1
|
Abstract
Memory T cells that are specific for alloantigen can arise from a variety of stimuli, ranging from direct allogeneic sensitization from prior transplantation, blood transfusion, or pregnancy to the elicitation of pathogen-specific T cells that are cross-reactive with alloantigen. Regardless of the mechanism by which they arise, alloreactive memory T cells possess key metabolic, phenotypic, and functional properties that render them distinct from naive T cells. These properties affect the immune response to transplantation in 2 important ways: first, they can alter the speed, location, and effector mechanisms with which alloreactive T cells mediate allograft rejection, and second, they can alter T-cell susceptibility to immunosuppression. In this review, we discuss recent developments in understanding these properties of memory T cells and their implications for transplantation.
Collapse
Affiliation(s)
| | - Mandy L. Ford
- Emory Transplant Center, Emory University, Atlanta, GA
| |
Collapse
|
2
|
Mengrelis K, Muckenhuber M, Wekerle T. Chimerism-based Tolerance Induction in Clinical Transplantation: Its Foundations and Mechanisms. Transplantation 2023; 107:2473-2485. [PMID: 37046378 DOI: 10.1097/tp.0000000000004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hematopoietic chimerism remains the most promising strategy to bring transplantation tolerance into clinical routine. The concept of chimerism-based tolerance aims to extend the recipient's mechanisms of self-tolerance (ie, clonal deletion, anergy, and regulation) to include the tolerization of donor antigens that are introduced through the cotransplantation of donor hematopoietic cells. For this to be successful, donor hematopoietic cells need to engraft in the recipient at least temporarily. Three pioneering clinical trials inducing chimerism-based tolerance in kidney transplantation have been published to date. Within this review, we discuss the mechanisms of tolerance that are associated with the specific therapeutic protocols of each trial. Recent data highlight the importance of regulation as a mechanism that maintains tolerance. Insufficient regulatory mechanisms are also a likely explanation for situations of tolerance failure despite persisting donor chimerism. After decades of preclinical development of chimerism protocols, mechanistic data from clinical trials have recently become increasingly important. Better understanding of the required mechanisms for tolerance to be induced in humans will be a key to design more reliable and less invasive chimerism protocols in the future.
Collapse
Affiliation(s)
- Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
3
|
Sasaki H, Hirose T, Oura T, Otsuka R, Rosales I, Ma D, Lassiter G, Karadagi A, Tomosugi T, Dehnadi A, Matsunami M, Paul SR, Reeves PM, Hanekamp I, Schwartz S, Colvin RB, Lee H, Spitzer TR, Cosimi AB, Cippà PE, Fehr T, Kawai T. Selective Bcl-2 inhibition promotes hematopoietic chimerism and allograft tolerance without myelosuppression in nonhuman primates. Sci Transl Med 2023; 15:eadd5318. [PMID: 37018417 PMCID: PMC11022838 DOI: 10.1126/scitranslmed.add5318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/02/2023] [Indexed: 04/07/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) has many potential applications beyond current standard indications, including treatment of autoimmune disease, gene therapy, and transplant tolerance induction. However, severe myelosuppression and other toxicities after myeloablative conditioning regimens have hampered wider clinical use. To achieve donor hematopoietic stem cell (HSC) engraftment, it appears essential to establish niches for the donor HSCs by depleting the host HSCs. To date, this has been achievable only by nonselective treatments such as irradiation or chemotherapeutic drugs. An approach that is capable of more selectively depleting host HSCs is needed to widen the clinical application of HSCT. Here, we show in a clinically relevant nonhuman primate model that selective inhibition of B cell lymphoma 2 (Bcl-2) promoted hematopoietic chimerism and renal allograft tolerance after partial deletion of HSCs and effective peripheral lymphocyte deletion while preserving myeloid cells and regulatory T cells. Although Bcl-2 inhibition alone was insufficient to induce hematopoietic chimerism, the addition of a Bcl-2 inhibitor resulted in promotion of hematopoietic chimerism and renal allograft tolerance despite using only half of the dose of total body irradiation previously required. Selective inhibition of Bcl-2 is therefore a promising approach to induce hematopoietic chimerism without myelosuppression and has the potential to render HSCT more feasible for a variety of clinical indications.
