1
|
Campo F, Neroni A, Pignatelli C, Pellegrini S, Marzinotto I, Valla L, Manenti F, Policardi M, Lampasona V, Piemonti L, Citro A. Bioengineering of a human iPSC-derived vascularized endocrine pancreas for type 1 diabetes. Cell Rep Med 2025; 6:101938. [PMID: 39922198 DOI: 10.1016/j.xcrm.2025.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 02/10/2025]
Abstract
Intrahepatic islet transplantation in patients with type 1 diabetes is limited by donor availability and lack of engraftment. Alternative β cell sources and transplantation sites are needed. We demonstrate the feasibility to repurpose a decellularized lung as an endocrine pancreas for β cell replacement. We bioengineer an induced pluripotent stem cell (iPSC)-based version, fabricating a human iPSC-based vascularized endocrine pancreas (iVEP) using iPSC-derived β cells (iPSC-derived islets [SC-islets]) and endothelial cells (iECs). SC-islets and iECs are aggregated into vascularized iβ spheroids (ViβeSs), and over 7 days of culture, spheroids integrate into the bioengineered vasculature, generating a functional, perfusable human endocrine organ. In vitro, the vascularized extracellular matrix (ECM) sustained SC-islet engraftment and survival with a significantly preserved β cell mass and a physiologic insulin release. In vivo, iVEP restores normoglycemia in diabetic NSG mice. We report a human iVEP providing a controlled in vitro insulin-secreting phenotype and in vivo function.
Collapse
Affiliation(s)
- Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Pellegrini
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Libera Valla
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Fabio Manenti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Policardi
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Luo Y, Yu P, Liu J. The efficiency of stem cell differentiation into functional beta cells for treating insulin-requiring diabetes: Recent advances and current challenges. Endocrine 2024; 86:1-14. [PMID: 38730069 DOI: 10.1007/s12020-024-03855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
In recent years, the potential of stem cells (SCs) to differentiate into various types of cells, including β-cells, has led to a significant boost in development. The efficiency of this differentiation process and the functionality of the cells post-transplantation are crucial factors for the success of stem cell therapy in diabetes. Herein, this article reviews the current advances and challenges faced by stem cell differentiation into functional β-cells for diabetes treatment. In vitro, researchers have sought to enhance the differentiation efficiency of functional β-cells by mimicking the normal pancreatic development process, using gene manipulation, pharmacological and culture conditions stimulation, three-dimensional (3D) and organoid culture, or sorting for functional β-cells based on mature islet cell markers. Furthermore, in vivo studies have also looked at suitable transplantation sites, the enhancement of the transplantation microenvironment, immune modulation, and vascular function reconstruction to improve the survival rate of functional β-cells, thereby enhancing the treatment of diabetes. Despite these advancements, developing stem cells to produce functional β-cells for efficacious diabetes treatment is a continuous research endeavor requiring significant multidisciplinary collaboration, for the stem-cell-derived beta cells to evolve into an effective cellular therapy.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Ortaleza K, Won SY, Kinney SM, Sefton MV. Aspects of the alternative host response to methacrylic acid containing biomaterials. J Biomed Mater Res A 2024; 112:1276-1285. [PMID: 38053493 DOI: 10.1002/jbm.a.37652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
Methacrylic acid (MAA)-based biomaterials promote a vascularized host response without the addition of exogenous factors such as cells or growth factors. We presume that materials containing MAA favor an alternative foreign body response, rather than the conventional fibrotic response. Here, we characterize selected aspects of the response to two different forms of MAA-a coating, which can be used to prevascularize the subcutaneous tissue for subsequent therapeutic cell delivery or an injectable hydrogel, which can be used to vascularize and deliver cells simultaneously. We show that the MAA-coating quickly vascularized the subcutaneous space compared to an uncoated silicone tube, and after 14 days of prevascularization, the tissue surrounding the MAA-coated tube presented fewer immune cells than the uncoated control. We also compared the host response to a MAA-PEG (polyethylene glycol) hydrogel at day 1, with pancreatic islets in immune-compromised SCID/bg mice and immune-competent Balb/c mice. The Balb/c mouse presented a more inflammatory response with increased IFN-γ production as compared to the SCID/bg. Together with previously published data, this work contributes to a further understanding of tissue responses to a biomaterial in different forms as used for cell delivery.
