matern
- PIRCHE AG, Berlin, Germany
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
- Central Diagnostic Laboratory, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
32
|
Schapranow MP, Bayat M, Rasheed A, Naik M, Graf V, Schmidt D, Budde K, Cardinal H, Sapir-Pichhadze R, Fenninger F, Sherwood K, Keown P, Günther OP, Pandl KD, Leiser F, Thiebes S, Sunyaev A, Niemann M, Schimanski A, Klein T. NephroCAGE-German-Canadian Consortium on AI for Improved Kidney Transplantation Outcome: Protocol for an Algorithm Development and Validation Study. JMIR Res Protoc 2023; 12:e48892. [PMID: 38133915 PMCID: PMC10770792 DOI: 10.2196/48892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Recent advances in hardware and software enabled the use of artificial intelligence (AI) algorithms for analysis of complex data in a wide range of daily-life use cases. We aim to explore the benefits of applying AI to a specific use case in transplant nephrology: risk prediction for severe posttransplant events. For the first time, we combine multinational real-world transplant data, which require specific legal and technical protection measures. OBJECTIVE The German-Canadian NephroCAGE consortium aims to develop and evaluate specific processes, software tools, and methods to (1) combine transplant data of more than 8000 cases over the past decades from leading transplant centers in Germany and Canada, (2) implement specific measures to protect sensitive transplant data, and (3) use multinational data as a foundation for developing high-quality prognostic AI models. METHODS To protect sensitive transplant data addressing the first and second objectives, we aim to implement a decentralized NephroCAGE federated learning infrastructure upon a private blockchain. Our NephroCAGE federated learning infrastructure enables a switch of paradigms: instead of pooling sensitive data into a central database for analysis, it enables the transfer of clinical prediction models (CPMs) to clinical sites for local data analyses. Thus, sensitive transplant data reside protected in their original sites while the comparable small algorithms are exchanged instead. For our third objective, we will compare the performance of selected AI algorithms, for example, random forest and extreme gradient boosting, as foundation for CPMs to predict severe short- and long-term posttransplant risks, for example, graft failure or mortality. The CPMs will be trained on donor and recipient data from retrospective cohorts of kidney transplant patients. RESULTS We have received initial funding for NephroCAGE in February 2021. All clinical partners have applied for and received ethics approval as of 2022. The process of exploration of clinical transplant database for variable extraction has started at all the centers in 2022. In total, 8120 patient records have been retrieved as of August 2023. The development and validation of CPMs is ongoing as of 2023. CONCLUSIONS For the first time, we will (1) combine kidney transplant data from nephrology centers in Germany and Canada, (2) implement federated learning as a foundation to use such real-world transplant data as a basis for the training of CPMs in a privacy-preserving way, and (3) develop a learning software system to investigate population specifics, for example, to understand population heterogeneity, treatment specificities, and individual impact on selected posttransplant outcomes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/48892.
Collapse
Affiliation(s)
- Matthieu-P Schapranow
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Mozhgan Bayat
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Aadil Rasheed
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Marcel Naik
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Verena Graf
- Geschäftsbereich IT, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Danilo Schmidt
- Geschäftsbereich IT, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Héloïse Cardinal
- Research Centre, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Ruth Sapir-Pichhadze
- Division of Nephrology and Multi-Organ Transplant Program, Department of Medicine and Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Franz Fenninger
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karen Sherwood
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul Keown
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Konstantin D Pandl
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Florian Leiser
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Scott Thiebes
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ali Sunyaev
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | | |
Collapse
|
33
|
Gao S, Gong H, Li M, Lan P, Zhang M, Kuang P, Zhang Y, Hu X, Ding C, Li Y, Ding X, Xue W, Zheng J. HLA B eplet mismatches in the context of delayed graft function and low tacrolimus trough levels are risk factors influencing the generation of de novo donor-specific antibodies and acute rejection in the early stage after kidney transplantation. Transpl Immunol 2023; 81:101955. [PMID: 37931666 DOI: 10.1016/j.trim.2023.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND De novo donor-specific antibody (dnDSA) generation and acute rejection (AR) are the main factors affecting long-term graft survival. This study aims to investigate human leukocyte antigen (HLA) eplet mismatching (MM), delayed graft function (DGF), and tacrolimus (TAC) trough levels on the occurrence of dnDSA and AR in the early stages after kidney transplantation (KT). METHODS This retrospective study included 526 cases of deceased donation KT. The effects of DGF, HLA eplet MM, and TAC trough levels on dnDSA and AR occurrence were analyzed with logistic regression analysis. RESULTS Multivariate logistic regression analysis showed the independent risk factor of dnDSA generation was HLA B eplet MM (OR: 1.201, 95% CI: 1.007-1.431, P = 0.041). The independent risk factors of AR occurrence include DGF (OR: 4.045, 95% CI: 1.047-15.626, P = 0.043), HLA B eplet MM (OR: 1.090, 95% CI: 1.000-1.187, P = 0.050), and TAC trough levels at 12 months (OR: 0.750, 95% CI: 565-0.997, P = 0.048). HLA B eplet MM combined with DGF and TAC trough levels at 12 months increased the predictive value of dnDSA (AUC 0.735) and AR (AUC 0.730) occurrence. HLA B eplet MM > 9 and TAC trough levels below 5.95 ng/mL at 12 months could increase the risk of early AR occurrence. CONCLUSIONS HLA B eplet MM, DGF, and TAC trough levels at 12 months after KT could affect the occurrence of dnDSA and AR in the early stage of KT.
