1
|
Ouyang M, Chen W, Zhou T, Liu H, Liu L, Bu B, Deng L. The underlying difference of metastatic and non-metastatic breast cancer cells in configuring type I collagen fibres to promote migration by cell mechanics. MECHANOBIOLOGY IN MEDICINE 2025; 3:100113. [PMID: 40395771 PMCID: PMC12067905 DOI: 10.1016/j.mbm.2025.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 05/22/2025]
Abstract
The progression of tumors is heavily influenced by mechanical properties of their microenvironment. In this work, we applied micropatterned models with varying distances and shapes to investigate the differences between metastatic MDA-MB-231 and non-metastatic MCF-7 breast cancer cells in reconfiguring extracellular matrix to promote cell migration induced by cell mechanics. Both cancer cells were able to rearrange type I collagen (COL) to form fibre threads, in which MDA-MB-231 consistently migrated more rapidly than MCF-7, ranging from geometrical square arrays with different spacings to complex polygonal models. MDA-MB-231 displayed higher capability of reorganizing fibre bundles at longer distance (800 μm). Further looking for differences in cell molecular mechanisms, siRNA knockdown inhibiting either integrin β1 or Piezo1 decreased fibre assembly and reduced the difference in COL remodeling and migration between two cancer cells. MDA-MB-231 showed inhibited migration with integrin knockdown, whereas scattering migration with Piezo1 knockdown, indicating cells losing directional mechanosensation. After inhibiting junctional E-cadherin with siRNA, MCF-7 cells migrated faster, resulting in reduced difference in comparison to MDA-MB-231 that didn't express E-cadherin. In summary, this work has explored the biomechanical differences between metastatic and non-metastatic breast cancer cells regarding COL fibre matrix remodeling and cell movements. The significant differences in E-cadherin expression in the two breast cancer cells had an effect on cell migrations. The results of this study provide research approaches for evaluating therapeutic effort on breast cancer.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, 213164 China
| | - Weihui Chen
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, 213164 China
- School of Pharmacy, Changzhou University, Changzhou, 213164 China
| | - Ting Zhou
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, 213164 China
| | - Hongjie Liu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, 213164 China
- School of Pharmacy, Changzhou University, Changzhou, 213164 China
| | - Lei Liu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, 213164 China
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, 213164 China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, 213164 China
| |
Collapse
|
2
|
Angelopoulos I, Ioannidis K, Lyroni KG, Vlassopoulos D, Samiotaki M, Pavlidou E, Chatzistavrou X, Papantoniou I, Papageorgiou K, Kritas SK, Grivas I. A 3D SVZonChip Model for In Vitro Mimicry of the Subventricular Zone Neural Stem Cell Niche. Bioengineering (Basel) 2025; 12:562. [PMID: 40564379 DOI: 10.3390/bioengineering12060562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 06/28/2025] Open
Abstract
Neural stem cells (NSCs) are crucial components of the nervous system, primarily located in the subventricular zone (SVZ) and subgranular zone (SGZ). The SVZ neural stem cell niche (NSCN) is a specialized microenvironment where growth factors and extracellular matrix (ECM) components collaborate to regulate NSC self-renewal and differentiation. Despite its importance, our understanding of the SVZ remains incomplete due to the inherent challenges of animal research, particularly given the tissue's dynamic nature. To address these limitations, we developed a proof-of-concept, dynamic, and tissue-specific 3D organotypic SVZ model to reduce reliance on animal models. This static 3D organotypic model integrates a region-specific decellularized ECM derived from the SVZ, mimicking the native NSCN and supporting mouse-derived ependymal cells (ECs), radial glial cells (RGCs), astrocytes, and NSCs. To further improve physiological relevance, we incorporated a dynamic microfluidic culture system (SVZonChip), replicating cerebrospinal fluid (CSF) flow as observed in vivo. The resulting SVZonChip platform, combining region-specific ECM proteins with dynamic culture conditions, provides a sustainable and reproducible tool to minimize animal model use. It holds significant promise for studying SVZ-related diseases, such as congenital hydrocephalus, stroke, and post-stroke neurogenesis, while advancing translational research and enabling personalized medicine protocols.
Collapse
Affiliation(s)
- Ioannis Angelopoulos
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Konstantinos Ioannidis
- Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium
| | - Konstantina Gr Lyroni
- Foundation for Research and Technology (FORTH), Institute for Electronic Structure and Laser, 70013 Heraklion, Greece
- Department of Materials Science and Engineering, University of Crete, 70013 Heraklion, Greece
| | - Dimitris Vlassopoulos
- Foundation for Research and Technology (FORTH), Institute for Electronic Structure and Laser, 70013 Heraklion, Greece
- Department of Materials Science and Engineering, University of Crete, 70013 Heraklion, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", 16672 Vari, Greece
| | - Eleni Pavlidou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Papantoniou
- Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium
| | - Konstantinos Papageorgiou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Spyridon K Kritas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis Grivas
- Laboratory of Anatomy, Histology and Embryology Veterinary School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Deng S, Wang J, Zou F, Cheng D, Chen M, Gu J, Shi J, Yang J, Xue Y, Jiang Z, Qin L, Mao F, Chang X, Nie X, Liu L, Cao Y, Cai K. Palmitic Acid Accumulation Activates Fibroblasts and Promotes Matrix Stiffness in Colorectal Cancer. Cancer Res 2025; 85:1784-1802. [PMID: 39992719 PMCID: PMC12079102 DOI: 10.1158/0008-5472.can-24-2892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/27/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Obstructions can occur during any stage of colorectal cancer and correspond with poor prognosis. Obstructive colorectal cancer (OCRC) is harder and exhibits increased tumor budding and proliferation of myofibroblasts compared with nonobstructive colorectal cancer, suggesting that the occurrence of obstruction may be related to extracellular matrix (ECM) remodeling. In this study, we found that colorectal cancer and OCRC samples differed substantially in ECM composition, specifically in collagen (newly formed and mature) and proteoglycans (including glycosaminoglycan, hyaluronic acid, and chondroitin sulfate). OCRC also exhibited considerable changes in ECM biomechanics and collagen arrangement. Interestingly, OCRC samples presented a notable increase in matrix cancer-associated fibroblasts (mCAF). The abundance of mCAFs correlated with the accumulation of palmitic acid (PA), and high concentrations of PA increased the secretion of ECM-related proteins by mCAFs. Additionally, PA did not directly affect normal fibroblasts but rather activated the NF-κB pathway in tumor cells to stimulate secretion of CSF1, TGFβ1, and CXCL8, which promoted the activation of normal fibroblasts into mCAFs and exacerbated ECM stiffening. Drug screening with a natural compound library identified vanillylacetone as a potential inhibitor of PA-induced cytokine secretion and ECM stiffening. These findings highlight intratumoral PA accumulation as a key mechanism driving ECM alterations and OCRC progression and suggest that targeting this axis may be useful for treating patients with colorectal cancer with risk of obstruction. Significance: Palmitic acid accumulation activates the NF-κB pathway in colorectal cancer cells to promote cytokine secretion that facilitates the generation of matrix cancer-associated fibroblasts, driving extracellular matrix remodeling and development of obstructions.
Collapse
Affiliation(s)
- Shenghe Deng
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Falong Zou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Denglong Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mian Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Shi
- Department of Gastrointestinal Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Yang
- Department of Gastrointestinal Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenxin Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinghao Cao
- Department of Digestive Surgical Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Mugnai ML, Tchuenkam Batoum R, Del Gado E. Interspecies interactions in dual, fibrous gels enable control of gel structure and rheology. Proc Natl Acad Sci U S A 2025; 122:e2423293122. [PMID: 40327689 DOI: 10.1073/pnas.2423293122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
Natural and synthetic multicomponent gels display emergent properties, which implies that they are more than just the sum of their components. This warrants the investigation of the role played by interspecies interactions in shaping gel architecture and rheology. Here, using computer simulations, we investigate the effect of changing the strength of the interactions between two species forming a fibrous double network. Simply changing the strength of interspecies lateral association, we generate two types of gels: one in which the two components demix and another one in which the two species wrap around each other. We show that demixed gels have structure and rheology that are largely unaffected by the strength of attraction between the components. In contrast, architecture and material properties of intertwined gels strongly depend on interspecies "stickiness" and volume exclusion. These results can be used as the basis of a design principle for double networks which are made to emphasize either stability to perturbations or responsiveness to stimuli. Similar ideas could be used to interpret naturally occurring multicomponent gels.
Collapse
Affiliation(s)
- Mauro L Mugnai
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057
| | | | - Emanuela Del Gado
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057
- Department of Physics, Georgetown University, Washington, DC 20057
| |
Collapse
|
5
|
Zhou J, Shi Y, Zhou Y, Ge Y. Benzo[a]pyrene-Induced Developmental Toxicity in Caenorhabditis elegans: Potential Involvement of Insulin/IGF Signaling and Collagen Gene Dysregulation. TOXICS 2025; 13:384. [PMID: 40423463 DOI: 10.3390/toxics13050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Benzo[a]pyrene (B[a]P) is a widespread and persistent organic pollutant that poses serious threats to human health. Although its carcinogenic properties have been extensively studied, its developmental toxicity and underlying mechanisms remain poorly understood. In this study, we employed Caenorhabditis elegans (C. elegans) as a model organism to investigate the effects of B[a]P exposure during early developmental stages. To comprehensively assess B[a]P-induced developmental toxicity, we employed high-throughput sequencing along with transgenic and mutant C. elegans strains. Exposure to B[a]P at concentrations exceeding 1 mg/L significantly reduced larval body size, decreased the number of adult worms, and delayed larval-to-adult development. Furthermore, we analyzed the expression of genes involved in cuticle collagen synthesis and key components of the insulin/insulin-like growth factor signaling (IIS) pathway, including daf-2 and daf-16. These findings suggest that B[a]P-induced developmental toxicity may be associated with dysregulation of the IIS pathway. Specifically, B[a]P appears to influence the activity of the downstream transcription factor daf-16, thereby altering the expression of collagen-related genes. This disruption in collagen synthesis may contribute to delayed larval development and impaired maturation. Our study provides new insights into the environmental hazards associated with B[a]P exposure and reveals a potential mechanism underlying its developmental toxicity. Moreover, our findings highlight the critical role of collagen gene regulation during early developmental stages. These genes may serve as potential biomarkers for environmental toxicant exposure, particularly in vulnerable populations such as children undergoing critical periods of development.