Collapse
Affiliation(s)
- Krystal Ortaleza
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - So-Yoon Won
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sean M Kinney
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Juang JH, Chen CL, Kao CW, Wu ST, Shen CR. In Vivo Imaging of Immune Rejection of MIN6 Cells Transplanted in C3H Mice. Cells 2024; 13:1044. [PMID: 38920672 PMCID: PMC11201743 DOI: 10.3390/cells13121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Recently, we successfully utilized noninvasive magnetic resonance and bioluminescence imaging to track MIN6 cells subcutaneously transplanted in immunocompromised nude mice for up to 64 days. In this study, we further used bioluminescence imaging to investigate the immune rejection of MIN6 cells in immunocompetent C3H mice. A total of 5 × 106 luciferase-transfected MIN6 cells were implanted into the subcutaneous space of each nude or C3H mouse. After transplantation, hypoglycemia and persistent bioluminescence signals were observed in eight of eight (100%) nude mice and five of nine (56%) C3H mice (p < 0.05). We then presensitized a group of C3H mice with C57BL/6 spleen cells just prior to transplantation (n = 14). Interestingly, none of them had hypoglycemia or persistent bioluminescence signals (p < 0.01 vs. C3H mice without presensitization). Histological examination of the grafts revealed a lack or minimal presence of insulin-positive cells in recipients without hypoglycemia and persistent bioluminescence signals. In contrast, recipients with hypoglycemia and persistent bioluminescence signals showed a significant presence of insulin-positive cells in their grafts. Our results indicate that rejection of MIN6 cells occurred in C3H mice and could be enhanced by presensitization with C57BL/6 spleen cells and that bioluminescence imaging is a useful noninvasive tool for detecting rejection of subcutaneously transplanted MIN6 cells.
Collapse
Affiliation(s)
- Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-L.C.); (C.-W.K.)
| | - Chen-Ling Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-L.C.); (C.-W.K.)
| | - Chen-Wei Kao
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-L.C.); (C.-W.K.)
| | - Shu-Ting Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- R&D Center of Biochemical Engineering Technology, Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan
| |
Collapse
|
5
|
Kado T, Tomimaru Y, Kobayashi S, Harada A, Sasaki K, Iwagami Y, Yamada D, Noda T, Takahashi H, Kita S, Shimomura I, Miyagawa S, Doki Y, Eguchi H. Skeletal Myoblast Cells Enhance the Function of Transplanted Islets in Diabetic Mice. J Diabetes Res 2024; 2024:5574968. [PMID: 38800586 PMCID: PMC11126349 DOI: 10.1155/2024/5574968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Islet transplantation (ITx) is an established and safe alternative to pancreas transplantation for type 1 diabetes mellitus (T1DM) patients. However, most ITx recipients lose insulin independence by 3 years after ITx due to early graft loss, such that multiple donors are required to achieve insulin independence. In the present study, we investigated whether skeletal myoblast cells could be beneficial for promoting angiogenesis and maintaining the differentiated phenotypes of islets. In vitro experiments showed that the myoblast cells secreted angiogenesis-related cytokines (vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and stromal-derived factor-1α (SDF-1α)), contributed to maintenance of differentiated islet phenotypes, and enhanced islet cell insulin secretion capacity. To verify these findings in vivo, we transplanted islets alone or with myoblast cells under the kidney capsule of streptozotocin-induced diabetic mice. Compared with islets alone, the group bearing islets with myoblast cells had a significantly lower average blood glucose level. Histological examination revealed that transplants with islets plus myoblast cells were associated with a significantly larger insulin-positive area and significantly higher number of CD31-positive microvessels compared to islets alone. Furthermore, islets cotransplanted with myoblast cells showed JAK-STAT signaling activation. Our results suggest two possible mechanisms underlying enhancement of islet graft function with myoblast cells cotransplantation: "indirect effects" mediated by angiogenesis and "direct effects" of myoblast cells on islets via the JAK-STAT cascade. Overall, these findings suggest that skeletal myoblast cells enhance the function of transplanted islets, implying clinical potential for a novel ITx procedure involving myoblast cells for patients with diabetes.
Collapse
Affiliation(s)
- Takeshi Kado
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Mizui T, Inagaki A, Nakamura Y, Imura T, Uematsu SS, Miyagi S, Kamei T, Unno M, Watanabe K, Goto M. A Recombinant Peptide Device Combined with Adipose Tissue-Derived Stem Cells Enhances Subcutaneous Islet Engraftment. Cells 2024; 13:499. [PMID: 38534342 PMCID: PMC10968997 DOI: 10.3390/cells13060499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
Subcutaneous space has been considered an attractive site for islet graft transplantation; however, the oxygen tension and vascularization are insufficient for islet graft survival. We investigated whether subcutaneous pre-implantation of a recombinant peptide (RCP) device with adipose tissue-derived stem cells (ADSCs) enhanced subcutaneous islet engraftment. RCP devices with/without syngeneic ADSCs were pre-implanted into the subcutaneous space of C57BL/6 mice. Syngeneic islets (300 or 120 islet equivalents (IEQs)) were transplanted into the pre-treated space after diabetes induction using streptozotocin. The cure rates of groups in which RCP devices were implanted four weeks before transplantation were significantly better than the intraportal transplantation group when 300 IEQs of islets were transplanted (p < 0.01). The blood glucose changes in the RCP+ADSCs-4w group was significantly ameliorated in comparison to the RCP-4w group when 120 IEQs of islets were transplanted (p < 0.01). Immunohistochemical analyses showed the collagen III expression in the islet capsule of the RCP+ADSCs-4w group was significantly enhanced in comparison to the RCP-4w and RCP+ADSCs-d10 groups (p < 0.01, p < 0.01). In addition, the number of von Willebrand factor-positive vessels within islets in the RCP+ADSCs-4w group was significantly higher than the RCP-4w group. These results suggest that using ADSCs in combination with an RCP device could enhance the restoration of the extracellular matrices, induce more efficient prevascularization within islets, and improve the graft function.
