1
|
Yamazaki M, Yamada H, Munetsuna E, Ando Y, Mizuno G, Teshigawara A, Ichikawa H, Nouchi Y, Kageyama I, Wakasugi T, Ishikawa H, Ohgami N, Suzuki K, Ohashi K. Approaches to nutritional research using organoids; fructose treatment induces epigenetic changes in liver organoids. J Nutr Biochem 2024; 131:109671. [PMID: 38768870 DOI: 10.1016/j.jnutbio.2024.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Nutritional researches have successfully used animal models to gain new insights into nutrient action. However, comprehensive descriptions of their molecular mechanisms of action remain elusive as appropriate in vitro evaluation systems are lacking. Organoid models can mimic physiological structures and reproduce in vivo functions, making them increasingly utilized in biomedical research for a better understand physiological and pathological phenomena. Therefore, organoid modeling can be a powerful approach for to understand the molecular mechanisms of nutrient action. The present study aims to demonstrate the utility of organoids in nutritional research by further investigating the molecular mechanisms responsible for the negative effects of fructose intake using liver organoids. Here, we treated liver organoids with fructose and analyzed their gene expression profiles and DNA methylation levels. Microarray analysis demonstrated that fructose-treated organoids exhibited increased selenoprotein p (Sepp1) gene expression, whereas pyrosequencing assays revealed reduced DNA methylation levels in the Sepp1 region. These results were consistent with observations using hepatic tissues from fructose-fed rats. Conversely, no differences in Sepp1 mRNA and DNA methylation levels were observed in two-dimensional cells. These results suggest that organoids serve as an ideal in vitro model to recapitulate in vivo tissue responses and help to validate the molecular mechanisms of nutrient action compared to conventional cellular models.
Collapse
Affiliation(s)
- Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan; Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, Ota, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hayato Ichikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Takuya Wakasugi
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Nobutaka Ohgami
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
2
|
Jalan-Sakrikar N, Brevini T, Huebert RC, Sampaziotis F. Organoids and regenerative hepatology. Hepatology 2023; 77:305-322. [PMID: 35596930 PMCID: PMC9676408 DOI: 10.1002/hep.32583] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/03/2023]
Abstract
The burden of liver diseases is increasing worldwide, with liver transplantation remaining the only treatment option for end-stage liver disease. Regenerative medicine holds great potential as a therapeutic alternative, aiming to repair or replace damaged liver tissue with healthy functional cells. The properties of the cells used are critical for the efficacy of this approach. The advent of liver organoids has not only offered new insights into human physiology and pathophysiology, but also provided an optimal source of cells for regenerative medicine and translational applications. Here, we discuss various historical aspects of 3D organoid culture, how it has been applied to the hepatobiliary system, and how organoid technology intersects with the emerging global field of liver regenerative medicine. We outline the hepatocyte, cholangiocyte, and nonparenchymal organoids systems available and discuss their advantages and limitations for regenerative medicine as well as future directions.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Teresa Brevini
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
3
|
Dong R, Zhang B, Zhang X. Liver organoids: an in vitro 3D model for liver cancer study. Cell Biosci 2022; 12:152. [PMID: 36085085 PMCID: PMC9463833 DOI: 10.1186/s13578-022-00890-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Primary liver cancer (PLC) is the second leading cause of cancer mortality worldwide, and its morbidity unceasingly increases these years. Hepatitis B virus (HBV) infection accounted for approximately 50% of hepatocellular carcinoma (HCC) cases globally in 2015. Due to the lack of an effective model to study HBV-associated liver carcinogenesis, research has made slow progress. Organoid, an in vitro 3D model which maintains self-organization, has recently emerged as a powerful tool to investigate human diseases. In this review, we first summarize the categories and development of liver organoids. Then, we mainly focus on the functions of culture medium components and applications of organoids for HBV infection and HBV-associated liver cancer studies. Finally, we provide insights into a potential patient-derived organoid model from those infected with HBV based on our study, as well as the limitations and future applications of organoids in liver cancer research.
Collapse
|
4
|
Hrncir HR, Gracz AD. Cellular and transcriptional heterogeneity in the intrahepatic biliary epithelium. GASTRO HEP ADVANCES 2022; 2:108-120. [PMID: 36593993 PMCID: PMC9802653 DOI: 10.1016/j.gastha.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023]
Abstract
Epithelial tissues comprise heterogeneous cellular subpopulations, which often compartmentalize specialized functions like absorption and secretion to distinct cell types. In the liver, hepatocytes and biliary epithelial cells (BECs; also called cholangiocytes) are the two major epithelial lineages and play distinct roles in (1) metabolism, protein synthesis, detoxification, and (2) bile transport and modification, respectively. Recent technological advances, including single cell transcriptomic assays, have shed new light on well-established heterogeneity among hepatocytes, endothelial cells, and immune cells in the liver. However, a "ground truth" understanding of molecular heterogeneity in BECs has remained elusive, and the field currently lacks a set of consensus biomarkers for identifying BEC subpopulations. Here, we review long-standing definitions of BEC heterogeneity as well as emerging studies that aim to characterize BEC subpopulations using next generation single cell assays. Understanding cellular heterogeneity in the intrahepatic bile ducts holds promise for expanding our foundational mechanistic knowledge of BECs during homeostasis and disease.
Collapse
Affiliation(s)
- Hannah R. Hrncir
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia
| | - Adam D. Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
5
|
Liu Q, Zeng A, Liu Z, Wu C, Song L. Liver organoids: From fabrication to application in liver diseases. Front Physiol 2022; 13:956244. [PMID: 35923228 PMCID: PMC9340459 DOI: 10.3389/fphys.2022.956244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
As the largest internal organ, the liver is the key hub for many physiological processes. Previous research on the liver has been mainly conducted on animal models and cell lines, in which not only there are deficiencies in species variability and retention of heritable material, but it is also difficult for primary hepatocytes to maintain their metabolic functions after in vitro expansion. Because of the increased burden of liver disease worldwide, there is a growing demand for 3D in vitro liver models—Liver Organoids. Based on the type of initiation cells, the liver organoid can be classified as PSC-derived or ASC-derived. Liver organoids originated from ASC or primary sclerosing cholangitis, which are co-cultured in matrix gel with components such as stromal cells or immune cells, and eventually form three-dimensional structures in the presence of cytokines. Liver organoids have already made progress in drug screening, individual medicine and disease modeling with hereditary liver diseases, alcoholic or non-alcoholic liver diseases and primary liver cancer. In this review, we summarize the generation process of liver organoids and the current clinical applications, including disease modeling, drug screening and individual medical treatment, which provide new perspectives for liver physiology and disease research.
Collapse
Affiliation(s)
- Qianglin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, China
| | - Zibo Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chunjie Wu, ; Linjiang Song,
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chunjie Wu, ; Linjiang Song,
| |
Collapse
|
6
|
Tamai M, Adachi E, Kawase M, Tagawa YI. Syngeneic implantation of mouse hepatic progenitor cell-derived three-dimensional liver tissue with dense collagen fibrils. World J Gastroenterol 2022; 28:1444-1454. [PMID: 35582675 PMCID: PMC9048472 DOI: 10.3748/wjg.v28.i14.1444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver transplantation is a therapy for irreversible liver failure; however, at present, donor organs are in short supply. Cell transplantation therapy for liver failure is still at the developmental stage and is critically limited by a shortage of human primary hepatocytes.
AIM To investigate the possibility that hepatic progenitor cells (HPCs) prepared from the portal branch-ligated hepatic lobe may be used in regenerative medicine, we attempted to enable the implantation of extracellular matrices containing organoids consisting of HPC-derived hepatocytes and non-parenchymal cells.
