1
|
Lui Y, Ferreira Fernandes J, Vuong MT, Sharma S, Santos AM, Davis SJ. The Structural Biology of T-Cell Antigen Detection at Close Contacts. Immunol Rev 2025; 331:e70014. [PMID: 40181535 PMCID: PMC11969063 DOI: 10.1111/imr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 04/05/2025]
Abstract
T cells physically interrogate their targets using tiny membrane protrusions called microvilli, forming junctions ~400 nm in diameter and ~ 15 nm deep, referred to as "close contacts". These contacts, which are stabilized by the binding of the small adhesion protein CD2 to its ligand, CD58 and locally exclude large proteins such as the phosphatase CD45, are the sites of antigen recognition by the T-cell receptor (TCR) and very early signaling by T cells. With our collaborators, we have characterized the molecular structures of several of the key proteins mediating these early events: i.e., CD2 and its ligands, CD45, the αβ- and γδ-TCRs, and the accessory proteins CD28, CTLA-4, and PD-1. Here, we review our structural work and the insights it offers into the early events underpinning T-cell responsiveness that take place in the confined space of the close contact. We reflect on the crucial roles that the structural organization and dimensions of these proteins are likely to have in determining the sequence of events leading to antigen recognition at close contacts and consider the general implications of the structural work for explanations of how immune receptor signaling is initiated.
Collapse
Affiliation(s)
- Yuan Lui
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - João Ferreira Fernandes
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Mai T. Vuong
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Sumana Sharma
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Ana Mafalda Santos
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Simon J. Davis
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Xu X, Chen H, Ren Z, Xu X, Wu W, Yang H, Wang J, Zhang Y, Zhou Q, Li H, Zhang S, Wang H, Xu C. Phase separation of chimeric antigen receptor promotes immunological synapse maturation and persistent cytotoxicity. Immunity 2024; 57:2755-2771.e8. [PMID: 39609126 DOI: 10.1016/j.immuni.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
Major challenges of chimeric antigen receptor (CAR)-T cell therapy include poor antigen sensitivity and cell persistence. Here, we report a solution to these issues by exploiting CAR phase separation. We found that incorporation of an engineered T cell receptor CD3ε motif, EB6I, into the conventional 28Z or BBZ CAR induced self-phase separation through cation-π interactions. EB6I CAR formed a mature immunological synapse with the CD2 corolla to transduce efficient antigen and costimulatory signaling, although its tonic signaling remained low. Functionally, EB6I CAR-T cells exhibited improved signaling and cytotoxicity against low-antigen tumor cells and persistent tumor-killing function. In multiple primary and relapsed murine tumor models, EB6I CAR-T cells exerted better antitumor functions than conventional CAR-T cells against blood and solid cancers. This study thus unveils a CAR engineering strategy to improve CAR-T cell immunity by leveraging molecular condensation and signaling integration.
Collapse
Affiliation(s)
- Xinyi Xu
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haotian Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhengxu Ren
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Xu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Wei Wu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haochen Yang
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - JinJiao Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yumeng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiuping Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hua Li
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaoqing Zhang
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Chenqi Xu
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Hitomi Y, Ueno K, Aiba Y, Nishida N, Kawai Y, Kawashima M, Khor SS, Takada S, Iwabuchi C, Nagasaki M, Tokunaga K, Nakamura M. rs10924104 in the expression enhancer motif of CD58 confers susceptibility to human autoimmune diseases. Hum Genet 2024; 143:19-33. [PMID: 37994973 DOI: 10.1007/s00439-023-02617-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/28/2023] [Indexed: 11/24/2023]
Abstract
CD58 plays roles in cell adhesion and co-stimulation with antigen presentation from major histocompatibility complex class II on antigen-presenting cells to T-cell antigen receptors on naïve T cells. CD58 reportedly contributes to the development of various human autoimmune diseases. Recently, genome-wide association studies (GWASs) identified CD58 as a susceptibility locus for autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), and primary biliary cholangitis (PBC). However, the primary functional variant and molecular mechanisms of susceptibility to autoimmune diseases in the CD58 locus were not clarified. Here, rs10924104, located in the ZNF35-binding motif within the gene expression regulatory motif, was identified as the primary functional variant for SLE, MS, and PBC among genetic variants showing stronger linkage disequilibrium (LD) with GWAS-lead variants in the CD58 locus. Expression-quantitative trait locus (e-QTL) data for each distinct blood cell type and in vitro functional analysis using the CRISPR/Cas9 system corroborated the functional role of rs10924104 in the upregulation of CD58 transcription by the disease-risk allele. Additionally, the strength of disease susceptibility observed in the CD58 locus could be accounted for by the strength of LD between rs10924104 and each GWAS-lead variant. In conclusion, the present study demonstrated for the first time the existence of a shared autoimmune disease-related primary functional variant (i.e., rs10924104) that regulates the expression of CD58. Clarifying the molecular mechanism of disease susceptibility derived from such a shared genetic background is important for understanding human autoimmune diseases and human immunology.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Nao Nishida
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minae Kawashima
- Database Center for Life Science, Research Organization of Information and Systems, Kashiwa, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sanami Takada
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Chisato Iwabuchi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| |
Collapse
|
4
|
Ho P, Melms JC, Rogava M, Frangieh CJ, Poźniak J, Shah SB, Walsh Z, Kyrysyuk O, Amin AD, Caprio L, Fullerton BT, Soni RK, Ager CR, Biermann J, Wang Y, Khosravi-Maharlooei M, Zanetti G, Mu M, Fatima H, Moore EK, Vasan N, Bakhoum SF, Reiner SL, Bernatchez C, Sykes M, Mace EM, Wucherpfennig KW, Schadendorf D, Bechter O, Shah P, Schwartz GK, Marine JC, Izar B. The CD58-CD2 axis is co-regulated with PD-L1 via CMTM6 and shapes anti-tumor immunity. Cancer Cell 2023; 41:1207-1221.e12. [PMID: 37327789 PMCID: PMC10524902 DOI: 10.1016/j.ccell.2023.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
The cell-autonomous balance of immune-inhibitory and -stimulatory signals is a critical process in cancer immune evasion. Using patient-derived co-cultures, humanized mouse models, and single-cell RNA-sequencing of patient melanomas biopsied before and on immune checkpoint blockade, we find that intact cancer cell-intrinsic expression of CD58 and ligation to CD2 is required for anti-tumor immunity and is predictive of treatment response. Defects in this axis promote immune evasion through diminished T cell activation, impaired intratumoral T cell infiltration and proliferation, and concurrently increased PD-L1 protein stabilization. Through CRISPR-Cas9 and proteomics screens, we identify and validate CMTM6 as critical for CD58 stability and upregulation of PD-L1 upon CD58 loss. Competition between CD58 and PD-L1 for CMTM6 binding determines their rate of endosomal recycling over lysosomal degradation. Overall, we describe an underappreciated yet critical axis of cancer immunity and provide a molecular basis for how cancer cells balance immune inhibitory and stimulatory cues.
Collapse
Affiliation(s)
- Patricia Ho
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Meri Rogava
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Chris J Frangieh
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Klarman Cell Observatory, the Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joanna Poźniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Shivem B Shah
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Zachary Walsh
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Lindsay Caprio
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Benjamin T Fullerton
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY 10032, USA
| | - Casey R Ager
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Jana Biermann
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Yiping Wang
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Giorgia Zanetti
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Michael Mu
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Hijab Fatima
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Emily K Moore
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Rheumatology, Columbia University, New York, NY 10032, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven L Reiner
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Chantale Bernatchez
- Department of Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Emily M Mace
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site, 45147 Essen, Germany
| | | | - Parin Shah
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA
| | - Gary K Schwartz
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Benjamin Izar
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
5
|
Li Y, Moriyama T, Yoshimura S, Zhao X, Li Z, Yang X, Paietta E, Litzow MR, Konopleva M, Yu J, Inaba H, Ribeiro RC, Pui CH, Yang JJ. PAX5 epigenetically orchestrates CD58 transcription and modulates blinatumomab response in acute lymphoblastic leukemia. SCIENCE ADVANCES 2022; 8:eadd6403. [PMID: 36516256 PMCID: PMC9750140 DOI: 10.1126/sciadv.add6403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Blinatumomab is an efficacious immunotherapeutic agent in B cell acute lymphoblastic leukemia (B-ALL). However, the pharmacogenomic basis of leukemia response to blinatumomab is unclear. Using genome-wide CRISPR, we comprehensively identified leukemia intrinsic factors of blinatumomab sensitivity, i.e., the loss of CD58 as a top driver for resistance, in addition to CD19. Screening 1639 transcription factor genes, we then identified PAX5 as the key activator of CD58. ALL with the PAX5 P80R mutation also expressed the lowest level of CD58 among 20 ALL molecular subtypes in 1988 patients. Genome editing confirmed the effects of this mutation on CD58 expression and blinatumomab sensitivity in B-ALL, with validation in patient leukemic blasts. We described a PAX5-driven enhancer at the CD58 locus, which was disrupted by PAX5 P80R, and the loss of CD58 abolished blinatumomab-induced T cell activation with global changes in transcriptomic/epigenomic program. In conclusion, we identified previously unidentified genetic mechanisms of blinatumomab resistance in B-ALL, suggesting strategies for genomics-guided treatment individualization.
