1
|
Conlon MT, Huang JY, Gerner MY. Lymphatic chain gradients regulate the magnitude and heterogeneity of T cell responses to vaccination. J Exp Med 2025; 222:e20241311. [PMID: 40304721 PMCID: PMC12042774 DOI: 10.1084/jem.20241311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/18/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Upon activation, T cells proliferate and differentiate into diverse populations, including highly differentiated effector and memory precursor subsets. Initial diversification is influenced by signals sensed during T cell priming within lymphoid tissues. However, the rules governing how cellular heterogeneity is spatially encoded in vivo remain unclear. Here, we show that immunization establishes concentration gradients of antigens and inflammation across interconnected chains of draining lymph nodes (IC-LNs). While T cells are activated at all sites, individual IC-LNs elicit divergent responses: proximal IC-LNs favor the generation of effector cells, whereas distal IC-LNs promote formation of central memory precursor cells. Although both proximal and distal sites contribute to anamnestic responses, T cells from proximal IC-LNs preferentially provide early effector responses at inflamed tissues. Conversely, T cells from distal IC-LNs demonstrate an enhanced capacity to generate long-lasting responses to chronic antigens in cancer settings, including after checkpoint blockade therapy. Therefore, formation of spatial gradients across lymphatic chains following vaccination regulates the magnitude, heterogeneity, and longevity of T cell responses.
Collapse
Affiliation(s)
- Michael T. Conlon
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jessica Y. Huang
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Lalinde-Ruiz N, Martínez-Enriquez LC, Alzate Gutierrez D, Hernandez Nieto H, Niño LF, Parra-López CA. Methodological approach to identify immunogenic epitopes candidates for vaccines against emerging pathogens tailored to defined HLA populations. Comput Biol Chem 2025; 116:108389. [PMID: 39986256 DOI: 10.1016/j.compbiolchem.2025.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Vaccines stimulate cells of the adaptive immune system, generating a protective and lasting memory, and are the main public health strategy to protect the world population from emerging pathogens such as the SARS-CoV-2 virus, responsible for millions of deaths in the recent COVID-19 pandemic. Several in-silico algorithms have facilitated the selection of antigens as vaccine candidates; however, their predictive capacity remains limited and it is necessary to continue training them, using information obtained in immunological assays. In this work, the SARS-CoV-2 proteome was sampled using a series of concatenated algorithms that allowed us to define a series of candidate viral peptides for a vaccine against SARS-CoV-2 in individuals from Colombian, whose haplotypes for HLA-I and II were incorporated as part of the algorithm. The immunogenicity of the peptides predicted with three tools or with the combination of them was evaluated and found that short peptides predicted and selected as highly immunogenic peptides were capable of expanding memory CD8 T lymphocytes with an activation phenotype. Altogether, our results outline a pipeline that combines a bioinformatic and immunological approach useful to select immunogenic epitopes from emerging pathogens as vaccine candidates tailored to the population's HLA-Haplotypes.
Collapse
Affiliation(s)
- Nicolás Lalinde-Ruiz
- Universidad Nacional de Colombia, Faculty of Medicine, Department of Microbiology, Carrera 30 #45-03, Bogotá, Colombia,.
| | - Laura Camila Martínez-Enriquez
- Universidad Nacional de Colombia, Faculty of Medicine, Department of Microbiology, Carrera 30 #45-03, Bogotá, Colombia,.
| | - Daniel Alzate Gutierrez
- Universidad Nacional de Colombia, Faculty of Medicine, Department of Microbiology, Carrera 30 #45-03, Bogotá, Colombia,.
| | - Holman Hernandez Nieto
- Universidad Nacional de Colombia, Faculty of Engineering, Carrera 30 #45-03, Bogotá, Colombia,.
| | - Luis Fernando Niño
- Universidad Nacional de Colombia, Faculty of Engineering, Carrera 30 #45-03, Bogotá, Colombia,.
| | | |
Collapse
|
3
|
Zaidi N, Jaffee EM, Yarchoan M. Recent advances in therapeutic cancer vaccines. Nat Rev Cancer 2025:10.1038/s41568-025-00820-z. [PMID: 40379970 DOI: 10.1038/s41568-025-00820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/19/2025]
Abstract
The success of cancer prevention vaccines targeting cancer-causing viruses has drastically reduced cancer mortality worldwide. However, the development of therapeutic cancer vaccines, which aim to elicit an immune response directly against cancer cells, has faced notable clinical setbacks. In this Review, we explore lessons learned from past cancer vaccine trials and how the field has progressed into an era of renewed promise. Previous vaccines primarily targeted tumour-associated antigens and were mainly tested as monotherapies in late-stage cancers. In contrast, contemporary vaccines focus on targeting tumour-specific antigens (neoantigens) and are showing initial evidence of clinical efficacy, particularly in early-stage cancers and precancers when combined with immune checkpoint inhibitors. Advances in tumour profiling and novel vaccine platforms have enhanced vaccine specificity and potency. We discuss recent clinical trials of therapeutic cancer vaccines and outline future directions for the field.
Collapse
Affiliation(s)
- Neeha Zaidi
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| | - Mark Yarchoan
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Xiao D, Chen T, Yu X, Song Y, Liu Y, Yan W. The MYC/TXNIP axis mediates NCL-Suppressed CD8 +T cell immune response in lung adenocarcinoma. Mol Med 2025; 31:180. [PMID: 40346484 PMCID: PMC12063364 DOI: 10.1186/s10020-025-01224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma is a deadly malignancy with immune evasion playing a key role in tumor progression. Glucose metabolism is crucial for T cell function, and the nucleolar protein NCL may influence T cell glucose metabolism. This study aims to investigate NCL's role in T cell glucose metabolism and immune evasion by lung adenocarcinoma cells. METHODS Utilizing single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), we analyzed cell clustering, annotation, and prognosis. In vitro experiments involved manipulating NCL expression in CD8+ T cells to study immune function and glucose metabolism. In vivo studies using an orthotopic transplant mouse model monitored NCL's impact on CD8+ T cell glucose metabolism and anti-tumor immune function. RESULTS NCL was associated with T cell dysfunction and glucose metabolism. NCL silencing enhanced CD8+ T cell glucose metabolism, cytotoxicity, and infiltration, while NCL overexpression had the opposite effect. NCL overexpression relieved MYC-mediated transcriptional repression of TXNIP, reducing CD8+ T cell glucose metabolism. In vivo, NCL inhibited CD8+ T cell glucose metabolism through the MYC/TXNIP axis, hindering anti-tumor immune function. CONCLUSIONS NCL overexpression suppresses CD8+ T cell glucose metabolism and anti-tumor immune function, promoting lung adenocarcinoma progression via the MYC/TXNIP axis.
Collapse
Affiliation(s)
- Dan Xiao
- Department of Thoracic Oncology, Jiangxi Cancer Hospital&Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, 330029, Jiangxi, China
| | - Tanxiu Chen
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinlin Yu
- Department of Medical Laboratory, Jiangxi Cancer Hospital&Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, 330029, Nanchang, China
| | - Ying Song
- Department of Medical Laboratory, Jiangxi Cancer Hospital&Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, 330029, Nanchang, China
| | - Yigang Liu
- Department of Ultrasound Medicine, Jiangxi Cancer Hospital&Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, 330029, Jiangxi, China.
| | - Wei Yan
- Department of Thoracic Oncology, Jiangxi Cancer Hospital&Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, 330029, Jiangxi, China.
| |
Collapse
|
5
|
Gaydosik AM, Tabib T, Das J, Larregina A, Lafyatis R, Fuschiotti P. Dysfunctional KLRB1 +CD8 + T-cell responses are generated in chronically inflamed systemic sclerosis skin. Ann Rheum Dis 2025; 84:798-809. [PMID: 39894688 DOI: 10.1016/j.ard.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVES To analyse the immune mechanisms of diffuse cutaneous systemic sclerosis (dcSSc) skin disease focusing on CD8+ T-cell responses in the affected skin of patients because chronic inflammation, vasculopathy, and extensive cutaneous fibrosis are prominent features of dcSSc skin disease, causing pain and disability in patients, with no effective therapy. METHODS Single-cell transcriptomics and epigenomics were applied to well-characterised patient skin samples to identify transcriptomes and key regulators of skin-resident CD8+ T-cell subsets. Multicolor immunofluorescence miscoscopy was used to validate molecular findings. Ex vivo skin explant assays were used to functionally characterise dysfunctional CD8+ T-cell subsets on nonlesional autologous skin. RESULTS We identified 2 major developmentally connected CD8+ T-cell subpopulations that were expanded in SSc skin lesions compared with healthy control skin. The first was a heterogeneous subset of effector-memory CD8+KLRB1+IL7R+ cells characterised by increased cytolytic and Tc2/Tc17 effector functions that appear to induce tissue damage and fibrosis in early-stage dcSSc skin lesions. The second, found primarily in patients with late-stage disease, was an exhausted CD8+KLRG1+IL7R- subset that exhibited transcriptional features of long-lived effector cells, likely contributing to chronic inflammation. Significantly, both subsets were also expanded in other benign dermatoses, implicating these cell populations in the pathogenesis of chronic human skin inflammation. CONCLUSIONS This study provides new insight into core regulatory programmes modulating skin-resident CD8+ T-cell plasticity and identifies distinct CD8+ T-cell subpopulations that contribute to initiation and chronicity of inflammatory responses in systemic sclerosis skin lesions. These findings reveal prospective molecular targets for new therapeutic strategies against this incurable disease.
Collapse
Affiliation(s)
- Alyxzandria M Gaydosik
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tracy Tabib
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adriana Larregina
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrizia Fuschiotti
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Zhang L, Qiu C, Li R, Shen Y, Tian L, Chang H, Liang Q, Pan H, Gao Z, Li W, Zhao J, Fang L, Yu X, Xu J, Kuang Z, Yuan W, Chu Y, Shi J. KLRG1 re-defines a leukemic clone of CD8 effector T cells sensitive to PI3K inhibitor in T cell large granular lymphocytic leukemia. Cell Rep Med 2025; 6:102036. [PMID: 40147444 PMCID: PMC12047471 DOI: 10.1016/j.xcrm.2025.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/03/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
T cell large granular lymphocytic leukemia (T-LGLL) is a clonal lymphoproliferative disorder, originated from mature effector memory CD8+ T cells. It is a challenge to define the leukemic T cell clones due to the lack of definite markers. Here, we decipher the heterogeneity of CD8+ T cells using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and T cell receptor (TCR) profiling in T-LGLL patients. A CD8+ terminal effector subset is identified, marked by reduced KLRG1 expression. Remarkably, high fidelity of leukemic clonality was specially limited in KLRG1- large granular lymphocytes (LGLs), not seen in KLRG1+ LGLs in T-LGLL patients or in KLRG1- LGLs in healthy controls. KLRG1- leukemic LGLs show upregulated PI3K signaling with enhanced cytotoxicity and exhaustion, persisting after conventional treatment. In a pilot trial of linperlisib (a PI3Kδ inhibitor) for refractory cases, 7 of 8 participants quickly respond with satisfactory safety. This study is registered at ClinicalTrials.gov (NCT05676710).