METHODS In vitro liver organoid tissue has been generated by accumulating collagen fibrils, fibroblasts, and HPCs on a mesh of polylactic acid fabric using a bioreactor; this was subsequently implanted into syngeneic wild-type mice.
RESULTS The in vitro liver organoid tissues generated transplantable tissues in the condensed collagen fibril matrix and were obtained from the mouse through partial hepatectomy.
CONCLUSION Liver organoid tissue was produced from expanded HPCs using an originally designed bioreactor system. This tissue was comparable to liver lobules, and with fibroblasts embedded in the network collagen fibrils of this artificial tissue, it is useful for reconstructing the hepatic interstitial structure.
Collapse
Affiliation(s)
- Miho Tamai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama-shi 226-8501, Japan
- Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Eijiro Adachi
- Department of Molecular Morphology, Kitasato University, Yokohama-shi 319-3526, Japan
- Long-Term Care Health Facility Yasuragi, Ibaraki Zip or Postal Code, Japan
| | - Masaya Kawase
- Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| | - Yoh-ichi Tagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama-shi 226-8501, Japan
| |
Collapse
|
7
|
Lou L, Kong S, Sun Y, Zhang Z, Wang H. Human Endometrial Organoids: Recent Research Progress and Potential Applications. Front Cell Dev Biol 2022; 10:844623. [PMID: 35242764 PMCID: PMC8885623 DOI: 10.3389/fcell.2022.844623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Since traditional two-dimensional (2D) cell culture cannot meet the demand of simulating physiological conditions in vivo, three-dimensional (3D) culture systems have been developed. To date, most of these systems have been applied for the culture of gastrointestinal and neural tissue. As for the female reproductive system, the culture of endometrial and oviductal tissues in Matrigel has also been performed, but there are still some problems that remain unsolved. This review highlights recent progress regarding endometrial organoids, focusing on the signal for organoid derivation and maintenance, the coculture of the epithelium and stroma, the drug screening using organoids from cancer patients, and provides a potential guideline for genome editing in endometrial organoids.
Collapse
Affiliation(s)
- Liqun Lou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yunyan Sun
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Nguyen L, Jager M, Lieshout R, de Ruiter PE, Locati MD, Besselink N, van der Roest B, Janssen R, Boymans S, de Jonge J, IJzermans JNM, Doukas M, Verstegen MMA, van Boxtel R, van der Laan LJW, Cuppen E, Kuijk E. Precancerous liver diseases do not cause increased mutagenesis in liver stem cells. Commun Biol 2021; 4:1301. [PMID: 34795391 PMCID: PMC8602268 DOI: 10.1038/s42003-021-02839-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory liver disease increases the risk of developing primary liver cancer. The mechanism through which liver disease induces tumorigenesis remains unclear, but is thought to occur via increased mutagenesis. Here, we performed whole-genome sequencing on clonally expanded single liver stem cells cultured as intrahepatic cholangiocyte organoids (ICOs) from patients with alcoholic cirrhosis, non-alcoholic steatohepatitis (NASH), and primary sclerosing cholangitis (PSC). Surprisingly, we find that these precancerous liver disease conditions do not result in a detectable increased accumulation of mutations, nor altered mutation types in individual liver stem cells. This finding contrasts with the mutational load and typical mutational signatures reported for liver tumors, and argues against the hypothesis that liver disease drives tumorigenesis via a direct mechanism of induced mutagenesis. Disease conditions in the liver may thus act through indirect mechanisms to drive the transition from healthy to cancerous cells, such as changes to the microenvironment that favor the outgrowth of precancerous cells.
Collapse
Affiliation(s)
- Luan Nguyen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Myrthe Jager
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Mauro D Locati
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bastiaan van der Roest
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
- Hartwig Medical Foundation, Amsterdam, The Netherlands.
| | - Ewart Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Zhang L, Ge J, Zheng Y, Sun Z, Wang C, Peng Z, Wu B, Fang M, Furuya K, Ma X, Shao Y, Ohkohchi N, Oda T, Fan J, Pan G, Li D, Hui L. Survival-Assured Liver Injury Preconditioning (SALIC) Enables Robust Expansion of Human Hepatocytes in Fah -/- Rag2 -/- IL2rg -/- Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101188. [PMID: 34382351 PMCID: PMC8498896 DOI: 10.1002/advs.202101188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Although liver-humanized animals are desirable tools for drug development and expansion of human hepatocytes in large quantities, their development is restricted to mice. In animals larger than mice, a precondition for efficient liver humanization remains preliminary because of different xeno-repopulation kinetics in livers of larger sizes. Since rats are ten times larger than mice and widely used in pharmacological studies, liver-humanized rats are more preferable. Here, Fah-/- Rag2-/- IL2rg-/- (FRG) rats are generated by CRISPR/Cas9, showing accelerated liver failure and lagged liver xeno-repopulation compared to FRG mice. A survival-assured liver injury preconditioning (SALIC) protocol, which consists of retrorsine pretreatment and cycling 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) administration by defined concentrations and time intervals, is developed to reduce the mortality of FRG rats and induce a regenerative microenvironment for xeno-repopulation. Human hepatocyte repopulation is boosted to 31 ± 4% in rat livers at 7 months after transplantation, equivalent to approximately a 1200-fold expansion. Human liver features of transcriptome and zonation are reproduced in humanized rats. Remarkably, they provide sufficient samples for the pharmacokinetic profiling of human-specific metabolites. This model is thus preferred for pharmacological studies and human hepatocyte production. SALIC may also be informative to hepatocyte transplantation in other large-sized species.
Collapse
Affiliation(s)
- Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Jian‐Yun Ge
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
| | - Yun‐Wen Zheng
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
- Institute of Regenerative MedicineAffiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangJiangsu212001China
- Yokohama City University School of MedicineYokohamaKanagawa234‐0006Japan
| | - Zhen Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Zhaoliang Peng
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Mei Fang
- Institute of Regenerative MedicineAffiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangJiangsu212001China
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Xiaolong Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Jianglin Fan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
- Department of Molecular Pathology, Faculty of MedicineInterdisciplinary Graduate School of MedicineUniversity of YamanashiShimokatoYamanashi409‐3898Japan
| | - Guoyu Pan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Bio‐Research Innovation CenterShanghai Institute of Biochemistry and Cell BiologySuzhouJiangsu215121China
| |
Collapse
|
10
|
Cell-Based Regeneration and Treatment of Liver Diseases. Int J Mol Sci 2021; 22:ijms221910276. [PMID: 34638617 PMCID: PMC8508969 DOI: 10.3390/ijms221910276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The liver, in combination with a functional biliary system, is responsible for maintaining a great number of vital body functions. However, acute and chronic liver diseases may lead to irreversible liver damage and, ultimately, liver failure. At the moment, the best curative option for patients suffering from end-stage liver disease is liver transplantation. However, the number of donor livers required by far surpasses the supply, leading to a significant organ shortage. Cellular therapies play an increasing role in the restoration of organ function and can be integrated into organ transplantation protocols. Different types and sources of stem cells are considered for this purpose, but highly specific immune cells are also the focus of attention when developing individualized therapies. In-depth knowledge of the underlying mechanisms governing cell differentiation and engraftment is crucial for clinical implementation. Additionally, novel technologies such as ex vivo machine perfusion and recent developments in tissue engineering may hold promising potential for the implementation of cell-based therapies to restore proper organ function.