Collapse
Affiliation(s)
- Yizhen Li
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Takaya Moriyama
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Satoshi Yoshimura
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xujie Zhao
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhenhua Li
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xu Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Mark R. Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Raul C. Ribeiro
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jun J. Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
6
|
African Swine Fever Vaccinology: The Biological Challenges from Immunological Perspectives. Viruses 2022; 14:v14092021. [PMID: 36146827 PMCID: PMC9505361 DOI: 10.3390/v14092021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
African swine fever virus (ASFV), a nucleocytoplasmic large DNA virus (NCLDV), causes African swine fever (ASF), an acute hemorrhagic disease with mortality rates up to 100% in domestic pigs. ASF is currently epidemic or endemic in many countries and threatening the global swine industry. Extensive ASF vaccine research has been conducted since the 1920s. Like inactivated viruses of other NCLDVs, such as vaccinia virus, inactivated ASFV vaccine candidates did not induce protective immunity. However, inactivated lumpy skin disease virus (poxvirus) vaccines are protective in cattle. Unlike some experimental poxvirus subunit vaccines that induced protection, ASF subunit vaccine candidates implemented with various platforms containing several ASFV structural genes or proteins failed to protect pigs effectively. Only some live attenuated viruses (LAVs) are able to protect pigs with high degrees of efficacy. There are currently several LAV ASF vaccine candidates. Only one commercial LAV vaccine is approved for use in Vietnam. LAVs, as ASF vaccines, have not yet been widely tested. Reports thus far show that the onset and duration of protection induced by the LAVs are late and short, respectively, compared to LAV vaccines for other diseases. In this review, the biological challenges in the development of ASF vaccines, especially subunit platforms, are discussed from immunological perspectives based on several unusual ASFV characteristics shared with HIV and poxviruses. These characteristics, including multiple distinct infectious virions, extremely high glycosylation and low antigen surface density of envelope proteins, immune evasion, and possible apoptotic mimicry, could pose enormous challenges to the development of ASF vaccines, especially subunit platforms designed to induce humoral immunity.
Collapse
|
7
|
Gosmann D, Russelli L, Weber WA, Schwaiger M, Krackhardt AM, D'Alessandria C. Promise and challenges of clinical non-invasive T-cell tracking in the era of cancer immunotherapy. EJNMMI Res 2022; 12:5. [PMID: 35099641 PMCID: PMC8804060 DOI: 10.1186/s13550-022-00877-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
In the last decades, our understanding of the role of the immune system in cancer has significantly improved and led to the discovery of new immunotherapeutic targets and tools, which boosted the advances in cancer immunotherapy to fight a growing number of malignancies. Approved immunotherapeutic approaches are currently mainly based on immune checkpoint inhibitors, antibody-derived targeted therapies, or cell-based immunotherapies. In essence, these therapies induce or enhance the infiltration and function of tumor-reactive T cells within the tumors, ideally resulting in complete tumor eradication. While the clinical application of immunotherapies has shown great promise, these therapies are often accompanied either by a variety of side effects as well as partial or complete unresponsiveness of a number of patients. Since different stages of disease progression elicit different local and systemic immune responses, the ability to longitudinally interrogate the migration and expansion of immune cells, especially T cells, throughout the whole body might greatly facilitate disease characterization and understanding. Furthermore, it can serve as a tool to guide development as well as selection of appropriate treatment regiments. This review provides an overview about a variety of immune-imaging tools available to characterize and study T-cell responses induced by anti-cancer immunotherapy. Moreover, challenges are discussed that must be taken into account and overcome to use immune-imaging tools as predictive and surrogate markers to enhance assessment and successful application of immunotherapies.
Collapse
Affiliation(s)
- Dario Gosmann
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lisa Russelli
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Wolfgang A Weber
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Markus Schwaiger
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Calogero D'Alessandria
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
8
|
Sanchez-Trincado JL, Pelaez-Prestel HF, Lafuente EM, Reche PA. Human Oral Epithelial Cells Suppress T Cell Function via Prostaglandin E2 Secretion. Front Immunol 2022; 12:740613. [PMID: 35126344 PMCID: PMC8807503 DOI: 10.3389/fimmu.2021.740613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The oral mucosa is constantly exposed to a plethora of stimuli including food antigens, commensal microbiota and pathogens, requiring distinct immune responses. We previously reported that human oral epithelial cells (OECs) suppress immune responses to bacteria, using H413 and TR146 OEC lines and primary OECs in co-culture with dendritic cells (DCs) and T cells (OEC-conditioned cells). OECs reduced DCs expression of CD80/CD86 and IL-12/TNFα release and impaired T cell activation. Here, we further evaluated the immunosuppression by these OECs and investigated the underlying mechanisms. OEC-conditioned DCs did not induce CD4 T cell polarization towards Treg, judging by the absence of FoxP3 expression. OECs also repressed T-bet/IFNγ expression in CD4 and CD8 T cells activated by DCs or anti-CD3/CD28 antibodies. This inhibition depended on OEC:T cell ratio and IFNγ repression occurred at the transcriptional level. Time-lapse experiments showed that OECs inhibited early steps of T cell activation, consistent with OECs inability to suppress T cells stimulated with PMA/ionomycin. Blocking CD40/CD40L, CD58/CD2 and PD-L1/PD-1 interactions with specific antibodies did not disrupt T cell suppression by OECs. However, preventing prostaglandin E2 (PGE2) synthesis or blocking PGE2 binding to the cognate EP2/EP4 receptors, restored IFNγ and TNFα production in OEC-conditioned T cells. Finally, treating OECs with poly(I:C), which simulates viral infections, limited T cell suppression. Overall, these results point to an inherent ability of OECs to suppress immune responses, which can nonetheless be eluded when OECs are under direct assault.
Collapse
|
9
|
Mobini S, Chizari M, Mafakher L, Rismani E, Rismani E. Structure-based study of immune receptors as eligible binding targets of coronavirus SARS-CoV-2 spike protein. J Mol Graph Model 2021; 108:107997. [PMID: 34343818 PMCID: PMC8317541 DOI: 10.1016/j.jmgm.2021.107997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
One of the most important challenges in the battle against contagious SARS-CoV-2 is subtle identification of the virus pathogenesis. The broad range of COVID-19 clinical manifestations may indicate diversity of virus-host cells. Amongst key manifestations, especially in severe COVID-19 patients, reduction and/or exhaustion of lymphocytes, monocytes, basophils, and dendritic cells are seen.; therefore, it is required to recognize that how the virus infects the cells. Interestingly, angiotensin-converting enzyme 2 (ACE2) as the well-known receptor of SARS-CoV-2 is low or non-expressed in these cells. Using computational approach, several receptor candidates including leukocyte surface molecules and chemokine receptors that expressed in most lineages of immune cells were evaluated as the feasible receptor of spike receptor-binding domain (RBD) of SARS-CoV-2. The results revealed the higher binding affinity of CD26, CD2, CD56, CD7, CCR9, CD150, CD4, CD50, XCR1 and CD106 compared to ACE2. However, the modes of binding and amino acids involved in the interactions with the RBD domain of spike were various. Overall, the affinity of immune receptor candidates in binding to SARS-CoV-2 RBD may offer insight into the recognition of novel therapeutic targets in association with COVID-19.
Collapse
Affiliation(s)
- Saeed Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Chizari
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Elmira Rismani
- Payam Noor University, Biology Department, Tehran, Iran.
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Lankipalli S, H S MS, Selvam D, Samanta D, Nair D, Ramagopal UA. Cryptic association of B7-2 molecules and its implication for clustering. Protein Sci 2021; 30:1958-1973. [PMID: 34191384 PMCID: PMC8376414 DOI: 10.1002/pro.4151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
T-cell co-stimulation through CD28/CTLA4:B7-1/B7-2 axis is one of the extensively studied pathways that resulted in the discovery of several FDA-approved drugs for autoimmunity and cancer. However, many aspects of the signaling mechanism remain elusive, including oligomeric association and clustering of B7-2 on the cell surface. Here, we describe the structure of the IgV domain of B7-2 and its cryptic association into 1D arrays that appear to represent the pre-signaling state of B7-2 on the cell membrane. Super-resolution microscopy experiments on heterologous cells expressing B7-2 and B7-1 suggest, B7-2 form relatively elongated and larger clusters compared to B7-1. The sequence and structural comparison of other B7 family members, B7-1:CTLA4 and B7-2:CTLA-4 complex structures, support our view that the observed B7-2 1D zipper array is physiologically important. This observed 1D zipper-like array also provides an explanation for its clustering, and upright orientation on the cell surface, and avoidance of spurious signaling.
Collapse
Affiliation(s)
- Swetha Lankipalli
- Biological Sciences DivisionPoornaprajna Institute of Scientific Research (PPISR)BengaluruIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | | | - Deepak Selvam
- Jawaharlal Nehru Center for Advance Scientific ResearchBengaluruKarnatakaIndia
- National Institute for Research in TuberculosisChennaiIndia
| | - Dibyendu Samanta
- School of Bioscience, Sir J. C. Bose Laboratory ComplexIndian Institute of Technology KharagpurKharagpurIndia
| | - Deepak Nair
- Centre for NeuroscienceIndian Institute of ScienceBangaloreIndia
| | - Udupi A. Ramagopal
- Biological Sciences DivisionPoornaprajna Institute of Scientific Research (PPISR)BengaluruIndia
| |
Collapse
|
11
|
Zhang Y, Liu Q, Yang S, Liao Q. CD58 Immunobiology at a Glance. Front Immunol 2021; 12:705260. [PMID: 34168659 PMCID: PMC8218816 DOI: 10.3389/fimmu.2021.705260] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
The glycoprotein CD58, also known as lymphocyte-function antigen 3 (LFA-3), is a costimulatory receptor distributed on a broad range of human tissue cells. Its natural ligand CD2 is primarily expressed on the surface of T/NK cells. The CD2-CD58 interaction is an important component of the immunological synapse (IS) that induces activation and proliferation of T/NK cells and triggers a series of intracellular signaling in T/NK cells and target cells, respectively, in addition to promoting cell adhesion and recognition. Furthermore, a soluble form of CD58 (sCD58) is also present in cellular supernatant in vitro and in local tissues in vivo. The sCD58 is involved in T/NK cell-mediated immune responses as an immunosuppressive factor by affecting CD2-CD58 interaction. Altered accumulation of sCD58 may lead to immunosuppression of T/NK cells in the tumor microenvironment, allowing sCD58 as a novel immunotherapeutic target. Recently, the crucial roles of costimulatory molecule CD58 in immunomodulation seem to be reattracting the interests of investigators. In particular, the CD2-CD58 interaction is involved in the regulation of antiviral responses, inflammatory responses in autoimmune diseases, immune rejection of transplantation, and immune evasion of tumor cells. In this review, we provide a comprehensive summary of CD58 immunobiology.