Collapse
Affiliation(s)
- Shan Gao
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Huilin Gong
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Meihe Li
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Lan
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Minyue Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peidan Kuang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaojun Hu
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chenguang Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Li
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wujun Xue
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
34
|
Aldea PL, Santionean MD, Elec A, Munteanu A, Antal O, Loga L, Moisoiu T, Elec FI, Delean D, Bulata B, Rachisan (Bot) AL. An Integrated Approach Using HLAMatchmaker and Pirche II for Epitopic Matching in Pediatric Kidney Transplant-A Romanian Single-Center Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1756. [PMID: 38002848 PMCID: PMC10670802 DOI: 10.3390/children10111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
(1) Background: Renal transplantation (KT) is the most efficient treatment for chronic kidney disease among pediatric patients. Antigenic matching and epitopic load should be the main criteria for choosing a renal graft in pediatric transplantation. Our study aims to compare the integration of new histocompatibility predictive algorithms with classical human leukocyte antigen (HLA) matching regarding different types of pediatric renal transplants. (2) Methods: We categorized our cohort of pediatric patients depending on their risk level, type of donor and type of transplantation, delving into discussions surrounding their mismatching values in relation to both the human leukocyte antigen Matchmaker software (versions 4.0. and 3.1.) and the most recent version of the predicted indirectly identifiable HLA epitopes (PIRCHE) II score. (3) Results: We determined that the higher the antigen mismatch, the higher the epitopic load for both algorithms. The HLAMatchmaker algorithm reveals a noticeable difference in eplet load between living and deceased donors, whereas PIRCHE II does not show the same distinction. Dialysis recipients have a higher count of eplet mismatches, which demonstrates a significant difference according to the transplantation type. Our results are similar to those of four similar studies available in the current literature. (4) Conclusions: We suggest that an integrated data approach employing PIRCHE II and HLAMatchmaker algorithms better predicts histocompatibility in KT than classical HLA matching.
Collapse
Affiliation(s)
- Paul Luchian Aldea
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
| | - Maria Diana Santionean
- Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Alina Elec
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
| | - Adriana Munteanu
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
| | - Oana Antal
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Luminita Loga
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
| | - Tudor Moisoiu
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Florin Ioan Elec
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania; (P.L.A.)
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Dan Delean
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bogdan Bulata
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Andreea Liana Rachisan (Bot)
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
35
|
González-López E, Ocejo-Vinyals JG, Renuncio-García M, Roa-Bautista A, San Segundo Arribas D, Escagedo C, García-Saiz MDM, Valero R, García-Berbel P, Ruíz San Millán JC, Rodrigo E. Donor-Derived Cell-Free DNA at 1 Month after Kidney Transplantation Relates to HLA Class II Eplet Mismatch Load. Biomedicines 2023; 11:2741. [PMID: 37893114 PMCID: PMC10604614 DOI: 10.3390/biomedicines11102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Kidney transplantation is the preferred therapeutic option for end-stage renal disease; however, the alloimmune response is still the leading cause of renal allograft failure. To better identify immunologic disparities in order to evaluate HLA compatibility between the donor and the recipient, the concept of eplet load has arisen. Regular kidney function monitoring is essential for the accurate and timely diagnosis of allograft rejection and the appropriate treatment. Donor-derived cell-free DNA (dd-cfDNA) has been proposed as a potential biomarker of acute rejection and graft failure in kidney transplantation. The proportion of plasma dd-cfDNA was determined in forty-two kidney patients at 1 month after transplantation. A total of eleven (26.2%) patients had a dd-cfDNA proportion of ≥1.0%. The only pretransplant variable related to dd-cfDNA > 1.0% was the HLA class II eplet mismatch load, mainly the HLA-DQB1 eplet mismatch load. Furthermore, dd-cfDNA was able to discriminate the patients with antibody-mediated rejection (AbMR) (AUC 87.3%), acute rejection (AUC 78.2%), and troubled graft (AUC 81.4%). Increased dd-cfDNA levels were associated with kidney allograft deterioration, particularly rejection, as well as a greater HLA class II eplet mismatch load. Consequently, combining dd-cfDNA determination and HLA eplet mismatch load calculation should improve the assessment of the risk of short- and long-term allograft damage.
Collapse
Affiliation(s)
- Elena González-López
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (E.G.-L.); (M.R.-G.); (A.R.-B.); (D.S.S.A.)
| | - Javier Gonzalo Ocejo-Vinyals
- Immunology Department, Infectious Diseases and Clinical Microbiology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain;
| | - Mónica Renuncio-García
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (E.G.-L.); (M.R.-G.); (A.R.-B.); (D.S.S.A.)
| | - Adriel Roa-Bautista
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (E.G.-L.); (M.R.-G.); (A.R.-B.); (D.S.S.A.)
| | - David San Segundo Arribas
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (E.G.-L.); (M.R.-G.); (A.R.-B.); (D.S.S.A.)
| | - Clara Escagedo
- Nephrology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (C.E.); (R.V.); (J.C.R.S.M.)
| | - María del Mar García-Saiz
- Clinical Pharmacology Department, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain;
| | - Rosalía Valero
- Nephrology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (C.E.); (R.V.); (J.C.R.S.M.)
| | - Pilar García-Berbel
- Pathological Anatomy Department, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain;
| | - Juan Carlos Ruíz San Millán
- Nephrology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (C.E.); (R.V.); (J.C.R.S.M.)
| | - Emilio Rodrigo
- Nephrology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (C.E.); (R.V.); (J.C.R.S.M.)
| |
Collapse
|
36
|
van den Broek DAJ, Meziyerh S, Budde K, Lefaucheur C, Cozzi E, Bertrand D, López del Moral C, Dorling A, Emonds MP, Naesens M, de Vries APJ. The Clinical Utility of Post-Transplant Monitoring of Donor-Specific Antibodies in Stable Renal Transplant Recipients: A Consensus Report With Guideline Statements for Clinical Practice. Transpl Int 2023; 36:11321. [PMID: 37560072 PMCID: PMC10408721 DOI: 10.3389/ti.2023.11321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Solid phase immunoassays improved the detection and determination of the antigen-specificity of donor-specific antibodies (DSA) to human leukocyte antigens (HLA). The widespread use of SPI in kidney transplantation also introduced new clinical dilemmas, such as whether patients should be monitored for DSA pre- or post-transplantation. Pretransplant screening through SPI has become standard practice and DSA are readily determined in case of suspected rejection. However, DSA monitoring in recipients with stable graft function has not been universally established as standard of care. This may be related to uncertainty regarding the clinical utility of DSA monitoring as a screening tool. This consensus report aims to appraise the clinical utility of DSA monitoring in recipients without overt signs of graft dysfunction, using the Wilson & Junger criteria for assessing the validity of a screening practice. To assess the evidence on DSA monitoring, the European Society for Organ Transplantation (ESOT) convened a dedicated workgroup, comprised of experts in transplantation nephrology and immunology, to review relevant literature. Guidelines and statements were developed during a consensus conference by Delphi methodology that took place in person in November 2022 in Prague. The findings and recommendations of the workgroup on subclinical DSA monitoring are presented in this article.