Collapse
Affiliation(s)
- Takahiro Mizui
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (T.M.); (S.S.U.); (S.M.); (T.K.); (M.U.)
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.I.); (T.I.); (K.W.)
| | - Yasuhiro Nakamura
- Division of Pathology, Graduate School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan;
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.I.); (T.I.); (K.W.)
| | - Satomi Suzuki Uematsu
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (T.M.); (S.S.U.); (S.M.); (T.K.); (M.U.)
| | - Shigehito Miyagi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (T.M.); (S.S.U.); (S.M.); (T.K.); (M.U.)
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (T.M.); (S.S.U.); (S.M.); (T.K.); (M.U.)
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (T.M.); (S.S.U.); (S.M.); (T.K.); (M.U.)
| | - Kimiko Watanabe
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.I.); (T.I.); (K.W.)
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (T.M.); (S.S.U.); (S.M.); (T.K.); (M.U.)
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.I.); (T.I.); (K.W.)
| |
Collapse
|
7
|
Qi B, Ding Y, Zhang Y, Kou L, Zhao YZ, Yao Q. Biomaterial-assisted strategies to improve islet graft revascularization and transplant outcomes. Biomater Sci 2024; 12:821-836. [PMID: 38168805 DOI: 10.1039/d3bm01295f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Islet transplantation holds significant promise as a curative approach for type 1 diabetes (T1D). However, the transition of islet transplantation from the experimental phase to widespread clinical implementation has not occurred yet. One major hurdle in this field is the challenge of insufficient vascularization and subsequent early loss of transplanted islets, especially in non-intraportal transplantation sites. The establishment of a fully functional vascular system following transplantation is crucial for the survival and secretion function of islet grafts. This vascular network not only ensures the delivery of oxygen and nutrients, but also plays a critical role in insulin release and the timely removal of metabolic waste from the grafts. This review summarizes recent advances in effective strategies to improve graft revascularization and enhance islet survival. These advancements include the local release and regulation of angiogenic factors (e.g., vascular endothelial growth factor, VEGF), co-transplantation of vascular fragments, and pre-vascularization of the graft site. These innovative approaches pave the way for the development of effective islet transplantation therapies for individuals with T1D.
Collapse
Affiliation(s)
- Boyang Qi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yang Ding
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
8
|
Saito R, Inagaki A, Nakamura Y, Imura T, Kanai N, Mitsugashira H, Endo Kumata Y, Katano T, Suzuki S, Tokodai K, Kamei T, Unno M, Watanabe K, Tabata Y, Goto M. A Gelatin Hydrogel Nonwoven Fabric Combined With Adipose Tissue-Derived Stem Cells Enhances Subcutaneous Islet Engraftment. Cell Transplant 2024; 33:9636897241251621. [PMID: 38756050 PMCID: PMC11102670 DOI: 10.1177/09636897241251621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously revealed that a gelatin hydrogel nonwoven fabric (GHNF) markedly improved subcutaneous islet engraftment. We herein investigated whether the addition of adipose tissue-derived stem cells (ADSCs) to GHNF affected the outcome. A silicone spacer sandwiched between two GHNFs with (AG group) or without (GHNF group) ADSCs, or a silicone spacer alone (Silicone group) was implanted into the subcutaneous space of healthy mice at 6 weeks before transplantation, then diabetes was induced 7 days before transplantation. Syngeneic islets were transplanted into the pretreated space. Intraportal transplantation (IPO group) was also performed to compare the transplant efficiency. Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, and inflammatory mediators were evaluated. The results in the subcutaneous transplantation were compared using the Silicone group as a control. The results of the IPO group were also compared with those of the AG group. The AG group showed significantly better blood glucose changes than the Silicone and the IPO groups. The cure rate of AG group (72.7%) was the highest among the groups (GHNF; 40.0%, IPO; 40.0%, Silicone; 0%). The number of vWF-positive vessels in the subcutaneous space of the AG group was significantly higher than that in other groups before transplantation (P < 0.01). Lectin angiography also showed that the same results (P < 0.05). According to the results of the ADSCs tracing, ADSCs did not exist at the transplant site (6 weeks after implantation). The positive rates for laminin and collagen III constructed around the transplanted islets did not differ among groups. Inflammatory mediators were higher in the Silicone group, followed by the AG and GHNF groups. Pretreatment using bioabsorbable scaffolds combined with ADSCs enhanced neovascularization in subcutaneous space, and subcutaneous islet transplantation using GHNF with ADSCs was superior to intraportal islet transplantation.