Collapse
Affiliation(s)
- Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Kumar J, Reccia I, Virdis F, Podda M, Sharma AK, Halawa A. Belatacept in renal transplantation in comparison to tacrolimus and molecular understanding of resistance pattern: Meta-analysis and systematic review. World J Transplant 2021; 11:70-86. [PMID: 33816147 PMCID: PMC8009058 DOI: 10.5500/wjt.v11.i3.70] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The T-cell costimulation blocking agent belatacept has been identified as a possible substitute for calcineurin inhibitors, however, no consensus has been established against its use over the standard care agent Tacrolimus. AIM To evaluate the effectiveness of belatacept based maintenance immuno-suppressive regimens in comparison to tacrolimus in renal transplantion. METHODS We did extensive search of all the available literature comparing the role of belatacept to tacrolimus in renal transplant recipients by searching the PubMed, Embase, Cochrane, Crossref, Scopus, clinical trials registry on October 5, 2020. RESULTS The literature search identified four randomized controlled trials (n = 173 participants) comparing belatacept with tacrolimus. There was no significant difference in estimated renal function at 12 mo [mean difference 4.12 mL/min/1.73 m2, confidence interval (CI): -2.18 to 10.42, P = 0.20]. Further, belatacept group was associated with significant increase in biopsy proven acute rejection [relative risk (RR) = 3.27, CI: 0.88 to 12.11, P = 0.08] and worse 12 mo allograft survival (RR = 4.51, CI: 1.23 to 16.58, P = 0.02). However, incidence of new onset diabetes mellitus was lower with belatacept at 12 mo (RR = 0.26, CI: 0.07 to 0.99, P = 0.05). CONCLUSION The evidence reviewed in this meta-analysis suggested that belatacept-based maintenance immunosuppression regimens were associated with an increased risk allograft loss in renal transplant recipients with equivalent renal functioning against standard tacrolimus; however, observed significantly reduced new onset diabetes mellitus after transplantation incidence and lower serum low density lipid profile levels in belatacept group. In addition, the adaptation of belatacept in renal transplantation has been forestalled by increased rates of rejection and resistance owing to development of various effector memory T cells through, parallel differentiation and immunological plasticity.
Collapse
Affiliation(s)
- Jayant Kumar
- Department of Cancer and Surgery, Imperial College, London W12 0HS, United Kingdom
| | - Isabella Reccia
- Department of Cancer and Surgery, Imperial College, London W12 0HS, United Kingdom
| | - Francesco Virdis
- Department of Emergency General Surgery, Royal Free Hospital, London NW3 2QG, United Kingdom
| | - Mauro Podda
- Department of Surgery, General, Emergency and Robotic Surgical Unit, San Francesco Hospital, Nuoro 08100, Italy
| | - Ajay Kumar Sharma
- Department of Transplantation, Royal Liverpool University Hospital, Liverpool L7 8XP, United Kingdom
| | - Ahmed Halawa
- Department of Surgery, Sheffield Teaching Hospitals, Sheffield S10 2JF, United Kingdom
| |
Collapse
|
13
|
Rosa BA, Ahmed M, Singh DK, Choreño-Parra JA, Cole J, Jiménez-Álvarez LA, Rodríguez-Reyna TS, Singh B, Gonzalez O, Carrion R, Schlesinger LS, Martin J, Zúñiga J, Mitreva M, Kaushal D, Khader SA. IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. Commun Biol 2021; 4:290. [PMID: 33674719 PMCID: PMC7935909 DOI: 10.1038/s42003-021-01829-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
SARS-CoV-2 virus has infected more than 92 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Using a rhesus macaque model of SARS-CoV-2 infection, we have characterized the transcriptional signatures induced in the lungs of juvenile and old macaques following infection. Genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated, as also seen in lungs of macaques with tuberculosis. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. Together, our transcriptomic studies have delineated disease pathways that improve our understanding of the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Tatiana Sofía Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Olga Gonzalez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ricardo Carrion
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - John Martin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Makedonka Mitreva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
14
|
Berendsen MR, Stevens WBC, van den Brand M, van Krieken JH, Scheijen B. Molecular Genetics of Relapsed Diffuse Large B-Cell Lymphoma: Insight into Mechanisms of Therapy Resistance. Cancers (Basel) 2020; 12:E3553. [PMID: 33260693 PMCID: PMC7760867 DOI: 10.3390/cancers12123553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The majority of patients with diffuse large B-cell lymphoma (DLBCL) can be treated successfully with a combination of chemotherapy and the monoclonal anti-CD20 antibody rituximab. Nonetheless, approximately one-third of the patients with DLBCL still experience relapse or refractory (R/R) disease after first-line immunochemotherapy. Whole-exome sequencing on large cohorts of primary DLBCL has revealed the mutational landscape of DLBCL, which has provided a framework to define novel prognostic subtypes in DLBCL. Several studies have investigated the genetic alterations specifically associated with R/R DLBCL, thereby uncovering molecular pathways linked to therapy resistance. Here, we summarize the current state of knowledge regarding the genetic alterations that are enriched in R/R DLBCL, and the corresponding pathways affected by these gene mutations. Furthermore, we elaborate on their potential role in mediating therapy resistance, also in connection with findings in other B-cell malignancies, and discuss alternative treatment options. Hence, this review provides a comprehensive overview on the gene lesions and molecular mechanisms underlying R/R DLBCL, which are considered valuable parameters to guide treatment.
Collapse
Affiliation(s)
- Madeleine R. Berendsen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Wendy B. C. Stevens
- Department of Hematology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands;
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Pathology-DNA, Rijnstate Hospital, 6815AD Arnhem, The Netherlands
| | - J. Han van Krieken
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
15
|
Rosa BA, Ahmed M, Singh DK, Choreño-Parra JA, Cole J, Jiménez-Álvarez LA, Rodríguez-Reyna TS, Singh B, Gonzalez O, Carrion R, Schlesinger LS, Martin J, Zúñiga J, Mitreva M, Khader SA, Kaushal D. IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32793903 PMCID: PMC7418717 DOI: 10.1101/2020.08.06.239798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The novel virus SARS-CoV-2 has infected more than 14 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Limited information on the underlying immune mechanisms that drive disease or protection during COVID-19 severely hamper development of therapeutics and vaccines. Thus, the establishment of relevant animal models that mimic the pathobiology of the disease is urgent. Rhesus macaques infected with SARS-CoV-2 exhibit disease pathobiology similar to human COVID-19, thus serving as a relevant animal model. In the current study, we have characterized the transcriptional signatures induced in the lungs of juvenile and old rhesus macaques following SARS-CoV-2 infection. We show that genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. We demonstrate that Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. In contrast, pathways involving VEGF are downregulated in lungs of old infected macaques. Using samples from humans with SARS-CoV-2 infection and COVID-19, we validate a subset of our findings. Finally, neutrophil degranulation, innate immune system and IFN gamma signaling pathways are upregulated in both tuberculosis and COVID-19, two pulmonary diseases where neutrophils are associated with increased severity. Together, our transcriptomic studies have delineated disease pathways to improve our understanding of the immunopathogenesis of COVID-19 to facilitate the design of new therapeutics for COVID-19.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - José Alberto Choreño-Parra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Tatiana Sofía Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Olga Gonzalez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Ricardo Carrion
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - John Martin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Joaquín Zúñiga
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Makedonka Mitreva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| |
Collapse
|
16
|
Yang W, Song A, Ao M, Xu Y, Zhang H. Large-scale site-specific mapping of the O-GalNAc glycoproteome. Nat Protoc 2020; 15:2589-2610. [PMID: 32681153 PMCID: PMC8620167 DOI: 10.1038/s41596-020-0345-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/21/2020] [Indexed: 01/20/2023]
Abstract
Protein glycosylation is one of the most common protein modifications. A major type of protein glycosylation is O-GalNAcylation, in which GalNAc-type glycans are attached to protein Ser or Thr residues via an O-linked glycosidic bond. O-GalNAcylation is thought to play roles in protein folding, stability, trafficking and protein interactions, and identification of the site-specific O-GalNAc glycoproteome is a crucial step toward understanding the biological significance of the modification. However, lack of suitable methodology, absence of consensus sequon of O-GalNAcylation sites and complex O-GalNAc glycan structures pose analytical challenges. We recently developed a mass spectrometry-based method called extraction of O-linked glycopeptides (EXoO) that enables large-scale mapping of site-specific mucin-type O-GalNAcylation sites. Here we provide a detailed protocol for EXoO, which includes seven stages of: (1) extraction and proteolytic digestion of proteins to peptides, (2) sequential guanidination and de-salting of peptides, (3) enrichment of glycopeptides, (4) solid-phase peptide conjugation and release of O-GalNAc glycopeptides using the OpeRATOR protease, (5) liquid chromatography with tandem mass spectrometry analysis of O-GalNAc glycopeptides, (6) identification of O-GalNAc glycopeptides by database search and (7) quantification of O-GalNAc glycopeptides. Using this protocol, thousands of O-GalNAcylation sites from hundreds of glycoproteins with information regarding site-specific O-GalNAc glycan can be identified and quantified from complex samples. The protocol can be performed by a researcher with basic proteomics skills and takes about 4 d to complete.