Collapse
|
11
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
12
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
13
|
Ye S, Boeter JWB, Mihajlovic M, van Steenbeek FG, van Wolferen ME, Oosterhoff LA, Marsee A, Caiazzo M, van der Laan LJW, Penning LC, Vermonden T, Spee B, Schneeberger K. A Chemically Defined Hydrogel for Human Liver Organoid Culture. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000893. [PMID: 34658689 PMCID: PMC7611838 DOI: 10.1002/adfm.202000893] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Indexed: 05/27/2023]
Abstract
End-stage liver diseases are an increasing health burden, and liver transplantations are currently the only curative treatment option. Due to a lack of donor livers, alternative treatments are urgently needed. Human liver organoids are very promising for regenerative medicine; however, organoids are currently cultured in Matrigel, which is extracted from the extracellular matrix of the Engelbreth-Holm-Swarm mouse sarcoma. Matrigel is poorly defined, suffers from high batch-to-batch variability and is of xenogeneic origin, which limits the clinical application of organoids. Here, a novel hydrogel based on polyisocyanopeptides (PIC) and laminin-111 is described for human liver organoid cultures. PIC is a synthetic polymer that can form a hydrogel with thermosensitive properties, making it easy to handle and very attractive for clinical applications. Organoids in an optimized PIC hydrogel proliferate at rates comparable to those observed with Matrigel; proliferation rates are stiffness-dependent, with lower stiffnesses being optimal for organoid proliferation. Moreover, organoids can be efficiently differentiated toward a hepatocyte-like phenotype with key liver functions. This proliferation and differentiation potential maintain over at least 14 passages. The results indicate that PIC is very promising for human liver organoid culture and has the potential to be used in a variety of clinical applications including cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Shicheng Ye
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Jochem W B Boeter
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Marko Mihajlovic
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Universiteitsweg 99, Utrecht 3584 CG, The Netherlands; Department of Biomedical Engineering Eindhoven University of Technology Postbus 513, Eindhoven 5600 MB, The Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Loes A Oosterhoff
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Ary Marsee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Universiteitsweg 99, Utrecht 3584 CG, The Netherlands; Department of Molecular Medicine and Medical Biotechnology University of Naples 'Federico II' Via Pansini 5, Naples 80131, Italy
| | - Luc J W van der Laan
- Department of Surgery Erasmus MC-University Medical Center Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| |
Collapse
|
14
|
He YT, Zhu XL, Li SF, Zhang BQ, Li Y, Wu Q, Zhang YL, Zhou YY, Li L, Qi YN, Bao J, Bu H. Creating rat hepatocyte organoid as an in vitro model for drug testing. World J Stem Cells 2020; 12:1184-1195. [PMID: 33178400 PMCID: PMC7596445 DOI: 10.4252/wjsc.v12.i10.1184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/15/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver organoids have recently been applied as models for liver disease and drug screening, especially when combined with liver-on-a-chip technologies. Compared to hepatocyte-like cells, primary hepatocytes have high functionality but cannot maintain their function when cultured in vitro. Mesenchymal stem cells (MSCs) enhance hepatocyte function and maintain hepatocyte metabolism when co-cultured with hepatocytes. MSCs can help induced pluripotent stem cells to generate an organoid structure via the MSC-based traction force triggered by extracellular matrix (ECM) proteins. In this study, primary hepatocytes were co-cultured with MSCs on a liver-derived ECM to generate liver organoids within a short duration.
AIM To create hepatocyte organoids by co-culturing primary hepatocytes with MSCs on a porcine liver extracellular matrix (PLECM) gel.
METHODS Perfusion and enzymatic hydrolysis were used to form the PLECM gel. Rat hepatocytes and human MSCs were mixed and plated on pre-solidified PLECM gel in a 48-well plate for 48 h to generate organoids. Generated organoids were evaluated through hematoxylin and eosin, periodic acid-Schiff, immuno-histological, and immunofluorescence staining, and quantitative PCR for alb, CYP450 gene markers, and urea cycle genes. Culture medium was collected to detect albumin (ALB) and urea production on days 2, 4, 6, 8, 14, and 20.
RESULTS The whole porcine liver was perfused and enzymatically hydrolyzed to form a PLECM gel. The structural components and basement membrane composition of the ECM, such as collagen type I, collagen type IV, fibronectin, and laminin, were demonstrated to be retained. Through interaction of human MSCs with the liver-derived ECM, primary hepatocytes and human MSCs assembled together into a 3D construction and generated primary hepatocyte organoids for 48 h. The mRNAs of the gene alb, the CYP450 gene markers cyp1a1, cyp1a2, and cyp3a2 as well as urea cycle genes arg-1, asl, ass-1, cps-1, nags were highly expressed in hepatocyte organoids. Long-term survival of the primary hepatocyte organoids, as well as stable functionality, was demonstrated via ALB and urea production in vitro.
CONCLUSION Our new method of creating primary hepatocyte organoids by co-culturing hepatocytes with MSCs on liver-derived ECM hydrogels could be used to develop models for liver disease and for drug screening.
Collapse
Affiliation(s)
- Yu-Ting He
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xing-Long Zhu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Sheng-Fu Li
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing-Qi Zhang
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Li
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiong Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yun-Lin Zhang
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan-Yan Zhou
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li Li
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ya-Na Qi
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji Bao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
15
|
Playing Jekyll and Hyde-The Dual Role of Lipids in Fatty Liver Disease. Cells 2020; 9:cells9102244. [PMID: 33036257 PMCID: PMC7601321 DOI: 10.3390/cells9102244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids play Jekyll and Hyde in the liver. On the one hand, the lipid-laden status of hepatic stellate cells is a hallmark of healthy liver. On the other hand, the opposite is true for lipid-laden hepatocytes—they obstruct liver function. Neglected lipid accumulation in hepatocytes can progress into hepatic fibrosis, a condition induced by the activation of stellate cells. In their resting state, these cells store substantial quantities of fat-soluble vitamin A (retinyl esters) in large lipid droplets. During activation, these lipid organelles are gradually degraded. Hence, treatment of fatty liver disease is treading a tightrope—unsophisticated targeting of hepatic lipid accumulation might trigger problematic side effects on stellate cells. Therefore, it is of great importance to gain more insight into the highly dynamic lipid metabolism of hepatocytes and stellate cells in both quiescent and activated states. In this review, part of the special issue entitled “Cellular and Molecular Mechanisms underlying the Pathogenesis of Hepatic Fibrosis 2020”, we discuss current and highly versatile aspects of neutral lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease (NAFLD).
Collapse
|
16
|
Jung DJ, Byeon JH, Jeong GS. Flow enhances phenotypic and maturation of adult rat liver organoids. Biofabrication 2020; 12:045035. [PMID: 33000764 DOI: 10.1088/1758-5090/abb538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A biologically relevant in vitro model of hepatic microtissue would be a valuable tool for the preclinical study of pharmacokinetics and metabolism. Although considerable advances have been made in recent years in the establishment of alternative in vitro culture systems that mimic liver tissue, generating an effective liver model remains challenging. Specifically, existing model systems still exhibit limited functions for hepatocellular differentiation potential and cellular complexity. It is essential to improve the in vitro differentiation of liver progenitor cells (LPCs) for disease modeling and preclinical pharmatoxicological research. Here, we describe a rat liver organoid culture system under in vivo-like steady-state flow conditions; this system is capable of controlling the expansion and differentiation of rat liver organoids over 10-15 d. LPCs cultured in medium flow conditions become self-assembled liver organoids that exhibit phenotypic and functional hepato-biliary modeling. In addition, hepatocytes that are differentiated using liver organoids produced albumin and maintained polygonal morphology, which is characteristic of mature hepatocytes.