Collapse
MESH Headings
- Aged
- Female
- Humans
- Male
- Middle Aged
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Clone Cells
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Leukemia, Large Granular Lymphocytic/drug therapy
- Leukemia, Large Granular Lymphocytic/pathology
- Leukemia, Large Granular Lymphocytic/genetics
- Leukemia, Large Granular Lymphocytic/immunology
- Leukemia, Large Granular Lymphocytic/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors/pharmacology
- Phosphoinositide-3 Kinase Inhibitors/therapeutic use
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Lele Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chen Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ruonan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yucan Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Linzhu Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hong Chang
- West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qian Liang
- Zhoukou Center Hospital, Zhoukou 466099, China
| | - Hong Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhen Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Weiwang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingyu Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Liwei Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiao Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jing Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhexiang Kuang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Red Blood Cell Diseases Center & Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
7
|
Rodriguez-Sevilla JJ, Ganan-Gomez I, Kumar B, Thongon N, Ma F, Chien KS, Kim YJ, Yang H, Loghavi S, Tan R, Adema V, Li Z, Tanaka T, Uryu H, Kanagal-Shamanna R, Al-Atrash G, Bejar R, Banerjee PP, Lynn Cha S, Montalban-Bravo G, Dougherty M, Fernandez Laurita MC, Wheeler N, Jia B, Papapetrou EP, Izzo F, Dueñas DE, McAllen S, Gu Y, Todisco G, Ficara F, Della Porta MG, Jain A, Takahashi K, Clise-Dwyer K, Halene S, Bertilaccio MTS, Garcia-Manero G, Daher M, Colla S. Natural killer cells' functional impairment drives the immune escape of pre-malignant clones in early-stage myelodysplastic syndromes. Nat Commun 2025; 16:3450. [PMID: 40216768 PMCID: PMC11992119 DOI: 10.1038/s41467-025-58662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Dissecting the preneoplastic disease states' biological mechanisms that precede tumorigenesis can lead to interventions that can slow down disease progression and/or mitigate disease-related comorbidities. Myelodysplastic syndromes (MDS) cannot be cured by currently available pharmacological therapies, which fail to eradicate aberrant hematopoietic stem cells (HSCs), most of which are mutated by the time of diagnosis. Here, we sought to elucidate how MDS HSCs evade immune surveillance and expand in patients with clonal cytopenias of undetermined significance (CCUS), the pre-malignant stage of MDS. We used multi-omic single-cell approaches and functional in vitro studies to show that immune escape at disease initiation is mainly mediated by mutant, dysfunctional natural killer (NK) cells with impaired cytotoxic capability against cancer cells. Preclinical in vivo studies demonstrated that injecting NK cells from healthy donors efficiently depleted CCUS mutant cells while allowing normal cells to regenerate hematopoiesis. Our findings suggest that early intervention with adoptive cell therapy can prevent or delay the development of MDS.
Collapse
Affiliation(s)
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natthakan Thongon
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly S Chien
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Yi J Kim
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yang
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roselyn Tan
- Moores Cancer Center, University of California San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Vera Adema
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Zongrui Li
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Hidetaka Uryu
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafael Bejar
- Moores Cancer Center, University of California San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Pinaki Prosad Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sophia Lynn Cha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Max Dougherty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Claudina Fernandez Laurita
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noelle Wheeler
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baosen Jia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Franco Izzo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela E Dueñas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Salome McAllen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiqian Gu
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Gabriele Todisco
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
- Istituto di Ricerca Genetica e Biomedica, National Research Council, 20090, Milan, Italy
| | - Matteo Giovanni Della Porta
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Abhinav Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Simona Colla
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
De Backer E, Verdoodt D, Ponsaerts P, Pasciuto E, Van Rompaey V. Cochlear T cells and their role in health and disease: A systematic review. Autoimmun Rev 2025; 24:103814. [PMID: 40221069 DOI: 10.1016/j.autrev.2025.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND The role of T cells in health and disease has already been studied extensively in many organs, yet their activity in the cochlea and involvement in hearing loss remains less explored. This review aims to summarize current existing literature on the presence and activity of T cells in the cochlea and the link between T-cell activity and the development of hearing loss. METHODS A systematic review of the literature was performed on PubMed and Web of Science on the 4th of December 2024 using the following search term: ("T-cell" OR "T cells" OR "T-lymphocyte*") AND ("cochlea*" OR "spiral ligament" OR "spiral limbus"). RESULTS The literature search revealed 20 studies that explored the presence and activity of T cells in the cochlea, as well as associations between T cells and hearing loss. The presence of cochlear T cells was compared between steady-state conditions and stimulated environments, which suggested an increase in cochlear T cells post-stimulation. Additionally, the role of T cells in hearing loss, both causal as protective, are described in 12 studies. Finally, three studies introduce cochlin as an inner ear-specific antigen triggering autoimmunity. CONCLUSION This review highlights the critical role of the immune balance in maintaining cochlear homeostasis. Both protective and detrimental T-cell functions have been linked to hearing, reflecting the dual role of T cells in cochlear health. Future therapies for hearing loss should aim to restore the immune balance to support normal hearing functions.
Collapse
Affiliation(s)
- Evi De Backer
- Resonant labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| | - Dorien Verdoodt
- Resonant labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Emanuela Pasciuto
- Laboratory of Neuroimmunology, VIB-Center for Molecular Neurology (CMN), Antwerp, Belgium
| | - Vincent Van Rompaey
- Resonant labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
9
|
Harirah HAA, Mohammed MH, Basha SAZ, Uthirapathy S, Ganesan S, Shankhyan A, Sharma GC, Devi A, Kadhim AJ, S NH. Targeting EZH2 in autoimmune diseases: unraveling epigenetic regulation and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04127-6. [PMID: 40198399 DOI: 10.1007/s00210-025-04127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Approximately 8-10% of the global population is affected by autoimmune diseases (ADs), which encompass a wide array of idiopathic conditions resulting from dysregulated immune responses. The enzymatic component of the polycomb-repressive complex 2 (PRC2), enhancer of zeste homolog 2 (EZH2, also referred to as KMT6), functions as a methyltransferase possessing a SET domain that plays crucial roles in epigenetic regulation, explicitly facilitating the methylation of histone H3 at lysine 27. Notably, EZH2 is catalytically inactive and requires association with EED and SUZ12 to form an active PRC2 complex. Hyperactivation of EZH2 has been implicated in various malignancies, prompting the development of EZH2 inhibitors as therapeutic agents for several cancers, including lymphoma, prostate, breast, and colon cancer. The application of EZH2-targeting therapies has also been explored in the context of autoimmune diseases. While there have been advancements in certain ADs, responses can vary significantly, as evidenced by mixed outcomes in cases such as inflammatory bowel disease. Consequently, the dual role of EZH2 and the therapeutic potential of its inhibitors in the treatment of ADs remain nascent fields of study. This review will elucidate the interplay between EZH2 and autoimmune diseases, highlighting emerging insights and therapeutic avenues.
Collapse
Affiliation(s)
- Hashem Ahmed Abu Harirah
- Medical Laboratory Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan.
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq.
| | - Sami Ahmed Zaher Basha
- Physical Therapy Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
- Department of Cardiovascular Pulmonary and Geriatrics, Faculty of Physical Therapy, Pharos University, Alexandria, Egypt
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Naher H S
- Laboratories Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
10
|
Bresser K, Popović B, Wolkers MC. What's in a name: the multifaceted function of DNA- and RNA-binding proteins in T cell responses. FEBS J 2025; 292:1853-1867. [PMID: 39304985 PMCID: PMC12001178 DOI: 10.1111/febs.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 04/17/2025]
Abstract
Cellular differentiation allows cells to transition between different functional states and adapt to various environmental cues. The diversity and plasticity of this process is beautifully exemplified by T cells responding to pathogens, which undergo highly specialized differentiation tailored to the ongoing infection. Such antigen-induced T cell differentiation is regulated at the transcriptional level by DNA-binding proteins and at the post-transcriptional level by RNA-binding proteins. Although traditionally defined as separate protein classes, a growing body of evidence indicates an overlap between these two groups of proteins, collectively coined DNA/RNA-binding proteins (DRBPs). In this review, we describe how DRBPs might bind both DNA and RNA, discuss the putative functional relevance of this dual binding, and provide an exploratory analysis into characteristics that are associated with DRBPs. To exemplify the significance of DRBPs in T cell biology, we detail the activity of several established and putative DRBPs during the T cell response. Finally, we highlight several methodologies that allow untangling of the distinct functionalities of DRBPs at the DNA and RNA level, including key considerations to take into account when applying such methods.
Collapse
Affiliation(s)
- Kaspar Bresser
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Branka Popović
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
11
|
Wang B, Bian Q. Regulation of 3D genome organization during T cell activation. FEBS J 2025; 292:1833-1852. [PMID: 38944686 DOI: 10.1111/febs.17211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Within the three-dimensional (3D) nuclear space, the genome organizes into a series of orderly structures that impose important influences on gene regulation. T lymphocytes, crucial players in adaptive immune responses, undergo intricate transcriptional remodeling upon activation, leading to differentiation into specific effector and memory T cell subsets. Recent evidence suggests that T cell activation is accompanied by dynamic changes in genome architecture at multiple levels, providing a unique biological context to explore the functional relevance and molecular mechanisms of 3D genome organization. Here, we summarize recent advances that link the reorganization of genome architecture to the remodeling of transcriptional programs and conversion of cell fates during T cell activation and differentiation. We further discuss how various chromatin architecture regulators, including CCCTC-binding factor and several transcription factors, collectively modulate the genome architecture during this process.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
12
|
Graciliano NG, Goulart MOF, de Oliveira ACM. Impact of Maternal Exposure to SARS-CoV-2 on Immunological Components of Breast Milk. Int J Mol Sci 2025; 26:2600. [PMID: 40141241 PMCID: PMC11942142 DOI: 10.3390/ijms26062600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
COVID-19, caused by SARS-CoV-2, has become a global public health threat. Although no replication-competent virus has been found in breast milk samples, breastfeeding practices during the pandemic were impacted. It is well known that breast milk is adapted to meet the needs of infants, providing the appropriate amounts of nutrients and various bioactive compounds that contribute to the maturation of the immune system and antioxidant protection, safeguarding infants against diseases. While its composition is variable, breast milk contains immune cells, antibodies, and cytokines, which have anti-inflammatory, pro-inflammatory, antiviral, and antibacterial properties that strengthen infant immunity. Since COVID-19 vaccines have not yet been approved for infants under six months of age, newborns rely on the passive transfer of antibodies via the placenta and breast milk to protect them against severe SARS-CoV-2 infection. Several studies that analyzed breast milk samples in the context of COVID-19 have demonstrated that a strong antibody response is induced following maternal infection with SARS-CoV-2. Therefore, this review aims to provide a comprehensive overview of the impact of maternal exposure to SARS-CoV-2 through natural infection and/or vaccination on the immunological composition of breast milk based on the studies conducted on this topic.