Collapse
Affiliation(s)
- Jinjin Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yage Shi
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanfeng Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Miller J, Perrier Q, Rengaraj A, Bowlby J, Byers L, Peveri E, Jeong W, Ritchey T, Gambelli AM, Rossi A, Calafiore R, Tomei A, Orlando G, Asthana A. State of the Art of Bioengineering Approaches in Beta-Cell Replacement. CURRENT TRANSPLANTATION REPORTS 2025; 12:17. [PMID: 40342868 PMCID: PMC12055624 DOI: 10.1007/s40472-025-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/11/2025]
Abstract
Purpose of the Review Despite recent advancements in technology for the treatment of type 1 diabetes (T1D), exogenous insulin delivery through automated devices remains the gold standard for treatment. This review will explore progress made in pancreatic islet bioengineering within the field of beta-cell replacement for T1D treatment. Recent Findings First, we will focus on the use of decellularized extracellular matrices (dECM) as a platform for pancreatic organoid development. These matrices preserve microarchitecture and essential biochemical signals for cell differentiation, offering a promising alternative to synthetic matrices. Second, advancements in 3D bioprinting for creating complex organ structures like pancreatic islets will be discussed. This technology allows for increased precision and customization of cellular models, crucial for replicating native pancreatic islet functionality. Finally, this review will explore the use of stem cell-derived organoids to generate insulin-producing islet-like cells. While these organoids face challenges such as functional immaturity and poor vascularization, they represent a significant advancement for disease modeling, drug screening, and autologous islet transplantation. Summary These innovative approaches promise to revolutionize T1D treatment by overcoming the limitations of traditional therapies based on human pancreatic islets.
Collapse
Affiliation(s)
- Jake Miller
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Quentin Perrier
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
- Univ. Grenoble Alpes, Department of Pharmacy, Grenoble Alpes University Hospital, Grenoble, France
| | - Arunkumar Rengaraj
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Joshua Bowlby
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Lori Byers
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Emma Peveri
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Thomas Ritchey
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | | | - Arianna Rossi
- Department of Engineering, University of Perugia, Perugia, Italy
| | | | - Alice Tomei
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Amish Asthana
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| |
Collapse
|
7
|
Zou Z, Li S, Zhang H. Advances in keratoconus animal models: From genetics to biomechanics. Exp Eye Res 2025; 254:110330. [PMID: 40081753 DOI: 10.1016/j.exer.2025.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/23/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Keratoconus is a disorder characterized by thinning and protrusion of the cornea into a cone shape, potentially leading to decreased vision and blindness. Understanding the pathogenesis of keratoconus and developing treatment strategies is crucial. Currently, animal models of keratoconus created through gene knockout and collagenase digestion have made significant progress in studying the pathogenesis of the disease. However, these models have limitations, such as unverified long-term effects. Future research should focus on optimizing the construction methods of animal models and enhancing long-term observation and evaluation to more accurately simulate human keratoconus. This paper reviews research progress on animal models of keratoconus, examining models constructed using methods such as gene editing, drug induction, cutting of corneal stroma, and mechanical stimulation.
Collapse
Affiliation(s)
- Zongzheng Zou
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Shanshan Li
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Haixia Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Marjan T, Lafuente-Gómez N, Rampal A, Mooney DJ, Peyton SR, Qazi TH. Cell-Instructive Biomaterials with Native-Like Biochemical Complexity. Annu Rev Biomed Eng 2025; 27:185-209. [PMID: 39874600 PMCID: PMC12045723 DOI: 10.1146/annurev-bioeng-120823-020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Biochemical signals in native tissue microenvironments instruct cell behavior during many biological processes ranging from developmental morphogenesis and tissue regeneration to tumor metastasis and disease progression. The detection and characterization of these signals using spatial and highly resolved quantitative methods have revealed their existence as matricellular proteins in the matrisome, some of which are bound to the extracellular matrix while others are freely diffusing. Including these biochemical signals in engineered biomaterials can impart enhanced functionality and native-like complexity, ultimately benefiting efforts to understand, model, and treat various diseases. In this review, we discuss advances in characterizing, mimicking, and harnessing biochemical signals in developing advanced engineered biomaterials. An overview of the diverse forms in which these biochemical signals exist and their effects on intracellular signal transduction is also provided. Finally, we highlight the application of biochemically complex biomaterials in the three broadly defined areas of tissue regeneration, immunoengineering, and organoid morphogenesis.
Collapse
Affiliation(s)
- Tuba Marjan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Nuria Lafuente-Gómez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Akaansha Rampal
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Shelly R Peyton
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA;
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
9
|
Kamenev D, Kameneva P, Adameyko I. The role of microheterogeneity in cell fate decisions in neural progenitors and neural crest. Curr Opin Neurobiol 2025; 92:103031. [PMID: 40288017 DOI: 10.1016/j.conb.2025.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/23/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025]
Abstract
Neuroprogenitors must integrate a multitude of signals, including gradients of morphogens, transcriptional programs, and temporal cues to generate an astonishing diversity of cell types inhabiting the nervous system. How do these different layers of information come together to influence cell fate in progenitor cells in a coordinated way? Here we provide a nuanced perspective on cell fate selection in the nervous system and neural crest lineage, suggesting that it is not a straightforward, deterministic process governed by rigid on-off switches. Instead, the process involves probabilistic transitions influenced by small variations - termed "microheterogeneity" - within a progenitor cell population. These minuscule differences between individual neural progenitor cells can result in significantly different outcomes, making certain fates more probable for some cells than others. Here we discuss the diversity of such examples and the theory behind, also providing future perspectives.
Collapse
Affiliation(s)
- Dmitrii Kamenev
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Polina Kameneva
- St. Anna Children's Cancer Research Institute (CCRI), 1090 Vienna, Austria.
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria; Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
10
|
Kunchur NN, Poole JJA, Levine J, Hackett TL, Thornhill R, Mostaço-Guidolin LB. Classification of collagen remodeling in asthma using second-harmonic generation imaging, supervised machine learning and texture-based analysis. FRONTIERS IN BIOINFORMATICS 2025; 5:1539936. [PMID: 40313867 PMCID: PMC12043662 DOI: 10.3389/fbinf.2025.1539936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/19/2025] [Indexed: 05/03/2025] Open
Abstract
Airway remodeling is present in all stages of asthma severity and has been linked to reduced lung function, airway hyperresponsiveness and increased deposition of fibrillar collagens. Traditional histological staining methods used to visualize the fibrotic response are poorly suited to capture the morphological traits of extracellular matrix (ECM) proteins in their native state, hindering our understanding of disease pathology. Conversely, second harmonic generation (SHG), provides label-free, high-resolution visualization of fibrillar collagen; a primary ECM protein contributing to the loss of asthmatic lung elasticity. From a cohort of 13 human lung donors, SHG-imaged collagen belonging to non-asthmatic (control) and asthmatic donors was evaluated through a custom textural classification pipeline. Integrated with supervised machine learning, the pipeline enables the precise quantification and characterization of collagen, delineating amongst control and remodeled airways. Collagen distribution is quantified and characterized using 80 textural features belonging to the Gray Level Cooccurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM), Gray Level Dependence Matrix (GLDM) and Neighboring Gray Tone Difference Matrix (NGTDM). To denote an accurate subset of features reflective of fibrillar collagen formation; filter, wrapper, embedded and novel statistical methods were applied as feature refinement. Textural feature subsets of high predictor importance trained a support vector machine model, achieving an AUC-ROC of 94% ± 0.0001 in the classification of remodeled airway collagen vs. control lung tissue. Combined with detailed texture analysis and supervised ML, we demonstrate that morphological variation amongst remodeled SHG-imaged collagen in lung tissue can be successfully characterized.
Collapse
Affiliation(s)
- Natasha N. Kunchur
- Department of Systems and Computer Engineering at Carleton University, Ottawa, ON, Canada
| | - Joshua J. A. Poole
- Department of Systems and Computer Engineering at Carleton University, Ottawa, ON, Canada
| | - Jesse Levine
- Department of Systems and Computer Engineering at Carleton University, Ottawa, ON, Canada
| | - Tillie-Louise Hackett
- Anesthesiology, Pharmacology and Therapeutics Department at the University of British Columbia, Medical Sciences, Vancouver, BC, Canada
| | - Rebecca Thornhill
- Department of Radiology, Radiation Oncology, and Medical Physics at the University of Ottawa, Ottawa, ON, Canada
- Department of Medical Imaging at the Ottawa Hospital, Ottawa, ON, Canada
| | | |
Collapse
|
11
|
van der Pol A, Peters MC, Jorba I, Smits AM, van der Kaaij NP, Goumans MJ, Wever KE, Bouten CVC. Preclinical extracellular matrix-based treatment strategies for myocardial infarction: a systematic review and meta-analysis. COMMUNICATIONS MEDICINE 2025; 5:95. [PMID: 40159511 PMCID: PMC11955565 DOI: 10.1038/s43856-025-00812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Administrating extracellular matrix (ECM) to restore cardiac function post-myocardial infarction (MI) shows promise, however study variability obscures its true impact. We therefore conducted a systematic review and meta-analysis of preclinical studies to assess the effects of ECM treatments on cardiac function and tissue homeostasis post-MI. METHODS We searched PubMed and SCOPUS from inception to June 28, 2024, for animal studies describing ECM treatment post-MI (pre-registered on PROSPERO, CRD42022368400). Random effects meta-analyses compared ECM treatment to controls regarding left ventricular ejection fraction (LVEF), fractional shortening, infarct size, stroke volume, and left ventricular wall thickness. Subgroup analyses examined the influence of sex, species, ECM source, and administration method. Funnel plots and Egger's regression assessed publication bias. RESULTS We identify 88 articles which meet our inclusion criteria. These studies describe the use of rats (51%), mice (38%), and pigs (11%). 44% of studies use males, 34% females, 5% both sexes, and 17% did not report sex. Most studies employ permanent MI models (85%) over ischemia reperfusion models (15%), and deliver ECM via intramyocardial injection (59%), cardiac patch (39%), cardiac sleeve (1%), or osmotic pump (1%). Our meta-analysis demonstrates that ECM treatment significantly improves LVEF (MD: 10.9%, 95% CI: [8.7%;13.0%]; p = 8.057e-24), fractional shortening (MD: 8.2%, 95% CI: [5.6%; 10.9%]; p = 1.751e-09), stroke volume (SMD 0.6, 95% CI: [0.2;1.0], p = 0.004), left ventricular wall thickening (SMD 1.2, 95% CI: [0.9; 1.5], p = 1.321e-17), while reducing infarct size (-11.7%, 95% CI: [-14.7%;-8.6%], p = 3.699e-14). We find no significant differences between the various subgroups and no indication of publication bias. CONCLUSIONS ECM-based treatments significantly enhance cardiac function and tissue homeostasis in preclinical post-MI models, supporting further research toward clinical translation.