Collapse
Affiliation(s)
- Da Jung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | | | | |
Collapse
|
17
|
Ríos-López DG, Aranda-López Y, Sosa-Garrocho M, Macías-Silva M. La plasticidad del hepatocito y su relevancia en la fisiología y la patología hepática. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
El hígado es uno de los principales órganos encargados de mantener la homeostasis en vertebrados, además de poseer una gran capacidad regenerativa. El hígado está constituido por diversos tipos celulares que de forma coordinada contribuyen para que el órgano funcione eficientemente. Los hepatocitos representan el tipo celular principal de este órgano y llevan a cabo la mayoría de sus actividades; además, constituyen una población heterogénea de células epiteliales con funciones especializadas en el metabolismo. El fenotipo de los hepatocitos está controlado por diferentes vías de señalización, como la vía del TGFβ/Smads, la ruta Hippo/YAP-TAZ y la vía Wnt/β-catenina, entre otras. Los hepatocitos son células que se encuentran normalmente en un estado quiescente, aunque cuentan con una plasticidad intrínseca que se manifiesta en respuesta a diversos daños en el hígado; así, estas células reactivan su capacidad proliferativa o cambian su fenotipo a través de procesos celulares como la transdiferenciación o la transformación, para contribuir a mantener la homeostasis del órgano en condiciones saludables o desarrollar diversas patologías.
Collapse
|
18
|
Cotovio JP, Fernandes TG. Production of Human Pluripotent Stem Cell-Derived Hepatic Cell Lineages and Liver Organoids: Current Status and Potential Applications. Bioengineering (Basel) 2020; 7:E36. [PMID: 32283585 PMCID: PMC7356351 DOI: 10.3390/bioengineering7020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease is one of the leading causes of death worldwide, leading to the death of approximately 2 million people per year. Current therapies include orthotopic liver transplantation, however, donor organ shortage remains a great challenge. In addition, the development of novel therapeutics has been limited due to the lack of in vitro models that mimic in vivo liver physiology. Accordingly, hepatic cell lineages derived from human pluripotent stem cells (hPSCs) represent a promising cell source for liver cell therapy, disease modelling, and drug discovery. Moreover, the development of new culture systems bringing together the multiple liver-specific hepatic cell types triggered the development of hPSC-derived liver organoids. Therefore, these human liver-based platforms hold great potential for clinical applications. In this review, the production of the different hepatic cell lineages from hPSCs, including hepatocytes, as well as the emerging strategies to generate hPSC-derived liver organoids will be assessed, while current biomedical applications will be highlighted.
Collapse
Affiliation(s)
| | - Tiago G. Fernandes
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| |
Collapse
|
19
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives. AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research. METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation. RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells. CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
20
|
Baptista PM, Penning LC. Transplantable Liver Organoids, Too Many Cell Types to Choose: a Need for Scientific Self-Organization. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00266-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Purpose of Review
Liver stem cells have been proposed as alternatives or additions for whole liver transplantations to accommodate the donor liver shortage. Various sources of liver stem cells have been described in experimental animal studies. Here we aim to compare the various studies.
Recent Findings
Irrespective of the experimental design, the percentage of long-lasting survival and functional recovery of transplanted cells is generally very low. An exception to this are the proliferating hepatocytes transplanted into Fah(-/-) Rag2−/−IL2rg−/− mice; here 4-month post-transplantation around 65% repopulation was observed, and 11/14 mice survived in contrast to zero survival in sham-treated animals.
Summary
Taking the different cellular sources for the organoids, the different maturation status of the transplanted cells, and the variable animal models into account, a paper-to-paper comparison is compromised. This lack of objective comparison restricts the translation of these model studies into clinical practice.
Collapse
|
21
|
Kruitwagen HS, Oosterhoff LA, van Wolferen ME, Chen C, Nantasanti Assawarachan S, Schneeberger K, Kummeling A, van Straten G, Akkerdaas IC, Vinke CR, van Steenbeek FG, van Bruggen LW, Wolfswinkel J, Grinwis GC, Fuchs SA, Gehart H, Geijsen N, Vries RG, Clevers H, Rothuizen J, Schotanus BA, Penning LC, Spee B. Long-Term Survival of Transplanted Autologous Canine Liver Organoids in a COMMD1-Deficient Dog Model of Metabolic Liver Disease. Cells 2020; 9:cells9020410. [PMID: 32053895 PMCID: PMC7072637 DOI: 10.3390/cells9020410] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
The shortage of liver organ donors is increasing and the need for viable alternatives is urgent. Liver cell (hepatocyte) transplantation may be a less invasive treatment compared with liver transplantation. Unfortunately, hepatocytes cannot be expanded in vitro, and allogenic cell transplantation requires long-term immunosuppression. Organoid-derived adult liver stem cells can be cultured indefinitely to create sufficient cell numbers for transplantation, and they are amenable to gene correction. This study provides preclinical proof of concept of the potential of cell transplantation in a large animal model of inherited copper toxicosis, such as Wilson’s disease, a Mendelian disorder that causes toxic copper accumulation in the liver. Hepatic progenitors from five COMMD1-deficient dogs were isolated and cultured using the 3D organoid culture system. After genetic restoration of COMMD1 expression, the organoid-derived hepatocyte-like cells were safely delivered as repeated autologous transplantations via the portal vein. Although engraftment and repopulation percentages were low, the cells survived in the liver for up to two years post-transplantation. The low engraftment was in line with a lack of functional recovery regarding copper excretion. This preclinical study confirms the survival of genetically corrected autologous organoid-derived hepatocyte-like cells in vivo and warrants further optimization of organoid engraftment and functional recovery in a large animal model of human liver disease.
Collapse
Affiliation(s)
- Hedwig S. Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
- Correspondence: (H.S.K.); (B.S.)
| | - Loes A. Oosterhoff
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Monique E. van Wolferen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Sathidpak Nantasanti Assawarachan
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Anne Kummeling
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Giora van Straten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Ies C. Akkerdaas
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Christel R. Vinke
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Leonie W.L. van Bruggen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Jeannette Wolfswinkel
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Guy C.M. Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Sabine A. Fuchs
- Division of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Helmuth Gehart
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Niels Geijsen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Robert G. Vries
- Hubrecht Organoid Technology (HUB), 3584 CT Utrecht, The Netherlands;
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Baukje A. Schotanus
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.O.); (M.E.v.W.); (C.C.); (S.N.A.); (K.S.); (A.K.); (G.v.S.); (I.C.A.); (C.R.V.); (F.G.v.S.); (L.W.L.v.B.); (J.W.); (N.G.); (J.R.); (B.A.S.); (L.C.P.)
- Correspondence: (H.S.K.); (B.S.)
| |
Collapse
|
22
|
Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications. Gut 2019; 68:2228-2237. [PMID: 31300517 PMCID: PMC6872443 DOI: 10.1136/gutjnl-2019-319256] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/02/2023]
Abstract
Organoid cultures have emerged as an alternative in vitro system to recapitulate tissues in a dish. While mouse models and cell lines have furthered our understanding of liver biology and associated diseases, they suffer in replicating key aspects of human liver tissue, in particular its complex architecture and metabolic functions. Liver organoids have now been established for multiple species from induced pluripotent stem cells, embryonic stem cells, hepatoblasts and adult tissue-derived cells. These represent a promising addition to our toolbox to gain a deeper understanding of this complex organ. In this perspective we will review the advances in the liver organoid field, its limitations and potential for biomedical applications.