Collapse
Affiliation(s)
- Nayara Gomes Graciliano
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
| | - Alane Cabral Menezes de Oliveira
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
- College of Nutrition, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
| |
Collapse
|
13
|
Ferry A, Mempel KM, Monell A, Reina-Campos M, Scharping NE, Heeg M, Takehara KK, Schokrpur S, Kuo N, Saddawi-Konefka R, Gutkind JS, Goldrath AW. The XCL1-XCR1 axis supports intestinal tissue residency and antitumor immunity. J Exp Med 2025; 222:e20240776. [PMID: 39841133 PMCID: PMC11753173 DOI: 10.1084/jem.20240776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/21/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Tissue-resident memory T cells (TRM) provide frontline protection against pathogens and emerging malignancies. Tumor-infiltrating lymphocytes (TIL) with TRM features are associated with improved clinical outcomes. However, the cellular interactions that program TRM differentiation and function are not well understood. Using murine genetic models and targeted spatial transcriptomics, we found that the CD8+ T cell-derived chemokine XCL1 is critical for TRM formation and conventional DC1 (cDC1) supported the positioning of intestinal CD8+ T cells during acute viral infection. In tumors, enforced Xcl1 expression by antigen-specific CD8+ T cells promoted intratumoral cDC1 accumulation and T cell persistence, leading to improved overall survival. Notably, analysis of human TIL and TRM revealed conserved expression of XCL1 and XCL2. Thus, we have shown that the XCL1-XCR1 axis plays a non-cell autonomous role in guiding intestinal CD8+ TRM spatial differentiation and tumor control.
Collapse
Affiliation(s)
- Amir Ferry
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kianoosh M. Mempel
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Alexander Monell
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Miguel Reina-Campos
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Nicole E. Scharping
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maximilian Heeg
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kennidy K. Takehara
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Shiruyeh Schokrpur
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ning Kuo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - J. Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Allen Institute for Immunology, Seattle, WA, USA
| |
Collapse
|
14
|
Carneiro BA, Jotte RM, Gabrail NY, Wentzel K, Huang F, Chaturvedi S, Weispfenning A, Hiemeyer F, Morcos PN, Mongay Soler L, Childs BH, Hansen AR. Safety and Efficacy of Copanlisib in Combination with Nivolumab: A Phase Ib Study in Patients with Advanced Solid Tumors. CANCER RESEARCH COMMUNICATIONS 2025; 5:444-457. [PMID: 39927513 PMCID: PMC11907410 DOI: 10.1158/2767-9764.crc-24-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE Copanlisib in combination with immune checkpoint inhibitors demonstrated synergy and favorable antitumor immune responses in preclinical models. This study evaluated copanlisib plus nivolumab in adults with advanced solid tumors. PATIENTS AND METHODS In this phase Ib, nonrandomized, open-label, dose-escalation study, patients received intravenous nivolumab 240 mg (day 15 of cycle 1 and days 1 and 15 of subsequent cycles) plus intravenous copanlisib (45 or 60 mg on days 1, 8, and 15 of each cycle) in 28-day cycles. The primary objective was to determine the MTD and/or recommended phase II dose of copanlisib plus nivolumab. Secondary objectives were safety, tolerability, and efficacy. Exploratory objectives included evaluation of potentially predictive biomarkers. RESULTS Overall, 16 patients were treated [copanlisib: 45 mg (n = 5); 60 mg (n = 11)]. The most common cancer types at baseline were bladder (25.0%) and oropharyngeal (18.8%) cancers. No dose-limiting toxicities were observed; copanlisib 60 mg was deemed the recommended phase II dose in combination with nivolumab 240 mg. Grade 3 and 4 treatment-emergent adverse events were reported in 56.3% and 12.5% of patients, respectively; one grade 5 event was reported (unrelated to treatment). Overall, 18.8% of patients achieved a partial response. Evaluations of potential biomarkers did not correlate with response, but copanlisib-modulated biomarker changes were observed before nivolumab administration and were consistent and dose-dependent. CONCLUSIONS No new safety concerns were identified with this combination, and preliminary efficacy indicated an antitumor effect. Data supported an immunomodulatory effect of copanlisib, suggesting that this combination may enhance the efficacy of immune checkpoint inhibitors. SIGNIFICANCE The combination of copanlisib and nivolumab was well tolerated and showed antitumor effects in patients with advanced solid tumors. The number of circulating myeloid-derived suppressive cells decreased 24 to 48 hours after treatment with copanlisib. Further investigation of copanlisib and nivolumab is warranted as a novel strategy to enhance the efficacy of checkpoint inhibitors.
Collapse
Affiliation(s)
- Benedito A. Carneiro
- Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, Rhode Island
| | - Robert M. Jotte
- Rocky Mountain Cancer Centers, Denver, Colorado
- US Oncology Research, Houston, Texas
| | | | - Kristopher Wentzel
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California
| | - Funan Huang
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | | | | | | | - Peter N. Morcos
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | | | | | | |
Collapse
|
15
|
Jin L, Zhang X, Wang J, Wang Y, Wang K, Wang Z, Wang P, Sun X, Hao J, Jin R, Lu D, Ge Q. Epigenetic Regulation of CD8 + Effector T Cell Differentiation by PDCD5. Eur J Immunol 2025; 55:e202451388. [PMID: 40111008 PMCID: PMC11924876 DOI: 10.1002/eji.202451388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Epigenetic modification plays a crucial role in establishing the transcriptional program that governs the differentiation of CD8+ effector T cells. However, the mechanisms by which this process is regulated at an early stage, prior to the expression of master transcription factors, are not yet fully understood. In this study, we have identified PDCD5 as an activation-induced molecule that is necessary for the proper differentiation and expansion of antigen-specific CD8+ effector T cells in a mouse model of chronic viral infection. The genetic deletion of Pdcd5 resulted in impaired differentiation and function of effector T cells, while T-cell activation, metabolic reprogramming, and the differentiation of memory/exhausted T cells were largely unaffected. At the molecular level, we observed reduced chromatin accessibility and transcriptional activity of Tbx21 and its regulated genes in Pdcd5-/- CD8+ T cells. We further identified that PRDM9 facilitates the H3K4me3 modification of genes associated with the effector phenotype in CD8+ T cells. The interaction between PDCD5 and PRDM9 promotes the nuclear translocation and lysine methyltransferase activity of PRDM9. Collectively, these findings highlight the crucial role of the PDCD5/PRDM9 axis in epigenetic reprogramming during the early stages of fate determination for effector CD8+ T cell fate.
Collapse
Affiliation(s)
- Lixue Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Xin Zhang
- Department of ImmunologySchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyInstitute of Systems BiomedicinePeking University Health Science CenterBeijingChina
| | - Jingyi Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Yujia Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Ke Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Zhuolin Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Xiuyuan Sun
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Jie Hao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Dan Lu
- Department of ImmunologySchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyInstitute of Systems BiomedicinePeking University Health Science CenterBeijingChina
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
- Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking UniversityBeijingChina
| |
Collapse
|
16
|
Xie J, Chen DG, Chour W, Ng RH, Zhang R, Yuan D, Choi J, McKasson M, Troisch P, Smith B, Jones L, Webster A, Rasheed Y, Li S, Edmark R, Hong S, Murray KM, Logue JK, Franko NM, Lausted CG, Piening B, Algren H, Wallick J, Magis AT, Watanabe K, Mease P, Greenberg PD, Chu H, Goldman JD, Su Y, Heath JR. APMAT analysis reveals the association between CD8 T cell receptors, cognate antigen, and T cell phenotype and persistence. Nat Commun 2025; 16:1402. [PMID: 39915487 PMCID: PMC11802929 DOI: 10.1038/s41467-025-56659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Elucidating the relationships between a class I peptide antigen, a CD8 T cell receptor (TCR) specific to that antigen, and the T cell phenotype that emerges following antigen stimulation, remains a mostly unsolved problem, largely due to the lack of large data sets that can be mined to resolve such relationships. Here, we describe Antigen-TCR Pairing and Multiomic Analysis of T-cells (APMAT), an integrated experimental-computational framework designed for the high-throughput capture and analysis of CD8 T cells, with paired antigen, TCR sequence, and single-cell transcriptome. Starting with 951 putative antigens representing a comprehensive survey of the SARS-CoV-2 viral proteome, we utilize APMAT for the capture and single cell analysis of CD8 T cells from 62 HLA A*02:01 COVID-19 participants. We leverage this comprehensive dataset to integrate with peptide antigen properties, TCR CDR3 sequences, and T cell phenotypes to show that distinct physicochemical features of the antigen-TCR pairs strongly associate with both T cell phenotype and T cell persistence. This analysis suggests that CD8 T cell phenotype following antigen stimulation is at least partially deterministic, rather than the result of stochastic biological properties.