Collapse
Affiliation(s)
- Atze van der Pol
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Marijn C Peters
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Cardiothoracic Surgery, Regenerative Medicine Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ignasi Jorba
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Niels P van der Kaaij
- Department of Cardiothoracic Surgery, Regenerative Medicine Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marie-Jose Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Carlijn V C Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
12
|
Dworak H, Rozmaric T, Grillari J, Ogrodnik M. Cells of all trades - on the importance of spatial positioning of senescent cells in development, healing and aging. FEBS Lett 2025:10.1002/1873-3468.70037. [PMID: 40156464 PMCID: PMC7617592 DOI: 10.1002/1873-3468.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Biological processes are often spatially regulated, ensuring molecular and cellular events occur in their most strategically advantageous locations. Cellular senescence, marked by cell cycle arrest and hypersecretion, is recognized as an important part of physiological processes like development and healing, but it also contributes to aging and disease. However, the spatial distribution of senescent cells and its physiological and pathological impact remain unclear. Here we compile evidence on senescent cell localization in development, healing, and aging. We emphasize the significance of their spatial patterns and speculate on the effects of disrupted spatial positioning of senescence in relation to pathologies. To summarize the specific spatial functions of senescent cells, we propose to refer to them as 'barrier' and 'conductor' functions. The 'barrier' function of senescent cells, due to their altered morphology and apoptosis resistance, separates tissues and builds a border between two environments. The conductor function, with the secretion of signaling factors, influences the surrounding area and stimulates migration, differentiation, or proliferation, among other processes. Overall, this Review explores the spatial patterning of cellular senescence in biological processes, highlighting its dual roles as 'barrier' and 'conductor' functions, and examines the implications of senescent cell distribution in development, healing, aging, and disease.
Collapse
Affiliation(s)
- Helene Dworak
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Tomaz Rozmaric
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Muthgasse 18, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
13
|
Ling Z, Niego B, Li Q, Villa VS, Bhattaram D, Hu M, Gong Z, Smith LM, Frey BL, Ren X. Chemoselective Characterization of New Extracellular Matrix Deposition in Bioengineered Tumor Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643336. [PMID: 40166338 PMCID: PMC11956949 DOI: 10.1101/2025.03.18.643336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The extracellular matrix (ECM), present in nearly all tissues, provides extensive support to resident cells through structural, biomechanical, and biochemical means, and in return the ECM undergoes constant remodeling from interacting cells to adapt to the evolving tissue states. Bioengineered 3D tissues, commonly known as cell-ECM composites, are robust model systems to recapitulate and investigate native pathophysiology. Key to this engineered morphogenesis process are the intricate cell-ECM interactions reflected by how cells respond to and thereby modulate their surrounding microenvironments through their ongoing ECM secretome. However, investigating ECM-regulated new ECM production has been challenging due to the proteomic background from the pre-existing biomaterial ECM. To address this hindrance, here we present a chemoselective strategy to label, enrich, and characterize newly synthesized ECM (newsECM) proteins produced by resident cells, allowing distinction from the pre-existing ECM background. Applying our analytical pipeline to bioengineered tumor tissues, either built upon decellularized ECM (dECM-tumors) or as ECM-free tumor spheroids (tumoroids), we observed distinct ECM synthesis patterns that were linked to their extracellular environments. Tumor cells responded to the dECM presence with elevated ECM remodeling activities, mediated by augmented digestion of pre-existing ECM coupled with upregulated synthesis of tumor-associated ECM. Our findings highlight the sensitivity of newsECM profiling to capture remodeling events that are otherwise under-represented by bulk proteomics and underscore the significance of dECM support for enabling native-like tumor cell behaviors. We anticipate the described newsECM analytical pipeline to be broadly applicable to other tissue-engineered systems to probe ECM-regulated ECM synthesis and remodeling, both fundamental aspects of cell-ECM crosstalk in engineered tissue morphogenesis.
Collapse
Affiliation(s)
- Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Burke Niego
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States
| | - Qingyang Li
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Vanessa Serna Villa
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Dhruv Bhattaram
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Michael Hu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Zhuowei Gong
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States
| | - Brian L. Frey
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
14
|
Golebiowska AA, Intravaia JT, Sathe V, Kumbar SG, Nukavarapu SP. Engineered Osteochondral Scaffolds with Bioactive Cartilage Zone for Enhanced Articular Cartilage Regeneration. Ann Biomed Eng 2025; 53:597-611. [PMID: 39602036 PMCID: PMC11835937 DOI: 10.1007/s10439-024-03655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Despite progress, osteochondral (OC) tissue engineering strategies face limitations in terms of articular cartilage layer development and its integration with the underlying bone tissue. The main objective of this study is to develop a zonal OC scaffold with native biochemical signaling in the cartilage zone to promote articular cartilage development devoid of cells and growth factors. Herein, we report the development and in vivo assessment of a novel gradient and zonal-structured scaffold for OC defect regeneration. The scaffold system is composed of a mechanically supportive 3D-printed template containing decellularized cartilage extracellular matrix (ECM) biomaterial in the cartilage zone that possesses bioactive characteristics, such as chemotactic activity and native tissue biochemical composition. OC scaffolds with a bioactive cartilage zone were implanted in vivo in a rabbit osteochondral defect model and assessed for gross morphology, matrix deposition, cellular distribution, and overall tissue regeneration. The scaffold system supported recruitment and infiltration of host cells into the cartilage zone of the graft, which led to increased ECM deposition and physiologically relevant articular cartilage tissue formation. Semi-quantitative ICRS scoring (overall score double for OC scaffold with bioactive cartilage zone compared to PLA scaffold) further confirm the bioactive scaffold enhanced articular cartilage engineering. This strategy of designing bioactive scaffolds to promote endogenous cellular infiltration can be a much simpler and effective approach for OC tissue repair and regeneration.
Collapse
Affiliation(s)
- Aleksandra A Golebiowska
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Jonathon T Intravaia
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Vinayak Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA.
| |
Collapse
|
15
|
Vilotić A, Kostić S, Pirković A, Bojić-Trbojević Ž, Dekanski D, Vrzić-Petronijević S, Jovanović Krivokuća M. Caffeic acid stimulates migration and invasion of human trophoblast HTR-8/SVneo cells. Food Funct 2025; 16:1603-1614. [PMID: 39918297 DOI: 10.1039/d4fo03699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The placenta is a transient organ essential for development of the fetus. Adequate invasion of trophoblast cells, specialized cells of the placenta, is of utmost importance for the establishment and maintenance of healthy pregnancy. Caffeic acid (CA), one of the most abundantly present hydroxycynamic acids in everyday human diet, exhibits various physiological effects such as antioxidant, anti-inflammatory and anticancer activities including an inhibitory effect on migration and invasion of different cancer cell types. There are not many studies on CA safety in human pregnancy. Therefore, the aim of this research was to investigate the potential of CA to affect trophoblast cell function. We evaluated adhesion, migration and invasion of human trophoblast HTR-8/SVneo cells following CA treatment by functional assays. Furthermore, expression of molecular mediators of these processes such as integrin α1, α5 and β1 subunits and matrix metalloproteinase (MMP)-2 and MMP-9 was evaluated at the mRNA level by qPCR and the protein level by cell-based ELISA assay or zymography. Our results showed that 24 h treatment with 10 μM CA stimulated migration and invasion of HTR-8/SVneo cells as well as expression of the integrin α1 subunit. Furthermore, treatment with 100 μM CA stimulated expression of MMP2 and MMP9 mRNA in the treated HTR-8/SVneo cells as well as secretion of MMP-9. According to obtained results, we can conclude that CA could have the potential to affect processes important for placentation. However, further research is needed to elucidate all aspects of potential CA effects on placental function and pregnancy as a whole.
Collapse
Affiliation(s)
- Aleksandra Vilotić
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| | - Sanja Kostić
- Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Andrea Pirković
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| | - Žanka Bojić-Trbojević
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| | - Dragana Dekanski
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| | - Svetlana Vrzić-Petronijević
- Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| |
Collapse
|
16
|
Osten F, Bodenschatz AK, Ivaskevica K, Kröhn S, Piep B, Holler T, Teske J, Montag J, Iorga B, Weber N, Zweigerdt R, Kraft T, Meissner JD. Differential impact of substrates on myosin heavy and light chain expression in human stem cell-derived cardiomyocytes at single-cell level. J Muscle Res Cell Motil 2025:10.1007/s10974-025-09690-2. [PMID: 39948277 DOI: 10.1007/s10974-025-09690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/01/2025] [Indexed: 04/20/2025]
Abstract
To fully exploit the potential of human pluripotent stem cell-derived cardiomyocytes, ideally they should acquire a mature, adult ventricular-like phenotype. Predominant expression of the β-isoform of myosin heavy chain (β-MyHC) and the ventricular isoform of myosin regulatory light chain 2 (MLC2v) is a marker of human adult cardiac ventricle. Yet predominant co-expression of these isoforms is rarely reported by current culture protocols. Here, we assessed the impact of different substrates on β-MyHC and MLC2v expression in single human embryonic stem cell-derived CMs (hESC-CMs). As substrates, surface materials with differing stiffness as defined by Young's modulus were combined with either laminin, a single-component coating, or Matrigel, a multi-component coating including growth factors. Semi-quantitative single-cell immunofluorescence analysis demonstrated that surfaces with supraphysiological stiffness in combination with laminin are sufficient for promotion of predominant β-MyHC expression, but not for predominant MLC2v expression in hESC-CMs. Accordingly, mechanical stimuli likely promote expression of β-MyHC in these cultures. Culture on matrices with a lower stiffness than glass in combination with growth factor-containing Matrigel led to only moderate increases in MLC2v expression, possibly more dependent on growth factors, suggesting different regulation of expression. Integrin-related downstream signal transducers, integrin-linked and cardiac troponin I-interacting kinase, as well as modulation of intracellular Ca2+-concentration and epigenetic signaling did not affect MyHC/MLC2 isoform expression. The data indicate that expression of adult ventricular markers β-MyHC and MLC2v depends on different stimuli like substrate stiffness and growth factors. To conclude, multiple stimuli appear to be necessary to promote an adult ventricular phenotype.
Collapse
Affiliation(s)
- Felix Osten
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Alea K Bodenschatz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Karina Ivaskevica
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Simon Kröhn
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Holler
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Jana Teske
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Judith Montag
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Faculty of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Bogdan Iorga
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Natalie Weber
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Joachim D Meissner
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Ilg MM, Lapthorn AR, Harding SL, Minhas T, Koduri G, Bustin SA, Cellek S. Development of a phenotypic screening assay to measure activation of cancer-associated fibroblasts. Front Pharmacol 2025; 16:1526495. [PMID: 40017592 PMCID: PMC11865240 DOI: 10.3389/fphar.2025.1526495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Background In cancer metastasis, tumor cells condition distant tissues to create a supportive environment, or metastatic niche, by driving the activation of cancer-associated fibroblasts (CAFs). These CAFs remodel the extracellular matrix, creating a microenvironment that supports tumor growth and compromises immune cell function, enabling cancer cells to evade immune detection. Consequently, targeting the activation of CAFs has been proposed as a therapeutic strategy to hinder metastatic spread. Our objective was to develop the first in vitro phenotypic screening assay capable of assessing this activation process. Methods Human primary lung fibroblasts were co-cultured with highly invasive breast cancer cells (MDA-MB-231) to identify changes in the expression of selected genes using RT-qPCR. An In-Cell ELISA (ICE)-based assay using human lung fibroblasts, MDA-MB-231 cells and human monocytes (THP-1 cells) was developed to measure the activation of CAFs. Another ELISA assay was used to measure released osteopontin. Results When lung fibroblast were co-cultured with MDA-MB-231 cells, among the 10 selected genes, the genes for osteopontin (SPP1), insulin like growth factor 1 (IGF1), periostin (POSTN) and α-smooth muscle actin (α-SMA, ACTA2) elicited the greatest fold change (55-, 37-, 8- and 5-fold respectively). Since osteopontin, IGF-1 and periostin are secreted proteins and α-SMA is an intracellular cytoskeleton protein, α-SMA was chosen to be the readout biomarker for the ICE assay. When fibroblasts were co-cultured with MDA-MB-231 cells and monocytes in the 96 well ICE assay, α-SMA expression was increased 2.3-fold yielding a robust Z' of 0.56. A secondary, low throughput assay was developed by measuring the release of osteopontin which showed a 6-fold increase when fibroblasts were co-cultured with MDA-MB-231 cells and monocytes. Discussion This phenotypic assay is the first to measure the activation of CAFs in a 96-well format, making it suitable for medium-to high-throughput screening of potential therapeutic compounds. By focusing on observable cellular phenotypic changes rather than targeting specific molecular pathways, this assay allows for a broader and unbiased identification of compounds capable of modulating CAF activation.