Collapse
Affiliation(s)
- Nicole Prior
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Patricia Inacio
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Meritxell Huch
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
23
|
Kruitwagen HS, Fieten H, Penning LC. Towards Bioengineered Liver Stem Cell Transplantation Studies in a Preclinical Dog Model for Inherited Copper Toxicosis. Bioengineering (Basel) 2019; 6:E88. [PMID: 31557851 PMCID: PMC6955979 DOI: 10.3390/bioengineering6040088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
Abstract
Wilson Disease is a rare autosomal recessive liver disorder in humans. Although its clinical presentation and age of onset are highly variable, hallmarks include signs of liver disease, neurological features and so-called Kayser-Fleischer rings in the eyes of the patient. Hepatic copper accumulation leads to liver disease and eventually to liver cirrhosis. Treatment options include life-long copper chelation therapy and/or decrease in copper intake. Eventually liver transplantations are indicated. Although clinical outcome of liver transplantations is favorable, the lack of suitable donor livers hampers large numbers of transplantations. As an alternative, cell therapies with hepatocytes or liver stem cells are currently under investigation. Stem cell biology in relation to pets is in its infancy. Due to the specific population structure of dogs, canine copper toxicosis is frequently encountered in various dog breeds. Since the histology and clinical presentation resemble Wilson Disease, we combined genetics, gene-editing, and matrices-based stem cell cultures to develop a translational preclinical transplantation model for inherited copper toxicosis in dogs. Here we describe the roadmap followed, starting from the discovery of a causative copper toxicosis mutation in a specific dog breed and culminating in transplantation of genetically-engineered autologous liver stem cells.
Collapse
Affiliation(s)
- Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| |
Collapse
|
24
|
Abstract
The past decade has seen an explosion in the field of in vitro disease modelling, in particular the development of organoids. These self-organizing tissues derived from stem cells provide a unique system to examine mechanisms ranging from organ development to homeostasis and disease. Because organoids develop according to intrinsic developmental programmes, the resultant tissue morphology recapitulates organ architecture with remarkable fidelity. Furthermore, the fact that these tissues can be derived from human progenitors allows for the study of uniquely human processes and disorders. This article and accompanying poster highlight the currently available methods, particularly those aimed at modelling human biology, and provide an overview of their capabilities and limitations. We also speculate on possible future technological advances that have the potential for great strides in both disease modelling and future regenerative strategies. Summary: Human organoids are important tools for modelling disease. This At a Glance article summarises the current organoid models of several human diseases, and discusses future prospects for these technologies.
Collapse
Affiliation(s)
- Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Meritxell Huch
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
25
|
Sato T, Semura K, Fujimoto I. Micro‑dimpled surface atelocollagen maintains primary human hepatocytes in culture and may promote their functionality compared with collagen coat culture. Int J Mol Med 2019; 44:960-972. [PMID: 31257473 PMCID: PMC6657980 DOI: 10.3892/ijmm.2019.4251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/04/2019] [Indexed: 11/11/2022] Open
Abstract
Primary human hepatocytes (PHHs) are the gold standard for drug development procedures; however, maintaining functional PHHs in vitro is challenging in conventional collagen-coated cultures. In the present study, we developed a new scaffold comprising high amounts (≥1 mg/cm2) of atelocollagen exposed to ultraviolet radiation to induce cross-linking and improve stability. Scanning and transmission electron microscopy revealed a micro-dimpled surface (MDS) scaffold composed of randomly arranged atelocollagen fibrils. The scaffold was therefore designated as MDS atelocollagen. PHHs cultured on MDS atelocollagen were round with a compact cytoplasm and exhibited enhanced levels of albumin (ALB) secretion and cytochrome P450 (CYP) 3A4 activity. The expression of hepatocyte-related genes, such as serum proteins, drug metabolism-related CYPs, and nuclear receptors, was enhanced in cells cultured on MDS atelocollagen, but not in those cultured on conventional atelocollagen. Moreover, the abnormal gene expression of cell adhesion molecules observed in conventional atelocollagen culture was suppressed when the cells were grown on MDS atelocollagen, thereby suggesting a cell behavior similar to that of in vivo hepatocytes. These results suggest that MDS atelocollagen functionally preserves PHHs while conserving the simplicity of conventional PHH atelocollagen-coated cultures.
Collapse
Affiliation(s)
- Tetsuro Sato
- Koken Research Center, Koken Co., Ltd., Tokyo 115‑0051, Japan
| | - Kayoko Semura
- Koken Research Center, Koken Co., Ltd., Tokyo 115‑0051, Japan
| | - Ichiro Fujimoto
- Koken Research Center, Koken Co., Ltd., Tokyo 115‑0051, Japan
| |
Collapse
|
26
|
Jager M, Blokzijl F, Kuijk E, Bertl J, Vougioukalaki M, Janssen R, Besselink N, Boymans S, de Ligt J, Pedersen JS, Hoeijmakers J, Pothof J, van Boxtel R, Cuppen E. Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer. Genome Res 2019; 29:1067-1077. [PMID: 31221724 PMCID: PMC6633256 DOI: 10.1101/gr.246223.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/07/2019] [Indexed: 12/24/2022]
Abstract
Nucleotide excision repair (NER) is one of the main DNA repair pathways that protect cells against genomic damage. Disruption of this pathway can contribute to the development of cancer and accelerate aging. Mutational characteristics of NER-deficiency may reveal important diagnostic opportunities, as tumors deficient in NER are more sensitive to certain treatments. Here, we analyzed the genome-wide somatic mutational profiles of adult stem cells (ASCs) from NER-deficient Ercc1 -/Δ mice. Our results indicate that NER-deficiency increases the base substitution load twofold in liver but not in small intestinal ASCs, which coincides with the tissue-specific aging pathology observed in these mice. Moreover, NER-deficient ASCs of both tissues show an increased contribution of Signature 8 mutations, which is a mutational pattern with unknown etiology that is recurrently observed in various cancer types. The scattered genomic distribution of the base substitutions indicates that deficiency of global-genome NER (GG-NER) underlies the observed mutational consequences. In line with this, we observe increased Signature 8 mutations in a GG-NER-deficient human organoid culture, in which XPC was deleted using CRISPR-Cas9 gene-editing. Furthermore, genomes of NER-deficient breast tumors show an increased contribution of Signature 8 mutations compared with NER-proficient tumors. Elevated levels of Signature 8 mutations could therefore contribute to a predictor of NER-deficiency based on a patient's mutational profile.
Collapse
Affiliation(s)
- Myrthe Jager
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Francis Blokzijl
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ewart Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johanna Bertl
- Department of Molecular Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | | | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Joep de Ligt
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | | | | | - Joris Pothof
- Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Ruben van Boxtel
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
27
|
In vitro and in vivo translational models for rare liver diseases. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1003-1018. [DOI: 10.1016/j.bbadis.2018.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
28
|
Bi Y, Li J, Yang Y, Wang Q, Wang Q, Zhang X, Dong G, Wang Y, Duan Z, Shu Z, Liu T, Chen Y, Zhang K, Hong F. Human liver stem cells attenuate concanavalin A-induced acute liver injury by modulating myeloid-derived suppressor cells and CD4 + T cells in mice. Stem Cell Res Ther 2019; 10:22. [PMID: 30635035 PMCID: PMC6330470 DOI: 10.1186/s13287-018-1128-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a serious threat to the life of people all over the world. Finding an effective way to manage ALF is important. Human liver stem cells (HLSCs) are early undifferentiated cells that have been implicated in the regeneration and functional reconstruction of the liver. In this study, we aimed to evaluate the protective effects of the HLSC line HYX1 against concanavalin A (ConA)-induced acute liver injury. METHODS HYX1 cells were characterized by microscopy, functional assays, gene expression, and western blot analyses. We showed that HYX1 cells can differentiate into hepatocytes. We intraperitoneally injected HYX1 cells in mice and administered ConA via caudal vein injection 3, 6, 12, 24, and 48 h later. The effects of HYX1 cell transplantation were evaluated through blood tests, histology, and flow cytometry. RESULTS HYX1 cells reduced the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) in serum and dramatically decreased the severity of liver injuries. Mechanistically, HYX1 cells promoted myeloid-derived suppressor cell (MDSC) migration into the spleen and liver, while reducing CD4+ T cell levels in both tissues. In addition, HYX1 cells suppressed the secretion of proinflammatory cytokines, such as tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), but led to increased interleukin-10 (IL-10) production. CONCLUSIONS These results confirm the efficacy of HLSCs in the prevention of the ConA-induced acute liver injury through modulation of MDSCs and CD4+ T cell migration and cytokine secretion.