Collapse
Affiliation(s)
- Ryusuke Saito
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norifumi Kanai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Mitsugashira
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiko Endo Kumata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takumi Katano
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoki Suzuki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuaki Tokodai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimiko Watanabe
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Tabata
- Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Udagawa D, Nagata S, Yagi H, Nishi K, Morisaku T, Adachi S, Nakano Y, Tanaka M, Hori S, Hasegawa Y, Abe Y, Kitago M, Kitagawa Y. A Novel Approach to Orthotopic Hepatocyte Transplantation Engineered With Liver Hydrogel for Fibrotic Livers, Enhancing Cell-Cell Interaction and Angiogenesis. Cell Transplant 2024; 33:9636897241253700. [PMID: 38770981 PMCID: PMC11110510 DOI: 10.1177/09636897241253700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Hepatocyte transplantation (HCT) is a potential bridging therapy or an alternative to liver transplantation. Conventionally, single-cell hepatocytes are injected via the portal vein. This strategy, however, has yet to overcome poor cell engraftment and function. Therefore, we developed an orthotopic HCT method using a liver-derived extracellular matrix (L-ECM) gel. PXB cells (flesh mature human hepatocytes) were dispersed into the hydrogel solution in vitro, and the gel solution was immediately gelated in 37°C incubators to investigate the affinity between mature human hepatocyte and the L-ECM gel. During the 3-day cultivation in hepatocyte medium, PXB cells formed cell aggregates via cell-cell interactions. Quantitative analysis revealed human albumin production in culture supernatants. For the in vivo assay, PXB cells were encapsulated in the L-ECM gel and transplanted between the liver lobes of normal rats. Pathologically, the L-ECM gel was localized at the transplant site and retained PXB cells. Cell survival and hepatic function marker expression were verified in another rat model wherein thioacetamide was administered to induce liver fibrosis. Moreover, cell-cell interactions and angiogenesis were enhanced in the L-ECM gel compared with that in the collagen gel. Our results indicate that L-ECM gels can help engraft transplanted hepatocytes and express hepatic function as a scaffold for cell transplantation.
Collapse
Affiliation(s)
- Daisuke Udagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shogo Nagata
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kotaro Nishi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Shungo Adachi
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Nakano
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Tanaka
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shutaro Hori
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
French A, Hollister-Lock J, Sullivan BA, Stas E, Hwa AJ, Weir GC, Bonner-Weir S. Enhancement of Subcutaneous Islet Transplant Performance by Collagen 1 Gel. Cell Transplant 2024; 33:9636897241283728. [PMID: 39361612 PMCID: PMC11457190 DOI: 10.1177/09636897241283728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 08/14/2024] [Indexed: 10/05/2024] Open
Abstract
Human islets can be transplanted into the portal vein for T1 diabetes, and a similar procedure is being used in a clinical trial for stem cell-derived beta-like cells. Efforts have been underway to find an alternative transplant site that will foster better islet cell survival and function. Although conceptually attractive, the subcutaneous (SC) site has yielded disappointing results, in spite of some improvements resulting from more attention paid to vascularization and differentiation factors, including collagen. We developed a method to transplant rat islets in a disk of type 1 collagen gel and found improved efficacy of these transplants. Survival of islets following transplantation (tx) was determined by comparing insulin content of the graft to that of the pre-transplant islets from the same isolation. At 14 days after transplantation, grafts of the disks had more than double the recovered insulin than islets transplanted in ungelled collagen. SC grafts of disks had similar insulin content to grafts in a kidney site and in epididymal fat pads. In vivo disks underwent contraction to 10% of initial volume within 24 h but the islets remained healthy and well distributed. Whole mount imaging showed that residual donor vascular cells within the islets expanded and connected to ingrowing host blood vessels. Islets (400 rat islet equivalents (IEQ)) in the collagen disks transplanted into an SC site of NOD scid IL2R gammanull (NSG) mice reversed streptozotocin (STZ)-induced diabetes within 10 days as effectively as transplants in the kidney site. Thus, a simple change of placing islets into a gel of collagen 1 prior to transplantation allowed a prompt reversal of STZ-induced diabetes using SC site.