Collapse
Affiliation(s)
- Hajime Sasaki
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Takayuki Hirose
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Tetsu Oura
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Ryo Otsuka
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Ivy Rosales
- Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - David Ma
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Grace Lassiter
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmad Karadagi
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Toshihide Tomosugi
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Abbas Dehnadi
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Masatoshi Matsunami
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Susan Raju Paul
- Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, M 02114, USA
| | - Patrick M. Reeves
- Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, M 02114, USA
| | - Isabel Hanekamp
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Schwartz
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Robert B. Colvin
- Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Hang Lee
- Massachusetts General Hospital, Biostatistics Center, Boston, MA 02114, USA
| | - Thomas R. Spitzer
- Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, M 02114, USA
| | - A. Benedict Cosimi
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Pietro E. Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Thomas Fehr
- Department of Internal Medicine, Cantonal Hospital Graubuenden, 7000 Chur, Switzerland
- Division of Nephrology, University Hospital, 8091 Zurich, Switzerland
| | - Tatsuo Kawai
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
4
|
Cousin N, Cap S, Dihr M, Tacconi C, Detmar M, Dieterich LC. Lymphatic PD-L1 Expression Restricts Tumor-Specific CD8 + T-cell Responses. Cancer Res 2021; 81:4133-4144. [PMID: 34099493 PMCID: PMC9398148 DOI: 10.1158/0008-5472.can-21-0633] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023]
Abstract
Lymph node (LN)-resident lymphatic endothelial cells (LEC) mediate peripheral tolerance by self-antigen presentation on MHC-I and constitutive expression of T-cell inhibitory molecules, including PD-L1 (CD274). Tumor-associated LECs also upregulate PD-L1, but the specific role of lymphatic PD-L1 in tumor immunity is not well understood. In this study, we generated a mouse model lacking lymphatic PD-L1 expression and challenged these mice with two orthotopic tumor models, B16F10 melanoma and MC38 colorectal carcinoma. Lymphatic PD-L1 deficiency resulted in consistent expansion of tumor-specific CD8+ T cells in tumor-draining LNs in both tumor models, reduced primary tumor growth in the MC38 model, and increased efficacy of adoptive T-cell therapy in the B16F10 model. Strikingly, lymphatic PD-L1 acted primarily by inducing apoptosis in tumor-specific CD8+ central memory T cells. Overall, these findings demonstrate that LECs restrain tumor-specific immunity via PD-L1, which may explain why some patients with cancer without PD-L1 expression in the tumor microenvironment still respond to PD-L1/PD-1-targeted immunotherapy. SIGNIFICANCE: A new lymphatic-specific PD-L1 knockout mouse model reveals that lymphatic endothelial PD-L1 expression reduces tumor immunity, inducing apoptosis in tumor-specific CD8+ central memory cells in tumor-draining lymph nodes.