Collapse
Affiliation(s)
- Yanzhen Bi
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Captial Medical University, Beijing, 100069, People's Republic of China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yonghong Yang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067, People's Republic of China
| | - Quanyi Wang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067, People's Republic of China
| | - Quanquan Wang
- Department of Neuromuscular Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaobei Zhang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067, People's Republic of China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, People's Republic of China
| | - Yibo Wang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067, People's Republic of China
| | - Zhongping Duan
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Captial Medical University, Beijing, 100069, People's Republic of China
| | - Zhenfeng Shu
- Shanghai Meifeng Biotechnology Co., Ltd, Shanghai, People's Republic of China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yu Chen
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Captial Medical University, Beijing, 100069, People's Republic of China.
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| | - Feng Hong
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067, People's Republic of China.
| |
Collapse
|
29
|
Kim S, Cho AN, Min S, Kim S, Cho SW. Organoids for Advanced Therapeutics and Disease Models. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Suran Kim
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Ann-Na Cho
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Sungjin Min
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Sooyeon Kim
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| |
Collapse
|
30
|
Generation of Immunodeficient Rats With Rag1 and Il2rg Gene Deletions and Human Tissue Grafting Models. Transplantation 2018; 102:1271-1278. [DOI: 10.1097/tp.0000000000002251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Olayanju A, Jones L, Greco K, Goldring CE, Ansari T. Application of porcine gastrointestinal organoid units as a potential in vitro tool for drug discovery and development. J Appl Toxicol 2018; 39:4-15. [DOI: 10.1002/jat.3641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Adedamola Olayanju
- Tissue Engineering and Regenerative Medicine; Northwick Park Institute for Medical Research (NPIMR); Harrow, London HA1 3UJ UK
| | - Lauren Jones
- Tissue Engineering and Regenerative Medicine; Northwick Park Institute for Medical Research (NPIMR); Harrow, London HA1 3UJ UK
| | - Karin Greco
- Tissue Engineering and Regenerative Medicine; Northwick Park Institute for Medical Research (NPIMR); Harrow, London HA1 3UJ UK
| | - Christopher E. Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine; University of Liverpool; Liverpool, Merseyside L69 3GE UK
| | - Tahera Ansari
- Tissue Engineering and Regenerative Medicine; Northwick Park Institute for Medical Research (NPIMR); Harrow, London HA1 3UJ UK
| |
Collapse
|
32
|
Katoh M. Multi‑layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β‑catenin signaling activation (Review). Int J Mol Med 2018; 42:713-725. [PMID: 29786110 PMCID: PMC6034925 DOI: 10.3892/ijmm.2018.3689] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
β-catenin/CTNNB1 is an intracellular scaffold protein that interacts with adhesion molecules (E-cadherin/CDH1, N-cadherin/CDH2, VE-cadherin/CDH5 and α-catenins), transmembrane-type mucins (MUC1/CD227 and MUC16/CA125), signaling regulators (APC, AXIN1, AXIN2 and NHERF1/EBP50) and epigenetic or transcriptional regulators (BCL9, BCL9L, CREBBP/CBP, EP300/p300, FOXM1, MED12, SMARCA4/BRG1 and TCF/LEF). Gain-of-function CTTNB1 mutations are detected in bladder cancer, colorectal cancer, gastric cancer, liver cancer, lung cancer, pancreatic cancer, prostate cancer and uterine cancer, whereas loss-of-function CTNNB1 mutations are also detected in human cancer. ABCB1, ALDH1A1, ASCL2, ATF3, AXIN2, BAMBI, CCND1, CD44, CLDN1, CTLA4, DKK1, EDN1, EOMES, FGF18, FGF20, FZD7, IL10, JAG1, LEF1, LGR5, MITF, MSX1, MYC, NEUROD1, NKD1, NODAL, NOTCH2, NOTUM, NRCAM, OPN, PAX3, PPARD, PTGS2, RNF43, SNAI1, SP5, TCF7, TERT, TNFRSF19, VEGFA and ZNRF3 are representative β-catenin target genes. β-catenin signaling is involved in myofibroblast activation and subsequent pulmonary fibrosis, in addition to other types of fibrosis. β-catenin and NF-κB signaling activation are involved in field cancerization in the stomach associated with Helicobacter pylori (H. pylori) infection and in the liver associated with hepatitis C virus (HCV) infection and other etiologies. β-catenin-targeted therapeutics are functionally classified into β-catenin inhibitors targeting upstream regulators (AZ1366, ETC-159, G007-LK, GNF6231, ipafricept, NVP-TNKS656, rosmantuzumab, vantictumab, WNT-C59, WNT974 and XAV939), β-catenin inhibitors targeting protein-protein interactions (CGP049090, CWP232228, E7386, ICG-001, LF3 and PRI-724), β-catenin inhibitors targeting epigenetic regulators (PKF118-310), β-catenin inhibitors targeting mediator complexes (CCT251545 and cortistatin A) and β-catenin inhibitors targeting transmembrane-type transcriptional outputs, including CD44v6, FZD7 and LGR5. Eradicating H. pylori and HCV is the optimal approach for the first-line prevention of gastric cancer and hepatocellular carcinoma (HCC), respectively. However, β-catenin inhibitors may be applicable for the prevention of organ fibrosis, second-line HCC prevention and treating β-catenin-driven cancer. The multi-layered prevention and treatment strategy of β-catenin-related human diseases is necessary for the practice of personalized medicine and implementation of precision medicine.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, Chuo Ward, Tokyo 104‑0045, Japan
| |
Collapse
|
33
|
Tajul Arifin K, Sulaiman S, Md Saad S, Ahmad Damanhuri H, Wan Ngah WZ, Mohd Yusof YA. Elevation of tumour markers TGF-β, M 2-PK, OV-6 and AFP in hepatocellular carcinoma (HCC)-induced rats and their suppression by microalgae Chlorella vulgaris. BMC Cancer 2017; 17:879. [PMID: 29268718 PMCID: PMC5740965 DOI: 10.1186/s12885-017-3883-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/07/2017] [Indexed: 12/24/2022] Open
Abstract
Background Chlorella vulgaris (ChV), a unicellular green algae has been reported to have anticancer and antioxidant effects. The aim of this study was to determine the chemopreventive effect of ChV on liver cancer induced rats by determining the level and expression of several liver tumour markers. Methods Male Wistar rats (200–250 g) were divided into 4 groups according to the diet given: control group (normal diet), ChV group with three different doses (50, 150 and 300 mg/kg body weight), liver cancer- induced group (choline deficient diet + 0.1% ethionine in drinking water or CDE group), and the treatment group (CDE group treated with three different doses of ChV). Rats were killed at 0, 4, 8 and 12 weeks of experiment and blood and tissue samples were taken from all groups for the determination of tumour markers expression alpha-fetoprotein (AFP), transforming growth factor-β (TGF-β), M2-pyruvate kinase (M2-PK) and specific antigen for oval cells (OV-6). Results Serum level of TGF-β increased significantly (p < 0.05) in CDE rats. However, ChV at all doses managed to decrease (p < 0.05) its levels to control values. Expressions of liver tumour markers AFP, TGF-β, M2-PK and OV-6 were significantly higher (p < 0.05) in tissues of CDE rats when compared to control showing an increased number of cancer cells during hepatocarcinogenesis. ChV at all doses reduced their expressions significantly (p < 0.05). Conclusions Chlorella vulgaris has chemopreventive effect by downregulating the expression of tumour markers M2-PK, OV-6, AFP and TGF-β, in HCC-induced rats.