Collapse
Affiliation(s)
- Marcus M. Ilg
- Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Alice R. Lapthorn
- Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Sophie L. Harding
- Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Tariq Minhas
- The Essex Cardiothoracic Centre, Basildon University Hospital, Basildon, United Kingdom
| | - Gouri Koduri
- Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, United Kingdom
| | - Stephen A. Bustin
- Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Selim Cellek
- Fibrosis Research Group, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| |
Collapse
|
18
|
Subramaniam S, Jose A, Kenney D, O’Connell AK, Bosmann M, Douam F, Crossland N. Challenging the notion of endothelial infection by SARS-CoV-2: insights from the current scientific evidence. Front Immunol 2025; 16:1443932. [PMID: 39967675 PMCID: PMC11832389 DOI: 10.3389/fimmu.2025.1443932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
- Saravanan Subramaniam
- Department of Pharmacology and Toxicology, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
- Renal Section, Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Asha Jose
- Renal Section, Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Devin Kenney
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | - Aoife K. O’Connell
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | - Markus Bosmann
- Department of Medicine, Pulmonary Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Florian Douam
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | - Nicholas Crossland
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| |
Collapse
|
19
|
Aiassa V, Ferreira MDR, Ingaramo P, D'Alessandro ME. Salvia hispanica L. (chia) seed have beneficial effects upon visceral adipose tissues extracellular matrix disorders and inflammation developed in a sucrose-rich diet-induced adiposity rodent model. Mol Cell Endocrinol 2025; 597:112438. [PMID: 39638143 DOI: 10.1016/j.mce.2024.112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
We have previously demonstrated that dietary Salvia hispanica L. (chia) seed, rich in α-linolenic acid (ALA), was able to reduce visceral adiposity and improves insulin sensitivity in a rodent experimental model of adiposity induced by the administration of a sucrose-rich diet (SRD). The evidence suggests that the pathological expansion of visceral adipose tissue (VAT) is accompanied by changes in the extracellular matrix (ECM) components, which can lead to fibrosis, and/or a greater expression of pro-inflammatory adipokines. The aim of the present work was to evaluate the effect of chia seed administration upon key components and modulators of ECM remodeling and inflammation in different white adipose tissues (WAT) (epididymal-eWAT- and retroperitoneal-rWAT-) in a SRD-induced adiposity rodent model. The results showed that chia seed reduced the increased hydroxyproline levels observed in SRD-fed group and this was accompanied by changes in the activity/expression of matrix metalloproteinases MMP-2 and MMP-9. No changes were observed in transforming growth factor β (TGF-β) expression levels. In addition, this nutritional intervention was able to reduce the levels of PAI-1 and MCP-1, and to increase the levels of adiponectin in both VAT. An increase in the ratio of n-3/n-6 polyunsaturated fatty acids in the membrane phospholipids of both VAT was also observed. The present study demonstrated that chia seed have anti-fibrotic and anti-inflammatory actions in the VAT which could play a key role in the amelioration of visceral adiposity and whole-body insulin insensitivity developed in SRD-fed rats.
Collapse
Affiliation(s)
- Victoria Aiassa
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Paola Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL- CONICET), Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
20
|
Cheong S, Peng Y, Lu F, He Y. Structural extracellular matrix-mediated molecular signaling in wound repair and tissue regeneration. Biochimie 2025; 229:58-68. [PMID: 39369941 DOI: 10.1016/j.biochi.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The extracellular matrix (ECM) is a complex, non-cellular network of molecules that offers structural support for cells and tissues. The ECM is composed of various structural components, including collagen, fibronectin, laminin, perlecan, nidogen, tenascin, and fibulin, which are capable of binding to each other and to cell-to-adhesion receptors, endowing the ECM with unique physical and biochemical properties that are essential for its function in maintaining health and managing disease. Over the past three decades, extensive research has shown that the core of the ECM can significantly impact cellular events at the molecular level. Structural modifications have also been strongly associated with tissue repair. Through interactions with cells, matrix proteins regulate critical processes such as cell proliferation and differentiation, migration, and apoptosis, essential for maintaining tissue homeostasis, formation, and regeneration. This review emphasizes the interlocking networks of ECM macromolecules and their primary roles in tissue regeneration and wound repair. Through studying ECM dynamics, researchers have discovered molecular signaling pathways that demonstrate how the ECM influences protein patterns and open up more possibilities for developing therapeutics that target the ECM to enhance wound repair and tissue regeneration.
Collapse
Affiliation(s)
- Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Yujie Peng
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Harju N, Kauppinen A, Loukovaara S. Fibrotic Changes in Rhegmatogenous Retinal Detachment. Int J Mol Sci 2025; 26:1025. [PMID: 39940795 PMCID: PMC11817287 DOI: 10.3390/ijms26031025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is a sight-threatening condition involving retinal detachment and the accumulation of fluid in the subretinal space. Proliferative vitreoretinopathy (PVR) is a pathologic complication that develops after RRD surgery, and approximately 5-10% of RRD cases develop post-operative PVR. Prolonged inflammation in the wound healing process, epithelial-mesenchymal transition (EMT), retinal pigment epithelial (RPE) cell migration and proliferation, and epiretinal, intraretinal, and subretinal fibrosis are typical in the formation of PVR. RPE cells undergo EMT and become fibroblast-like cells that migrate to the retina and vitreous, promoting PVR formation. Fibroblasts transform into myofibroblasts, which promote fibrosis by overproducing the extracellular matrix (ECM). RPE cells, fibroblasts, glial cells, macrophages, T lymphocytes, and increased ECM production form contractile epiretinal membranes. Cytokine release, complement activation, RPE cells, glial cells, and endothelial cells are all involved in retinal immune responses. Normally, wounds heal within 4 to 6 weeks, including hemostasis, inflammation, proliferation, and remodeling phases. Properly initiated inflammation, complement activation, and the function of neutrophils and glial cells heal the wound in the first stage. In a retinal wound, glial cells proliferate and fill the injured area. Gliosis tries to protect the neurons and prevent damage, but it becomes harmful when it causes scarring. If healing is complicated, prolonged inflammation leads to pathological fibrosis. Currently, there is no preventive treatment for the formation of PVR, and it is worth studying in the future.
Collapse
Affiliation(s)
- Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Department of Ophthalmology, Helsinki University Central Hospital, 00029 Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
22
|
Pally D, Kapoor N, Naba A. The novel ECM protein SNED1 mediates cell adhesion via the RGD-binding integrins α5β1 and αvβ3. J Cell Sci 2025; 138:JCS263479. [PMID: 39713860 PMCID: PMC11828466 DOI: 10.1242/jcs.263479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
The extracellular matrix (ECM) is a complex meshwork comprising over 100 proteins. It serves as an adhesive substrate for cells and, hence, plays crucial roles in health and disease. We have recently identified a novel ECM protein, SNED1, and have found that it is required for neural crest cell migration and craniofacial morphogenesis during development and in breast cancer, where it is necessary for the metastatic dissemination of tumor cells. Interestingly, both processes involve the dynamic remodeling of cell-ECM adhesions via cell surface receptors. Sequence analysis revealed that SNED1 contains two amino acid motifs, RGD and LDV, known to bind integrins, the largest class of ECM receptors. We thus sought to investigate the role of SNED1 in cell adhesion. Here, we report that SNED1 mediates breast cancer and neural crest cell adhesion via its RGD motif. We further demonstrate that cell adhesion to SNED1 is mediated by the RGD integrins α5β1 and αvβ3. These findings are a first step toward identifying the signaling pathways activated downstream of the SNED1-integrin interactions guiding craniofacial morphogenesis and breast cancer metastasis.
Collapse
Affiliation(s)
- Dharma Pally
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Nandini Kapoor
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
23
|
Salinas E, Ruano-Rivadeneira F, Leal JI, Caprile T, Torrejón M, Arriagada C. Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications. Front Cell Dev Biol 2025; 12:1457506. [PMID: 39834387 PMCID: PMC11743681 DOI: 10.3389/fcell.2024.1457506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling. The main cellular mechanisms that sustain this migration include contact inhibition of locomotion, co-attraction, chemotaxis and mechanical cues from the surrounding environment, all regulated by proteins that orchestrate cell polarity and motility. In this review we highlight the molecular mechanisms involved in neural crest cell migration and polarity, focusing on the role of small GTPases, Heterotrimeric G proteins and planar cell polarity complex. Here, we also discuss different congenital diseases caused by altered NC cell migration.