Collapse
Affiliation(s)
| | | | | | | | | | - Lothar C. Dieterich
- Corresponding Author: Lothar C. Dieterich, ETH Zurich, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 1–5/10, 8093 Zurich, Switzerland. Phone: 41-44-63-37392; Fax: 41-44-63-31344; E-mail:
| |
Collapse
|
5
|
Shi Y, Lu Y, Zhu C, Luo Z, Li X, Liu Y, Jiang M, Liu X, Luo L, Du Y, You J. Targeted regulation of lymphocytic ER stress response with an overall immunosuppression to alleviate allograft rejection. Biomaterials 2021; 272:120757. [PMID: 33798960 DOI: 10.1016/j.biomaterials.2021.120757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022]
Abstract
Transplantation is the most effective, and sometimes the only resort for end-stage organ failure. However, allogeneic graft suffers greatly from lymphocyte-mediated immunorejection, which bears close relationship with a hyperactivation of endoplasmic reticulum (ER) stress response in host lymphocytes, especially in CD8+ T cells (T-8). Therefore, regulating lymphocytic ER unfolded protein response (UPR) might be a potential therapeutic breakthrough in alleviating graft rejection. Here, ER-targetable liposome is prepared via the surface modification of ER-targeting peptide (Pardaxin), which efficiently loads and directly delivers small molecule inhibitor of UPR sensor IRE1α into the ER of lymphocytes, inducing a systemic immunosuppression that facilitates tumorigenesis and metastasis in the tumor inoculation challenge in vivo. And in vitro, a stage-differential dependency of IRE1α in the phase transition of T-8 is identified. Specifically, inhibiting IRE1α at the early responding stages of T-8, especially at the activation phase, results in a shrunk proliferation, impaired effector function, and limited memory commitment, which might contribute centrally to the induced overall immunosuppression. Based on this, a classical acute rejection model, murine full-thickness trunk skin allograft that primary arises from the hyperactivity of T-lymphocyte, is used. Results suggest that lymphocytic IRE1α inactivation attenuates transplant rejection and prolongs graft survival, with a limited effector function and memory commitment of host T-8. Moreover, an even higher immunosuppressive effect is obtained when IRE1α inhibition is used in combination with immunosuppressant tacrolimus (FK506), which might owe to a synergistic regulation of inflammatory transcription factors. These findings provide a deeper insight into the biological polarization and stress response of lymphocytes, which might guide the future development of allogeneic transplantation.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Chunqi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
6
|
Hartigan CR, Sun H, Ford ML. Memory T‐cell exhaustion and tolerance in transplantation. Immunol Rev 2019; 292:225-242. [DOI: 10.1111/imr.12824] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - He Sun
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
- Department of Hepatobiliary Surgery and Transplantation The First Hospital of China Medical University Shenyang China
| | - Mandy L. Ford
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
| |
Collapse
|
7
|
Other Forms of Immunosuppression. KIDNEY TRANSPLANTATION - PRINCIPLES AND PRACTICE 2019. [PMCID: PMC7152196 DOI: 10.1016/b978-0-323-53186-3.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zuber J, Sykes M. Mechanisms of Mixed Chimerism-Based Transplant Tolerance. Trends Immunol 2017; 38:829-843. [PMID: 28826941 PMCID: PMC5669809 DOI: 10.1016/j.it.2017.07.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/24/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Immune responses to allografts represent a major barrier in organ transplantation. Immune tolerance to avoid chronic immunosuppression is a critical goal in the field, recently achieved in the clinic by combining bone marrow transplantation (BMT) with kidney transplantation following non-myeloablative conditioning. At high levels of chimerism such protocols can permit central deletional tolerance, but with a significant risk of graft-versus-host (GVH) disease (GVHD). By contrast, transient chimerism-based tolerance is devoid of GVHD risk and appears to initially depend on regulatory T cells (Tregs) followed by gradual, presumably peripheral, clonal deletion of donor-reactive T cells. Here we review recent mechanistic insights into tolerance and the development of more robust and safer protocols for tolerance induction that will be guided by innovative immune monitoring tools.
Collapse
Affiliation(s)
- Julien Zuber
- Service de Transplantation Rénale, Hôpital Necker, Université Paris Descartes, Paris, France; INSERM UMRS_1163, IHU Imagine, Paris, France.
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Cippà PE, Fehr T. Pharmacological modulation of cell death in organ transplantation. Transpl Int 2017; 30:851-859. [PMID: 28480540 DOI: 10.1111/tri.12977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/20/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
New options to pharmacologically modulate fundamental mechanisms of regulated cell death are rapidly evolving and found first clinical applications in cancer therapy. Here, we present an overview on how the recent advances in the understanding of the biology and pharmacology of cell death might influence research and clinical practice in solid organ transplantation. Of particular interest are the novel opportunities related to organ preservation and immunomodulation, which might contribute to promote organ repair and to develop more selective ways to modulate allogeneic immune responses to prevent rejection and induce immunological tolerance.