Collapse
Affiliation(s)
- Khaizurin Tajul Arifin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Suhaniza Sulaiman
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Suhana Md Saad
- Department of Diagnostic & Allied Health Sciences, Faculty of Health & Life Sciences, Management & Science University (MSU), University Drive, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Yasmin Anum Mohd Yusof
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| |
Collapse
|
34
|
Measuring mutation accumulation in single human adult stem cells by whole-genome sequencing of organoid cultures. Nat Protoc 2017; 13:59-78. [DOI: 10.1038/nprot.2017.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Bria A, Marda J, Zhou J, Sun X, Cao Q, Petersen BE, Pi L. Hepatic progenitor cell activation in liver repair. LIVER RESEARCH (BEIJING, CHINA) 2017; 1:81-87. [PMID: 29276644 PMCID: PMC5739327 DOI: 10.1016/j.livres.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The liver possesses an extraordinary ability to regenerate after injury. Hepatocyte-driven liver regeneration is the default pathway in response to mild-to-moderate acute liver damage. When replication of mature hepatocytes is blocked, facultative hepatic progenitor cells (HPCs), also referred to as oval cells (OCs) in rodents, are activated. HPC/OCs have the ability to proliferate clonogenically and differentiate into several lineages including hepatocytes and bile ductal epithelia. This is a conserved liver injury response that has been studied in many species ranging from mammals (rat, mouse, and human) to fish. In addition, improper HPC/OC activation is closely associated with fibrotic responses, characterized by myofibroblast activation and extracellular matrix production, in many chronic liver diseases. Matrix remodeling and metalloprotease activities play an important role in the regulation of HPC/OC proliferation and fibrosis progression. Thus, understanding molecular mechanisms underlying HPC/OC activation has therapeutic implications for rational design of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Adam Bria
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jorgessen Marda
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Junmei Zhou
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Xiaowei Sun
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Qi Cao
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Bryon E. Petersen
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Liya Pi
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Willemse J, Lieshout R, van der Laan LJW, Verstegen MMA. From organoids to organs: Bioengineering liver grafts from hepatic stem cells and matrix. Best Pract Res Clin Gastroenterol 2017. [PMID: 28624103 DOI: 10.1016/j.bpg.2017.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Due to the complex function and structure of the liver, resourceful solutions for treating end-stage liver disease are required. Currently, liver transplantation is the only curative therapeutic option. However, due to a worldwide donor shortage, researchers have been looking in other fields for alternative sources of transplantable liver tissue. Recent advances in our understanding of liver physiology, stem cell and matrix biology, have accelerated tissue engineering research. Most notable is the discovery of a culture system to grow liver-like organoids from human hepatic stem cells. The extensive expansion capacity of these stem cells has contributed greatly to the availability of hepatocyte-like cells for tissue engineering. In addition, new techniques are explored to obtain biological liver scaffolds from full size donor organs. This review summarizes these state-of-art techniques which may lay the groundwork towards re-creating transplantable tissue from autologous or allogenic stem cells in the coming decade.
Collapse
Affiliation(s)
- Jorke Willemse
- Dept. Surgery, Erasmus MC - Rotterdam Medical Center, Rotterdam, The Netherlands
| | - Ruby Lieshout
- Dept. Surgery, Erasmus MC - Rotterdam Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Dept. Surgery, Erasmus MC - Rotterdam Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
37
|
Shih SC, Ho TC, Chen SL, Tsao YP. Pigment epithelium-derived factor (PEDF) peptide promotes the expansion of hepatic stem/progenitor cells via ERK and STAT3-dependent signaling. Am J Transl Res 2017; 9:1114-1126. [PMID: 28386338 PMCID: PMC5376003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/18/2017] [Indexed: 06/07/2023]
Abstract
Hepatic stem/progenitor cells (HPC) have been considered as a potential cell source of an alternative to liver transplantation. Production of large numbers of autologous HPC from small pieces of live tissue is crucial for the application of HPC-based liver therapy. In this study, we demonstrated that a synthetic 44-amino acid peptide (44-mer) derived from pigment epithelium-derived factor (PEDF) can facilitate the production of a large number of actively dividing HPC from normal adult rat livers in a 35-day culture period. The phenotypic properties of HPC were characterized by morphological observation, colony formation and high expression of classical HPC markers including epithelial cell adhesion molecule (EpCAM), leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and tumor-associated calcium signal transducer (TROP2). The 44-mer stimulated HPC proliferation in vitro and in mouse livers injured by a single intraperitoneal injection of carbon tetrachloride. In addition, the 44-mer induced the phosphorylation of ERK1/2 and STAT3 in HPC. Blocking the activity of ERK or STAT3 with pharmacological inhibitors attenuated the effects of the 44-mer on the induction of HPC proliferation. The long-term expanded HPC still possessed a bipotent ability to differentiate towards bile duct cells and mature hepatocytes. These results imply that the PEDF peptide may be a simple and effective agent to improve HPC-based liver therapy.
Collapse
Affiliation(s)
- Shou-Chuan Shih
- Department of Internal Medicine, Mackay Memorial Hospital, Mackay Medical CollegeNo. 92 Zhongshan North Road, Taipei, Taiwan
| | - Tsung-Chuan Ho
- Department of Medical Research, Ophthalmology, Mackay Memorial HospitalNo. 92 Zhongshan North Road, Taipei, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityNo. 1 Jen Ai Road, Section 1, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Ophthalmology, Mackay Memorial HospitalNo. 92 Zhongshan North Road, Taipei, Taiwan
| |
Collapse
|
38
|
Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8910821. [PMID: 28210629 PMCID: PMC5292184 DOI: 10.1155/2017/8910821] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.
Collapse
|
39
|
Bredenoord AL, Clevers H, Knoblich JA. Human tissues in a dish: The research and ethical implications of organoid technology. Science 2017; 355:355/6322/eaaf9414. [DOI: 10.1126/science.aaf9414] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Li L, Zhang Q, Yang H, Zou Q, Lai C, Jiang F, Zhao P, Luo Z, Yang J, Chen Q, Wang Y, Newsome PN, Frampton J, Maxwell PH, Li W, Chen S, Wang D, Siu TS, Tam S, Tse HF, Qin B, Bao X, Esteban MA, Lai L. Fumarylacetoacetate Hydrolase Knock-out Rabbit Model for Hereditary Tyrosinemia Type 1. J Biol Chem 2017; 292:4755-4763. [PMID: 28053091 PMCID: PMC5377789 DOI: 10.1074/jbc.m116.764787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/31/2016] [Indexed: 11/06/2022] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) is a severe human autosomal recessive disorder caused by the deficiency of fumarylacetoacetate hydroxylase (FAH), an enzyme catalyzing the last step in the tyrosine degradation pathway. Lack of FAH causes accumulation of toxic metabolites (fumarylacetoacetate and succinylacetone) in blood and tissues, ultimately resulting in severe liver and kidney damage with onset that ranges from infancy to adolescence. This tissue damage is lethal but can be controlled by administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), which inhibits tyrosine catabolism upstream of the generation of fumarylacetoacetate and succinylacetone. Notably, in animals lacking FAH, transient withdrawal of NTBC can be used to induce liver damage and a concomitant regenerative response that stimulates the growth of healthy hepatocytes. Among other things, this model has raised tremendous interest for the in vivo expansion of human primary hepatocytes inside these animals and for exploring experimental gene therapy and cell-based therapies. Here, we report the generation of FAH knock-out rabbits via pronuclear stage embryo microinjection of transcription activator-like effector nucleases. FAH-/- rabbits exhibit phenotypic features of HT1 including liver and kidney abnormalities but additionally develop frequent ocular manifestations likely caused by local accumulation of tyrosine upon NTBC administration. We also show that allogeneic transplantation of wild-type rabbit primary hepatocytes into FAH-/- rabbits enables highly efficient liver repopulation and prevents liver insufficiency and death. Because of significant advantages over rodents and their ease of breeding, maintenance, and manipulation compared with larger animals including pigs, FAH-/- rabbits are an attractive alternative for modeling the consequences of HT1.