Collapse
Affiliation(s)
- Weiming Yang
- Corresponding Author: Address: Department of Pathology, Johns Hopkins University School of Medicine, 400 North Broadway, Room 4001A, Baltimore, Maryland, United States.
| | | | | | | | | |
Collapse
|
17
|
Dell'Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the Orchestra: HCMV vs. Innate Immunity. Front Microbiol 2020; 11:661. [PMID: 32351486 PMCID: PMC7174589 DOI: 10.3389/fmicb.2020.00661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors – e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells, professional antigen-presenting cells (APCs) and phagocytes – all capable of disrupting HCMV replication. These factors are known to trigger a highly efficient adaptive immune response, where cellular restriction factors (RFs) play a major gatekeeping role. Unlike other innate immunity components, RFs are constitutively expressed in many cell types, ready to act before pathogen exposure. Nonetheless, the existence of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an intimate cooperation between intrinsic and innate immunity. In the course of virus-host coevolution, HCMV has, however, learned how to manipulate the functions of multiple cellular players of the host innate immune response to achieve latency and persistence. Thus, HCMV acts like an orchestra conductor able to piece together and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic solutions able to prevent HCMV immune evasion in congenitally infected infants and immunocompromised individuals are urgently needed. Here, we provide an up-to-date review of the mechanisms regulating the interplay between HCMV and innate immunity, focusing on the various strategies of immune escape evolved by this virus to gain a fitness advantage.
Collapse
Affiliation(s)
- Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Zingoni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
18
|
Zamai L, Del Zotto G, Buccella F, Gabrielli S, Canonico B, Artico M, Ortolani C, Papa S. Understanding the Synergy of NKp46 and Co-Activating Signals in Various NK Cell Subpopulations: Paving the Way for More Successful NK-Cell-Based Immunotherapy. Cells 2020; 9:cells9030753. [PMID: 32204481 PMCID: PMC7140651 DOI: 10.3390/cells9030753] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity. Interestingly, signals delivered by the co-engagement of NKp46 with 2B4, but not with CD2 or DNAM-1, strongly cooperate to enhance degranulation on both licensed and unlicensed CD56dim NK cells. Of note, 2B4 is known to bind CD48 hematopoietic antigen, therefore this observation may provide the rationale why CD56dim subset expansion correlates with successful hematopoietic stem cell transplantation mediated by alloreactive NK cells against host T, DC and leukemic cells, while sparing host non-hematopoietic tissues and graft versus host disease. The assay further confirms that activation of LFA-1 on NK cells leads to their granule polarization, even if, in some cases, this also takes to an inhibition of NK cell degranulation, suggesting that LFA-1 engagement by ICAMs on target cells may differently affect NK cell response. Finally, we observed that NK cells undergo a time-dependent spontaneous (cytokine-independent) activation after blood withdrawal, an aspect that may strongly bias the evaluation of the resting NK cell response. Altogether our data may pave the way to develop new NK cell activation and expansion strategies that target the highly cytotoxic CD56dim NK cells and can be feasible and useful for cancer and viral infection treatment.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0722-304319; Fax: +39-0722-304319
| | - Genny Del Zotto
- Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Flavia Buccella
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Sara Gabrielli
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| |
Collapse
|
19
|
Zamai L, Del Zotto G, Buccella F, Gabrielli S, Canonico B, Artico M, Ortolani C, Papa S. Understanding the Synergy of NKp46 and Co-Activating Signals in Various NK Cell Subpopulations: Paving the Way for More Successful NK-Cell-Based Immunotherapy. Cells 2020. [PMID: 32204481 DOI: 10.3390/cells9030753.pmid:32204481;pmcid:pmc7140651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity. Interestingly, signals delivered by the co-engagement of NKp46 with 2B4, but not with CD2 or DNAM-1, strongly cooperate to enhance degranulation on both licensed and unlicensed CD56dim NK cells. Of note, 2B4 is known to bind CD48 hematopoietic antigen, therefore this observation may provide the rationale why CD56dim subset expansion correlates with successful hematopoietic stem cell transplantation mediated by alloreactive NK cells against host T, DC and leukemic cells, while sparing host non-hematopoietic tissues and graft versus host disease. The assay further confirms that activation of LFA-1 on NK cells leads to their granule polarization, even if, in some cases, this also takes to an inhibition of NK cell degranulation, suggesting that LFA-1 engagement by ICAMs on target cells may differently affect NK cell response. Finally, we observed that NK cells undergo a time-dependent spontaneous (cytokine-independent) activation after blood withdrawal, an aspect that may strongly bias the evaluation of the resting NK cell response. Altogether our data may pave the way to develop new NK cell activation and expansion strategies that target the highly cytotoxic CD56dim NK cells and can be feasible and useful for cancer and viral infection treatment.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L'Aquila, Italy
| | - Genny Del Zotto
- Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Flavia Buccella
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Sara Gabrielli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| |
Collapse
|
20
|
Yamamoto M, Watanabe M, Inoue N, Watanabe A, Ozaki H, Ohsaki M, Hidaka Y, Iwatani Y. Association of CD58 Polymorphisms and its Protein Expression with the Development and Prognosis of Autoimmune Thyroid Diseases. Immunol Invest 2019; 49:106-119. [PMID: 31505972 DOI: 10.1080/08820139.2019.1659811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The prognosis of autoimmune thyroid diseases (AITDs), including Graves' disease (GD) and Hashimoto's disease (HD), varies among patients. The interaction of CD58 and its ligand (CD2) promotes the differentiation of regulatory T cells and suppresses the immune response. To clarify the association of CD58 expression with the pathogenesis and prognosis of AITDs, we genotyped polymorphisms in the CD58 gene including rs12044852A/C (SNP1), rs2300747A/G (SNP2), rs1335532C/T (SNP3), rs1016140G/T (SNP4), rs1414275C/T (SNP5) and rs11588376C/T (SNP6). The CD58 SNPs were genotyped in 177 GD patients, 193 HD patients and 116 healthy volunteers (control subjects). We used the Polymerase chain reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method for the genotyping of SNP1 and SNPs3-6 and the TaqMan® SNP genotyping assay for the genotyping of SNP2. The frequencies of the AA genotype in SNP1 tend to be high in all patients with AITDs than in control subjects, although it was not significant. The GG genotype of SNP2, the CC genotype of SNP3, the TT genotype of SNP4, the CC genotype of SNP5 and the CC genotype of SNP6 were all significantly more frequent in patients with AITDs than in control subjects. The proportion of CD58+ cells in monocytes was significantly lower in healthy individuals with each of these risk genotypes of AITDs and lower in GD and HD patients than that in healthy controls. In conclusion, CD58 SNPs are involved in AITD susceptibility through the reduction in CD58 expression, which probably suppresses regulatory T cells.
Collapse
Affiliation(s)
- Mayu Yamamoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mikio Watanabe
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoya Inoue
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Ayano Watanabe
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruka Ozaki
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mizuki Ohsaki
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoh Hidaka
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Yoshinori Iwatani
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
21
|
Pech MF, Fong LE, Villalta JE, Chan LJ, Kharbanda S, O'Brien JJ, McAllister FE, Firestone AJ, Jan CH, Settleman J. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. eLife 2019; 8:47362. [PMID: 31452512 PMCID: PMC6713475 DOI: 10.7554/elife.47362] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Only a subset of cancer patients respond to T-cell checkpoint inhibitors, highlighting the need for alternative immunotherapeutics. We performed CRISPR-Cas9 screens in a leukemia cell line to identify perturbations that enhance natural killer effector functions. Our screens defined critical components of the tumor-immune synapse and highlighted the importance of cancer cell interferon-γ signaling in modulating NK activity. Surprisingly, disrupting the ubiquitin ligase substrate adaptor DCAF15 strongly sensitized cancer cells to NK-mediated clearance. DCAF15 disruption induced an inflamed state in leukemic cells, including increased expression of lymphocyte costimulatory molecules. Proteomic and biochemical analysis revealed that cohesin complex members were endogenous client substrates of DCAF15. Genetic disruption of DCAF15 was phenocopied by treatment with indisulam, an anticancer drug that functions through DCAF15 engagement. In AML patients, reduced DCAF15 expression was associated with improved survival. These findings suggest that DCAF15 inhibition may have useful immunomodulatory properties in the treatment of myeloid neoplasms. The human immune system can recognize and kill cancer cells growing in the body. Certain immune cells recognize mutated proteins on the surface of cancer cells known as antigens, and this ability can be enhanced by drugs. These so-called immunotherapies can be effective to treat several cancer types, but only some patients benefit from them. This is because cancer cells often stop presenting antigens on their surface, thus hiding from the immune response. Natural killer cells are a type of immune cell that does not rely on antigen presentation to recognize cancer cells. Scientists are now trying to develop drugs to increase the effectiveness with which natural killer cells attack cancer. Pech et al. used cells from a human leukemia, a type of blood cancer, to look for proteins that made these cells more vulnerable to natural killer cells. The main experiment, in which every single protein in the cancer cells was deleted one by one, revealed that a protein called DCAF15 changes how cancer and natural killer cells interact. Leukemia cells lacking DCAF15 could be attacked by natural killer cells much more easily because the cancer cells exhibited inflammation-like symptoms that stimulated the immune response. DCAF15 is part of a family of ‘adaptors’ that that provide specificity to the cellular machinery that controls proliferation, the recycling of proteins and DNA repair. Inhibiting DCAF15 with a drug also made natural killer cells more efficient at eliminating leukemia cells. Patients with leukemia whose cancer cells make little DCAF15 protein have a better chance of survival, suggesting that this process may already be happening in some patients. Together these data indicate that targeting DCAF15 in leukemia patients may help natural killer cells attack cancer cells. Future research is needed to see if a similar process takes place in other cancer types.