Collapse
Affiliation(s)
- Anna French
- Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
- Section on Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Jennifer Hollister-Lock
- Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
- Section on Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Brooke A. Sullivan
- Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
- Section on Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Eline Stas
- Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
- Section on Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Albert J. Hwa
- Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
- Section on Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Gordon C. Weir
- Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
- Section on Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Susan Bonner-Weir
- Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
- Section on Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
11
|
Chen QD, Liu L, Zhao XH, Liang JB, Li SW. Challenges and opportunities in the islet transplantation microenvironment: a comprehensive summary of inflammatory cytokine, immune cells, and vascular endothelial cells. Front Immunol 2023; 14:1293762. [PMID: 38111575 PMCID: PMC10725940 DOI: 10.3389/fimmu.2023.1293762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
It is now understood that islet transplantation serves as a β-cell replacement therapy for type 1 diabetes. Many factors impact the survival of transplanted islets, especially those related to the microenvironment. This review explored microenvironmental components, including vascular endothelial cells, inflammatory cytokines, and immune cells, and their profound effects on post-islet transplantation survival rates. Furthermore, it revealed therapeutic strategies aimed at targeting these elements. Current evidence suggests that vascular endothelial cells are pivotal in facilitating vascularization and nutrient supply and establishing a new microcirculation network for transplanted islets. Consequently, preserving the functionality of vascular endothelial cells emerges as a crucial strategy to enhance the survival of islet transplantation. Release of cytokines will lead to activation of immune cells and production and release of further cytokines. While immune cells hold undeniable significance in regulating immune responses, their activation can result in rejection reactions. Thus, establishing immunological tolerance within the recipient's body is essential for sustaining graft functionality. Indeed, future research endeavors should be directed toward developing precise strategies for modulating the microenvironment to achieve higher survival rates and more sustained transplantation outcomes. While acknowledging certain limitations inherent to this review, it provides valuable insights that can guide further exploration in the field of islet transplantation. In conclusion, the microenvironment plays a paramount role in islet transplantation. Importantly, we discuss novel perspectives that could lead to broader clinical applications and improved patient outcomes in islet transplantation.
Collapse
Affiliation(s)
- Qi-dong Chen
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University , Taizhou, Zhejiang, China
| | - Jun-bo Liang
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
12
|
Won SY, Kinney SM, Sefton MV. Neutrophil depletion for early allogeneic islet survival in a methacrylic acid (MAA) copolymer-induced, vascularized subcutaneous space. FRONTIERS IN TRANSPLANTATION 2023; 2:1244093. [PMID: 38993844 PMCID: PMC11235352 DOI: 10.3389/frtra.2023.1244093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 07/13/2024]
Abstract
Islet transplantation is a promising treatment for type I diabetes (T1D). Despite the high loss of islets during transplantation, current islet transplant protocols continue to rely on portal vein infusion and intrahepatic engraftment. Because of the risk of portal vein thrombosis and the loss of islets to instant blood mediated inflammatory reaction (IBMIR), other transplantation sites like the subcutaneous space have been pursued for its large transplant volume, accessibility, and amenability for retrieval. To overcome the minimal vasculature of the subcutaneous space, prevascularization approaches or vascularizing biomaterials have been used to subcutaneously deliver islets into diabetic mice to return them to normoglycemia. Previous vascularization methods have relied on a 4 to 6 week prevascularization timeframe. Here we show that a vascularizing MAA-coated silicone tube can generate sufficient vasculature in 2 to 3 weeks to support a therapeutic dose of islets in mice. In order to fully harness the potential of this prevascularized site, we characterize the unique, subcutaneous immune response to allogeneic islets in the first 7 days following transplantation, a critical stage in successful engraftment. We identify neutrophils as a specific cellular target, a previously overlooked cell in the context of subcutaneous allogeneic islet transplantation. By perioperatively depleting neutrophils, we show that neutrophils are a key, innate immune cell target for successful early engraftment of allogeneic islets in a prevascularized subcutaneous site.
Collapse
Affiliation(s)
- So-Yoon Won
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Sean M Kinney
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Michael V Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Juang JH, Chen CL, Kao CW, Chen CY, Shen CR, Wang JJ, Tsai ZT, Chu IM. The Image-Histology Correlation of Subcutaneous mPEG-poly(Ala) Hydrogel-Embedded MIN6 Cell Grafts in Nude Mice. Polymers (Basel) 2023; 15:2584. [PMID: 37376231 DOI: 10.3390/polym15122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Previously, we have successfully used noninvasive magnetic resonance (MR) and bioluminescence imaging to detect and monitor mPEG-poly(Ala) hydrogel-embedded MIN6 cells at the subcutaneous space for up to 64 days. In this study, we further explored the histological evolution of MIN6 cell grafts and correlated it with image findings. MIN6 cells were incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) and then 5 × 106 cells in the 100 μL hydrogel solution were injected subcutaneously into each nude mouse. Grafts were removed and examined the vascularization, cell growth and proliferation with anti-CD31, SMA, insulin and ki67 antibodies, respectively, at 8, 14, 21, 29 and 36 days after transplantation. All grafts were well-vascularized with prominent CD31 and SMA staining at all time points. Interestingly, insulin-positive cells and iron-positive cells were scattered in the graft at 8 and 14 days; while clusters of insulin-positive cells without iron-positive cells appeared in the grafts at 21 days and persisted thereafter, indicating neogrowth of MIN6 cells. Moreover, proliferating MIN6 cells with strong ki67 staining was observed in 21-, 29- and 36-day grafts. Our results indicate that the originally transplanted MIN6 cells proliferated from 21 days that presented distinctive bioluminescence and MR images.