Collapse
Affiliation(s)
- Dennis A. J. van den Broek
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Soufian Meziyerh
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Kidney Transplant Department, Saint Louis Hospital, Université de Paris Cité, Paris, France
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Dominique Bertrand
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, Rouen, France
| | - Covadonga López del Moral
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Anthony Dorling
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Aiko P. J. de Vries
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
37
|
González-López E, Mora-Cuesta VM, Roa-Bautista A, Comins-Boo A, Renaldo A, Irure-Ventura J, Iturbe-Fernández D, Tello-Mena S, San Segundo D, Cifrián-Martínez J, López-Hoyos M. DQA1 Eplet Mismatch Load As an Independent Risk Factor of CLAD After Lung Transplantation. Transplant Direct 2023; 9:e1513. [PMID: 37389015 PMCID: PMC10306436 DOI: 10.1097/txd.0000000000001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Lung transplantation remains the treatment of choice for end-stage lung diseases, and recipient selection is currently based on clinical urgency, ABO compatibility, and donor size. The risk of allosensitization is classically based on HLA mismatch, but eplet mismatch load is increasingly seen to be important in long-term outcomes in solid organ transplantation. Chronic lung allograft dysfunction (CLAD) is relatively common and relevant, affecting almost 50% of patients 5 y after transplantation and being the first cause of death from the first year after transplantation. The overall class-II eplet mismatch load has been associated with CLAD development. Methods Based on clinical data, 240 lung transplant recipients were eligible for CLAD, and HLA and eplet mismatch was analyzed using the HLAMatchmaker 3.1 software. Results A total of 92 (38.3%) lung transplant recipients developed CLAD. The time free-of-CLAD was significantly decreased in patients with presence of DQA1 eplet mismatches (P = 0.015). Furthermore, when other previously described CLAD risk factors were studied in a multivariate analysis, the presence of DQA1 eplet mismatches was found to be independently associated with the early onset of CLAD. Conclusions The concept of epitope load has arisen as a new tool to better define donor-recipient immunologic compatibility. The presence of DQA1 eplet mismatches potentially would increase the likelihood of developing CLAD.
Collapse
Affiliation(s)
- Elena González-López
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
| | - Víctor M. Mora-Cuesta
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
| | - Adriel Roa-Bautista
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
| | - Alejandra Comins-Boo
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
| | - André Renaldo
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
| | - Juan Irure-Ventura
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
| | | | - Sandra Tello-Mena
- Pneumology Department, Marqués de Valdecilla University Hospital, Santander, Spain
| | - David San Segundo
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
| | | | - Marcos López-Hoyos
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
- Molecular Biology Department, Cantabrian University, Santander, Spain
| |
Collapse
|
38
|
Osmanodja B, Akifova A, Oellerich M, Beck J, Bornemann-Kolatzki K, Schütz E, Budde K. Donor-Derived Cell-Free DNA for Kidney Allograft Surveillance after Conversion to Belatacept: Prospective Pilot Study. J Clin Med 2023; 12:jcm12062437. [PMID: 36983437 PMCID: PMC10051604 DOI: 10.3390/jcm12062437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Donor-derived cell-free DNA (dd-cfDNA) is used as a biomarker for detection of antibody-mediated rejection (ABMR) and other forms of graft injury. Another potential indication is guidance of immunosuppressive therapy when no therapeutic drug monitoring is available. In such situations, detection of patients with overt or subclinical graft injury is important to personalize immunosuppression. We prospectively measured dd-cfDNA in 22 kidney transplant recipients (KTR) over a period of 6 months after conversion to belatacept for clinical indication and assessed routine clinical parameters. Patient and graft survival was 100% after 6 months, and eGFR remained stable (28.7 vs. 31.1 mL/min/1.73 m2, p = 0.60). Out of 22 patients, 2 (9%) developed biopsy-proven rejection-one episode of low-grade TCMR IA and one episode of caABMR. While both episodes were detected by increase in creatinine, the caABMR episode led to increase in absolute dd-cfDNA (168 copies/mL) above the cut-off of 50 copies/mL, while the TCMR episode did show slightly increased relative dd-cfDNA (0.85%) despite normal absolute dd-cfDNA (22 copies/mL). Dd-cfDNA did not differ before and after conversion in a subgroup of 12 KTR with previous calcineurin inhibitor therapy and no rejection (12.5 vs. 25.3 copies/mL, p = 0.34). In this subgroup, 3/12 (25%) patients showed increase of absolute dd-cfDNA above the prespecified cut-off (50 copies/mL) despite improving eGFR. Increase in dd-cfDNA after conversion to belatacept is common and could point towards subclinical allograft injury. To detect subclinical TCMR changes without vascular lesions, additional biomarkers or urinary dd-cfDNA should complement plasma dd-cfDNA. Resolving CNI toxicity is unlikely to be detected by decreased dd-cfDNA levels. In summary, the sole determination of dd-cfDNA has limited utility in the guidance of patients after late conversion to belatacept. Further studies should focus on patients undergoing early conversion and include protocol biopsies at least for patients with increased dd-cfDNA.