Collapse
Affiliation(s)
- Jingyi Xie
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Daniel G Chen
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - William Chour
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Rachel H Ng
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Rongyu Zhang
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Dan Yuan
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jongchan Choi
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | | | - Brett Smith
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Lesley Jones
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Yusuf Rasheed
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Sarah Li
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Rick Edmark
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Sunga Hong
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Kim M Murray
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jennifer K Logue
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Nicholas M Franko
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | | | - Brian Piening
- Providence Health & Services, Seattle, WA, 99109, USA
| | - Heather Algren
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Julie Wallick
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | | | - Kino Watanabe
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Phil Mease
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Philip D Greenberg
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Helen Chu
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Jason D Goldman
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - James R Heath
- Institute for Systems Biology, Seattle, WA, 98109, USA.
| |
Collapse
|
17
|
Cheng J, Xiao Y, Peng T, Zhang Z, Qin Y, Wang Y, Shi J, Yan J, Zhao Z, Zheng L, He Z, Wang J, Zhang Z, Li C, Zhu H, Jiang P. ETV7 limits the antiviral and antitumor efficacy of CD8 + T cells by diverting their fate toward exhaustion. NATURE CANCER 2025; 6:338-356. [PMID: 39805956 DOI: 10.1038/s43018-024-00892-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Terminal exhaustion is a critical barrier to antitumor immunity. By integrating and analyzing single-cell RNA-sequencing and single-cell assay for transposase-accessible chromatin with sequencing data, we found that ETS variant 7 (ETV7) is indispensable for determining CD8+ T cell fate in tumors. ETV7 introduction drives T cell differentiation from memory to terminal exhaustion, limiting antiviral and antitumor efficacy in male mice. Mechanistically, ETV7 acts as a central transcriptional node by binding to specific memory genes and exhaustion genes and functionally skewing these transcriptional programs toward exhaustion. Clinically, ETV7 expression is negatively correlated with progression and responsiveness to immune checkpoint blockade in various human cancers. ETV7 depletion strongly enhances the antitumor efficacy of CD8+ T cells and engineered chimeric antigen receptor T cells in solid tumors. Thus, these findings demonstrate a decisive role for ETV7 in driving CD8+ T cell terminal exhaustion and reveal that ETV7 may be a promising target and biomarker for improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Cheng
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yifeng Xiao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ting Peng
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zijian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqian Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiangzhou Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Jinxin Yan
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zihao Zhao
- School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Liangtao Zheng
- School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Zhijun He
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zemin Zhang
- School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China.
| | - Cheng Li
- School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China.
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China.
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
18
|
da Graça CG, Sheikh AA, Newman DM, Wen L, Li S, Shen J, Zhang Y, Gabriel SS, Chisanga D, Seow J, Poch A, Rausch L, Nguyen MHT, Singh J, Su CH, Cluse LA, Tsui C, Burn TN, Park SL, Von Scheidt B, Mackay LK, Vasanthakumar A, Bending D, Shi W, Cui W, Schröder J, Johnstone RW, Kallies A, Utzschneider DT. Stem-like memory and precursors of exhausted T cells share a common progenitor defined by ID3 expression. Sci Immunol 2025; 10:eadn1945. [PMID: 39888981 PMCID: PMC7617396 DOI: 10.1126/sciimmunol.adn1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Stem-like T cells are attractive immunotherapeutic targets in patients with cancer given their ability to proliferate and differentiate into effector progeny. Thus, identifying T cells with enhanced stemness and understanding their developmental requirements are of broad clinical and therapeutic interest. Here, we demonstrate that during acute infection, the transcriptional regulator inhibitor of DNA binding 3 (ID3) identifies stem-like T cells that are uniquely adapted to generate precursors of exhausted T (Tpex) cells in response to chronic infection or cancer. Expression of ID3 itself enables Tpex cells to sustain T cell responses in chronic infection or cancer, whereas loss of ID3 results in impaired maintenance of CD8 T cell immunity. Furthermore, we demonstrate that interleukin-1 (IL-1) family members, including IL-36β and IL-18, promote the generation of ID3+ T cells that mediate superior tumor control. Overall, we identify ID3 as a common denominator of stem-like T cells in both acute and chronic infections that is specifically required to sustain T cell responses to chronic stimulation.
Collapse
Affiliation(s)
- Catarina Gago da Graça
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Amania A. Sheikh
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Dane M. Newman
- Cancer Biology and Therapeutics, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Lifen Wen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sining Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jian Shen
- Department of Pathology, Northwestern University, Chicago, IL
| | - Yuqi Zhang
- Department of Pathology, Northwestern University, Chicago, IL
| | - Sarah S. Gabriel
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Justine Seow
- Computational Sciences Initiative (CSI), The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Annika Poch
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Lisa Rausch
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Minh-Hanh T. Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jayendra Singh
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Chun-Hsi Su
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Leonie A. Cluse
- Cancer Biology and Therapeutics, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Carlson Tsui
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Thomas N. Burn
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Simone L. Park
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Bianca Von Scheidt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Laura K. Mackay
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | | | - David Bending
- Department of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, BirminghamB15 2TT, UK
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Weiguo Cui
- Department of Pathology, Northwestern University, Chicago, IL
| | - Jan Schröder
- Computational Sciences Initiative (CSI), The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Ricky W. Johnstone
- Cancer Biology and Therapeutics, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Daniel T. Utzschneider
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Hromić-Jahjefendić A, Aljabali AAA. Analysis of the immune response in COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:31-71. [PMID: 40246347 DOI: 10.1016/bs.pmbts.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The COVID-19 pandemic, instigated by the novel coronavirus SARS-CoV-2, has emerged as a significant global health challenge, demanding a profound grasp of the immune response. The innate immune system, a multifaceted network encompassing pattern recognition receptors (PRRs) and effector cells, assumes a pivotal function in detecting and countering this viral assailant. Toll-like receptors (TLRs), situated on immune cell surfaces and within endosomes, play a central role in recognizing SARS-CoV-2. TLR-2 and TLR-4 discern specific viral constituents, such as the spike (S) protein, setting off inflammatory signaling cascades and catalyzing the generation of type I interferons. Intracellular PRRs, including the RIG-I-like receptors (RLRs), RIG-I and MDA5, detect viral RNA within the cytoplasm of infected cells, provoking antiviral responses by initiating the synthesis of type I interferons. The equilibrium between interferons and pro-inflammatory cytokines dictates the outcomes of the disease. Interferons play an indispensable role in governing viral replication, while unregulated cytokine production can result in tissue harm and inflammation. This intricate dynamic underpins therapeutic strategies aimed at regulating immune responses in individuals grappling with COVID-19. Natural killer (NK) cells, with their capacity to recognize infected cells through the "missing self" phenomenon and activating receptors, make significant contributions to the defense against SARS-CoV-2. NK cells play a pivotal role in eliminating infected cells and boosting immune responses through antibody-dependent cell-mediated cytotoxicity (ADCC). In conclusion, comprehending the interplay among PRRs, interferons, and NK cells within innate immunity is paramount for discerning and combatting SARS-CoV-2. This comprehension illuminates therapeutic interventions and vaccine development, casting light on our endeavors to confront this worldwide health crisis.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| |
Collapse
|
20
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Xie J, Chen DG, Chour W, Ng RH, Zhang R, Yuan D, Choi J, McKasson M, Troisch P, Smith B, Jones L, Webster A, Rasheed Y, Li S, Edmark R, Hong S, Murray KM, Logue JK, Franko NM, Lausted CG, Piening B, Algren H, Wallick J, Magis AT, Watanabe K, Mease P, Greenberg PD, Chu H, Goldman JD, Su Y, Heath JR. APMAT analysis reveals the association between CD8 T cell receptors, cognate antigen, and T cell phenotype and persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631993. [PMID: 39829843 PMCID: PMC11741388 DOI: 10.1101/2025.01.08.631993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Elucidating the relationships between a class I peptide antigen, a CD8 T cell receptor (TCR) specific to that antigen, and the T cell phenotype that emerges following antigen stimulation, remains a mostly unsolved problem, largely due to the lack of large data sets that can be mined to resolve such relationships. Here, we describe Antigen-TCR Pairing and Multiomic Analysis of T-cells (APMAT), an integrated experimental-computational framework designed for the high-throughput capture and analysis of CD8 T cells, with paired antigen, TCR sequence, and single-cell transcriptome. Starting with 951 putative antigens representing a comprehensive survey of the SARS-CoV-2 viral proteome, we utilize APMAT for the capture and single cell analysis of CD8 T cells from 62 HLA A*02:01 COVID-19 participants. We leverage this unique, comprehensive dataset to integrate with peptide antigen properties, TCR CDR3 sequences, and T cell phenotypes to show that distinct physicochemical features of the antigen-TCR pairs strongly associate with both T cell phenotype and T cell persistence. This analysis suggests that CD8+ T cell phenotype following antigen stimulation is at least partially deterministic, rather than the result of stochastic biological properties.
Collapse
Affiliation(s)
- Jingyi Xie
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Daniel G. Chen
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - William Chour
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Rachel H. Ng
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Rongyu Zhang
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Dan Yuan
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jongchan Choi
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | | | | | - Brett Smith
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Lesley Jones
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | | | - Yusuf Rasheed
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Sarah Li
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Rick Edmark
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Sunga Hong
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Kim M. Murray
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Jennifer K. Logue
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Nicholas M. Franko
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | | | - Brian Piening
- Providence Health & Services, Seattle, WA, 99109, USA
| | - Heather Algren
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Julie Wallick
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | | | - Kino Watanabe
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Phil Mease
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Philip D. Greenberg
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Helen Chu
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Jason D. Goldman
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Providence Health & Services, Seattle, WA, 99109, USA
- Providence Swedish Medical Center, Seattle, WA, 98122, USA
| | - Yapeng Su
- Institute of Systems Biology, Seattle, WA, 98109, USA
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- These authors jointly-supervised the work
| | - James R. Heath
- Institute of Systems Biology, Seattle, WA, 98109, USA
- These authors jointly-supervised the work
- Corresponding author, Leading contact
| |
Collapse
|
22
|
Long H, Tai Y, Fan J, Ou X, Yan L, Fan Y, Feng W, Chen J, Li Y. Characteristics of peripheral lymphocyte subsets and antibodies in COVID-19-infected kidney transplantation recipients. Int Immunopharmacol 2025; 145:113755. [PMID: 39672021 DOI: 10.1016/j.intimp.2024.113755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Peripheral lymphocyte subsets play vital roles in various disease conditions. However, the roles of kidney transplant recipients (KTRs) with novel coronavirus pneumonia (COVID-19) are still unclear. In this research, we investigated the predictive value of peripheral blood lymphocyte subsets on the severity of KTRs with COVID-19 and the correlation between antibodies and lymphocyte levels. METHODS 84 patients with kidney transplantation combined with COVID-19 admitted from December 2022 to February 2023 were included. On the basis of the severity of COVID-19, they were categorized into a mild (n = 49) and a severe group (n = 35). The logistic regression method was utilized to build the critical risk prediction model for KTRs complicated with COVID-19. The receiver operator characteristic curve (ROC), calibration plot and clinical decision curve analysis (DCA) were applied to assess the discrimination, calibration and clinical application value of this model. The Spearman correlation test was applied to examine the connection between antibodies and various immune indexes. RESULTS Except for the increase of CD4+HLA-DR+ T cells, the number of CD3+, CD4+, and CD8+ T cell subsets in severe was lower than that in mild (P < 0.05). IL-6 in severe was higher than mild (P < 0.05). After screening variables, we established a regression equation prediction model, logit (P) = 4.965+ (-0.038) × (CD3+/lymphocytes (%)) + 0.064× (CD4+HLA-DR+/ CD4+ T cells (%)) + (-0.040) × (CD14+HLA-DR+/monocytes (%)). The area under the ROC curve (AUC) of the prediction model was 0.779 (95 % CI 0.679-0.879, P = 0.001). The cut-off value was 0.308, with a prediction sensitivity of 0.829 (95 % CI 0.657-0.928) and a specificity of 0.653 (95 % CI 0.503-0.779). Logistic regression analysis showed the increase in the percentage of CD4+HLA-DR+ T cells among CD4+ T cells was a risk factor for COVID-19 severity among kidney transplant recipients, while the increase in the percentage of CD3+ T cells among lymphocytes and CD14+HLA-DR+ monocytes among CD14+ monocytes acted as protective factors. COVID-19 antibodies were negatively correlated with CD8+CD45RA+CD27- (Terminally Differentiated Effector Memory T Cells, TEMRA), CD8+CD28-, CD8+CD38+ and CD4+CD38+ T cells, while positively correlated with CD8+CD45RA-CD27- (Effector Memory T cells, T8EM), CD8+CD45RA-CD27+ (Central Memory T cells, T8CM) and CD8+CD28+ T cells. CONCLUSION A predictive model was developed and validated for predicting the severe form of COVID-19 in KTRs. The model showed good predictive ability, concordance, and potential clinical utility.