Collapse
Affiliation(s)
- Matthew F Pech
- Calico Life Sciences LLC, South San Francisco, United States
| | - Linda E Fong
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Leanne Jg Chan
- Calico Life Sciences LLC, South San Francisco, United States
| | - Samir Kharbanda
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - Ari J Firestone
- Calico Life Sciences LLC, South San Francisco, United States
| | - Calvin H Jan
- Calico Life Sciences LLC, South San Francisco, United States
| | | |
Collapse
|
22
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
23
|
Neutrophils promote T-cell-mediated inflammation in allergy. J Allergy Clin Immunol 2018; 143:1923-1925.e3. [PMID: 30578884 DOI: 10.1016/j.jaci.2018.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 11/30/2018] [Indexed: 11/21/2022]
|
24
|
Pan D, Das A, Srivastav SK, Traina-Dorge V, Didier PJ, Pahar B. Lack of T-cell-mediated IL-2 and TNFα production is linked to decreased CD58 expression in intestinal tissue during acute simian immunodeficiency virus infection. J Gen Virol 2018; 100:26-34. [PMID: 30480508 DOI: 10.1099/jgv.0.001181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For an effective T-cell activation and response, co-stimulation is required in addition to the antigen-specific signal from their antigen receptors. The CD2/CD58 interaction is considered as one of the most important T-cell co-stimulatory pathways for T-cell activation and proliferation, and its role in regulating intestinal T-cell function in acute and chronic SIV -infected macaques is poorly documented. Here, we demonstrated a significant reduction of CD58 expression in both T- and B-cell populations during acute SIV infection along with high plasma viral load and a loss of intestinal CD4+ T cells compared to SIV-uninfected control macaques. The reduction of CD58 expression in T cells was correlated with the reduced expression of T-cell-mediated IL-2 and TNFα production. Together, these results indicate that reduction in the CD2/CD58 interaction pathway in mucosal lymphocytes might play a crucial role in mucosal T-cell dysfunction during acute SIV/HIV infection.
Collapse
Affiliation(s)
- Diganta Pan
- 1Division of Comparative Pathology, Covington, Louisiana
| | - Arpita Das
- 2Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Sudesh K Srivastav
- 3Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, USA
| | - Vicki Traina-Dorge
- 2Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Peter J Didier
- 1Division of Comparative Pathology, Covington, Louisiana
| | - Bapi Pahar
- 1Division of Comparative Pathology, Covington, Louisiana
| |
Collapse
|
25
|
Tong CF, Zhang Y, Lü SQ, Li N, Gong YX, Yang H, Feng SL, Du Y, Huang DD, Long M. Binding of intercellular adhesion molecule 1 to β 2-integrin regulates distinct cell adhesion processes on hepatic and cerebral endothelium. Am J Physiol Cell Physiol 2018; 315:C409-C421. [PMID: 29791209 DOI: 10.1152/ajpcell.00083.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Flowing polymorphonuclear neutrophils (PMNs) are forced to recruit toward inflamed tissue and adhere to vascular endothelial cells, which is primarily mediated by the binding of β2-integrins to ICAM-1. This process is distinct among different organs such as liver and brain; however, the underlying kinetic and mechanical mechanisms regulating tissue-specific recruitment of PMNs remain unclear. Here, binding kinetics measurement showed that ICAM-1 on murine hepatic sinusoidal endothelial cells (LSECs) bound to lymphocyte function-associated antigen-1 (LFA-1) with higher on- and off-rates but lower effective affinity compared with macrophage-1 antigen (Mac-1), whereas ICAM-1 on cerebral endothelial cells (BMECs or bEnd.3 cells) bound to LFA-1 with higher on-rates, similar off-rates, and higher effective affinity compared with Mac-1. Physiologically, free crawling tests of PMN onto LSEC, BMEC, or bEnd.3 monolayers were consistent with those kinetics differences between two β2-integrins interacting with hepatic sinusoid or cerebral endothelium. Numerical calculations and Monte Carlo simulations validated tissue-specific contributions of β2-integrin-ICAM-1 kinetics to PMN crawling on hepatic sinusoid or cerebral endothelium. Thus, this work first quantified the biophysical regulation of PMN adhesion in hepatic sinusoids compared with cerebral endothelium.
Collapse
Affiliation(s)
- Chun-Fang Tong
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing , China
| | - Yan Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing , China.,School of Engineering Science, University of Chinese Academy of Sciences , Beijing , China
| | - Shou-Qin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing , China.,School of Engineering Science, University of Chinese Academy of Sciences , Beijing , China
| | - Ning Li
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing , China
| | - Yi-Xin Gong
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing , China
| | - Hao Yang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing , China
| | - Shi-Liang Feng
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing , China
| | - Yu Du
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing , China
| | - Dan-Dan Huang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing , China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing , China.,School of Engineering Science, University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
26
|
Shao T, Shi W, Zheng JY, Xu XX, Lin AF, Xiang LX, Shao JZ. Costimulatory Function of Cd58/Cd2 Interaction in Adaptive Humoral Immunity in a Zebrafish Model. Front Immunol 2018; 9:1204. [PMID: 29904386 PMCID: PMC5990624 DOI: 10.3389/fimmu.2018.01204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023] Open
Abstract
CD58 and CD2 have long been known as a pair of reciprocal adhesion molecules involved in the immune modulations of CD8+ T and NK-mediated cellular immunity in humans and several other mammals. However, the functional roles of CD58 and CD2 in CD4+ T-mediated adaptive humoral immunity remain poorly defined. Moreover, the current functional observations of CD58 and CD2 were mainly acquired from in vitro assays, and in vivo investigation is greatly limited due to the absence of a Cd58 homology in murine models. In this study, we identified cd58 and cd2 homologs from the model species zebrafish (Danio rerio). These two molecules share conserved structural features to their mammalian counterparts. Functionally, cd58 and cd2 were significantly upregulated on antigen-presenting cells and Cd4+ T cells upon antigen stimulation. Blockade or knockdown of Cd58 and Cd2 dramatically impaired the activation of antigen-specific Cd4+ T and mIgM+ B cells, followed by the inhibition of antibody production and host defense against bacterial infections. These results indicate that CD58/CD2 interaction was required for the full activation of CD4+ T-mediated adaptive humoral immunity. The interaction of Cd58 with Cd2 was confirmed by co-immunoprecipitation and functional competitive assays by introducing a soluble Cd2 protein. This study highlights a new costimulatory mechanism underlying the regulatory network of adaptive immunity and makes zebrafish an attractive model organism for the investigation of CD58/CD2-mediated immunology and disorders. It also provides a cross-species understanding of the evolutionary history of costimulatory signals from fish to mammals as a whole.
Collapse
Affiliation(s)
- Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wei Shi
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jia-Yu Zheng
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiao-Xiao Xu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Suppression of costimulation by human cytomegalovirus promotes evasion of cellular immune defenses. Proc Natl Acad Sci U S A 2018; 115:4998-5003. [PMID: 29691324 PMCID: PMC5948980 DOI: 10.1073/pnas.1720950115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD58 is an adhesion molecule that is known to play a critical role in costimulation of effector cells and is intrinsic to immune synapse structure. Herein, we describe a virally encoded gene that inhibits CD58 surface expression. Human cytomegalovirus (HCMV) UL148 was necessary and sufficient to promote intracellular retention of CD58 during HCMV infection. Blocking studies with antagonistic anti-CD58 mAb and an HCMV UL148 deletion mutant (HCMV∆UL148) with restored CD58 expression demonstrated that the CD2/CD58 axis was essential for the recognition of HCMV-infected targets by CD8+ HCMV-specific cytotoxic T lymphocytes (CTLs). Further, challenge of peripheral blood mononuclear cells ex vivo with HCMV∆UL148 increased both CTL and natural killer (NK) cell degranulation against HCMV-infected cells, including NK-driven antibody-dependent cellular cytotoxicity, showing that UL148 is a modulator of the function of multiple effector cell subsets. Our data stress the effect of HCMV immune evasion functions on shaping the immune response, highlighting the capacity for their potential use in modulating immunity during the development of anti-HCMV vaccines and HCMV-based vaccine vectors.