Collapse
Affiliation(s)
- Bilgin Osmanodja
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Aylin Akifova
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Julia Beck
- Chronix Biomedical GmbH, 37073 Göttingen, Germany
| | | | | | - Klemens Budde
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
39
|
Kim JJ, Fichtner A, Copley HC, Gragert L, Süsal C, Dello Strologo L, Oh J, Pape L, Weber LT, Weitz M, König J, Krupka K, Tönshoff B, Kosmoliaptsis V. Molecular HLA mismatching for prediction of primary humoral alloimmunity and graft function deterioration in paediatric kidney transplantation. Front Immunol 2023; 14:1092335. [PMID: 37033962 PMCID: PMC10080391 DOI: 10.3389/fimmu.2023.1092335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction Rejection remains the main cause of allograft failure in paediatric kidney transplantation and is driven by donor-recipient HLA mismatching. Modern computational algorithms enable assessment of HLA mismatch immunogenicity at the molecular level (molecular-mismatch, molMM). Whilst molMM has been shown to correlate with alloimmune outcomes, evidence demonstrating improved prediction performance against traditional antigen mismatching (antMM) is lacking. Methods We analysed 177 patients from the CERTAIN registry (median follow-up 4.5 years). molMM scores included Amino-Acid-Mismatch-Score (AAMS), Electrostatic-Mismatch-Score (EMS3D) and netMHCIIpan (netMHC1k: peptide binding affinity ≤1000 nM; netMHC: binding affinity ≤500 nM plus rank <2%). We stratified patients into high/low-risk groups based on risk models of DSA development. Results Donor-specific HLA antibodies (DSA) predominantly targeted the highest scoring molMM donor antigen within each HLA locus. MolMM scores offered superior discrimination versus antMM in predicting de novo DSA for all HLA loci; the EMS3D algorithm had particularly consistent performance (area under the receiver operating characteristic curve (AUC) >0.7 for all HLA loci vs. 0.52-0.70 for antMM). ABMR (but not TCMR) was associated with HLA-DQ molMM scores (AAMS, EMS3D and netMHC). Patients with high-risk HLA-DQ molMM had increased risk of graft function deterioration (50% reduction in baseline eGFR (eGFR50), adjusted HR: 3.5, 95% CI 1.6-8.2 high vs. low EMS3D). Multivariable modelling of the eGFR50 outcome using EMS3D HLA-DQ stratification showed better discrimination (AUC EMS3D vs. antMM at 2 years: 0.81 vs. 0.77, at 4.5 years: 0.72 vs. 0.64) and stratified more patients into the low-risk group, compared to traditional antMM. Conclusion Molecular mismatching was superior to antigen mismatching in predicting humoral alloimmunity. Molecular HLA-DQ mismatching appears to be a significant prognostic factor for graft function deterioration in paediatric kidney transplantation.
Collapse
Affiliation(s)
- Jon Jin Kim
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Department of Paediatric Nephrology, Nottingham University Hospital, Nottingham, United Kingdom
| | - Alexander Fichtner
- Department of Pediatrics I, University Children’s Hospital Heidelberg, Heidelberg, Germany
| | - Hannah C. Copley
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Loren Gragert
- School of Medicine, Tulane University, New Orleans, LA, United States
| | - Caner Süsal
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Jun Oh
- University Hospital Hamburg, Pediatric Nephrology, Hamburg, Germany
| | - Lars Pape
- Clinic for Paediatrics III, Essen University Hospital, Essen, Germany
| | - Lutz T. Weber
- Pediatric Nephrology, Children’s and Adolescents’ Hospital, University Hospital Cologne, Cologne, Germany
| | - Marcus Weitz
- University Hospital Tübingen, Pediatric Nephrology, Tübingen, Germany
| | - Jens König
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Kai Krupka
- Department of Pediatrics I, University Children’s Hospital Heidelberg, Heidelberg, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children’s Hospital Heidelberg, Heidelberg, Germany
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at the University of Cambridge and the NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
40
|
Castrezana-Lopez K, Malchow R, Nilsson J, Kokkonen SM, Rho E, von Moos S, Mueller TF, Schachtner T. Association between PIRCHE-II scores and de novo allosensitization after reduction of immunosuppression during SARS-CoV-2 infection in kidney transplant recipients. Transpl Infect Dis 2023; 25:e14052. [PMID: 36884207 DOI: 10.1111/tid.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Before the availability of mRNA vaccines, many transplant centers chose to significantly reduce maintenance immunosuppression in kidney transplant recipients (KTRs) with SARS-CoV-2 infection. The extent to which this increases the risk of allosensitization is unclear. METHODS In this observational cohort study, we analyzed 47 KTRs from March 2020 to February 2021 who underwent substantial reduction of maintenance immunosuppression during SARS-CoV-2 infection. KTRs were followed at 6 and 18 months concerning the development of de novo donor-specific anti-HLA (human leukocyte antigen) antibodies (DSA). The HLA-derived epitope mismatches were calculated using the predicted indirectly recognizable HLA-epitopes (PIRCHE-II) algorithm. RESULTS In total, 14 of 47 KTRs (30%) developed de novo HLA antibodies after the reduction of maintenance immunosuppression. KTRs with higher total PIRCHE-II scores and higher PIRCHE-II scores for the HLA-DR locus were more likely to develop de novo HLA antibodies (p = .023, p = .009). Furthermore, 4 of the 47 KTRs (9%) developed de novo DSA after reduction of maintenance immunosuppression, which were exclusively directed against HLA-class II antigens and also showed higher PIRCHE-II scores for HLA-class II. The cumulative mean fluorescence intensity of 40 KTRs with preexisting anti-HLA antibodies and 13 KTRs with preexisting DSA at the time of SARS-CoV-2 infection remained stable after the reduction of maintenance immunosuppression (p = .141; p = .529). CONCLUSIONS Our data show that the HLA-derived epitope mismatch load between donor and recipient influences the risk of de novo DSA development when immunosuppression is temporarily reduced. Our data further suggest that reduction in immunosuppression should be made more cautiously in KTRs with high PIRCHE-II scores for HLA-class II antigens.