Collapse
Affiliation(s)
- Pietro E Cippà
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Fehr
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Graubuenden, Chur, Switzerland
| |
Collapse
|
10
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
11
|
Gabriel SS, Bon N, Chen J, Wekerle T, Bushell A, Fehr T, Cippà PE. Distinctive Expression of Bcl-2 Factors in Regulatory T Cells Determines a Pharmacological Target to Induce Immunological Tolerance. Front Immunol 2016; 7:73. [PMID: 26973650 PMCID: PMC4771729 DOI: 10.3389/fimmu.2016.00073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/15/2016] [Indexed: 12/02/2022] Open
Abstract
Distinctive molecular characteristics of functionally diverse lymphocyte populations may represent novel pharmacological targets for immunotherapy. The intrinsic apoptosis pathway is differently regulated among conventional and regulatory T cells (Tregs). Targeted pharmacological modulation of this pathway with a small molecule Bcl-2/Bcl-xL inhibitor (ABT-737) caused a selective depletion of effector T cells and a relative enrichment of Tregs in vivo. Treatment with ABT-737 resulted in a tolerogenic milieu, which was exploited to alleviate graft-versus-host disease, to prevent allograft rejection in a stringent fully MHC-mismatched skin transplantation model and to induce immunological tolerance in combination with bone marrow transplantation. This concept has the potential to find various applications for immunotherapy, since it allows pharmacologic exploitation of the immunomodulatory properties of Tregs without the need for cell manipulation ex vivo.
Collapse
Affiliation(s)
- Sarah Sharon Gabriel
- Nephrology, Institute of Physiology, University of Zürich, Zürich, Switzerland; Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Nina Bon
- Nephrology, Institute of Physiology, University of Zürich, Zürich, Switzerland; Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Jin Chen
- Nephrology, Institute of Physiology, University of Zürich, Zürich, Switzerland; Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Thomas Wekerle
- Transplantation Immunology, Department of Surgery, Medical University of Vienna , Vienna , Austria
| | - Andrew Bushell
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford , Oxford , UK
| | - Thomas Fehr
- Nephrology, Institute of Physiology, University of Zürich, Zürich, Switzerland; Division of Nephrology, University Hospital Zürich, Zürich, Switzerland; Department of Internal Medicine, Cantonal Hospital Graubünden, Chur, Switzerland
| | | |
Collapse
|
12
|
Lin K, Chen S, Chen G. Role of Memory T Cells and Perspectives for Intervention in Organ Transplantation. Front Immunol 2015; 6:473. [PMID: 26441978 PMCID: PMC4568416 DOI: 10.3389/fimmu.2015.00473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022] Open
Abstract
Memory T cells are necessary for protective immunity against invading pathogens, especially under conditions of immunosuppression. However, their presence also threatens transplant survival, making transplantation a great challenge. Significant progress has been achieved in recent years in advancing our understanding of the role that memory T cells play in transplantation. This review focuses on the latest advances in our understanding of the involvement of memory T cells in graft rejection and transplant tolerance and discusses potential strategies for targeting memory T cells in order to minimize allograft rejection and optimize clinical outcomes.