Collapse
|
28
|
Toward precision manufacturing of immunogene T-cell therapies. Cytotherapy 2018; 20:623-638. [DOI: 10.1016/j.jcyt.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022]
|
29
|
Siebenkäs C, Chiappinelli KB, Guzzetta AA, Sharma A, Jeschke J, Vatapalli R, Baylin SB, Ahuja N. Inhibiting DNA methylation activates cancer testis antigens and expression of the antigen processing and presentation machinery in colon and ovarian cancer cells. PLoS One 2017. [PMID: 28622390 PMCID: PMC5473589 DOI: 10.1371/journal.pone.0179501] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Innovative therapies for solid tumors are urgently needed. Recently, therapies that harness the host immune system to fight cancer cells have successfully treated a subset of patients with solid tumors. These responses have been strong and durable but observed in subsets of patients. Work from our group and others has shown that epigenetic therapy, specifically inhibiting the silencing DNA methylation mark, activates immune signaling in tumor cells and can sensitize to immune therapy in murine models. Here we show that colon and ovarian cancer cell lines exhibit lower expression of transcripts involved in antigen processing and presentation to immune cells compared to normal tissues. In addition, treatment with clinically relevant low doses of DNMT inhibitors (that remove DNA methylation) increases expression of both antigen processing and presentation and Cancer Testis Antigens in these cell lines. We confirm that treatment with DNMT inhibitors upregulates expression of the antigen processing and presentation molecules B2M, CALR, CD58, PSMB8, PSMB9 at the RNA and protein level in a wider range of colon and ovarian cancer cell lines and treatment time points than had been described previously. In addition, we show that DNMTi treatment upregulates many Cancer Testis Antigens common to both colon and ovarian cancer. This increase of both antigens and antigen presentation by epigenetic therapy may be one mechanism to sensitize patients to immune therapies.
Collapse
Affiliation(s)
- Cornelia Siebenkäs
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail: (NA); (KBC)
| | - Angela A. Guzzetta
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Surgery, The University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Anup Sharma
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jana Jeschke
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rajita Vatapalli
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Stephen B. Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nita Ahuja
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (NA); (KBC)
| |
Collapse
|
30
|
Abstract
Antigen-experienced T cells, also known as memory T cells, are functionally and phenotypically distinct from naive T cells. Their enhanced expression of adhesion molecules and reduced requirement for co-stimulation enables them to mount potent and rapid recall responses to subsequent antigen encounters. Memory T cells generated in response to prior antigen exposures can cross-react with other nonidentical, but similar, antigens. This heterologous cross-reactivity not only enhances protective immune responses, but also engenders de novo alloimmunity. This latter characteristic is increasingly recognized as a potential barrier to allograft acceptance that is worthy of immunotherapeutic intervention, and several approaches have been investigated. Calcineurin inhibition effectively controls memory T-cell responses to allografts, but this benefit comes at the expense of increased infectious morbidity. Lymphocyte depletion eliminates allospecific T cells but spares memory T cells to some extent, such that patients do not completely lose protective immunity. Co-stimulation blockade is associated with reduced adverse-effect profiles and improved graft function relative to calcineurin inhibition, but lacks efficacy in controlling memory T-cell responses. Targeting the adhesion molecules that are upregulated on memory T cells might offer additional means to control co-stimulation-blockade-resistant memory T-cell responses.
Collapse
|
31
|
Taylor EB, Wilson M, Bengten E. The Src tyrosine kinase Lck binds to CD2, CD4-1, and CD4-2 T cell co-receptors in channel catfish, Ictalurus punctatus. Mol Immunol 2015; 66:126-38. [DOI: 10.1016/j.molimm.2015.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
32
|
Depoil D, Dustin ML. Force and affinity in ligand discrimination by the TCR. Trends Immunol 2014; 35:597-603. [PMID: 25466309 DOI: 10.1016/j.it.2014.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 01/30/2023]
Abstract
T cell recognition of antigen is a physical process that requires formation of a cell-cell junction that is rich in active force generation. Recently a biomolecular force probe was used to examine how the T cell receptor (TCR)-pMHC interaction responds to force and the consequences of force-dependent interactions for T cell activation. While adhesion and costimulatory molecules in the immunological synapse impact upon the overall force of the interaction, these results suggest that the TCR uses a force-dependent bond - a catch bond - and that it may therefore be important to consider the TCR-pMHC interaction in isolation in the early phases of the decision process. We discuss here these findings in the context of other work on the impact of forces on the TCR and the quantification of interaction in interfaces.
Collapse
Affiliation(s)
- David Depoil
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics and Musculosceletal Sciences, The University of Oxford, Roosevelt Drive, Headington, OX3 7FY, United Kingdom; Helene and Martin Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10012, USA
| | - Michael L Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics and Musculosceletal Sciences, The University of Oxford, Roosevelt Drive, Headington, OX3 7FY, United Kingdom; Helene and Martin Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10012, USA.
| |
Collapse
|
33
|
Abstract
The superfamily of molecules with immunoglobulin-like domains has recently been gaining new members-largely on the basis of sequence homology. Here Alan Williams reviews this new work and reveals how the comparison of sequence patterns enables decisions on membership to be made. Accommodation of the new structures demands the provision of new categories, and forces the abandonment of the conserved disulphide bond as the last invariant characteristic of an immunoglobulin-type domain. They may, however, provide more dues to the origins and evolution of the immunoglobulin superfamily.
Collapse
Affiliation(s)
- A F Williams
- MRC Cellular Immunology Unit, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
34
|
Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nat Commun 2014; 5:4675. [PMID: 25197941 DOI: 10.1038/ncomms5675] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022] Open
Abstract
Candidaemia is the fourth most common cause of bloodstream infection, with a high mortality rate of up to 40%. Identification of host genetic factors that confer susceptibility to candidaemia may aid in designing adjunctive immunotherapeutic strategies. Here we hypothesize that variation in immune genes may predispose to candidaemia. We analyse 118,989 single-nucleotide polymorphisms (SNPs) across 186 loci known to be associated with immune-mediated diseases in the largest candidaemia cohort to date of 217 patients of European ancestry and a group of 11,920 controls. We validate the significant associations by comparison with a disease-matched control group. We observe significant association between candidaemia and SNPs in the CD58 (P = 1.97 × 10(-11); odds ratio (OR) = 4.68), LCE4A-C1orf68 (P = 1.98 × 10(-10); OR = 4.25) and TAGAP (P = 1.84 × 10(-8); OR = 2.96) loci. Individuals carrying two or more risk alleles have an increased risk for candidaemia of 19.4-fold compared with individuals carrying no risk allele. We identify three novel genetic risk factors for candidaemia, which we subsequently validate for their role in antifungal host defence.
Collapse
|
35
|
Zhao YZ, Jia J, Li YB, Guo CX, Zhou XQ, Sun ZW. Effects of endosulfan on the immune function of erythrocytes, and potential protection by testosterone propionate. J Toxicol Sci 2014; 39:701-10. [DOI: 10.2131/jts.39.701] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yan-Zhi Zhao
- Department of Physiology, Yanjing Medical College, Capital Medical University, China
- Department of Health Toxicology and Health Chemistry, Public Health College, Capital Medical University, China
| | - Jing Jia
- Department of Health Toxicology and Health Chemistry, Public Health College, Capital Medical University, China
| | - Yan-Bo Li
- Department of Health Toxicology and Health Chemistry, Public Health College, Capital Medical University, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, China
| | - Cai-Xia Guo
- Department of Health Toxicology and Health Chemistry, Public Health College, Capital Medical University, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, China
| | - Xian-Qing Zhou
- Department of Health Toxicology and Health Chemistry, Public Health College, Capital Medical University, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, China
| | - Zhi-Wei Sun
- Department of Health Toxicology and Health Chemistry, Public Health College, Capital Medical University, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, China
| |
Collapse
|
36
|
Autoimmune T-cell reactivity to myelin proteolipids and glycolipids in multiple sclerosis. Mult Scler Int 2013; 2013:151427. [PMID: 24312732 PMCID: PMC3839122 DOI: 10.1155/2013/151427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022] Open
Abstract
Central nervous system (CNS) myelin, the likely major target of autoimmune attack in multiple sclerosis (MS), contains a number of unique components that are potential targets of the attack. Two classes of molecules that are greatly enriched in CNS myelin compared to other parts of the body are certain types of proteolipids and glycolipids. Due to the hydrophobic nature of both of these classes of molecules, they present challenges for use in immunological assays and have therefore been somewhat neglected in studies of T-cell reactivity in MS compared to more soluble molecules such as the myelin basic proteins and the extracellular domain of myelin oligodendrocyte glycoprotein. This review firstly looks at the makeup of CNS myelin, with an emphasis on proteolipids and glycolipids. Next, a retrospective of what is known of T-cell reactivity directed against proteolipids and glycolipids in patients with MS is presented, and the implications of the findings are discussed. Finally, this review considers the question of what would be required to prove a definite role for autoreactivity against proteolipids and glycolipids in the pathogenesis of MS.