Collapse
Affiliation(s)
| | - Ronja Malchow
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Sanna M Kokkonen
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Elena Rho
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Seraina von Moos
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Mueller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Schachtner
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
de Marco R, Requião-Moura LR, Raimundo TRF, Mourão TB, Rampim GF, Medina-Pestana JO, Tedesco-Silva H, Gerbase-DeLima M. HLA-DPB1 molecular mismatches are risk factors for acute rejection and low 5-year graft function in first kidney transplants. HLA 2023; 101:228-238. [PMID: 36461794 DOI: 10.1111/tan.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
The study aimed to investigate the impact of HLA-DPB1 allelic and molecular mismatches on the occurrence of acute rejection (AR) and low 5-year graft function (5Y-GF) in first kidney transplant (KT) recipients. This is a single center retrospective study of 130 deceased donor KT recipients transplanted between 2014 and 2016. HLA-DPB1 allelic MM and the following molecular MM (mMM) were analyzed: expression MM with the high expression G allele in the donor; T cell epitope MM (TCE MM); epitope MM (EMM), considering all six hypervariable regions (EMM-ABCDEF HVR), or only ABEF regions (EMM-ABEF HVR); eplet MM (EpMM); antibody-verified eplet MM (AbVer EpMM); and solvent accessible amino acid MM (SAMM). There was no association of allelic MM with AR or 5Y-GF. The variables independently associated (Cox regression analyses) with AR were high donor final creatinine, nonpermissive TCE MM, ABCDEF EMM load ≥6, EpMM load ≥6; SAMM load ≥5, and AbVer EpMM load ≥3. No association between any HLA-DPB1 mMM and 5Y-GF was observed when all 130 transplant recipients were considered. However, when transplants from expanded criteria donors were excluded, independent associations were detected (logistic regression analyses) with AbVerEpMM load ≥2, SAMM load ≥7, cerebro-vascular death, donor age, and AR. To our knowledge, this is the first study that shows that some HLA-DPB1 mMM are associated with AR and low 5Y-GF in a population of exclusively first kidney transplant recipients.
Collapse
Affiliation(s)
- Renato de Marco
- Instituto de Imunogenética (IGEN), Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Lúcio R Requião-Moura
- Nephrology Division, Hospital do Rim, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tamiris R F Raimundo
- Instituto de Imunogenética (IGEN), Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Tuíla B Mourão
- Instituto de Imunogenética (IGEN), Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Gisele F Rampim
- Instituto de Imunogenética (IGEN), Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - José O Medina-Pestana
- Nephrology Division, Hospital do Rim, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hélio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Gerbase-DeLima
- Instituto de Imunogenética (IGEN), Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| |
Collapse
|
42
|
Knatterud ME, Simmons RL, Payne W, Stock P, Chavers B, Ascher N, Kaufman D, Kirk A, Keshavjee S, Humar A, Ganesh S, Hughes C, Kandaswamy R, Matas AJ. The John S. Najarian symposium: The past, present, and future of surgery and transplantation, May 20, 2022, Minneapolis, MN. Clin Transplant 2023; 37:e14877. [PMID: 36528870 DOI: 10.1111/ctr.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Dr John S Najarian (1927-2020), chairman of the Department of Surgery at the University of Minnesota from 1967 to 1993, was a pioneer in surgery, clinical immunology and transplantation. A Covid-delayed Festschrift was held in his honor on May 20, 2022. The speakers reflected on his myriad contributions to surgery, transplantation, and resident/fellow training, as well as current areas of ongoing research to improve clinical outcomes. Of note, Dr Najarian was a founder of the journal Clinical Transplantation.
Collapse
Affiliation(s)
- Mary E Knatterud
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - William Payne
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Peter Stock
- Department of Surgery, University of California - San Francisco, San Francisco, California, USA
| | - Blanche Chavers
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Nancy Ascher
- Department of Surgery, University of California - San Francisco, San Francisco, California, USA
| | - Dixon Kaufman
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Alan Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Abhinav Humar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Swaytha Ganesh
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Christopher Hughes
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Raja Kandaswamy
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Arthur J Matas
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
43
|
Estimation of Sensitization Status in Renal Transplant Recipients by Assessing Indirect Pathway CD4+ T cell Response to Donor Cell-pulsed Dendritic Cell. Transplantation 2023; 107:1079-1088. [PMID: 36814087 DOI: 10.1097/tp.0000000000004491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND . Generation of donor-specific human leukocyte antigen antibody (DSA) via indirect allorecognition is detrimental to long-term survival of transplant organs. The detection of such immune responses would make it possible to define patients with high risk of sensitization. In this study, we established a novel method for evaluating indirect allorecognition to assess sensitization in kidney transplant recipients. METHODS . Recipient CD14+ monocytes were mixed with donor peripheral blood mononuclear cells; cultured in the presence of IL-4, GM-CSF, IL-1β, and TNFα; and used as pulsed dendritic cells (DCs). Cell proliferation and cytokine production were evaluated by carboxyfluorescein diacetate succinimidyl ester-based T cell proliferation assay and Enzyme-Linked ImmunoSpot assay, respectively. RESULTS . CD4+ T cell proliferation was strongly observed in following coculture with allogeneic antigen-pulsed DC leading to interferon-γ and IL-21 production. About 1% of CD4+ T cells exhibited Tfh-like phenotype (PD-1highCXCR5+ICOS+CD40L+). Recipient DC pulsed with donor peripheral blood mononuclear cells was cocultured with recipient CD45RA+CD4+ and CD45RA-CD4+ (generally defined as naive and memory in humans, respectively) T cells. Irrespective of preformed or de novo DSA status, CD45RA+CD4+ T cells constantly produced IL-21. In contrast, IL-21-produced CD45RA-CD4+ T cells were significantly higher in preformed DSA-positive patients than those in negative patients (80.8 ± 51.2 versus 14.8 ± 20.4, P < 0.001). In de novo DSA-positive patients, IL-21-produced CD45RA-CD4+ T cells were significantly increased after transplantation compared with before transplantation (9.23 ± 9.08 versus 43.9 ± 29.1, P < 0.001). CONCLUSIONS . Assessment of indirect pathway CD4+ T cell response could provide new insights into the underlying mechanism of de novo DSA production, leading to the development of effective strategies against antibody-mediated rejection.