Collapse
Affiliation(s)
- Honghui Long
- Department of Transfusion Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jiwen Fan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiaoqi Ou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu Fan
- Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Weihua Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
23
|
Pichler AS, Amador C, Fujimoto A, Takeuchi K, de Jong D, Iqbal J, Staber PB. Advances in peripheral T cell lymphomas: pathogenesis, genetic landscapes and emerging therapeutic targets. Histopathology 2025; 86:119-133. [PMID: 39679758 DOI: 10.1111/his.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Peripheral T cell lymphomas (PTCLs) are a biologically diverse and aggressive group of non-Hodgkin lymphomas that originate from mature T cells, often presenting with complex clinical and morphological features. This review explores the challenges in diagnosing and classifying PTCLs, focusing on the intricate biology of the more common nodal entities. Advances in molecular diagnostics, such as mutational and gene expression profiling, have improved our understanding. However, the rarity and morphological variability of PTCLs continue to complicate the definition of biologically and clinically meaningful entities, as well as the application of current diagnoses in daily practice; these advancements have not yet translated into improved clinical outcomes. Standard therapies fail in most cases and lead to poor prognoses, highlighting the urgent need for improved therapeutic strategies. Precise characterisation of PTCL advances refined classification and supports the development of more targeted and effective treatments. Recent approaches have focused on biology-based risk stratification, either within specific entities or in an entity-agnostic manner. This development aims for improved treatment selection or even personalised treatment based on genetic, epigenetic and functional profiles.
Collapse
Affiliation(s)
- Alexander S Pichler
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Catalina Amador
- Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida, USA
| | - Ayumi Fujimoto
- Division of Pathology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Daphne de Jong
- Department of Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Javeed Iqbal
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Li W, Liu H, Gao L, Hu Y, Zhang A, Li W, Liu G, Bai W, Xu Y, Xiao C, Deng J, Lei W, Chen G. In-depth human immune cellular profiling from newborn to frail. J Leukoc Biol 2024; 117:qiae046. [PMID: 38447557 DOI: 10.1093/jleuko/qiae046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Immune functional decline and remodeling accompany aging and frailty. It is still largely unknown how changes in the immune cellular composition differentiate healthy individuals from those who become frail at a relatively early age. Our aim in this exploratory study was to investigate immunological changes from newborn to frailty and the association between health statute and various immune cell subtypes. The participants analyzed in this study covered human cord blood cells and peripheral blood cells collected from young adults and healthy and frail old individuals. A total of 30 immune cell subsets were performed by flow cytometry based on the surface markers of immune cells. Furthermore, frailty was investigated for its relations with various leukocyte subpopulations. Frail individuals exhibited a higher CD4/CD8 ratio; a higher proportion of CD4+ central memory T cells, CD8+ effector memory T cells, CD27- switched memory B (BSM) cells, CD27+ BSM cells, age-associated B cells, and CD38-CD24- B cells; and a lower proportion of naïve CD8+ T cells and progenitor B cells. The frailty index score was found to be associated with naïve T cells, CD4/CD8 ratio, age-associated B cells, CD27- BSM cells, and CD4+ central memory T cells. Our findings conducted a relatively comprehensive and extensive atlas of age- and frailty-related changes in peripheral leukocyte subpopulations from newborn to frailty. The immune phenotypes identified in this study can contribute to a deeper understanding of immunosenescence in frailty and may provide a rationale for future interventions and diagnosis.
Collapse
Affiliation(s)
- Wangchun Li
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Hangyu Liu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Lijuan Gao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yang Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, No.17, Meidong Road, Yuexiu District, Guangzhou 510632, China
| | - Anna Zhang
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Wenfeng Li
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Guolong Liu
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, No.1, Panfu Road, Yuexiu District, Guangzhou 510180, China
| | - Weibin Bai
- Department of Food Science and Engineering, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Institute of Food Safety and Nutrition, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yudai Xu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Chanchan Xiao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Jieping Deng
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Wen Lei
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, No.466, Xingang Middle Road, Haizhu District, Guangzhou 510632, China
| | - Guobing Chen
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, Jinan University, Ministry of Education, No.601, West Huangpu Avenue, Tianhe District, Guangzhou, 510632, China
| |
Collapse
|
25
|
Migliore L, Cianfanelli V, Zevolini F, Gesualdo M, Marzuoli L, Patrussi L, Ulivieri C, Marotta G, Cecconi F, Finetti F, Baldari CT. An AMBRA1, ULK1 and PP2A regulatory network regulates cytotoxic T cell differentiation via TFEB activation. Sci Rep 2024; 14:31838. [PMID: 39738384 PMCID: PMC11685475 DOI: 10.1038/s41598-024-82957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
The scaffold protein AMBRA1, which participates in the autophagy pathway, also promotes CD4+ T cell differentiation to Tregs independent of autophagy through its interactor PP2A. Here we have investigated the role of AMBRA1 in CD8+ T cell differentiation to cytotoxic T cells (CTL). AMBRA1 depletion in CD8+ T cells was associated with impaired expression of the transcription factors RUNX3 and T-BET that drive CTL differentiation and resulted in impaired acquisition of cytotoxic potential. These effects were recapitulated by pharmacological inhibition of the AMBRA1 activator ULK1 or its interactor PP2A. Based on the ability of PP2A to activate TFEB, we hypothesized a role for TFEB in the CTL differentiation program regulated by AMBRA1. We show that TFEB modulates RUNX3 and T-BET expression and the generation of killing-competent CTLs, and that AMBRA1 depletion, or ULK1 or PP2A inhibition, suppresses TFEB activity. These data highlight a role for AMBRA1, ULK1 and PP2A in CTL generation, mediated by TFEB, which we identify as a new pioneering transcription factor in the CTL differentiation program.
Collapse
Affiliation(s)
- Loredana Migliore
- Department of Life Sciences, University of Siena, Siena, Italy
- Department of Science, University "ROMA TRE", Rome, Italy
| | - Valentina Cianfanelli
- Department of Woman and Child Health and Public Health, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Science, University "ROMA TRE", Rome, Italy
| | | | - Monica Gesualdo
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | | | - Francesco Cecconi
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark
| | | | | |
Collapse
|
26
|
Hosseininejad-Chafi M, Eftekhari Z, Oghalaie A, Behdani M, Sotoudeh N, Kazemi-Lomedasht F. Nanobodies as innovative immune checkpoint modulators: advancing cancer immunotherapy. Med Oncol 2024; 42:36. [PMID: 39719469 DOI: 10.1007/s12032-024-02588-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection. Traditional antibodies, such as IgGs, have been widely used in immune therapies but are limited by their size and complexity. Nanobodies (Nbs), derived from camelid heavy-chain-only antibodies, offer a promising alternative. These small, stable antibody fragments retain the antigen-binding specificity of traditional antibodies but have enhanced solubility and the ability to target otherwise inaccessible epitopes. This review explores the use of Nbs as ICIs, emphasizing their potential in cancer immunotherapy and other immune-related treatments. Their unique structural properties and small size make Nbs highly effective tools for modulating immune responses, representing a novel approach in the evolving landscape of checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Mohammad Hosseininejad-Chafi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Nazli Sotoudeh
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
27
|
Zou Y, Luo J, Chen L, Wang X, Liu W, Wang RH, Li SC. Identifying T-cell clubs by embracing the local harmony between TCR and gene expressions. Mol Syst Biol 2024; 20:1329-1345. [PMID: 39496799 PMCID: PMC11612385 DOI: 10.1038/s44320-024-00070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
T cell receptors (TCR) and gene expression provide two complementary and essential aspects in T cell understanding, yet their diversity presents challenges in integrative analysis. We introduce TCRclub, a novel method integrating single-cell RNA sequencing data and single-cell TCR sequencing data using local harmony to identify functionally similar T cell groups, termed 'clubs'. We applied TCRclub to 298,106 T cells across seven datasets encompassing various diseases. First, TCRclub outperforms the state-of-the-art methods in clustering T cells on a dataset with over 400 verified peptide-major histocompatibility complex categories. Second, TCRclub reveals a transition from activated to exhausted T cells in cholangiocarcinoma patients. Third, TCRclub discovered the pathways that could intervene in response to anti-PD-1 therapy for patients with basal cell carcinoma by analyzing the pre-treatment and post-treatment samples. Furthermore, TCRclub unveiled different T-cell responses and gene patterns at different severity levels in patients with COVID-19. Hence, TCRclub aids in developing more effective immunotherapeutic strategies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Yiping Zou
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jiaqi Luo
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xueying Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong (Dongguan), Dongguan, China
| | - Wei Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Ruo Han Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
28
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
29
|
Iqbal J, Inghirami G, Chan WC. New insights into the biology of T-cell lymphomas. Blood 2024; 144:1873-1886. [PMID: 39213420 PMCID: PMC11551850 DOI: 10.1182/blood.2023021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Peripheral T-cell lymphomas (PTCLs) encompass a heterogeneous group of postthymic T-cell lymphomas with >30 distinct subtypes associated with varied clinicopathological features. Unfortunately, the overall survival of the major PTCL subtypes is dismal and has not improved for decades; thus, there is an urgent unmet clinical need to improve diagnosis, therapies, and clinical outcomes. The diagnosis is often challenging, requiring a combinatorial evaluation of clinical, morphologic, and immunophenotypic features. PTCL pathobiology is difficult to investigate due to enormous intertumor and intratumor heterogeneity, limited tissue availability, and the paucity of authentic T-cell lymphoma cell lines or genetically faithful animal models. The application of transcriptomic profiling and genomic sequencing has markedly accelerated the discovery of new biomarkers, molecular signatures, and genetic lesions, and some of the discoveries have been included in the revised World Health Organization or International Consensus Classification. Genome-wide investigations have revealed the mutational landscape and transcriptomic profiles of PTCL entities, defined the cell of origin as a major determinant of T-cell lymphoma biology, and allowed for the refinement of biologically and clinically meaningful entities for precision therapy. In this review, we prioritize the discussion on common nodal PTCL subtypes together with 2 virus-associated T-cell and natural killer cell lymphomas. We succinctly review normal T-cell development, differentiation, and T-cell receptor signaling as they relate to PTCL pathogenesis and biology. This review will facilitate a better biological understanding of the different PTCL entities and their stratification for additional studies and target-directed clinical trials.