Collapse
|
37
|
Nowak J, Wozniak J, Mendek-Czajkowska E, Dlugokecka A, Mika-Witkowska R, Rogatko-Koros M, Graczyk-Pol E, Marosz-Rudnicka A, Dziopa J, Golec A, Kopec-Szlezak J, Warzocha K. Potential link between MHC-self-peptide presentation and hematopoiesis; the analysis of HLA-DR expression in CD34-positive cells and self-peptide presentation repertoires of MHC molecules associated with paroxysmal nocturnal hemoglobinuria. Cell Biochem Biophys 2013; 65:321-33. [PMID: 23076633 PMCID: PMC3601265 DOI: 10.1007/s12013-012-9435-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms of MHC allele associations with paroxysmal nocturnal hemoglobinuria (PNH) and its aplastic anemia subtype (AA/PNH) remain unclear. It might be dependent on MHC molecule functional properties, such as a scope and frequency of antigen sampling and presentation. For documented PNH-associated MHC alleles we analyzed current reference databases on MHC molecule-eluted peptide presentation repertoires and searched for a range of presented peptides. MHC class II expression was measured on CD34+ cells and appeared to be increased in PNH patients. Two class I alleles (HLA-A*24:02 and B*18:01) have been previously confirmed to associate with protection and increased risk of AA/PNH, respectively. Their product molecules presented immunodominant epitopes derived from proapoptotic (serine/threonine–protein phosphatase) and antiapoptotic (phospholipase D), respectively, intracellular enzymes dependent on phosphoinositide (PI) content. For total PNH and non-aplastic PNH (n/PNH) subtype-associated DRB1*15:01 and DRB1*04:01 class II molecules presentation of exceptionally broad arrays of their own peptide fragments has been found. We conclude that self antigen peptides presented with high frequency in the context of MHC molecules of increased expression may be involved in the immune recognition and the regulation of HSC in the periphery. The block in the normal plasma membrane PI production due to the PIG-A mutation can help explain the differences in the activation of intracellular regulatory pathways observed between PNH and normal HSC. This is evident in the variation in MHC association patterns and peptide presentation repertoires between these two groups of patients.
Collapse
Affiliation(s)
- Jacek Nowak
- Department of Immunogenetics Institute of Hematology and Transfusion Medicine, 14 Indira Gandhi Street, 02-776, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Homophilic interaction of the L1 family of cell adhesion molecules plays a pivotal role in regulating neurite outgrowth and neural cell networking in vivo. Functional defects in L1 family members are associated with neurological disorders such as X-linked mental retardation, multiple sclerosis, low-IQ syndrome, developmental delay, and schizophrenia. Various human tumors with poor prognosis also implicate the role of L1, a representative member of the L1 family of cell adhesion molecules, and ectopic expression of L1 in fibroblastic cells induces metastasis-associated gene expression. Previous studies on L1 homologs indicated that four N-terminal immunoglobulin-like domains form a horseshoe-like structure that mediates homophilic interactions. Various models including the zipper, domain-swap, and symmetry-related models are proposed to be involved in structural mechanism of homophilic interaction of the L1 family members. Recently, cryo-electron tomography of L1 and crystal structure studies of neurofascin, an L1 family protein, have been performed. This review focuses on recent discoveries of different models and describes the possible structural mechanisms of homophilic interactions of L1 family members. Understanding structural mechanisms of homophilic interactions in various cell adhesion proteins should aid the development of therapeutic strategies for L1 family cell adhesion molecule-associated diseases.
Collapse
Affiliation(s)
- Chun Hua Wei
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea
| | | |
Collapse
|
39
|
Xiao B, Tong C, Jia X, Guo R, Lü S, Zhang Y, McEver RP, Zhu C, Long M. Tyrosine replacement of PSGL-1 reduces association kinetics with P- and L-selectin on the cell membrane. Biophys J 2013; 103:777-85. [PMID: 22947939 DOI: 10.1016/j.bpj.2012.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022] Open
Abstract
Binding of selectins to P-selectin glycoprotein ligand-1 (PSGL-1) mediates tethering and rolling of leukocytes on the endothelium during inflammation. Previous measurements obtained with a flow-chamber assay have shown that mutations of three tyrosines at the PSGL-1 N-terminus (Y46, Y48, and Y51) increase the reverse rates and their sensitivity to the force of bonds with P- and L-selectin. However, the effects of these mutations on the binding affinities and forward rates have not been studied. We quantified these effects by using an adhesion frequency assay to measure two-dimensional affinity and kinetic rates at zero force. Wild-type PSGL-1 has 2.2- to 8.5-fold higher binding affinities for P- and L-selectin than PSGL-1 mutants with two of three tyrosines substituted by phenylalanines, and 9.6- to 49-fold higher affinities than the PSGL-1 mutant with all three tyrosines replaced. In descending order, the affinity decreased from wild-type to Y48/51F, Y46/51F, Y46/48F, and Y46/48/51F. The affinity differences were attributed to major changes in the forward rate and minor changes in the reverse rate, suggesting that these tyrosines regulate the accessibility of PSGL-1 to P- and L-selectin via electrostatic interactions, which is supported by molecular-dynamics simulations. Our results provide insights into the structure-function relationship of receptor-ligand binding at a single-residue level.
Collapse
Affiliation(s)
- Botao Xiao
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vorup-Jensen T. On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines. Adv Drug Deliv Rev 2012; 64:1759-81. [PMID: 22705545 DOI: 10.1016/j.addr.2012.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022]
Abstract
Immunology often conveys the image of large molecules, either in the soluble state or in the membrane of leukocytes, forming multiple contacts with a target for actions of the immune system. Avidity names the ability of a polyvalent molecule to form multiple connections of the same kind with ligands tethered to the same surface. Polyvalent interactions are vastly stronger than their monovalent equivalent. In the present review, the functional consequences of polyvalent interactions are explored in a perspective of recent theoretical advances in understanding the thermodynamics of such binding. From insights on the structural biology of soluble pattern recognition molecules as well as adhesion molecules in the cell membranes or in their proteolytically shed form, this review documents the prominent role of polyvalent interactions in making the immune system a formidable barrier to microbial infection as well as constituting a significant challenge to the application of nanomedicines.
Collapse
|
41
|
Shashidharamurthy R, Bozeman EN, Patel J, Kaur R, Meganathan J, Selvaraj P. Immunotherapeutic strategies for cancer treatment: a novel protein transfer approach for cancer vaccine development. Med Res Rev 2012; 32:1197-1219. [PMID: 23059764 DOI: 10.1002/med.20237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cancer cells have developed numerous ways to escape immune surveillance and gain unlimited proliferative capacity. Currently, several chemotherapeutic agents and radiotherapy, either alone or in combination, are being used to treat malignancies. However, both of these therapies are associated with several limitations and detrimental side effects. Therefore, recent scientific investigations suggest that immunotherapy is among the most promising new approaches in modern cancer therapy. The focus of cancer immunotherapy is to boost both acquired and innate immunity against malignancies by specifically targeting tumor cells, and leaving healthy cells and tissues unharmed. Cellular, cytokine, gene, and monoclonal antibody therapies have progressively become promising immunotherapeutic approaches that are being tested for several cancers in preclinical models as well as in the clinic. In this review, we discuss recent advances in these immunotherapeutic approaches, focusing on new strategies that allow the expression of specific immunostimulatory molecules on the surface of tumor cells to induce robust antitumor immunity.
Collapse
Affiliation(s)
- Rangaiah Shashidharamurthy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
42
|
Argilaguet JM, Pérez-Martín E, Nofrarías M, Gallardo C, Accensi F, Lacasta A, Mora M, Ballester M, Galindo-Cardiel I, López-Soria S, Escribano JM, Reche PA, Rodríguez F. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One 2012; 7:e40942. [PMID: 23049728 PMCID: PMC3458849 DOI: 10.1371/journal.pone.0040942] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022] Open
Abstract
The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8+ T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8+ T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.
Collapse
MESH Headings
- African Swine Fever/immunology
- African Swine Fever/mortality
- African Swine Fever/prevention & control
- African Swine Fever/virology
- African Swine Fever Virus/immunology
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cells, Cultured
- DNA, Viral/genetics
- DNA, Viral/immunology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Plasmids/genetics
- Plasmids/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Survival Rate
- Swine
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Ubiquitin/genetics
- Ubiquitin/immunology
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Jordi M. Argilaguet
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Eva Pérez-Martín
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Miquel Nofrarías
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | | | - Francesc Accensi
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
- Departament de Sanitat I Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Anna Lacasta
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Mercedes Mora
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Maria Ballester
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Ivan Galindo-Cardiel
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Sergio López-Soria
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | | | - Pedro A. Reche
- Departamento de Microbiología I, Universidad Computense de Madrid (UCM), Madrid, Spain
| | - Fernando Rodríguez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
43
|
Steinhardt JJ, Gartenhaus RB. Promising personalized therapeutic options for diffuse large B-cell Lymphoma Subtypes with oncogene addictions. Clin Cancer Res 2012; 18:4538-48. [PMID: 22745106 DOI: 10.1158/1078-0432.ccr-12-0217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Currently, two major classification systems segregate diffuse large B-cell lymphoma (DLBCL) into subtypes based on gene expression profiles and provide great insights about the oncogenic mechanisms that may be crucial for lymphomagenesis as well as prognostic information regarding response to current therapies. However, these current classification systems primarily look at expression and not dependency and are thus limited to inductive or probabilistic reasoning when evaluating alternative therapeutic options. The development of a deductive classification system that identifies subtypes in which all patients with a given phenotype require the same oncogenic drivers, and would therefore have a similar response to a rational therapy targeting the essential drivers, would significantly advance the treatment of DLBCL. This review highlights the putative drivers identified as well as the work done to identify potentially dependent populations. These studies integrated genomic analysis and functional screens to provide a rationale for targeted therapies within defined populations. Personalizing treatments by identifying patients with oncogenic dependencies via genotyping and specifically targeting the responsible drivers may constitute a novel approach for the treatment of DLBCL.