Collapse
|
44
|
Lehmann C, Pehnke S, Weimann A, Bachmann A, Dittrich K, Petzold F, Fürst D, de Fallois J, Landgraf R, Henschler R, Lindner TH, Halbritter J, Doxiadis I, Popp B, Münch J. Extended genomic HLA typing identifies previously unrecognized mismatches in living kidney transplantation. Front Immunol 2023; 14:1094862. [PMID: 36776892 PMCID: PMC9911689 DOI: 10.3389/fimmu.2023.1094862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Antibody mediated rejection (ABMR) is the most common cause of long-term allograft loss in kidney transplantation (KT). Therefore, a low human leukocyte antigen (HLA) mismatch (MM) load is favorable for KT outcomes. Hitherto, serological or low-resolution molecular HLA typing have been adapted in parallel. Here, we aimed to identify previously missed HLA mismatches and corresponding antibodies by high resolution HLA genotyping in a living-donor KT cohort. Methods 103 donor/recipient pairs transplanted at the University of Leipzig Medical Center between 1998 and 2018 were re-typed using next generation sequencing (NGS) of the HLA loci -A, -B, -C, -DRB1, -DRB345, -DQA1, -DQB1, -DPA1, and -DPB1. Based on these data, we compiled HLA MM counts for each pair and comparatively evaluated genomic HLA-typing with pre-transplant obtained serological/low-resolution HLA (=one-field) typing results. NGS HLA typing (=two-field) data was further used for reclassification of de novo HLA antibodies as "donor-specific". Results By two-field HLA re-typing, we were able to identify additional MM in 64.1% (n=66) of cases for HLA loci -A, -B, -C, -DRB1 and -DQB1 that were not observed by one-field HLA typing. In patients with biopsy proven ABMR, two-field calculated MM count was significantly higher than by one-field HLA typing. For additional typed HLA loci -DRB345, -DQA1, -DPA1, and -DPB1 we observed 2, 26, 3, and 23 MM, respectively. In total, 37.3% (69/185) of de novo donor specific antibodies (DSA) formation was directed against these loci (DRB345 ➔ n=33, DQA1 ➔ n=33, DPA1 ➔ n=1, DPB1 ➔ n=10). Conclusion Our results indicate that two-field HLA typing is feasible and provides significantly more sensitive HLA MM recognition in living-donor KT. Furthermore, accurate HLA typing plays an important role in graft management as it can improve discrimination between donor and non-donor HLA directed cellular and humoral alloreactivity in the long range. The inclusion of additional HLA loci against which antibodies can be readily detected, HLA-DRB345, -DQA1, -DQB1, -DPA1, and -DPB1, will allow a more precise virtual crossmatch and better prediction of potential DSA. Furthermore, in living KT, two-field HLA typing could contribute to the selection of the immunologically most suitable donors.
Collapse
Affiliation(s)
- Claudia Lehmann
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Sarah Pehnke
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Antje Weimann
- Division of Visceral Surgery and Transplantation Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Anette Bachmann
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Katalin Dittrich
- Department of Pediatric Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Friederike Petzold
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Daniel Fürst
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Ramona Landgraf
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Reinhard Henschler
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Tom H Lindner
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany.,Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ilias Doxiadis
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Johannes Münch
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany.,Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
45
|
Senev A, Van Loon E, Lerut E, Coemans M, Callemeyn J, Daniëls L, Kerkhofs J, Koshy P, Kuypers D, Lamarthée B, Sprangers B, Tinel C, Van Craenenbroeck AH, Van Sandt V, Emonds MP, Naesens M. Association of Predicted HLA T-Cell Epitope Targets and T-Cell-Mediated Rejection After Kidney Transplantation. Am J Kidney Dis 2022; 80:718-729.e1. [PMID: 35690154 DOI: 10.1053/j.ajkd.2022.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/09/2022] [Indexed: 02/02/2023]
Abstract
RATIONALE & OBJECTIVE The relationship between human leukocyte antigen (HLA) molecular mismatches and T-cell-mediated rejection (TCMR) is unknown. We investigated the associations between the different donor HLA-derived T-cell targets and the occurrence of TCMR and borderline histologic changes suggestive of TCMR after kidney transplantation. STUDY DESIGN Retrospective cohort study. SETTING & PARTICIPANTS All kidney transplant recipients at a single center between 2004 and 2013 with available biopsy data and a DNA sample for high-resolution HLA donor/recipient typing (N = 893). EXPOSURE Scores calculated by the HLA matching algorithm PIRCHE-II and HLA eplet mismatches. OUTCOME TCMR, borderline changes suggestive of TCMR, and allograft failure. ANALYTICAL APPROACH Multivariable cause-specific hazards models were fit to characterize the association between HLA epitopes targets and study outcomes. RESULTS We found 277 patients developed TCMR, and 134 developed only borderline changes suggestive of TCMR on at least 1 biopsy. In multivariable analyses, only the PIRCHE-II scores for HLA-DRB1 and HLA-DQB1 were independently associated with the occurrence of TCMR and with allograft failure; this was not the case for HLA class I molecules. If restricted to rejection episodes within the first 3 months after transplantation, only the T-cell epitope targets originating from the donor's HLA-DRB1 and HLA-DQB1, but not class I molecules, were associated with the early acute TCMR. Also, the median PIRCHE-II score for HLA class II was statistically different between the patients with TCMR compared to the patients without TCMR (129 [IQR, 60-240] vs 201 [IQR, 96-298], respectively; P < 0.0001). These differences were not observed for class I PIRCHE-II scores. LIMITATIONS Observational clinical data and residual confounding. CONCLUSIONS In the absence of HLA-DSA, HLA class II but not class I mismatches are associated with early episodes of acute TCMR and allograft failure. This suggests that current immunosuppressive therapies are largely able to abort the most deleterious HLA class I-directed alloimmune processes; however, alloresponses against HLA-DRB1 and HLA-DQB1 molecular mismatches remain insufficiently suppressed. PLAIN-LANGUAGE SUMMARY Genetic differences in the human leukocyte antigen (HLA) complex between kidney transplant donors and recipients play a central role in T-cell-mediated rejection (TCMR), which can lead to failure of the transplanted kidney. Evaluating this genetic disparity (mismatch) in the HLA complex at the molecular (epitope) level could contribute to better prediction of the immune response to the donor organ posttransplantation. We investigated the associations of the different donor HLA-derived T-cell epitope targets and scores obtained from virtual crossmatch algorithms with the occurrence of TCMR, borderline TCMR, and graft failure after kidney transplantation after taking into account the influence of donor-specific anti-HLA antibodies. This study illustrates the greater importance of the molecular mismatches in class II molecules compared to class I HLA molecules.