Collapse
Affiliation(s)
- Javeed Iqbal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
30
|
Zhou Z, Zheng J, Lu Y, Mai Z, Lin Y, Lin P, Zheng Y, Chen X, Xu R, Zhao X, Cui L. Optimizing CD8 + T cell-based immunotherapy via metabolic interventions: a comprehensive review of intrinsic and extrinsic modulators. Exp Hematol Oncol 2024; 13:103. [PMID: 39438986 PMCID: PMC11495118 DOI: 10.1186/s40164-024-00575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
CD8+ T cells are integral to the effective management of cancer and infectious diseases due to their cytotoxic functions. The efficacy of these cells is profoundly influenced by their metabolic state, which regulates their activation, differentiation, and longevity. Accordingly, the modulation of metabolic pathways within CD8+ T cells is crucial for enhancing the effectiveness of T cell-based immunotherapy. Precise metabolic control is paramount in optimizing therapeutic outcomes and minimizing potential toxicities associated with treatment. Importantly, the potential of exogenous metabolites to augment CD8+ T cell responses is critically evaluated, especially through in vivo evidence that underscores their therapeutic promise. This review also addresses current challenges, including the need for precise control of metabolic modulation to avoid adverse effects, the development of targeted delivery systems to ensure efficient metabolite delivery to CD8+ T cells, and the inherent variability of metabolic states among patients that may influence treatment outcomes. Addressing these hurdles will be crucial for the successful integration of metabolic interventions into established immunotherapeutic regimens.
Collapse
Affiliation(s)
- Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
31
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
32
|
Fu Y, Zhang Y, Zhang Y, Li R, Yang M, Bai T, Zheng X, Huang D, Zhang M, Tu K, Xu Q, Liu X. Nanoreactors with Cascade Catalytic Activity Reprogram the Tumor Microenvironment for Enhanced Immunotherapy by Synchronously Regulating Treg and Macrophage Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49053-49068. [PMID: 39241037 DOI: 10.1021/acsami.4c09830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Immunotherapy has been extensively utilized and studied as a prominent therapeutic strategy for tumors. However, the presence of a hypoxic immunosuppressive tumor microenvironment significantly reduces the efficacy of the treatment, thus impeding its application. In addition, the hypoxic microenvironment can also lead to the enrichment of immunosuppressive cells and reduce the effectiveness of tumor immunotherapy; nanoparticles with biocatalytic activity have the ability to relieve hypoxia in tumor tissues and deliver drugs to target cells and have been widely concerned and applied in the field of tumor therapy. The present study involved the development of a dual nanodelivery system that effectively targets the immune system to modify the tumor microenvironment (TME). The nanodelivery system was developed by incorporating R848 and Imatinib (IMT) into Pt nanozyme loaded hollow polydopamine (P@HP) nanocarriers. Subsequently, their surface was modified with specifically targeted peptides that bind to M2-like macrophages and regulatory T (Treg) cells, thereby facilitating the precise targeting of these cells. When introduced into the tumor model, the nanocarriers were able to selectively target immune cells in tumor tissue, causing M2-type macrophages to change into the M1 phenotype and reducing Treg activation within the tumor microenvironment. In addition, the carriers demonstrated exceptional biocatalytic activity, effectively converting H2O2 into oxygen and water at the tumor site while the drug was active, thereby alleviating the hypoxic inhibitory conditions present in the tumor microenvironment. Additionally, this further enhanced the infiltration of M1-type macrophages and cytotoxic T lymphocytes. Moreover, when used in conjunction with immune checkpoint therapy, the proposed approach demonstrated enhanced antitumor immunotherapeutic effects. The bimodal targeted immunotherapeutic strategy developed in the present study overcomes the drawbacks of traditional immunotherapy approaches while offering novel avenues for the treatment of cancer.
Collapse
Affiliation(s)
- Yuhan Fu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Runqing Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mei Yang
- Key Laboratory of Enhanced Recovery after Surgery of Intergrated Chinese and Western Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ting Bai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| | - Dongsheng Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xin Liu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
33
|
Buquicchio FA, Fonseca R, Yan PK, Wang F, Evrard M, Obers A, Gutierrez JC, Raposo CJ, Belk JA, Daniel B, Zareie P, Yost KE, Qi Y, Yin Y, Nico KF, Tierney FM, Howitt MR, Lareau CA, Satpathy AT, Mackay LK. Distinct epigenomic landscapes underlie tissue-specific memory T cell differentiation. Immunity 2024; 57:2202-2215.e6. [PMID: 39043184 DOI: 10.1016/j.immuni.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
The memory CD8+ T cell pool contains phenotypically and transcriptionally heterogeneous subsets with specialized functions and recirculation patterns. Here, we examined the epigenetic landscape of CD8+ T cells isolated from seven non-lymphoid organs across four distinct infection models, alongside their circulating T cell counterparts. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we found that tissue-resident memory T (TRM) cells and circulating memory T (TCIRC) cells develop along distinct epigenetic trajectories. We identified organ-specific transcriptional regulators of TRM cell development, including FOSB, FOS, FOSL1, and BACH2, and defined an epigenetic signature common to TRM cells across organs. Finally, we found that although terminal TEX cells share accessible regulatory elements with TRM cells, they are defined by TEX-specific epigenetic features absent from TRM cells. Together, this comprehensive data resource shows that TRM cell development is accompanied by dynamic transcriptome alterations and chromatin accessibility changes that direct tissue-adapted and functionally distinct T cell states.
Collapse
Affiliation(s)
- Frank A Buquicchio
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Raissa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Patrick K Yan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Fangyi Wang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jacob C Gutierrez
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Colin J Raposo
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Pirooz Zareie
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kathryn E Yost
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Katherine F Nico
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Flora M Tierney
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Michael R Howitt
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA 94129, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA 94129, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
34
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
35
|
Arnold F, Kupferschmid L, Weissenborn P, Heldmann L, Hummel JF, Zareba P, Sagar, Rogg M, Schell C, Tanriver Y. Tissue-resident memory T cells break tolerance to renal autoantigens and orchestrate immune-mediated nephritis. Cell Mol Immunol 2024; 21:1066-1081. [PMID: 38961265 PMCID: PMC11364874 DOI: 10.1038/s41423-024-01197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
Immune-mediated nephritis is a leading cause of acute kidney injury and chronic kidney disease. While the role of B cells and antibodies has been extensively investigated in the past, the advent of immune-checkpoint inhibitors has led to a reappraisal of the role of T cells in renal immunology. However, it remains elusive how T cells with specificity for renal autoantigens are activated and participate in immune-mediated nephritis. Here, we followed the fate and function of pathogen-activated autoreactive CD8 T cells that are specific for a renal autoantigen. We demonstrate that recently activated splenic CD8 T cells developed a hybrid phenotype in the context of renal autoantigen cross-presentation, combining hallmarks of activation and T cell dysfunction. While circulating memory T cells rapidly disappeared, tissue-resident memory T cells emerged and persisted within the kidney, orchestrating immune-mediated nephritis. Notably, T cells infiltrating kidneys of patients with interstitial nephritis also expressed key markers of tissue residency. This study unveils how a tissue-specific immune response can dissociate from its systemic counterpart driving a compartmentalized immune response in the kidneys of mice and man. Consequently, targeting tissue-resident memory T cells emerges as a promising strategy to control immune-mediated kidney disease.
Collapse
Affiliation(s)
- Frederic Arnold
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laurence Kupferschmid
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Weissenborn
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Heldmann
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas F Hummel
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paulina Zareba
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Isaacs JF, Degefu HN, Chen T, Kleist SA, Musial SC, Ford MA, Searles TG, Lin CC, Skorput AGJ, Shirai K, Turk MJ, Zanazzi GJ, Rosato PC. CD39 Is Expressed on Functional Effector and Tissue-resident Memory CD8+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:588-599. [PMID: 38975728 PMCID: PMC11333163 DOI: 10.4049/jimmunol.2400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
The ecto-ATPase CD39 is expressed on exhausted CD8+ T cells in chronic viral infection and has been proposed as a marker of tumor-specific CD8+ T cells in cancer, but the role of CD39 in an effector and memory T cell response has not been clearly defined. We report that CD39 is expressed on Ag-specific CD8+ short-lived effector cells, while it's co-ectoenzyme, CD73, is found on memory precursor effector cells (MPECs) in vivo. Inhibition of CD39 enzymatic activity during in vitro T cell priming enhances MPEC differentiation in vivo after transfer and infection. The enriched MPEC phenotype is associated with enhanced tissue resident memory T cell (TRM cell) establishment in the brain and salivary gland following an acute intranasal viral infection, suggesting that CD39 ATPase activity plays a role in memory CD8+ T cell differentiation. We also show that CD39 is expressed on human and murine TRM cells across several nonlymphoid tissues and melanoma, whereas CD73 is expressed on both circulating and resident memory subsets in mice. In contrast to exhausted CD39+ T cells in chronic infection, CD39+ TRM cells are fully functional when stimulated ex vivo with cognate Ag, further expanding the identity of CD39 beyond a T cell exhaustion marker.