Collapse
Affiliation(s)
- Li Li
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Quanjun Zhang
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huaqiang Yang
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qingjian Zou
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chengdan Lai
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fei Jiang
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ping Zhao
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiwei Luo
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiayin Yang
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China.,Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
| | - Qian Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yan Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Research Center for Liver Fibrosis, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital and.,Biomedical Research Center, Southern Medical University, Guangzhou 510515, China
| | - Philip N Newsome
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences.,National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research, and
| | - Jon Frampton
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council (MRC) Building, Cambridge CB2 0XY, United Kingdom
| | - Wenjuan Li
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shuhan Chen
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Dongye Wang
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tak-Shing Siu
- Department of Clinical Biochemistry Unit, Queen Mary Hospital, Hong Kong SAR, China
| | - Sidney Tam
- Department of Clinical Biochemistry Unit, Queen Mary Hospital, Hong Kong SAR, China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China.,Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China.,Department of Medicine, University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, Guangdong, China, and
| | - Baoming Qin
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of Metabolism and Cell Fate, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - Xichen Bao
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Miguel A Esteban
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China, .,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
| | - Liangxue Lai
- From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Medical University, Guangzhou 511436, China, .,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
41
|
Grompe M. Fah Knockout Animals as Models for Therapeutic Liver Repopulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 959:215-230. [PMID: 28755199 DOI: 10.1007/978-3-319-55780-9_20] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several animal models of Fah deficiency have been developed, including mice, pigs and most recently rats. Initially, the murine models were developed with the intent to mirror the human disease for pathophysiologic and therapeutic studies. However, it soon became apparent that Fah-positive hepatocytes have a potent selective growth advantage in mutant liver and can extensively repopulate the diseased organ. For this reason, Fah mutant mice have become a workhorse for liver biology and are widely used in liver stem cell and hepatic gene therapy research. Immune deficient Fah-knockout mice can be repopulated with human hepatocytes, creating "mice with human livers". These chimeric animals have become an important preclinical model for infectious diseases, metabolism and gene therapy. The potent expansion of human hepatocytes in Fah knockout mice has given rise to the concept of using Fah mutants as living bioreactors to produce large quantities of fully mature hepatocytes. As a consequence, larger animal models of Fah deficiency have recently been developed.
Collapse
Affiliation(s)
- Markus Grompe
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239-3098, USA.
| |
Collapse
|
42
|
Zhang L, Shao Y, Li L, Tian F, Cen J, Chen X, Hu D, Zhou Y, Xie W, Zheng Y, Ji Y, Liu M, Li D, Hui L. Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I. Sci Rep 2016; 6:31460. [PMID: 27510266 PMCID: PMC4980609 DOI: 10.1038/srep31460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Hereditary tyrosinemia type I (HT1) is caused by a deficiency in the enzyme fumarylacetoacetate hydrolase (Fah). Fah-deficient mice and pigs are phenotypically analogous to human HT1, but do not recapitulate all the chronic features of the human disorder, especially liver fibrosis and cirrhosis. Rats as an important model organism for biomedical research have many advantages over other animal models. Genome engineering in rats is limited till the availability of new gene editing technologies. Using the recently developed CRISPR/Cas9 technique, we generated Fah(-/-) rats. The Fah(-/-) rats faithfully represented major phenotypic and biochemical manifestations of human HT1, including hypertyrosinemia, liver failure, and renal tubular damage. More importantly, the Fah(-/-) rats developed remarkable liver fibrosis and cirrhosis, which have not been observed in Fah mutant mice or pigs. Transplantation of wild-type hepatocytes rescued the Fah(-/-) rats from impending death. Moreover, the highly efficient repopulation of hepatocytes in Fah(-/-) livers prevented the progression of liver fibrosis to cirrhosis and in turn restored liver architecture. These results indicate that Fah(-/-) rats may be used as an animal model of HT1 with liver cirrhosis. Furthermore, Fah(-/-) rats may be used as a tool in studying hepatocyte transplantation and a bioreactor for the expansion of hepatocytes.
Collapse
Affiliation(s)
- Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lu Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| | - Feng Tian
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| | - Xiaotao Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| | - Dan Hu
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Weifen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yunwen Zheng
- Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| |
Collapse
|
43
|
Shinozawa T, Yoshikawa HY, Takebe T. Reverse engineering liver buds through self-driven condensation and organization towards medical application. Dev Biol 2016; 420:221-229. [PMID: 27364470 DOI: 10.1016/j.ydbio.2016.06.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 12/15/2022]
Abstract
The self-organizing tissue-based approach coupled with induced pluripotent stem (iPS) cell technology is evolving as a promising field for designing organoids in culture and is expected to achieve valuable practical outcomes in regenerative medicine and drug development. Organoids show properties of functional organs and represent an alternative to cell models in conventional two-dimensional differentiation platforms; moreover, organoids can be used to investigate mechanisms of development and disease, drug discovery and toxicity assessment. Towards a more complex and advanced organoid model, it is essential to incorporate multiple cell lineages including developing vessels. Using a self-condensation method, we recently demonstrated self-organizing "organ buds" of diverse systems together with human mesenchymal and endothelial progenitors, proposing a new reverse engineering method to generate a more complex organoid structure. In this section, we review characters of organ bud technology based on two important principles: self-condensation and self-organization focusing on liver bud as an example, and discuss their practicality in regenerative medicine and potential as research tools for developmental biology and drug discovery.
Collapse
Affiliation(s)
- Tadahiro Shinozawa
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Hiroshi Y Yoshikawa
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan.
| | - Takanori Takebe
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
44
|
Hindley CJ, Cordero-Espinoza L, Huch M. Organoids from adult liver and pancreas: Stem cell biology and biomedical utility. Dev Biol 2016; 420:251-261. [PMID: 27364469 DOI: 10.1016/j.ydbio.2016.06.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/26/2016] [Accepted: 06/26/2016] [Indexed: 01/02/2023]
Abstract
The liver and pancreas are critical organs maintaining whole body metabolism. Historically, the expansion of adult-derived cells from these organs in vitro has proven challenging and this in turn has hampered studies of liver and pancreas stem cell biology, as well as being a roadblock to disease modelling and cell replacement therapies for pathologies in these organs. Recently, defined culture conditions have been described which allow the in vitro culture and manipulation of adult-derived liver and pancreatic material. Here we review these systems and assess their physiological relevance, as well as their potential utility in biomedicine.
Collapse
Affiliation(s)
- Christopher J Hindley
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Lucía Cordero-Espinoza
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Meritxell Huch
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|