Collapse
Affiliation(s)
- Aleksandar Senev
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Elisabet Van Loon
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Coemans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Jasper Callemeyn
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Liesbeth Daniëls
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Johan Kerkhofs
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Priyanka Koshy
- Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Ben Sprangers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Claire Tinel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Vicky Van Sandt
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Marie-Paule Emonds
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Maarten Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
46
|
Wiebe C, Nickerson PW, Kosmoliaptsis V. Molecular Mismatch and the Risk for T Cell-Mediated Rejection. Am J Kidney Dis 2022; 80:704-706. [PMID: 36057468 DOI: 10.1053/j.ajkd.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Chris Wiebe
- Department of Medicine, University of Manitoba, Winnipeg, Canada; Shared Health Services Manitoba; Department of Immunology, University of Manitoba, Winnipeg, Canada.
| | - Peter W Nickerson
- Department of Medicine, University of Manitoba, Winnipeg, Canada; Shared Health Services Manitoba; Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom, and the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at the University of Cambridge; NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
47
|
Lemieux W, Fleischer D, Yang AY, Niemann M, Oualkacha K, Klement W, Richard L, Polychronakos C, Liwski R, Claas F, Gebel HM, Keown PA, Lewin A, Sapir-Pichhadze R. Dissecting the impact of molecular T-cell HLA mismatches in kidney transplant failure: A retrospective cohort study. Front Immunol 2022; 13:1067075. [PMID: 36505483 PMCID: PMC9730505 DOI: 10.3389/fimmu.2022.1067075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Kidney transplantation is the optimal treatment in end-stage kidney disease, but de-novo donor specific antibody development continues to negatively impact patients undergoing kidney transplantation. One of the recent advances in solid organ transplantation has been the definition of molecular mismatching between donors and recipients' Human Leukocyte Antigens (HLA). While not fully integrated in standard clinical care, cumulative molecular mismatch at the level of eplets (EMM) as well as the PIRCHE-II score have shown promise in predicting transplant outcomes. In this manuscript, we sought to study whether certain T-cell molecular mismatches (TcEMM) were highly predictive of death-censored graft failure (DCGF). Methods We studied a retrospective cohort of kidney donor:recipient pairs from the Scientific Registry of Transplant Recipients (2000-2015). Allele level HLA-A, B, C, DRB1 and DQB1 types were imputed from serologic types using the NMDP algorithm. TcEMMs were then estimated using the PIRCHE-II algorithm. Multivariable Accelerated Failure Time (AFT) models assessed the association between each TcEMM and DCGF. To discriminate between TcEMMs most predictive of DCGF, we fit multivariable Lasso penalized regression models. We identified co-expressed TcEMMs using weighted correlation network analysis (WGCNA). Finally, we conducted sensitivity analyses to address PIRCHE and IMGT/HLA version updates. Results A total of 118,309 donor:recipient pairs meeting the eligibility criteria were studied. When applying the PIRCHE-II algorithm, we identified 1,935 distinct TcEMMs at the population level. A total of 218 of the observed TcEMM were independently associated with DCGF by AFT models. The Lasso penalized regression model with post selection inference identified a smaller subset of 86 TcEMMs (56 and 30 TcEMM derived from HLA Class I and II, respectively) to be highly predictive of DCGF. Of the observed TcEMM, 38.14% appeared as profiles of highly co-expressed TcEMMs. In addition, sensitivity analyses identified that the selected TcEMM were congruent across IMGT/HLA versions. Conclusion In this study, we identified subsets of TcEMMs highly predictive of DCGF and profiles of co-expressed mismatches. Experimental verification of these TcEMMs determining immune responses and how they may interact with EMM as predictors of transplant outcomes would justify their consideration in organ allocation schemes and for modifying immunosuppression regimens.