Collapse
Affiliation(s)
- Jordan F. Isaacs
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Hanna N. Degefu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Tiffany Chen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Sierra A. Kleist
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Shawn C. Musial
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Myles A. Ford
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Tyler G. Searles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon NH, USA
| | | | - Keisuke Shirai
- Department of Medicine, Dartmouth Health, Lebanon NH, USA
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - George J. Zanazzi
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon NH, USA
| | - Pamela C. Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
37
|
Garcia Castillo J, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry method pairing T cell receptor and differentiation state analysis. Nat Immunol 2024; 25:1754-1763. [PMID: 39191945 DOI: 10.1038/s41590-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
T cell antigen receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we present a mass cytometric (CyTOF) approach to track T cell responses by combining antibodies for specific TCR Vα and Vβ chains with antibodies against T cell activation and differentiation proteins in mice. This strategy identifies expansions of CD8+ and CD4+ T cells expressing specific Vβ and Vα chains with varying differentiation states in response to Listeria monocytogenes, tumors and respiratory influenza infection. Expanded T cell populations expressing Vβ chains could be directly linked to the recognition of specific antigens from Listeria, tumor cells or influenza. In the setting of influenza infection, we found that common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the TCR diversity and differentiation state of responding T cells. Thus, we present a method to monitor broad changes in TCR use paired with T cell phenotyping during adaptive immune responses.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Mice
- Listeria monocytogenes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Listeriosis/immunology
- Flow Cytometry/methods
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Lymphocyte Activation/immunology
- CD4-Positive T-Lymphocytes/immunology
- Adaptive Immunity
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
38
|
Layug PJ, Vats H, Kannan K, Arsenio J. Sex differences in CD8 + T cell responses during adaptive immunity. WIREs Mech Dis 2024; 16:e1645. [PMID: 38581141 DOI: 10.1002/wsbm.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Biological sex is an important variable that influences the immune system's susceptibility to infectious and non-infectious diseases and their outcomes. Sex dimorphic features in innate and adaptive immune cells and their activities may help to explain sex differences in immune responses. T lymphocytes in the adaptive immune system are essential to providing protection against infectious and chronic inflammatory diseases. In this review, T cell responses are discussed with focus on the current knowledge of biological sex differences in CD8+ T cell mediated adaptive immune responses in infectious and chronic inflammatory diseases. Future directions aimed at investigating the molecular and cellular mechanisms underlying sex differences in diverse T cell responses will continue to underscore the significance of understanding sex differences in protective immunity at the cellular level, to induce appropriate T cell-based immune responses in infection, autoimmunity, and cancer. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Paul Jerard Layug
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
| | - Harman Vats
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kamali Kannan
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Janilyn Arsenio
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
39
|
Kong C, Yang M, Yue N, Zhang Y, Tian C, Wei D, Shi R, Yao J, Wang L, Li D. Restore Intestinal Barrier Integrity: An Approach for Inflammatory Bowel Disease Therapy. J Inflamm Res 2024; 17:5389-5413. [PMID: 39161679 PMCID: PMC11330754 DOI: 10.2147/jir.s470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The intestinal barrier maintained by various types of columnar epithelial cells, plays a crucial role in regulating the interactions between the intestinal contents (such as the intestinal microbiota), the immune system, and other components. Dysfunction of the intestinal mucosa is a significant pathophysiological mechanism and clinical manifestation of inflammatory bowel disease (IBD). However, current therapies for IBD primarily focus on suppressing inflammation, and no disease-modifying treatments specifically target the epithelial barrier. Given the side effects associated with chronic immunotherapy, effective alternative therapies that promote mucosal healing are highly attractive. In this review, we examined the function of intestinal epithelial barrier function and the mechanisms of behind its disruption in IBD. We illustrated the complex process of intestinal mucosal healing and proposed therapeutic approaches to promote mucosal healing strategies in IBD. These included the application of stem cell transplantation and organ-like tissue engineering approaches to generate new intestinal tissue. Finally, we discussed potential strategies to restore the function of the intestinal barrier as a treatment for IBD.
Collapse
Affiliation(s)
- Chen Kong
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Meifeng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Daoru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ruiyue Shi
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Jun Yao
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Lisheng Wang
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Defeng Li
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
40
|
Vanamudhu A, Devi Arumugam R, Nancy A, Selvaraj N, Moiden K, Hissar S, Ranganathan UD, Bethunaickan R, Babu S, Kumar NP. Elucidating the Immune Response to SARS-CoV-2: Natural Infection versus Covaxin/Covishield Vaccination in a South Indian Population. Viruses 2024; 16:1178. [PMID: 39205152 PMCID: PMC11360806 DOI: 10.3390/v16081178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
A natural infection or a vaccination can initially prime the immune system to form immunological memory. The immunity engendered by vaccination against COVID-19 versus natural infection with SARS-CoV-2 has not been well studied in the Indian population. In this study, we compared the immunity conferred by COVID-19 vaccines to naturally acquired immunity to SARS-CoV-2 in a South Indian population. We examined binding and neutralizing antibody (NAb) levels against the ancestral and variant lineages and assessed the ex vivo cellular parameters of memory T cells, memory B cells, and monocytes and finally measured the circulating cytokine response. COVID-19 vaccination stimulates heightened levels of IgG antibodies against the original strain of SARS-CoV-2, as well as increased binding to the spike protein and neutralizing antibody levels. This enhanced response extends to variant lineages such as B.1.617.2 (Delta, India), B.1.1.529 (Omicron, India), B.1.351 (Beta, South Africa), and B.1.1.7 (Alpha, UK). COVID-19 vaccination differs from SARS-CoV-2 infection by having increased frequencies of classical memory B cells, activated memory B and plasma cells, CD4/CD8 T cells of effector memory, effector cells, stem cell-like memory T cells, and classical and intermediate monocytes and diminished frequencies of CD4/CD8 T cells of central memory and non-classical monocytes in vaccinated individuals in comparison to those with natural infection. Thus, COVID-19 vaccination is characterized by enhanced humoral responses and robust activation of innate and memory T cell responses in comparison to natural infection in a South Indian population.
Collapse
Affiliation(s)
- Agalya Vanamudhu
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Renuka Devi Arumugam
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Arul Nancy
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai 600031, India
| | - Nandhini Selvaraj
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai 600031, India
| | - Kadar Moiden
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai 600031, India
| | - Syed Hissar
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Uma Devi Ranganathan
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Ramalingam Bethunaickan
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Subash Babu
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai 600031, India
| | - Nathella Pavan Kumar
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| |
Collapse
|
41
|
Xu P, Gu Y, Li C, Shen J, Cheng X, Zhang LW, Wang Y, Wang Y. Radioactive Hydroxyapatite Microspheres Empower Sustainable In Situ Tumor Vaccination. ACS NANO 2024; 18:18425-18443. [PMID: 38975713 DOI: 10.1021/acsnano.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Tumor in situ vaccination (ISV) strategies have emerged in clinical trials as promising approaches, involving the release of tumor antigens through local radiotherapy and intratumorally adjuvant injections. However, the current fabrication strategy for achieving a sustainable immune response to ISV remains a pressing challenge. In this study, we present an empowered sustainable ISV method for antitumor therapy using 177Lu-labeled manganese-doped mesoporous hydroxyapatite (177Lu/Mn-HAP) microspheres. The ISV enables the sustained utilization of tumor antigens, leading to the activation of dendritic cells and polarization of macrophages toward the M1 subtype. Consequently, it facilitates the generation of potent CD8+ T-cell responses, enhancing the antitumor effects of internal radiation in both primary and distant tumors. Importantly, this approach achieves complete remission in all tumor-bearing mice and stimulates immune memory to prevent tumor recurrence. Our study highlights a universal and safe ISV strategy capable of inducing potent tumor-specific and sustainable immune response.
Collapse
Affiliation(s)
- Pei Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chenze Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiahao Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| |
Collapse
|
42
|
Huang F, Lin Y, Qiao Y, Yuan Y, Zhong Z, Luo B, Wu Y, Liu J, Chen J, Zhang W, Zhang H, Liu B. BRD7 as key factor in PBAF complex assembly and CD8+ T cell differentiation. JCI Insight 2024; 9:e171605. [PMID: 38954484 PMCID: PMC11383612 DOI: 10.1172/jci.insight.171605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Upon infection, naive CD8+ T cells differentiate into cytotoxic effector cells to eliminate the pathogen-infected cells. Although many mechanisms underlying this process have been demonstrated, the regulatory role of chromatin remodeling system in this process remains largely unknown. Here we show that BRD7, a component of the polybromo-associated BAF complex (PBAF), was required for naive CD8+ T cells to differentiate into functional short-lived effector cells (SLECs) in response to acute infections caused by influenza virus or lymphocytic choriomeningitis virus (LCMV). BRD7 deficiency in CD8+ T cells resulted in profound defects in effector population and functions, thereby impairing viral clearance and host recovery. Further mechanical studies indicate that the expression of BRD7 significantly turned to high from naive CD8+ T cells to effector cells, which bridged BRG1 and PBRM1 to the core module of PBAF complex, consequently facilitating the assembly of PBAF complex rather than BAF complex in the effector cells. The PBAF complex changed the chromatin accessibility at the loci of Tbx21 gene and upregulated its expression, leading to the maturation of effector T cells. Our research demonstrates that BRD7 and the PBAF complex are key in CD8+ T cell development and present a significant target for advancing immune therapies.
Collapse
Affiliation(s)
- Feng Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yidan Qiao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihan Zhong
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baohong Luo
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yating Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jun Liu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jingliang Chen
- Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wanying Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
44
|
Ni Y, Shi M, Liu L, Lin D, Zeng H, Ong C, Wang Y. G9a in Cancer: Mechanisms, Therapeutic Advancements, and Clinical Implications. Cancers (Basel) 2024; 16:2175. [PMID: 38927881 PMCID: PMC11201431 DOI: 10.3390/cancers16122175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
G9a, also named EHMT2, is a histone 3 lysine 9 (H3K9) methyltransferase responsible for catalyzing H3K9 mono- and dimethylation (H3K9me1 and H3K9me2). G9a contributes to various aspects of embryonic development and tissue differentiation through epigenetic regulation. Furthermore, the aberrant expression of G9a is frequently observed in various tumors, particularly in prostate cancer, where it contributes to cancer pathogenesis and progression. This review highlights the critical role of G9a in multiple cancer-related processes, such as epigenetic dysregulation, tumor suppressor gene silencing, cancer lineage plasticity, hypoxia adaption, and cancer progression. Despite the increased research on G9a in prostate cancer, there are still significant gaps, particularly in understanding its interactions within the tumor microenvironment and its broader epigenetic effects. Furthermore, this review discusses the recent advancements in G9a inhibitors, including the development of dual-target inhibitors that target G9a along with other epigenetic factors such as EZH2 and HDAC. It aims to bring together the existing knowledge, identify gaps in the current research, and suggest future directions for research and treatment strategies.