Collapse
Affiliation(s)
- Kailin Lin
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Education , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Public Health , Wuhan , China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Education , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Public Health , Wuhan , China
| |
Collapse
|
13
|
Hock K, Mahr B, Schwarz C, Wekerle T. Deletional and regulatory mechanisms coalesce to drive transplantation tolerance through mixed chimerism. Eur J Immunol 2015. [DOI: 10.1002/eji.201545494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karin Hock
- Section of Transplantation Immunology; Department of Surgery; Medical University of Vienna; Austria
| | - Benedikt Mahr
- Section of Transplantation Immunology; Department of Surgery; Medical University of Vienna; Austria
| | - Christoph Schwarz
- Section of Transplantation Immunology; Department of Surgery; Medical University of Vienna; Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology; Department of Surgery; Medical University of Vienna; Austria
| |
Collapse
|
14
|
Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Curr Opin Organ Transplant 2015; 20:49-56. [PMID: 25563992 DOI: 10.1097/mot.0000000000000159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The present review updates the current status of basic, preclinical, and clinical research on donor hematopoietic stem cell infusion for allograft tolerance induction. RECENT FINDINGS Recent basic studies in mice provide evidence of significant involvement of both central deletional and peripheral regulatory mechanisms in induction and maintenance of allograft tolerance effected through a mixed chimerism approach with donor hematopoietic stem cell infusion. The presence of heterologous memory T cells in primates hampers the induction of persistent chimerism. Durable mixed chimerism, however, now has been recently induced in inbred major histocompatibility complex-mismatched swine, resulting in tolerance of vascularized composite tissue allografts. In clinical transplantation, allograft tolerance has been achieved in human leukocyte antigen-mismatched kidney transplantation after the induction of transient mixed chimerism or persistent full donor chimerism. SUMMARY Tolerance induction in clinical kidney transplantation has been achieved by donor hematopoietic stem cell infusion. Improving the consistency and safety of tolerance induction and extending successful protocols to other organs, and to organs from deceased donors, are critical next steps to bringing tolerance to a wider range of clinical applications.
Collapse
|
15
|
Recent trials in immunosuppression and their consequences for current therapy. Curr Opin Organ Transplant 2015; 19:387-94. [PMID: 24905020 DOI: 10.1097/mot.0000000000000093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW Although the scarcity of clinical trials with de-novo immunosuppression has been typical over the last 2 years, several attempts have been made in drug conversion, dosing optimization, and bioequivalence. On the basis of recent clinical and animal studies, future directions of management and treatment are outlined. RECENT FINDINGS Studies with new tacrolimus formulations showed better bioavailability and lower doses, which might translate into less toxicity. The long-term results of studies with costimulation blockade confirmed their safety and efficacy. Calcineurin inhibitor (CNI)-free regimens based on mTOR inhibitors were shown to be associated with increased risk of the humoral response. Therefore, ongoing trials are predominantly designed to minimize calcineurin inhibitor dose only. Biologics, such as B-cell-specific agents (bortezomib and rituximab) and complement inhibitors (eculizumab) used to treat antibody-mediated rejection, recurrence of glomerulonephritis, are shifted to more preventive applications. The pretransplant quantification of alloreactive memory/effector T cell response may help to better stratify a patient's immunologic risk and allow for drug minimization. SUMMARY Despite clinical trials with innovative protocols with already established agents, tacrolimus-based and induction-based protocols have been shown to be the mainstay of immunosuppressive regimens. In the future, research aims to focus on biomarker-driven immunosuppression and cell therapy approaches.
Collapse
|
16
|
Salvadori M, Bertoni E. What's new in clinical solid organ transplantation by 2013. World J Transplant 2014; 4:243-266. [PMID: 25540734 PMCID: PMC4274595 DOI: 10.5500/wjt.v4.i4.243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/27/2014] [Indexed: 02/05/2023] Open
Abstract
Innovative and exciting advances in the clinical science in solid organ transplantation continuously realize as the results of studies, clinical trials, international conferences, consensus conferences, new technologies and discoveries. This review will address to the full spectrum of news in transplantation, that verified by 2013. The key areas covered are the transplantation activity, with particular regards to the donors, the news for solid organs such as kidney, pancreas, liver, heart and lung, the news in immunosuppressive therapies, the news in the field of tolerance and some of the main complications following transplantation as infections and cancers. The period of time covered by the study starts from the international meetings held in 2012, whose results were published in 2013, up to the 2013 meetings, conferences and consensus published in the first months of 2014. In particular for every organ, the trends in numbers and survival have been reviewed as well as the most relevant problems such as organ preservation, ischemia reperfusion injuries, and rejections with particular regards to the antibody mediated rejection that involves all solid organs. The new drugs and strategies applied in organ transplantation have been divided into new way of using old drugs or strategies and drugs new not yet on the market, but on phase Ito III of clinical studies and trials.
Collapse
|