Collapse
Affiliation(s)
- Esteban Salinas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francis Ruano-Rivadeneira
- Developmental Biology Laboratory 116, School of Biological Sciences, Faculty of Exact and Natural Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan Ignacio Leal
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Teresa Caprile
- Laboratory of Axonal Guidance, Group for the Study of Developmental Processes (GDeP), Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Cecilia Arriagada
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
24
|
Santos-Durán GN, Cooper RL, Jahanbakhsh E, Timin G, Milinkovitch MC. Self-organized patterning of crocodile head scales by compressive folding. Nature 2025; 637:375-383. [PMID: 39663449 PMCID: PMC11711089 DOI: 10.1038/s41586-024-08268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024]
Abstract
Amniote integumentary appendages constitute a diverse group of micro-organs, including feathers, hair and scales. These structures typically develop as genetically controlled units1, the spatial patterning of which emerges from a self-organized chemical Turing system2,3 with integrated mechanical feedback4,5. The seemingly purely mechanical patterning of polygonal crocodile head scales provides an exception to this paradigm6. However, the nature and origin of the mechanical stress field driving this patterning remain unclear. Here, using precise in ovo intravenous injections of epidermal growth factor protein, we generate Nile crocodile embryos with substantially convoluted head skin, as well as hatchlings with smaller polygonal head scales resembling those of caimans. We then use light-sheet fluorescence microscopy to quantify embryonic tissue-layer geometry, collagen architecture and the spatial distribution of proliferating cells. Using these data, we build a phenomenological three-dimensional mechanical growth model that recapitulates both normal and experimentally modified patterning of crocodile head scales. Our experiments and numerical simulations demonstrate that crocodile head scales self-organize through compressive folding, originating from near-homogeneous skin growth with differential stiffness of the dermis versus the epidermis. Our experiments and theoretical morphospace analyses indicate that variation in embryonic growth and material properties of skin layers provides a simple evolutionary mechanism that produces a diversity of head-scale patterns among crocodilian species.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Rory L Cooper
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Ebrahim Jahanbakhsh
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Grigorii Timin
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.
| |
Collapse
|
25
|
Namdari M, McDonnell FS. Extracellular vesicles as emerging players in glaucoma: Mechanisms, biomarkers, and therapeutic targets. Vision Res 2025; 226:108522. [PMID: 39581065 PMCID: PMC11640964 DOI: 10.1016/j.visres.2024.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
In recent years, extracellular vesicles (EVs) have attracted significant scientific interest due to their widespread distribution, their potential as disease biomarkers, and their promising applications in therapy. Encapsulated by lipid bilayers these nanovesicles include small extracellular vesicles (sEV) (30-150 nm), microvesicles (100-1000 nm), and apoptotic bodies (100-5000 nm) and are essential for cellular communication, immune responses, biomolecular transport, and physiological regulation. As they reflect the condition and functionality of their originating cells, EVs play critical roles in numerous physiological processes and diseases. Therefore, EVs offer valuable opportunities for uncovering disease mechanisms, enhancing drug delivery systems, and identifying novel biomarkers. In the context of glaucoma, a leading cause of irreversible blindness, the specific roles of EVs are still largely unexplored. This review examines the emerging role of EVs in the pathogenesis of glaucoma, with a focus on their potential as diagnostic biomarkers and therapeutic agents. Through a thorough analysis of current literature, we summarize key advancements in EV research and identify areas where further investigation is needed to fully understand their function in glaucoma.
Collapse
Affiliation(s)
- Maral Namdari
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA.
| |
Collapse
|
26
|
Wright SA, Lennon R, Greenhalgh AD. Basement membranes' role in immune cell recruitment to the central nervous system. J Inflamm (Lond) 2024; 21:53. [PMID: 39707430 DOI: 10.1186/s12950-024-00426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Basement membranes form part of the extracellular matrix (ECM), which is the structural basis for all tissue. Basement membranes are cell-adherent sheets found between cells and vascular endothelia, including those of the central nervous system (CNS). There is exceptional regional specialisation of these structures, both in tissue organisation and regulation of tissue-specific cellular processes. Due to their location, basement membranes perform a key role in immune cell trafficking and therefore are important in inflammatory processes causing or resulting from CNS disease and injury. This review will describe basement membranes in detail, with special focus on the brain. We will cover how genetic changes drive brain pathology, describe basement membranes' role in immune cell recruitment and how they respond to various brain diseases. Understanding how basement membranes form the junction between the immune and central nervous systems will be a major advance in understanding brain disease.
Collapse
Affiliation(s)
- Shaun A Wright
- Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rachel Lennon
- Cell Matrix Biology & Regenerative Medicine and Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
27
|
Ireland J, Kilian KA. The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity. Matrix Biol Plus 2024; 24:100160. [PMID: 39291079 PMCID: PMC11403269 DOI: 10.1016/j.mbplus.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CM) are a promising source of cardiac cells for disease modelling and regenerative medicine. However, current protocols invariably lead to mixed population of cardiac cell types and often generate cells that resemble embryonic phenotypes. Here we developed a combinatorial approach to assess the importance of extracellular matrix proteins (ECMP) in directing the differentiation of cardiomyocytes from human embryonic stem cells (hESC). We did this by focusing on combinations of ECMP commonly found in the developing heart with a broad goal of identifying combinations that promote maturation and influence chamber specific differentiation. We formulated 63 unique ECMP combinations fabricated from collagen 1, collagen 3, collagen 4, fibronectin, laminin, and vitronectin, presented alone and in combinations, leading to the identification of specific ECMP combinations that promote hESC proliferation, pluripotency, and germ layer specification. When hESC were subjected to a differentiation protocol on the ECMP combinations, it revealed precise protein combinations that enhance differentiation as determined by the expression of cardiac progenitor markers kinase insert domain receptor (KDR) and mesoderm posterior transcription factor 1 (MESP1). High expression of cardiac troponin (cTnT) and the relative expression of myosin light chain isoforms (MLC2a and MLC2v) led to the identification of three surfaces that promote a mature cardiomyocyte phenotype. Action potential morphology was used to assess chamber specificity, which led to the identification of matrices that promote chamber-specific cardiomyocytes. This study provides a matrix-based approach to improve control over cardiomyocyte phenotypes during differentiation, with the scope for translation to cardiac laboratory models and for the generation of functional chamber specific cardiomyocytes for regenerative therapies.
Collapse
Affiliation(s)
- Jake Ireland
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristopher A Kilian
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Bai X, Huang X, Yi J, Yan X, Hu T, Wang L, Wang Z, Gao H. Cardiac Fibroblasts Enhance MMP2 Activity to Suppress Gap Junction Function in Cardiomyocytes. Appl Biochem Biotechnol 2024; 196:8493-8512. [PMID: 38878160 DOI: 10.1007/s12010-024-04986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 01/04/2025]
Abstract
Although it is crucial to promptly restore blood perfusion to revive the ischemic myocardium, reperfusion itself can paradoxically contribute to the electrical instability and arrhythmias of the myocardium. Several studies have revealed that cardiac fibroblasts can impact cardiac electrophysiology through various mechanisms including the deposition of extracellular matrix, release of chemical mediators, and direct electrical coupling with myocytes. Previously, we have shown that hypoxia/reoxygenation (H/R)-treated rat fibroblasts conditional medium (H/R-FCM) could decrease the spontaneous beating frequency of rat neonatal cardiomyocytes and downregulate the expression of gap junction proteins. However, the specific mechanism by which H/R-FCM affects the gap junctions requires further investigation. H/R-FCM was obtained by culturing confluent rat cardiac fibroblasts (RCF) for 4 h under hypoxic conditions. Gap junction function, hemichannel activity, and expression of Cx43 were examined upon treatment with H/R-FCM. Gelatin zymography was performed to detect matrix metalloproteinase (MMP) activity in the conditioned medium. The effect of H/R-FCM and MMP2 inhibitors on cardiac electrophysiology and arrhythmias was investigated with an isolated rat ischemia/reperfusion (I/R) model. H/R-FCM treatment impaired gap junction function, downregulated Cx43 expression, and increased hemichannel activity in rat cardiomyocytes (H9c2). The adverse effect of H/R-FCM on gap junction, which was confirmed by the cardiomyocyte H/R model, was involved in the activation of MMP2. MMP2 inhibition could partially attenuate the detrimental effects of I/R on myocardial electrophysiological indices and arrhythmia susceptibility. Our study indicates that inhibition of MMP2 may be a promising therapeutic target for the treatment of reperfusion arrhythmia.
Collapse
Affiliation(s)
- Xue Bai
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiang Huang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jing Yi
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xu Yan
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tingju Hu
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lu Wang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Guiyang Maternal and Child Health Hospital, Guiyang, 550004, Guizhou, China
| | - Zijun Wang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Department of Anesthesiology, Guiyang Second People's Hospital, Guiyang, 550081, Guizhou, China
| | - Hong Gao
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
- Guizhou Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
29
|
Pliner L, Laneret N, Roudaut M, Mogrovejo-Valdivia A, Vandenhaute E, Maubon N, Toillon RA, Karrout Y, Treizebre A, Annicotte JS. Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines. IN VITRO MODELS 2024; 3:205-218. [PMID: 39872697 PMCID: PMC11756461 DOI: 10.1007/s44164-024-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 01/30/2025]
Abstract
Background Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells. Pancreatic β-cells have been previously shown to be responsive to the surrounding mechanical stress, impacting their insulin-secreting function. Purpose We aimed to derive a physiologically relevant in vitro model of pancreatic tissue by using an innovative synthesised porous ECM that mimics the native tissue microenvironment and mechanical properties. Methods Here we performed mechanical, physico-chemical and functional characterisation of a synthetic hydrogel ECM, composed of hyaluronic acid cross-linked with collagen types I and VI and modified with fibronectin. The hydrogel was used as a 3D cell culture scaffold for the MIN6 insulinoma cell line. Cell proliferation, viability, gene expression, and insulin secretion in response to glucose stimulus were assessed and contrasted with classic monolayer culture. Results The biomaterial exhibited a shear modulus of 815.37 kPa and a distinctive viscoelastic response. MIN6 cells showed a higher proliferation and viability rates and maintained insulin secretion in response to glucose stimulus and β-cell identity gene expression when cultured in the 3D hydrogel compared to monolayer culture. Conclusion Our study demonstrated the potential of this biomimetic hydrogel scaffold as an innovative matrix enabling better in vitro models to study disease physiopathology. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00078-z.
Collapse
Affiliation(s)
- Leonid Pliner
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France
| | - Nathan Laneret
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | | | | | | | | | - Robert-Alain Toillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Youness Karrout
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Anthony Treizebre
- Univ. Lille, CNRS, Univ Polytechnique Hauts-de-France, Junia, UMR 8520 - IEMN – Institut d’Électronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France
| | - Jean-Sébastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France
| |
Collapse
|
30
|
Weiss D, Yeung N, Ramachandra AB, Humphrey JD. Transcriptional regulation of postnatal aortic development. Cells Dev 2024; 180:203971. [PMID: 39426523 PMCID: PMC11634634 DOI: 10.1016/j.cdev.2024.203971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The aorta exhibits tremendous changes in geometry, composition, and mechanical properties during postnatal development. These changes are necessarily driven by transcriptional changes, both genetically programmed and mechano-responsive, but there has not been a careful comparison of time-course changes in the transcriptional profile and biomechanical phenotype. Here, we show that the greatest period of differential gene expression in the normal postnatal mouse aorta occurs prior to weaning at three weeks of age though with important evolution of many transcripts thereafter. We identify six general temporal patterns, including transcripts that monotonically decrease to lower or increase to higher steady state values as well as those that either peak or dip prior to or near weaning. We show that diverse transcripts within individual groupings correlate well over time, and that sub-sets of these groups correlate well with the developmental progression of different biomechanical metrics that are expected to be involved in mechano-sensing. In particular, expression of genes for elastin and elastin-associated glycoproteins tend to correlate well with the ratio of systolic-to-diastolic stress whereas genes for collagen fibers correlate well with the daily rate of change of systolic stress and genes for mechano-sensing proteins tend to correlate well with the systolic stress itself. We conclude that different groupings of genes having different temporal expression patterns correlate well with different measures of the wall mechanics, hence emphasizing a need for age-dependent, gene-specific computational modeling of postnatal development.