Collapse
Affiliation(s)
- Yuchao Ni
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mingchen Shi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Liangliang Liu
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Christopher Ong
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
45
|
Ahn T, Bae EA, Seo H. Decoding and overcoming T cell exhaustion: Epigenetic and transcriptional dynamics in CAR-T cells against solid tumors. Mol Ther 2024; 32:1617-1627. [PMID: 38582965 PMCID: PMC11184340 DOI: 10.1016/j.ymthe.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/14/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
T cell exhaustion, which is observed in various chronic infections and malignancies, is characterized by elevated expression of multiple inhibitory receptors, impaired effector functions, decreased proliferation, and reduced cytokine production. Notably, while adoptive T cell therapies, such as chimeric antigen receptor (CAR)-T therapy, have shown promise in treating cancer and other diseases, the efficacy of these therapies is often compromised by T cell exhaustion. It is imperative, therefore, to understand the mechanisms underlying this exhaustion to promote advances in T cell-related therapies. Here, we divided exhausted T cells into three distinct subsets according to their developmental and functional profiles: stem-like progenitor cells, intermediately exhausted cells, and terminally exhausted cells. These subsets are carefully regulated by synergistic mechanisms that involve transcriptional and epigenetic modulators. Key transcription factors, such as TCF1, BACH2, and TOX, are crucial for defining and sustaining exhaustion phenotypes. Concurrently, epigenetic regulators, such as TET2 and DNMT3A, shape the chromatin dynamics that direct T cell fate. The interplay of these molecular drivers has recently been highlighted in CAR-T research, revealing promising therapeutic directions. Thus, a profound understanding of exhausted T cell hierarchies and their molecular complexities may reveal innovative and improved tumor treatment strategies.
Collapse
Affiliation(s)
- Taeyoung Ahn
- Laboratory of Cell & Gene Therapy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
46
|
Fowler EA, Farias Amorim C, Mostacada K, Yan A, Amorim Sacramento L, Stanco RA, Hales ED, Varkey A, Zong W, Wu GD, de Oliveira CI, Collins PL, Novais FO. Neutrophil-mediated hypoxia drives pathogenic CD8+ T cell responses in cutaneous leishmaniasis. J Clin Invest 2024; 134:e177992. [PMID: 38833303 PMCID: PMC11245163 DOI: 10.1172/jci177992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8+ T cell responses mediate disease. Although these responses originate in the lymph node, we found that expression of the cytolytic effector molecule granzyme B was restricted to lesional CD8+ T cells in Leishmania-infected mice, suggesting that local cues within inflamed skin induced cytolytic function. Expression of Blimp-1 (Prdm1), a transcription factor necessary for cytolytic CD8+ T cell differentiation, was driven by hypoxia within the inflamed skin. Hypoxia was further enhanced by the recruitment of neutrophils that consumed oxygen to produce ROS and ultimately increased the hypoxic state and granzyme B expression in CD8+ T cells. Importantly, lesions from patients with cutaneous leishmaniasis exhibited hypoxia transcription signatures that correlated with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8+ T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as for other inflammatory skin diseases in which cytolytic CD8+ T cells contribute to pathogenesis.
Collapse
Affiliation(s)
- Erin A. Fowler
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Klauss Mostacada
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Allison Yan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Rae A. Stanco
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Emily D.S. Hales
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aditi Varkey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Wenjing Zong
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Camila I. de Oliveira
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Salvador, Brazil
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Fernanda O. Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
47
|
Fang Z, Yan Z, Li Z, Yan C, Jia S, Qiu X, Wang Q, Hou H, Wu Y, Du F, Gong A, Zhang M. Polydopamine nanoparticles cross-linked hyaluronic acid photothermal hydrogel with cascading immunoinducible effects for in situ antitumor vaccination. Int J Biol Macromol 2024; 269:132177. [PMID: 38729484 DOI: 10.1016/j.ijbiomac.2024.132177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Tumor vaccine, which can effectively prevent tumor recurrence and metastasis, is a promising tool in tumor immunotherapy. However, heterogeneity of tumors and the inability to achieve a cascade effect limit the therapeutic effects of most developing tumor vaccine. We have developed a cascading immunoinducible in-situ mannose-functionalized polydopamine loaded with imiquimod phenylboronic hyaluronic acid nanocomposite gel vaccine (M/P-PDA@IQ PHA) through a boronic ester-based reaction. This reaction utilizes mannose-functionalized polydopamine loaded with imiquimod (M/P-PDA@IQ NAs) as a cross-linking agent to react with phenylboronic-grafted hyaluronic acid. Under near-infrared light irradiation, the M/P-PDA@IQ PHA caused local hyperthermia to trigger immunogenic cell death of tumor cells and tumor-associated antigens (TAAs) releasing. Subsequently, the M/P-PDA@IQ NAs which were gradually released by the pH/ROS/GSH-triggered degradation of M/P-PDA@IQ PHA, could capture and deliver these TAAs to lymph nodes. Finally, the M/P-PDA@IQ NAs facilitated maturation and cross-presentation of dendritic cells, as well as activation of cytotoxic T lymphocytes. Overall, the M/P-PDA@IQ PHA could serve as a novel in situ vaccine to stimulate several key nodes including TAAs release and capture, targeting lymph nodes and enhanced dendritic cells uptake and maturation as well as T cells activation. This cascading immune activation strategy can effectively elicit antitumor immune response.
Collapse
Affiliation(s)
- Zhengzou Fang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Zhihui Yan
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huai'an 223002, China
| | - Zhangzuo Li
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Chao Yan
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huai'an 223002, China
| | - Sheng Jia
- Division of Cariology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaonan Qiu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Qingxin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hanjin Hou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yuqing Wu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fengyi Du
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Aihua Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Miaomiao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
48
|
Li B, Zu M, Jiang A, Cao Y, Wu J, Shahbazi MA, Shi X, Reis RL, Kundu SC, Xiao B. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials 2024; 307:122530. [PMID: 38493672 DOI: 10.1016/j.biomaterials.2024.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
The therapeutic efficacy of oral nanotherapeutics against colorectal cancer (CRC) is restricted by inadequate drug accumulation, immunosuppressive microenvironment, and intestinal microbiota imbalance. To overcome these challenges, we elaborately constructed 6-gingerol (Gin)-loaded magnetic mesoporous silicon nanoparticles and functionalized their surface with mulberry leaf-extracted lipids (MLLs) and Pluronic F127 (P127). In vitro experiments revealed that P127 functionalization and alternating magnetic fields (AMFs) promoted internalization of the obtained P127-MLL@Gins by colorectal tumor cells and induced their apoptosis/ferroptosis through Gin/ferrous ion-induced oxidative stress and magneto-thermal effect. After oral administration, P127-MLL@Gins safely passed to the colorectal lumen, infiltrated the mucus barrier, and penetrated into the deep tumors under the influence of AMFs. Subsequently, the P127-MLL@Gin (+ AMF) treatment activated antitumor immunity and suppressed tumor growth. We also found that this therapeutic modality significantly increased the abundance of beneficial bacteria (e.g., Bacillus and unclassified-c-Bacilli), reduced the proportions of harmful bacteria (e.g., Bacteroides and Alloprevotella), and increased lipid oxidation metabolites. Strikingly, checkpoint blockers synergistically improved the therapeutic outcomes of P127-MLL@Gins (+ AMF) against orthotopic and distant colorectal tumors and significantly prolonged mouse life spans. Overall, this oral therapeutic platform is a promising modality for synergistic treatment of CRC.
Collapse
Affiliation(s)
- Baoyi Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Aodi Jiang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yingui Cao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaxue Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
49
|
Ma EH, Dahabieh MS, DeCamp LM, Kaymak I, Kitchen-Goosen SM, Oswald BM, Longo J, Roy DG, Verway MJ, Johnson RM, Samborska B, Duimstra LR, Scullion CA, Steadman M, Vos M, Roddy TP, Krawczyk CM, Williams KS, Sheldon RD, Jones RG. 13C metabolite tracing reveals glutamine and acetate as critical in vivo fuels for CD8 T cells. SCIENCE ADVANCES 2024; 10:eadj1431. [PMID: 38809979 PMCID: PMC11135420 DOI: 10.1126/sciadv.adj1431] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Infusion of 13C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, and acetate) in Listeria monocytogenes-infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis. In addition, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. CD8 Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with CD8 Teff cell function in vivo.
Collapse
Affiliation(s)
- Eric H. Ma
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Lisa M. DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Irem Kaymak
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Susan M. Kitchen-Goosen
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Brandon M. Oswald
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Dominic G. Roy
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Mark J. Verway
- Goodman Cancer Institute, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | | | - Bozena Samborska
- Goodman Cancer Institute, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Lauren R. Duimstra
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Catherine A. Scullion
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Matthew Vos
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelsey S. Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D. Sheldon
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
50
|
Sibal PA, Matsumura S, Ichinose T, Bustos‐Villalobos I, Morimoto D, Eissa IR, Abdelmoneim M, Aboalela MAM, Mukoyama N, Tanaka M, Naoe Y, Kasuya H. STING activator 2'3'-cGAMP enhanced HSV-1-based oncolytic viral therapy. Mol Oncol 2024; 18:1259-1277. [PMID: 38400597 PMCID: PMC11076993 DOI: 10.1002/1878-0261.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Oncolytic viruses (OVs) can selectively replicate in tumor cells and remodel the microenvironment of immunologically cold tumors, making them a promising strategy to evoke antitumor immunity. Similarly, agonists of the stimulator of interferon genes (STING)-interferon (IFN) pathway, the main cellular antiviral system, provide antitumor benefits by inducing the activation of dendritic cells (DC). Considering how the activation of the STING-IFN pathway could potentially inhibit OV replication, the use of STING agonists alongside OV therapy remains largely unexplored. Here, we explored the antitumor efficacy of combining an HSV-1-based OV, C-REV, with a membrane-impermeable STING agonist, 2'3'-GAMP. Our results demonstrated that tumor cells harbor a largely defective STING-IFN pathway, thereby preventing significant antiviral IFN induction regardless of the permeability of the STING agonist. In vivo, the combination therapy induced more proliferative KLRG1-high PD1-low CD8+ T-cells and activated CD103+ DC in the tumor site and increased tumor-specific CD44+ CD8+ T-cells in the lymph node. Overall, the combination therapy of C-REV with 2'3'-cGAMP elicited antitumor immune memory responses and significantly enhanced systemic antitumor immunity in both treated and non-treated distal tumors.
Collapse
Affiliation(s)
- Patricia Angela Sibal
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | - Toru Ichinose
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | | | - Daishi Morimoto
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
| | - Ibrahim R. Eissa
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Faculty of ScienceTanta UniversityEgypt
| | - Mohamed Abdelmoneim
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Department of Microbiology, Faculty of Veterinary MedicineZagazig UniversityEgypt
| | - Mona Alhussein Mostafa Aboalela
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Medical Microbiology and Immunology Department, Faculty of MedicineZagazig UniversityEgypt
| | - Nobuaki Mukoyama
- Department of Otolaryngology Graduate School of MedicineNagoya UniversityJapan
| | | | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| |
Collapse
|