Collapse
Affiliation(s)
- Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chen-Ling Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chen-Wei Kao
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chen-Yi Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Zei-Tsan Tsai
- Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
14
|
Geng Z, Zhang Q, Li T, Huang T, Wang H, Zhou Q, Deng S, Zhao Y, Li Y, Cheng C, Gonelle-Gispert C, Buhler LH, Wang Y. Advantages of the retroperitoneal retrocolic space as the transplant site for encapsulated xenogeneic islets. Xenotransplantation 2023; 30:e12787. [PMID: 36454040 DOI: 10.1111/xen.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Islet allotransplantation has demonstrated improved clinical outcomes using the hepatic portal vein as the standard infusion method. However, the current implantation site is not ideal due to the short-term thrombotic and long-term immune destruction. Meanwhile, the shortage of human organ donors further limits its application. To find a new strategy, we tested a new polymer combination for islet encapsulation and transplantation. Meanwhile, we explored a new site for xenogeneic islet transplantation in mice. METHOD We synthesized a hydrogel combining alginate plus poly-ethylene-imine (Alg/PEI) for the encapsulation of rat, neonatal porcine, and human islets. Transplantation was performed into the retroperitoneal retro-colic space of diabetic mice. Control mice received free islets under the kidney capsule or encapsulated islets into the peritoneum. The biochemical indexes were measured, and the transplanted islets were harvested for immunohistochemical staining of insulin and glucagon. RESULTS Mice receiving encapsulated rat, porcine and human islets transplanted into the retroperitoneal space maintained normoglycemia for a median of 275, 145.5, and 146 days, respectively. In contrast, encapsulated xenogeneic islets transplanted into the peritoneum, maintained function for a median of 61, 95.5, and 82 days, respectively. Meanwhile, xenogeneic islets transplanted free into the kidney capsule lost their function within 3 days after transplantation. Immunohistochemical staining of encapsulated rat, porcine and human islets, retrieved from the retroperitoneal space, allowed to distinguish morphological normal insulin expressing β- and glucagon expressing α-cells at 70, 60, and 100 days post-transplant, respectively. CONCLUSION Transplantation of Alg/PEI encapsulated xenogeneic islets into the retroperitoneal space provides a valuable new implantation strategy for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Zhen Geng
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People's Hospital, Chengdu, China
| | - Ting Huang
- Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanshuang Zhao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanjiao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Leo H Buhler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, China
| |
Collapse
|
15
|
Liang Z, Sun D, Lu S, Lei Z, Wang S, Luo Z, Zhan J, Wu S, Jiang Y, Lu Z, Sun S, Shi Y, Long H, Wei Y, Yu W, Wang Z, Yi LS, Zhang Y, Sun W, Fang X, Li Y, Lu S, Lv J, Sui W, Shen Z, Peng X, Du Y, Deng H. Implantation underneath the abdominal anterior rectus sheath enables effective and functional engraftment of stem-cell-derived islets. Nat Metab 2023; 5:29-40. [PMID: 36624157 DOI: 10.1038/s42255-022-00713-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 01/11/2023]
Abstract
Human pluripotent stem cell-derived islets (hPSC islets) are a promising alternative to primary human islets for the treatment of insulin-deficient diabetes. We previously demonstrated the feasibility of this approach in nonhuman primates; however, the therapeutic effects of hPSC islets can be limited by the maladaptive processes at the transplantation site. Here, we demonstrate successful implantation of hPSC-derived islets in a new transplantation site in the abdomen, the subanterior rectus sheath, in eight nonhuman primates (five male and three female). In this proof-of-principle study, we find that hPSC islets survive and gradually mature after transplantation, leading to improved glycemic control in diabetic primates. Notably, C-peptide secretion responds to meal challenge from 6 weeks post-transplantation (wpt), with stimulation indices comparable to those of native islets. The average post-prandial C-peptide level reaches approximately 2.0 ng ml-1 from 8 wpt, which is five times higher than the peak value we previously obtained after portal vein infusion of hPSC islets and was associated with a decrease of glycated hemoglobin levels by 44% at 12 wpt. Although additional studies in larger cohorts involving long-term follow-up of transplants are needed, our results indicate that the subanterior rectus sheath supports functional maturation and maintenance of hPSC islets, suggesting that it warrants further exploration as a transplantation target site in the context of for hPSC-based cell-replacement therapies.