Collapse
Affiliation(s)
- James J Steinhardt
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine and Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | | |
Collapse
|
44
|
Bimal S, Sinha S, Singh SK, Narayan S, Kumar V, Verma N, Ranjan A, Sinha PK, Das VNR, Pandey K, Kar SK, Das P. Leishmania donovani: CD2 biased immune response skews the SAG mediated therapy for a predominant Th1 response in experimental infection. Exp Parasitol 2012; 131:274-82. [PMID: 22580024 DOI: 10.1016/j.exppara.2012.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 11/28/2022]
Abstract
We have evaluated the effect of combining CD2 with conventional antimonial (sb) therapy in protection in BALB/c mice infected with either drug sensitive or resistant strain of Leishmania donovani with 3×10(7) parasites via-intra-cardiac route. Mice were treated with anti CD2 adjunct SAG sub-cutaneously twice a week for 4 weeks. Assessment for measurement of weight, spleen size, anti-Leishmania antibody titer, T cell and anti-leishmanial macrophage function was carried out day 0, 10, 22 and 34 post treatments. The combination therapy was shown boosting significant proportion of T cells to express CD25 compared to SAG monotherapy. Although, the level of IFN-γ was not statistically different between combination vs monotherapy (p=0.298) but CD2 treatment even alone significantly influenced IFN-γ production than either SAG treatment (p=0.045) or with CD2 adjunct SAG treatment (p=0.005) in Ld-S strain as well as in Ld-R strain. The influence of CD2 adjunct treatment was also documented in anti-leishmanial functions in macrophages. As shown, the super-oxide generation began enhancing very early on day 10 after SAG treatment with CD2 during which SAG action was at minimum. Interestingly, the super-oxide generation ability remained intact in macrophage after treatment with immuno-chemotherapy even in mice infected with Leishmania resistant strain. Unlike SAG treatment, treatment of SAG with CD2 also led to production of nitric oxide and TNF-α, resulting in resulting in most effective clearance of L. donovani from infected macrophages. Our results indicate that CD2, which can boost up a protective Th1 response, might also be beneficial to enable SAG to induce Macrophages to produce Leishmanicidal molecules and hence control the infection in clinical situation like Kala-azar. Drug resistance is the major impedance for disease control but the encouraging results obtained after infecting mice with resistant strain of the parasite strongly imply that this drug can be effective even in treating resistant cases of Kala-azar.
Collapse
Affiliation(s)
- Sanjiva Bimal
- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, India.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ronninger M, Guo Y, Shchetynsky K, Hill A, Khademi M, Olsson T, Reddy PS, Seddighzadeh M, Clark JD, Lin LL, O'Toole M, Padyukov L. The balance of expression of PTPN22 splice forms is significantly different in rheumatoid arthritis patients compared with controls. Genome Med 2012; 4:2. [PMID: 22264340 PMCID: PMC3334550 DOI: 10.1186/gm301] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 09/29/2011] [Accepted: 01/20/2012] [Indexed: 12/27/2022] Open
Abstract
Background The R620W variant in protein tyrosine phosphatase non-receptor 22 (PTPN22) is associated with rheumatoid arthritis (RA). The PTPN22 gene has alternatively spliced transcripts and at least two of the splice forms have been confirmed to encode different PTPN22 (LYP) proteins, but detailed information regarding expression of these is lacking, especially with regard to autoimmune diseases. Methods We have investigated the mRNA expression of known PTPN22 splice forms with TaqMan real-time PCR in relation to ZNF592 as an endogenous reference in peripheral blood cells from three independent cohorts with RA patients (n = 139) and controls (n = 111) of Caucasian origin. Polymorphisms in the PTPN22 locus (25 SNPs) and phenotypic data (gender, disease activity, ACPA and RF status) were used for analysis. Additionally, we addressed possible effects of methotrexate treatment on PTPN22 expression. Results We found consistent differences in the expression of the PTPN22 splice forms in unstimulated peripheral blood mononuclear cells between RA patients and normal controls. This difference was more pronounced when comparing the ratio of splice forms and was not affected by methotrexate treatment. Conclusions Our data show that RA patients and healthy controls have a shift in balance of expression of splice forms derived from the PTPN22 gene. This balance seems not to be caused by treatment and may be of importance during immune response due to great structural differences in the encoded PTPN22 proteins.
Collapse
Affiliation(s)
- Marcus Ronninger
- Department of Medicine, Rheumatology Unit, CMM L8:04, Karolinska Institutet & Karolinska Universitetssjukhuset, Stockholm, S-17176, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
47
|
Spach KM, Case LK, Noubade R, Petersen CB, McElvany B, Zalik N, Hickey WF, Blankenhorn EP, Teuscher C. Multiple linked quantitative trait loci within the Tmevd2/Eae3 interval control the severity of experimental allergic encephalomyelitis in DBA/2J mice. Genes Immun 2010; 11:649-59. [PMID: 20861860 PMCID: PMC2995842 DOI: 10.1038/gene.2010.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 06/25/2010] [Accepted: 07/05/2010] [Indexed: 12/04/2022]
Abstract
Theiler's murine encephalomyelitis virus-induced demyelination (TMEVD) and experimental allergic encephalomyelitis (EAE) are the principal animal models of multiple sclerosis (MS). Previously, we provided evidence that Tmevd2 and Eae3 may represent either a shared susceptibility locus or members of a gene complex controlling susceptibility to central nervous system inflammatory demyelinating disease. To explore the genetic relationship between Tmevd2 and Eae3, we generated a D2.C-Tmevd2 interval-specific congenic (ISC) line and three overlapping interval-specific recombinant congenic (ISRC) lines in which the Tmevd2-resistant allele from BALB/cByJ was introgressed onto the TMEVD-susceptible DBA/2J background. These mice, all H2(d), were studied for susceptibility to EAE elicited by immunization with proteolipid protein peptide 180-199. Compared with DBA/2J mice, D2.C-Tmevd2 mice developed a significantly less severe clinical disease course and EAE pathology in the spinal cord, confirming the existence of Eae3 and its linkage to Tmevd2 in this strain combination. Compared with DBA/2J and D2.C-Tmevd2, all three ISRC lines exhibited clinical disease courses of intermediate severity. Neither differences in ex vivo antigen-specific cytokine nor proliferative responses uniquely cosegregated with differences in disease severity. These results indicate that multiple quantitative trait loci (QTLs) within the Tmevd2/Eae3 interval influence EAE severity, one of which includes a homology region for a QTL found in MS by admixture mapping.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/immunology
- Animals, Genetically Modified/virology
- Cardiovirus Infections/genetics
- Chromosomes, Mammalian/genetics
- Demyelinating Diseases/genetics
- Demyelinating Diseases/immunology
- Demyelinating Diseases/virology
- Disease Models, Animal
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Genetic Markers
- Genetic Predisposition to Disease/genetics
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Myelin Proteolipid Protein/immunology
- Peptide Fragments/immunology
- Quantitative Trait Loci/genetics
- Theilovirus
Collapse
Affiliation(s)
- Karen M. Spach
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Laure K. Case
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Rajkumar Noubade
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | | | - Ben McElvany
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Nathan Zalik
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - William F. Hickey
- Department of Pathology, Dartmouth Medical School, Hanover, NH, USA, 03755
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT 05405
- Department of Pathology, University of Vermont, Burlington, VT 05405
| |
Collapse
|
48
|
Abstract
The concept of an immunological synapse goes back to the early 1980s with the discovery of the relationship between T-cell antigen receptor mediated Ca(2+) signaling, adhesion, and directed secretion. However, this concept did not gain traction until images were published starting in 1998 that revealed a specific molecular pattern in the interface between T cells and model antigen-presenting cells or supported planar bilayers. The dominant pattern, a ring of adhesion molecules surrounding a central cluster of antigen receptors, was observed in both model systems. Analysis of the origins of this pattern over the past 10 years has presented a solution for a difficult problem in lymphocyte biology--how a highly motile cell can suddenly stop when it encounters a signal delivered by just a few antigenic ligands on the surface of another cell without disabling the sensory machinery of the motile cell. The T lymphocyte actively assembles the immunological synapse pattern following a modular design with roots in actin-myosin-based motility.
Collapse
|
49
|
Gu X, Jia X, Feng J, Shen B, Huang Y, Geng S, Sun Y, Wang Y, Li Y, Long M. Molecular modeling and affinity determination of scFv antibody: proper linker peptide enhances its activity. Ann Biomed Eng 2009; 38:537-49. [PMID: 19816775 DOI: 10.1007/s10439-009-9810-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 09/23/2009] [Indexed: 11/29/2022]
Abstract
One of existing strategies to engineer active antibody is to link V(H) and V(L) domains via a linker peptide. How the composition, length, and conformation of the linker affect antibody activity, however, remains poorly understood. In this study, a dual approach that coordinates molecule modeling, biological measurements, and affinity evaluation was developed to quantify the binding activity of a novel stable miniaturized anti-CD20 antibody or single-chain fragment variable (scFv) with a linker peptide. Upon computer-guided homology modeling, distance geometry analysis, and molecular superimposition and optimization, three new linker peptides PT1, PT2, and PT3 with respective 7, 10, and 15 residues were proposed and three engineered antibodies were then constructed by linking the cloned V(H) and V(L) domains and fusing to a derivative of human IgG1. The binding stability and activity of scFv-Fc chimera to CD20 antigen was quantified using a micropipette adhesion frequency assay and a Scatchard analysis. Our data indicated that the binding affinity was similar for the chimera with PT2 or PT3 and approximately 24-fold higher than that for the chimera with PT1, supporting theoretical predictions in molecular modeling. These results further the understanding in the impact of linker peptide on antibody structure and activity.
Collapse
Affiliation(s)
- Xin Gu
- Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road, Beijing 100850, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|