Collapse
Affiliation(s)
- D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical & Materials Engineering, University of Denver, Denver, CO, USA
| | - N Yeung
- School of the Biological Sciences, University of Cambridge, Cambridge, UK
| | - A B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Ding L, Lin H, Yang Z, Zhang P, Chen X. Polycaprolactone/gelatin-QAS/bioglass nanofibres accelerate diabetic chronic wound healing by improving dysfunction of fibroblasts. Int J Biol Macromol 2024; 283:136699. [PMID: 39442840 DOI: 10.1016/j.ijbiomac.2024.136699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Worldwide, more than 25 % of patients with diabetes develop chronic diabetic wounds in their lifetime. Infection and dysfunctional fibroblasts represent two significant etiological factors contributing to impaired wound healing in patients with diabetes. It is therefore evident that the development of wound dressings with both anti-infective and DM fibroblast modulating functions has the potential for clinical applications. In this study, a PCL/gelatine-quaternary ammonium salts (QAS)/bioglass (BG) electrospun nanofibrous membrane was developed with physico-chemical and biological properties that not only meet the clinical requirements for wound dressings but also exhibit remarkable moisturising (water adsorption rate of 382.39 ± 4.36 %) and tear-resistance properties (a tear strength of ~5.5 MPa). The incorporation of QAS and BG has enhanced the biocompatibility and bioactivity of the nanofibres, while also imparting remarkable antimicrobial properties. The antibacterial efficacy of PGQ-BG against E. coli and S. aureus was found to be 92.8 ± 0.78 % and 99.3 ± 0.55 %, respectively. Moreover, it was demonstrated that PGQ-BG nanofibers exerted a promoting effect on the extracellular matrix (ECM) in dysfunctional fibroblasts and upregulated the expression level of α-smooth muscle actin (α-SMA), a marker of their differentiation to myofibroblasts in vitro and in vivo. Furthermore, the COL-III/COL-I ratio was significantly increased, indicating that PGQ-BG may also accelerate wound healing. The nanofibrous dressing reduced scar formation by increasing the COL-III/COL-I ratio. This is the first report of BG improving fibroblast dysfunction via COL-III and COL-I promotion in fibroblasts, both in vitro and in vivo. Therefore, this novel bioactive nanofibrous dressing represents an effective and safe therapeutic strategy for improving chronic wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Lin Ding
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hao Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Zhengyu Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Peng Zhang
- School of Stomatology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519040, China.
| | - Xiaofeng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
32
|
Aluru N, Chapman DP, W Becker K, Van Mooy BAS, Karchner SI, Stegeman JJ, Hahn ME. Developmental exposure of zebrafish to saxitoxin causes altered expression of genes associated with axonal growth. Neurotoxicology 2024; 105:303-312. [PMID: 39571800 PMCID: PMC11645194 DOI: 10.1016/j.neuro.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/19/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Saxitoxin (STX) is a potent neurotoxin naturally produced by dinoflagellates and cyanobacteria. STX inhibits voltage-gated sodium channels (VGSCs), affecting the propagation of action potentials. Consumption of seafood contaminated with STX is responsible for paralytic shellfish poisoning (PSP). Humans are among the species most sensitive to PSP; neurological symptoms of exposure range from tingling of the extremities to severe paralysis. The objective of this study was to determine the effects of STX exposure on developmental processes during early embryogenesis. This study was designed to test the hypothesis that early developmental exposure to STX would disrupt key processes, particularly those related to neural development. Zebrafish embryos were exposed to STX (24 or 48 pg) or vehicle (0.3 mM HCl) at 6 h post fertilization (hpf) via microinjection. There was no overt toxicity but starting at 36 hpf there was a temporary lack of pigmentation in STX-injected embryos, which resolved by 72 hpf. Using high performance liquid chromatography, we found that STX was retained in embryos up to 72 hpf in a dose-dependent manner. Temporal transcriptional profiling of embryos exposed to 48 pg STX per embryo revealed no differentially expressed genes (DEGs) at 24 hpf, but at 36 and 48 hpf, there were 3547 and 3356 DEGs, respectively. KEGG pathway analysis revealed significant enrichment of genes related to focal adhesion, adherens junction and regulation of actin cytoskeleton, suggesting that cell-cell and cell-extracellular matrix interactions were affected by STX. Genes affected are critical for axonal growth and the development of functional neural networks. We confirmed these findings by visualizing axonal defects in transgenic zebrafish with fluorescently labeled sensory neurons. In addition, our gene expression results suggest that STX exposure affects both canonical and noncanonical functions of VGSCs. Given the fundamental role of VGSCs in both physiology and development, these findings offer valuable insights into effects of exposure to neurotoxins.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department and Center for Oceans and Human Health,Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.
| | - Daniel P Chapman
- Biology Department and Center for Oceans and Human Health,Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA; Eckerd College, 4200 54th Ave S, St. Petersburg, FL 33711, USA; Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington DC 20057, USA
| | - Kevin W Becker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA; GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, Kiel 24148, Germany
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Sibel I Karchner
- Biology Department and Center for Oceans and Human Health,Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - John J Stegeman
- Biology Department and Center for Oceans and Human Health,Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Mark E Hahn
- Biology Department and Center for Oceans and Human Health,Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
33
|
Pally D, Kapoor N, Naba A. The novel ECM protein SNED1 mediates cell adhesion via the RGD-binding integrins α5β1 and αvβ3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.606706. [PMID: 39149327 PMCID: PMC11326288 DOI: 10.1101/2024.08.07.606706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The extracellular matrix (ECM) is a complex meshwork comprising over 100 proteins. It serves as an adhesive substrate for cells and, hence, plays critical roles in health and disease. We have recently identified a novel ECM protein, SNED1, and have found that it is required for neural crest cell migration and craniofacial morphogenesis during development and in breast cancer, where it is necessary for the metastatic dissemination of tumor cells. Interestingly, both processes involve the dynamic remodeling of cell-ECM adhesions via cell surface receptors. Sequence analysis revealed that SNED1 contains two amino acid motifs, RGD and LDV, known to bind integrins, the largest class of ECM receptors. We thus sought to investigate the role of SNED1 in cell adhesion. Here, we report that SNED1 mediates breast cancer and neural crest cell adhesion via its RGD motif. We further demonstrate that cell adhesion to SNED1 is mediated by the RGD integrins α5β1 and αvβ3. These findings are a first step toward identifying the signaling pathways activated downstream of the SNED1-integrin interactions guiding craniofacial morphogenesis and breast cancer metastasis.
Collapse
Affiliation(s)
- Dharma Pally
- Department of Physiology and Biophysics, University of Illinois Chicago, Illinois, 60612, USA
| | - Nandini Kapoor
- Department of Physiology and Biophysics, University of Illinois Chicago, Illinois, 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Illinois, 60612, USA
- University of Illinois Cancer Center, Chicago, Illinois, 60612, USA
| |
Collapse
|
34
|
Gill HK, Yin S, Nerurkar NL, Lawlor JC, Lee C, Huycke TR, Mahadevan L, Tabin CJ. Hox gene activity directs physical forces to differentially shape chick small and large intestinal epithelia. Dev Cell 2024; 59:2834-2849.e9. [PMID: 39116876 PMCID: PMC11537829 DOI: 10.1016/j.devcel.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Hox transcription factors play crucial roles in organizing developmental patterning across metazoa, but how these factors trigger regional morphogenesis has largely remained a mystery. In the developing gut, Hox genes help demarcate identities of intestinal subregions early in embryogenesis, which ultimately leads to their specialization in both form and function. Although the midgut forms villi, the hindgut develops sulci that resolve into heterogeneous outgrowths. Combining mechanical measurements of the embryonic chick intestine and mathematical modeling, we demonstrate that the posterior Hox gene HOXD13 regulates biophysical phenomena that shape the hindgut lumen. We further show that HOXD13 acts through the transforming growth factor β (TGF-β) pathway to thicken, stiffen, and promote isotropic growth of the subepithelial mesenchyme-together, these features lead to hindgut-specific surface buckling. TGF-β, in turn, promotes collagen deposition to affect mesenchymal geometry and growth. We thus identify a cascade of events downstream of positional identity that direct posterior intestinal morphogenesis.
Collapse
Affiliation(s)
- Hasreet K Gill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sifan Yin
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Nandan L Nerurkar
- The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - John C Lawlor
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - ChangHee Lee
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler R Huycke
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - L Mahadevan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
36
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Bradford JC, Vera KR, Bretherton RC, Robinson JL, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Interpenetrating Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404880. [PMID: 39240007 PMCID: PMC11530321 DOI: 10.1002/adma.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Biomechanical contributions of the extracellular matrix underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered- particularly in a reversible manner- are extremely valuable for studying these mechanobiological phenomena. Herein, a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks is introduced that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct recombinant sortases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa-6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network is achieved via mask-based and two-photon lithography; these stiffened patterned regions can be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory using transcriptomics and metabolic assays are investigated. This platform is expected to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, and disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - John C. Bradford
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Jennifer L. Robinson
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Washington, Seattle WA 98105, USA
- Department of Mechanical Engineering, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
37
|
Lee SS, Al Halawani A, Teo JD, Weiss AS, Yeo GC. The Matrix Protein Tropoelastin Prolongs Mesenchymal Stromal Cell Vitality and Delays Senescence During Replicative Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402168. [PMID: 39120048 PMCID: PMC11497112 DOI: 10.1002/advs.202402168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Indexed: 08/10/2024]
Abstract
Cellular senescence leads to the functional decline of regenerative cells such as mesenchymal stromal/stem cells (MSCs), which gives rise to chronic conditions and contributes to poor cell therapy outcomes. Aging tissues are associated with extracellular matrix (ECM) dysregulation, including loss of elastin. However, the role of the ECM in modulating senescence is underexplored. In this work, it is shown that tropoelastin, the soluble elastin precursor, is not only a marker of young MSCs but also actively preserves cell fitness and delays senescence during replicative aging. MSCs briefly exposed to tropoelastin exhibit upregulation of proliferative genes and concurrent downregulation of senescence genes. The seno-protective benefits of tropoelastin persist during continuous, long-term MSC culture, and significantly extend the MSC replicative lifespan. Tropoelastin-expanded MSCs further maintain youth-associated phenotype and function compared to age-matched controls, including preserved clonogenic potential, minimal senescence-associated beta-galactosidase activity, maintained cell sizes, reduced expression of senescence markers, suppressed secretion of senescence-associated factors, and increased production of youth-associated proteins. This work points to the utility of exogenously-supplemented tropoelastin for manufacturing MSCs that robustly maintain regenerative potential with age. It further reveals the active role of classical structural ECM proteins in driving cellular age-associated fitness, potentially leading to future interventions for aging-related pathologies.