Collapse
Affiliation(s)
- Zhen Liang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Dong Sun
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shuaiyao Lu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | - Shusen Wang
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zhifeng Luo
- The Second Department of Urology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jinqin Zhan
- Ultrasonic Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Yong Jiang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Zhi Lu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Shicheng Sun
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | - Haiting Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yanling Wei
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Zhihui Wang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Liew Soon Yi
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yun Zhang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Wenyong Sun
- Hangzhou Repugene Technology, Hangzhou, China
| | | | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Sufang Lu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Jiayun Lv
- Hangzhou Repugene Technology, Hangzhou, China
| | - Weiguo Sui
- The Second Department of Urology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhongyang Shen
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Yuanyuan Du
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Hangzhou Reprogenix Bioscience, Hangzhou, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
16
|
Saito R, Inagaki A, Nakamura Y, Imura T, Kanai N, Mitsugashira H, Endo Y, Katano T, Suzuki S, Tokodai K, Kamei T, Unno M, Watanabe K, Tabata Y, Goto M. Ideal Duration of Pretreatment Using a Gelatin Hydrogel Nonwoven Fabric Prior to Subcutaneous Islet Transplantation. Cell Transplant 2023; 32:9636897231186063. [PMID: 37466120 PMCID: PMC10363859 DOI: 10.1177/09636897231186063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/05/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously revealed that a gelatin hydrogel nonwoven fabric (GHNF) markedly improved subcutaneous islet engraftment in comparison with intraportal islet transplantation. We herein investigated whether the duration of pretreatment using GHNF affected the outcome of subcutaneous islet transplantation. A silicone spacer with GHNF was implanted into the subcutaneous space of healthy mice at 2, 4, 6, or 8 weeks before transplantation, and then diabetes was induced 7 days before transplantation. Syngeneic islets were transplanted into the pretreated space. Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, inflammatory mediators, and gene expression were evaluated. The 6-week group showed significantly better blood glucose changes than the other groups (P < 0.05). The cure rate of the 6-week group (60.0%) was the highest among the groups (2-week = 0%, 4-week = 50.0%, 8-week = 15.4%). The number of von Willebrand factor (vWF)-positive vessels in the 6-week group was significantly higher than in the other groups at pre-islet and post-islet transplantation (P < 0.01 [vs 2-and 4-week groups] and P < 0.05 [vs all other groups], respectively). Notably, this beneficial effect was also observed when GHNF was implanted into diabetic mice injected with streptozotocin 7 days before GHNF implantation. The positive rates for laminin, collagen III, and collagen IV increased as the duration of pretreatment became longer and were significantly higher in the 8-week group (P < 0.01). Inflammatory mediators, including interleukin (IL)-1b, granulocyte colony-stimulating factor (G-CSF), and interferon (IFN)-γ, were gradually downregulated according to the duration of GHNF pretreatment and re-elevated in the 8-week group. Taken together, the duration of GHNF pretreatment apparently had an impact on the outcomes of subcutaneous islet transplantation, and 6 weeks appeared to be the ideal duration. Islet graft revascularization, extracellular matrix compensation of the islet capsule, and the inflammatory status at the subcutaneous space would be crucial factors for successful subcutaneous islet transplantation.
Collapse
Affiliation(s)
- Ryusuke Saito
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Graduate School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norifumi Kanai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Mitsugashira
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiko Endo
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takumi Katano
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoki Suzuki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuaki Tokodai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimiko Watanabe
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Co-transplantation of pancreatic islets and microvascular fragments effectively restores normoglycemia in diabetic mice. NPJ Regen Med 2022; 7:67. [PMCID: PMC9636251 DOI: 10.1038/s41536-022-00262-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractInsufficient revascularization of pancreatic islets is one of the major obstacles impairing the success of islet transplantation. To overcome this problem, we introduce in the present study a straightforward strategy to accelerate the engraftment of isolated islets. For this purpose, we co-transplanted 250 islets and 20,000 adipose tissue-derived microvascular fragments (MVF) from donor mice under the kidney capsule as well as 500 or 1000 islets with 40,000 MVF into the subcutaneous space of diabetic mice. We found that the co-transplantation of islets and MVF markedly accelerates the restoration of normoglycemia in diabetic recipients compared with the transplantation of islets alone. In fact, the transplantation of 250 islets with 20,000 MVF under the kidney capsule reversed diabetes in 88% of mice and the subcutaneous transplantation of 500 or 1000 islets with 40,000 MVF restored normoglycemia in 100% of mice. Moreover, diabetic mice receiving islets and MVF exhibited plasma insulin levels similar to nondiabetic control animals. Additional immunohistochemical analyses of the grafts revealed a significantly higher number of islet cells and microvessels in the co-transplantation groups. These findings demonstrate that the co-transplantation of islets and MVF is a promising strategy to improve the success rates of islet transplantation, which could be easily implemented into future clinical practice.