Collapse
Affiliation(s)
- William Lemieux
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, QC, Canada,Medical Affairs & Innovation, Héma-Québec, Montréal, QC, Canada
| | - David Fleischer
- Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
| | - Archer Yi Yang
- Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
| | | | - Karim Oualkacha
- Department of Mathematics, Université du Québec à Montreal, Montreal, QC, Canada
| | - William Klement
- Division of Organ Donation and Transplantation, Canadian Blood Services, Ottawa, ON, Canada
| | - Lucie Richard
- Transfusion medicine/Reference Laboratory, Héma-Québec, Montréal, QC, Canada
| | - Constantin Polychronakos
- Department of Pediatrics, The Research Institute of the McGill University Health Centre and the Montreal Children’s Hospital, Montréal, QC, Canada
| | - Robert Liwski
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Frans Claas
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Howard M. Gebel
- Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Paul A. Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Antoine Lewin
- Medical Affairs & Innovation, Héma-Québec, Montréal, QC, Canada,Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ruth Sapir-Pichhadze
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, QC, Canada,Division of Nephrology and the Multi-Organ Transplant Program, Royal Victoria Hospital, McGill University Health Centre, Montréal, QC, Canada,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada,*Correspondence: Ruth Sapir-Pichhadze,
| |
Collapse
|
48
|
Niemann M, Strehler Y, Lachmann N, Halleck F, Budde K, Hönger G, Schaub S, Matern BM, Spierings E. Snowflake epitope matching correlates with child-specific antibodies during pregnancy and donor-specific antibodies after kidney transplantation. Front Immunol 2022; 13:1005601. [PMID: 36389845 PMCID: PMC9649433 DOI: 10.3389/fimmu.2022.1005601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 10/01/2023] Open
Abstract
Development of donor-specific human leukocyte antigen (HLA) antibodies (DSA) remains a major risk factor for graft loss following organ transplantation, where DSA are directed towards patches on the three-dimensional structure of the respective organ donor's HLA proteins. Matching donors and recipients based on HLA epitopes appears beneficial for the avoidance of DSA. Defining surface epitopes however remains challenging and the concepts underlying their characterization are not fully understood. Based on our recently implemented computational deep learning pipeline to define HLA Class I protein-specific surface residues, we hypothesized a correlation between the number of HLA protein-specific solvent-accessible interlocus amino acid mismatches (arbitrarily called Snowflake) and the incidence of DSA. To validate our hypothesis, we considered two cohorts simultaneously. The kidney transplant cohort (KTC) considers 305 kidney-transplanted patients without DSA prior to transplantation. During the follow-up, HLA antibody screening was performed regularly to identify DSA. The pregnancy cohort (PC) considers 231 women without major sensitization events prior to pregnancy who gave live birth. Post-delivery serum was screened for HLA antibodies directed against the child's inherited paternal haplotype (CSA). Based on the involved individuals' HLA typings, the numbers of interlocus-mismatched antibody-verified eplets (AbvEPS), the T cell epitope PIRCHE-II model and Snowflake were calculated locus-specific (HLA-A, -B and -C), normalized and pooled. In both cohorts, Snowflake numbers were significantly elevated in recipients/mothers that developed DSA/CSA. Univariable regression revealed significant positive correlation between DSA/CSA and AbvEPS, PIRCHE-II and Snowflake. Snowflake numbers showed stronger correlation with numbers of AbvEPS compared to Snowflake numbers with PIRCHE-II. Our data shows correlation between Snowflake scores and the incidence of DSA after allo-immunization. Given both AbvEPS and Snowflake are B cell epitope models, their stronger correlation compared to PIRCHE-II and Snowflake appears plausible. Our data confirms that exploring solvent accessibility is a valuable approach for refining B cell epitope definitions.
Collapse
Affiliation(s)
| | - Yara Strehler
- Center for Tumor Medicine, H&I Laboratory, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Lachmann
- Center for Tumor Medicine, H&I Laboratory, Charité University Medicine Berlin, Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gideon Hönger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Benedict M. Matern
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
- Central Diagnostic Laboratory, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
49
|
López del Moral C, Wu K, Naik M, Osmanodja B, Akifova A, Lachmann N, Stauch D, Hergovits S, Choi M, Bachmann F, Halleck F, Schrezenmeier E, Schmidt D, Budde K. The natural history of de novo donor-specific HLA antibodies after kidney transplantation. Front Med (Lausanne) 2022; 9:943502. [PMID: 36186822 PMCID: PMC9523126 DOI: 10.3389/fmed.2022.943502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background De novo donor-specific HLA antibodies (dnDSA) are key factors in the diagnosis of antibody-mediated rejection (ABMR) and related to graft loss. Methods This retrospective study was designed to evaluate the natural course of dnDSA in graft function and kidney allograft survival and to assess the impact of mean fluorescence intensity (MFI) evolution as detected by annual Luminex® screening. All 400 kidney transplant recipients with 731 dnDSA against the last graft (01/03/2000-31/05/2021) were included. Results During 8.3 years of follow-up, ABMR occurred in 24.8% and graft loss in 33.3% of the cases, especially in patients with class I and II dnDSA, and those with multiple dnDSA. We observed frequent changes in MFI with 5-year allograft survivals post-dnDSA of 74.0% in patients with MFI reduction ≥ 50%, 62.4% with fluctuating MFI (MFI reduction ≥ 50% and doubling), and 52.7% with doubling MFI (log-rank p < 0.001). Interestingly, dnDSA in 168 (24.3%) cases became negative at some point during follow-up, and 38/400 (9.5%) patients became stable negative, which was associated with better graft survival. Multivariable analysis revealed the importance of MFI evolution and rejection, while class and number of dnDSA were not contributors in this model. Conclusion In summary, we provide an in-depth analysis of the natural course of dnDSA after kidney transplantation, first evidence for the impact of MFI evolution on graft outcomes, and describe a relevant number of patients with a stable disappearance of dnDSA, related to better allograft survival.
Collapse
Affiliation(s)
- Covadonga López del Moral
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain
- *Correspondence: Covadonga López del Moral,
| | - Kaiyin Wu
- Department of Pathology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel Naik
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bilgin Osmanodja
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aylin Akifova
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Lachmann
- Institute for Transfusion Medicine, HLA-Laboratory, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Diana Stauch
- Institute for Transfusion Medicine, HLA-Laboratory, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Hergovits
- Institute for Transfusion Medicine, HLA-Laboratory, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friederike Bachmann
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health Charité – Universitätsmedizin Berlin, BIH Academy, Berlin, Germany
| | - Danilo Schmidt
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
50
|
Lim WH, Ho J, Kosmoliaptsis V, Sapir-Pichhadze R. Editorial: Future challenges and directions in determining allo-immunity in kidney transplantation. Front Immunol 2022; 13:1013711. [PMID: 36119031 PMCID: PMC9473680 DOI: 10.3389/fimmu.2022.1013711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Wai H. Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- *Correspondence: Wai H. Lim,
| | - Julie Ho
- Department of Internal Medicine University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Transplant Manitoba Adult Kidney Program, Transplant Manitoba, Shared Health Manitoba, Winnipeg, MB, Canada
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Blood and Transplant Research Unit in Organ Donation and Transplantation, National Institute for Health Research, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Sapir-Pichhadze
- Centre for Outcomes Research and Evaluation, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Nephrology and Multi-Organ Transplant Program, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|