Collapse
Affiliation(s)
- Sunny Shinchen Lee
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Aleen Al Halawani
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Jonathan D. Teo
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Anthony S. Weiss
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
- Sydney Nano InstituteThe University of SydneyCamperdownNSW2006Australia
| | - Giselle C. Yeo
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
- Sydney Nano InstituteThe University of SydneyCamperdownNSW2006Australia
| |
Collapse
|
38
|
Zhang J, Zhang L, Wang W, Wang L, Liang X, Wei L, Hao Q, Wang L, Liu X. Heterogeneity in extracellular matrix and immune microenvironment of anterior vaginal wall revealed by single-cell sequencing in women with stress urinary incontinence. Exp Cell Res 2024; 442:114280. [PMID: 39395557 DOI: 10.1016/j.yexcr.2024.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Stress urinary incontinence (SUI), characterized by involuntary urine leakage during increased abdominal pressure, remains poorly understood regarding its pathophysiology and treatment. In this study, we utilized single-cell sequencing to analyze the transcriptomic profiles of different cell types in anterior vaginal wall of SUI patients, aiming to explore the heterogeneity of the extracellular matrix (ECM) and immune microenvironment in SUI pathogenesis. Our results identified eleven cell types, including connective tissue cells, immune cells, and glial cells. Specifically, fibroblasts, smooth muscle cells, epithelial cells and T cells displayed transcriptional characteristics highly relevant to SUI pathogenesis. We observed that most cell types participate in ECM metabolism and immune-inflammatory responses, indicating a synergistic role of multiple vaginal cell types in SUI. Furthermore, altered intercellular communication, particularly between fibroblasts and T cells, was noted in SUI. This study provides novel single-cell insights into SUI and identifies potential biomarkers and therapeutic targets for future research.
Collapse
Affiliation(s)
- Jia Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China; Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, China
| | - Lina Zhang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Wenzhen Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Lin Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Xiaolei Liang
- Beijing Yanchuang Biomedical Engineering Research Institute, 100010, Beijing, China
| | - Lingyun Wei
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Qian Hao
- Taiyuan health school, 030012, Taiyuan, China
| | - Lili Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China; Taiyuan University of Technology, 030024, Taiyuan, China
| | - Xiaochun Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China.
| |
Collapse
|
39
|
Chen Z, Long L, Wang J, Jiang M, Li W, Cui W, Zou L. Enhanced Tumor Site Accumulation and Therapeutic Efficacy of Extracellular Matrix-Drug Conjugates Targeting Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402040. [PMID: 38829027 DOI: 10.1002/smll.202402040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Indexed: 06/05/2024]
Abstract
The extracellular matrix (ECM) engages in regulatory interactions with cell surface receptors through its constituent proteins and polysaccharides. Therefore, nano-sized extracellular matrix conjugated with doxorubicin (DOX) is utilized to produce extracellular matrix-drug conjugates (ECM-DOX) tailored for targeted delivery to cancer cells. The ECM-DOX nanoparticles exhibit rod-like morphology, boasting a commendable drug loading capacity of 4.58%, coupled with acid-sensitive drug release characteristics. Notably, ECM-DOX nanoparticles enhance the uptake by tumor cells and possess the ability to penetrate endothelial cells and infiltrate tumor multicellular spheroids. Mechanistic insights reveal that the internalization of ECM-DOX nanoparticle is facilitated through clathrin-mediated endocytosis and macropinocytosis, intricately involving hyaluronic acid receptors and integrins. Pharmacokinetic assessments unveil a prolonged blood half-life of ECM-DOX nanoparticles at 3.65 h, a substantial improvement over the 1.09 h observed for free DOX. A sustained accumulation effect of ECM-DOX nanoparticles at tumor sites, with drug levels in tumor tissues surpassing those of free DOX by several-fold. The profound therapeutic impact of ECM-DOX nanoparticles is evident in their notable inhibition of tumor growth, extension of median survival time in animals, and significant reduction in DOX-induced cardiotoxicity. The ECM platform emerges as a promising carrier for avant-garde nanomedicines in the realm of cancer treatment.
Collapse
Affiliation(s)
- Zhoujiang Chen
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, P. R China
| | - Lianlin Long
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563099, P. R China
| | - Ji Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, P. R. China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563099, P. R China
| | - Wei Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R China
| | - Liang Zou
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, P. R China
| |
Collapse
|
40
|
Chen Y, Chen H, Han C, Ou H, Zhan X. The structure and proteomic analysis of byssus in Pteria penguin: Insights into byssus evolution and formation. J Proteomics 2024; 307:105267. [PMID: 39089615 DOI: 10.1016/j.jprot.2024.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Byssus is a unique external structure in sessile bivalves and is critical for settlement and metamorphosis. However, little is known about the stout byssus in Pteria penguin. We explored the byssus structure and proteins using scanning electron microscopy and proteomics, respectively. The results revealed that P. penguin byssus has a dense and highly aligned fiber inner core, and the outer cuticle contains protein granules embedded in the protein matrix. Proteomic analysis revealed 31 proteins in the byssus, among which 15 differentially expressed proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins were enriched in the EF-hand, immunoglobulin, and fibronectin domains. All these domains can participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which, together with the seven types of ECM proteins detected in the byssus, supports the hypothesis that the byssus is derived from the ECM. We also found that in vitro acellular structures of the byssus and the shell shared commonalities in their formation processes. These results are useful for further understanding byssus evolution and the characterization of byssus-related proteins. SIGNIFICANCE: This manuscript investigates the structure and the origin of Pteria penguin byssus, given that byssus is vital to provide critical protection for reproduction and even against environmental stresses that affect survival. However, there is rare research on byssus protein composition. Hence, though scanning electron microscopy and proteomic analysis, we discovered that P. penguin byssus possesses the dense and highly aligned fiber inner core, and the outer cuticle has protein granules embedded in the protein matrix. Proteomic analysis showed that there were 31 proteins in the byssus, among which 15 proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins closely related to byssus formation were enriched in EF hand, immunoglobulin, and fibronectin domains. These domains are able to participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which together with the seven types of ECM proteins detected in byssus support the hypothesis that byssus derive from the ECM. We also found in vitro acellular structures the byssus and the shell share commonalities in their formation processes. These results were useful for further understanding the byssus evolution and the characterization of the byssus-related proteins.
Collapse
Affiliation(s)
- Yi Chen
- School of Ecology, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Hengda Chen
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Changqing Han
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Huilong Ou
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
41
|
Rijns L, Rutten MGTA, Vrehen AF, Aldana AA, Baker MB, Dankers PYW. Mimicking the extracellular world: from natural to fully synthetic matrices utilizing supramolecular biomaterials. NANOSCALE 2024; 16:16290-16312. [PMID: 39161293 DOI: 10.1039/d4nr02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Annika F Vrehen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
42
|
Gera J, Kumar D, Chauhan G, Choudhary A, Rani L, Mandal L, Mandal S. High sugar diet-induced fatty acid oxidation potentiates cytokine-dependent cardiac ECM remodeling. J Cell Biol 2024; 223:e202306087. [PMID: 38916917 PMCID: PMC11199913 DOI: 10.1083/jcb.202306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/09/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Context-dependent physiological remodeling of the extracellular matrix (ECM) is essential for development and organ homeostasis. On the other hand, consumption of high-caloric diet leverages ECM remodeling to create pathological conditions that impede the functionality of different organs, including the heart. However, the mechanistic basis of high caloric diet-induced ECM remodeling has yet to be elucidated. Employing in vivo molecular genetic analyses in Drosophila, we demonstrate that high dietary sugar triggers ROS-independent activation of JNK signaling to promote fatty acid oxidation (FAO) in the pericardial cells (nephrocytes). An elevated level of FAO, in turn, induces histone acetylation-dependent transcriptional upregulation of the cytokine Unpaired 3 (Upd3). Release of pericardial Upd3 augments fat body-specific expression of the cardiac ECM protein Pericardin, leading to progressive cardiac fibrosis. Importantly, this pathway is quite distinct from the ROS-Ask1-JNK/p38 axis that regulates Upd3 expression under normal physiological conditions. Our results unravel an unknown physiological role of FAO in cytokine-dependent ECM remodeling, bearing implications in diabetic fibrosis.
Collapse
Affiliation(s)
- Jayati Gera
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Dheeraj Kumar
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Gunjan Chauhan
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Adarsh Choudhary
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lavi Rani
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
43
|
Zhang H, Ren Y, Wang F, Tu X, Tong Z, Liu L, Zheng Y, Zhao P, Cheng J, Li J, Fang W, Liu X. The long-term effectiveness and mechanism of oncolytic virotherapy combined with anti-PD-L1 antibody in colorectal cancer patient. Cancer Gene Ther 2024; 31:1412-1426. [PMID: 39068234 PMCID: PMC11405277 DOI: 10.1038/s41417-024-00807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Colorectal cancer (CRC) is known to be resistant to immunotherapy. In our phase-I clinical trial, one patient achieved a 313-day prolonged response during the combined treatment of oncolytic virotherapy and immunotherapy. To gain a deeper understanding of the potential molecular mechanisms, we performed a comprehensive multi-omics analysis on this patient and three non-responders. Our investigation unveiled that, initially, the tumor microenvironment (TME) of this responder presented minimal infiltration of T cells and natural killer cells, along with a relatively higher presence of macrophages compared to non-responders. Remarkably, during treatment, there was a progressive increase in CD4+ T cells, CD8+ T cells, and B cells in the responder's tumor tissue. This was accompanied by a significant upregulation of transcription factors associated with T-cell activation and cytotoxicity, including GATA3, EOMES, and RUNX3. Furthermore, dynamic monitoring of peripheral blood samples from the responder revealed a rapid decrease in circulating tumor DNA (ctDNA), suggesting its potential as an early blood biomarker of treatment efficacy. Collectively, our findings demonstrate the effectiveness of combined oncolytic virotherapy and immunotherapy in certain CRC patients and provide molecular evidence that virotherapy can potentially transform a "cold" TME into a "hot" one, thereby improving sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Hangyu Zhang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Yiqing Ren
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Feiyu Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Xiaoxuan Tu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Zhou Tong
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Lulu Liu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Yi Zheng
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Peng Zhao
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Jinlin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Jianwen Li
- Geneplus-Shenzhen, Shenzhen, P. R. China.
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China.
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
44
|
Shcherbakova A, Utkina M, Valyaeva A, Pachuashvili N, Bondarenko E, Urusova L, Popov S, Mokrysheva N. Factors Affecting Cell Viability during the Enzymatic Dissociation of Human Endocrine Tumor Tissues. BIOLOGY 2024; 13:665. [PMID: 39336093 PMCID: PMC11429318 DOI: 10.3390/biology13090665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
The enzymatic dissociation of human solid tissues is a critical process for disaggregating extracellular matrix and the isolation of individual cells for various applications, including the immortalizing primary cells, creating novel cell lines, and performing flow cytometry and its specialized type, FACS, as well as conducting scRNA-seq studies. Tissue dissociation procedures should yield intact, highly viable single cells that preserve morphology and cell surface markers. However, endocrine tissues, such as adrenal gland tumors, thyroid carcinomas, and pituitary neuroendocrine tumors, present unique challenges due to their complex tissue organization and morphological features. Our study conducted a morphological examination of these tissues, highlighting the intricate structures and secondary degenerative changes that complicate the dissociation process. We investigated the effects of various dissociation parameters, including the types of enzymes, incubation duration, and post-dissociation purification procedures, such as debris removal and nontarget blood cell lysis, on the viability of cells derived from different tumor types. The findings emphasize the importance of optimizing tissue digestion protocols to preserve cell viability and integrity, ensuring reliable outcomes for downstream analyses.
Collapse
Affiliation(s)
- Anastasia Shcherbakova
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Marina Utkina
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Anna Valyaeva
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia
| | - Nano Pachuashvili
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Ekaterina Bondarenko
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Liliya Urusova
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Sergey Popov
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Natalya Mokrysheva
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| |
Collapse
|
45
|
Arteel GE. Hepatic Extracellular Matrix and Its Role in the Regulation of Liver Phenotype. Semin Liver Dis 2024; 44:343-355. [PMID: 39191427 PMCID: PMC12057067 DOI: 10.1055/a-2404-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The hepatic extracellular matrix (ECM) is most accurately depicted as a dynamic compartment that comprises a diverse range of players that work bidirectionally with hepatic cells to regulate overall homeostasis. Although the classic meaning of the ECM referred to only proteins directly involved in generating the ECM structure, such as collagens, proteoglycans, and glycoproteins, the definition of the ECM is now broader and includes all components associated with this compartment. The ECM is critical in mediating phenotype at the cellular, organ, and even organismal levels. The purpose of this review is to summarize the prevailing mechanisms by which ECM mediates hepatic phenotype and discuss the potential or established role of this compartment in the response to hepatic injury in the context of steatotic liver disease.
Collapse
Affiliation(s)
- Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Wu J, Zhang Q, Yang Z, Xu Y, Liu X, Wang X, Peng J, Xiao J, Wang Y, Shang Z, Wang N, Li L, Zhang R, Zhang W, Zhang J, Zeng Z, Wu J. CD248-expressing cancer-associated fibroblasts induce non-small cell lung cancer metastasis via Hippo pathway-mediated extracellular matrix stiffness. J Cell Mol Med 2024; 28:e70025. [PMID: 39164826 PMCID: PMC11335579 DOI: 10.1111/jcmm.70025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
Metastasis is a crucial stage in tumour progression, and cancer-associated fibroblasts (CAFs) support metastasis through their participation in extracellular matrix (ECM) stiffness. CD248 is a possible biomarker for non-small cell lung cancer (NSCLC)-derived CAFs, but its role in mediating ECM stiffness to promote NSCLC metastasis is unknown. We investigated the significance of CD248+ CAFs in activating the Hippo axis and promoting connective tissue growth factor (CTGF) expression, which affects the stromal collagen I environment and improves ECM stiffness, thereby facilitating NSCLC metastasis. In this study, we found that higher levels of CD248 in CAFs induced the formation of collagen I, which in turn increased extracellular matrix stiffness, thereby enabling NSCLC cell infiltration and migration. Hippo axis activation by CD248+ CAFs induces CTGF expression, which facilitates the formation of the collagen I milieu in the stromal matrix. In a tumour lung metastasis model utilizing fibroblast-specific CD248 gene knockout mice, CD248 gene knockout mice showed a significantly reduced ability to develop tumour lung metastasis compared to that of WT mice. Our findings demonstrate that CD248+ CAFs activate the Hippo pathway, thereby inducing CTGF expression, which in turn facilitates the collagen I milieu of the stromal matrix, which promotes NSCLC metastasis.
Collapse
Affiliation(s)
- Jiangwei Wu
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Qiaoling Zhang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Zeyang Yang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Yujun Xu
- Department of BiologyGuizhou Medical UniversityGuiyangChina
| | - Xinlei Liu
- Guizhou Prenatal Diagnsis CenterThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xuanying Wang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Jiangying Peng
- Department of Pharmaceutical AnalysisZunyi Medical UniversityZunyiChina
| | - Jing Xiao
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Yun Wang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical EngineeringGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Zhenling Shang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Nianxue Wang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Long Li
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
- Department of Thoracic SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Rui Zhang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Wei Zhang
- Department of Biochemistry and Molecular BiologyJilin Medical UniversityJilinChina
| | - Jian Zhang
- Department of Thoracic SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Zhu Zeng
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical EngineeringGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Jieheng Wu
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical EngineeringGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer BiologyThe Fourth Military Medical UniversityXi'anChina
- Tumor Immunotherapy Technology Engineering Research CenterGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
47
|
Urciuolo F, Imparato G, Netti PA. Engineering Cell Instructive Microenvironments for In Vitro Replication of Functional Barrier Organs. Adv Healthc Mater 2024; 13:e2400357. [PMID: 38695274 DOI: 10.1002/adhm.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Multicellular organisms exhibit synergistic effects among their components, giving rise to emergent properties crucial for their genesis and overall functionality and survival. Morphogenesis involves and relies upon intricate and biunivocal interactions among cells and their environment, that is, the extracellular matrix (ECM). Cells secrete their own ECM, which in turn, regulates their morphogenetic program by controlling time and space presentation of matricellular signals. The ECM, once considered passive, is now recognized as an informative space where both biochemical and biophysical signals are tightly orchestrated. Replicating this sophisticated and highly interconnected informative media in a synthetic scaffold for tissue engineering is unattainable with current technology and this limits the capability to engineer functional human organs in vitro and in vivo. This review explores current limitations to in vitro organ morphogenesis, emphasizing the interplay of gene regulatory networks, mechanical factors, and tissue microenvironment cues. In vitro efforts to replicate biological processes for barrier organs such as the lung and intestine, are examined. The importance of maintaining cells within their native microenvironmental context is highlighted to accurately replicate organ-specific properties. The review underscores the necessity for microphysiological systems that faithfully reproduce cell-native interactions, for advancing the understanding of developmental disorders and disease progression.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
| | - Giorgia Imparato
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| |
Collapse
|
48
|
Fu D, Reif J. A biomimetic branching signal-passing tile assembly model with dynamic growth and disassembly. J R Soc Interface 2024; 21:20230755. [PMID: 39163031 PMCID: PMC11335017 DOI: 10.1098/rsif.2023.0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/01/2024] [Indexed: 08/21/2024] Open
Abstract
Natural biological branching processes can form tree-like structures at all scales and, moreover, can perform various functions to achieve specific goals; these include receiving stimuli, performing two-way communication along their branches, and dynamically reforming (extending or retracting branches). They underlie many biological systems with considerable diversity, frequency, and geometric complexity; these include networks of neurons, organ tissue, mycorrhizal fungal networks, plant growth, foraging networks, etc. This paper presents a biomimetic DNA tile assembly model (Y-STAM) to implement dynamic branching processes. The Y-STAM is a relatively compact mathematical model providing a design space where complex, biomimetic branch-like growth and behaviour can emerge from the appropriate parametrization of the model. We also introduce a class of augmented models (Y-STAM+) that provide time- and space-dependent modulations of tile glue strengths, which enable further diverse behaviours that are not possible in the Y-STAM; these additional behaviours include refinement of network assemblies, obstacle avoidance, and programmable growth patterns. We perform and discuss extensive simulations of the Y-STAM and the Y-STAM+. We envision that these models could be applied at the mesoscale and the molecular scale to dynamically assemble branching DNA nanostructures and offer insights into complex biological self-assembly processes.
Collapse
Affiliation(s)
- Daniel Fu
- Department of Computer Science, Duke University, Durham, NC, USA
| | - John Reif
- Department of Computer Science, Duke University, Durham, NC, USA
| |
Collapse
|
49
|
Kremer JL, Sanchez Ortega H, Souza-Siqueira T, Blanes Angeli C, Kei Iwai L, Palmisano G, Ferini Pacicco Lotfi C. Proteomic profiling of the extracellular matrix in the human adrenal cortex. Matrix Biol Plus 2024; 23:100158. [PMID: 39188294 PMCID: PMC11345916 DOI: 10.1016/j.mbplus.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
The extracellular matrix (ECM) comprises macromolecules that shape a complex three-dimensional network. Filling the intercellular space and playing a crucial role in the structure and function of tissues, ECM regulates essential cellular processes such as adhesion, differentiation, and cell signaling. In the human adrenal gland, composed of cortex and medulla surrounded by a capsule, the ECM has not yet been directly described, although its impact on the processes of proliferation and steroidogenesis of the adrenal cortex is recognized. This study analyzes the ECM of the adult human adrenal cortex, which was separated into outer fraction (OF) and inner fraction (IF), by comparing their proteomic profiles. The study discusses the composition, spatial distribution, and relevance of differentially expressed ECM signatures of the adrenal cortex matrisome on adrenal structure and function. The findings were validated through database analysis (cross-validation), histochemical, and immunohistochemical approaches. A total of 121 ECM proteins were identified and categorized into glycoproteins, collagens, ECM regulators, proteoglycans, ECM-affiliated proteins, and secreted factors. Thirty-one ECM proteins were identified only in OF, nine only in IF, and 81 were identified in common with both fractions. Additionally, 106 ECM proteins were reported in the Human matrisome DB 2.0, and the proteins differentially expressed in OF and IF, were identified. This study provides significant insights into the composition and regulation of the ECM in the human adrenal cortex, shedding light on the adrenal microenvironment and its role in the functioning, maintenance, and renewal of the adrenal gland.
Collapse
Affiliation(s)
- Jean Lucas Kremer
- Laboratory of Cellular Structure and Function, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Henrique Sanchez Ortega
- Laboratory of Cellular Structure and Function, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Talita Souza-Siqueira
- Department of Clinical Medicine, Laboratory of Cellular, Genetic and Molecular Nephrology, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Glycoproteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratory of Applied Toxicology, Center of Toxins, Immune-response and Cell Signaling LETA/CeTICS Laboratory, Butantan Institute, São Paulo, Brazil
| | - Giuseppe Palmisano
- Glycoproteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
- School of Natural Science, Macquarie University, Sydney, Australia
| | - Claudimara Ferini Pacicco Lotfi
- Laboratory of Cellular Structure and Function, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Fong A, Rodriguez M, Choe KP. Increased expression of metabolism and lysosome-associated genes in a C. elegans dpy-7 cuticle furrow mutant. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001241. [PMID: 39144098 PMCID: PMC11322832 DOI: 10.17912/micropub.biology.001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
The collagen-based epidermal 'cuticle' of Caenorhabditis elegans functions as an extracellular sensor for damage that regulates genes promoting osmotic balance, innate immunity, and detoxification. Prior studies demonstrate that SKN-1 , an ortholog of the mammalian Nrf transcription factors, activates core detoxification genes downstream from cuticle damage. Prior RNAseq data suggested that expression of five genes with functions in redox balance, ATP homeostasis, and lysosome function ( gst-15 , gst-24 , cyts-1 , argk-1 , and mfsd-8.4 ) were increased in a cuticle collagen mutant; this study employed RT-qPCR to verify this observation and to test the role of SKN-1 . Activation of all five genes was verified in dpy-7 mutants, but none were reduced by skn-1 (RNAi) suggesting parallel or distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Aiden Fong
- Biology, University of Florida, Gainesville, Florida, United States
| | | | - Keith Patrick Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL USA
| |
Collapse
|