Collapse
|
18
|
Cotransplantation With Adipose Tissue-derived Stem Cells Improves Engraftment of Transplanted Hepatocytes. Transplantation 2022; 106:1963-1973. [PMID: 35404871 PMCID: PMC9521584 DOI: 10.1097/tp.0000000000004130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocyte transplantation is expected to be an alternative therapy to liver transplantation; however, poor engraftment is a severe obstacle to be overcome. The adipose tissue-derived stem cells (ADSCs) are known to improve engraftment of transplanted pancreatic islets, which have many similarities to the hepatocytes. Therefore, we examined the effects and underlying mechanisms of ADSC cotransplantation on hepatocyte engraftment. METHODS Hepatocytes and ADSCs were cotransplanted into the renal subcapsular space and livers of syngeneic analbuminemic rats, and the serum albumin level was quantified to evaluate engraftment. Immunohistochemical staining and fluorescent staining to trace transplanted cells in the liver were also performed. To investigate the mechanisms, cocultured supernatants were analyzed by a multiplex assay and inhibition test using neutralizing antibodies for target factors. RESULTS Hepatocyte engraftment at both transplant sites was significantly improved by ADSC cotransplantation ( P < 0.001, P < 0.001). In the renal subcapsular model, close proximity between hepatocytes and ADSCs was necessary to exert this effect. Unexpectedly, ≈50% of transplanted hepatocytes were attached by ADSCs in the liver. In an in vitro study, the hepatocyte function was significantly improved by ADSC coculture supernatant ( P < 0.001). The multiplex assay and inhibition test demonstrated that hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6 may be key factors for the abovementioned effects of ADSCs. CONCLUSIONS The present study revealed that ADSC cotransplantation can improve the engraftment of transplanted hepatocytes. This effect may be based on crucial factors, such as hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6, which are secreted by ADSCs.
Collapse
|
19
|
Stock AA, Gonzalez GC, Pete SI, De Toni T, Berman DM, Rabassa A, Diaz W, Geary JC, Willman M, Jackson JM, DeHaseth NH, Ziebarth NM, Hogan AR, Ricordi C, Kenyon NS, Tomei AA. Performance of islets of Langerhans conformally coated via an emulsion cross-linking method in diabetic rodents and nonhuman primates. SCIENCE ADVANCES 2022; 8:eabm3145. [PMID: 35767620 PMCID: PMC9242596 DOI: 10.1126/sciadv.abm3145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene glycol (PEG)-based conformal coating (CC) encapsulation of transplanted islets is a promising β cell replacement therapy for the treatment of type 1 diabetes without chronic immunosuppression because it minimizes capsule thickness, graft volume, and insulin secretion delay. However, we show here that our original CC method, the direct method, requiring exposure of islets to low pH levels and inclusion of viscosity enhancers during coating, severely affected the viability, scalability, and biocompatibility of CC islets in nonhuman primate preclinical models of type 1 diabetes. We therefore developed and validated in vitro and in vivo, in several small- and large-animal models of type 1 diabetes, an augmented CC method-emulsion method-that achieves hydrogel CCs around islets at physiological pH for improved cytocompatibility, with PEG hydrogels for increased biocompatibility and with fivefold increase in encapsulation throughput for enhanced scalability.
Collapse
Affiliation(s)
- Aaron A. Stock
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Grisell C. Gonzalez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sophia I. Pete
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Teresa De Toni
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Dora M. Berman
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexander Rabassa
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Waldo Diaz
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James C. Geary
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melissa Willman
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joy M. Jackson
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Noa H. DeHaseth
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Noel M. Ziebarth
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Anthony R. Hogan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Norma S. Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alice A. Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
20
|
Kuppan P, Kelly S, Seeberger K, Castro C, Rosko M, Pepper AR, Korbutt GS. Bioabsorption of Subcutaneous Nanofibrous Scaffolds Influences the Engraftment and Function of Neonatal Porcine Islets. Polymers (Basel) 2022; 14:polym14061120. [PMID: 35335450 PMCID: PMC8954444 DOI: 10.3390/polym14061120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The subcutaneous space is currently being pursued as an alternative transplant site for ß-cell replacement therapies due to its retrievability, minimally invasive procedure and potential for graft imaging. However, implantation of ß-cells into an unmodified subcutaneous niche fails to reverse diabetes due to a lack of adequate blood supply. Herein, poly (ε-caprolactone) (PCL) and poly (lactic-co-glycolic acid) (PLGA) polymers were used to make scaffolds and were functionalized with peptides (RGD (Arginine-glycine-aspartate), VEGF (Vascular endothelial growth factor), laminin) or gelatin to augment engraftment. PCL, PCL + RGD + VEGF (PCL + R + V), PCL + RGD + Laminin (PCL + R + L), PLGA and PLGA + Gelatin (PLGA + G) scaffolds were implanted into the subcutaneous space of immunodeficient Rag mice. After four weeks, neonatal porcine islets (NPIs) were transplanted within the lumen of the scaffolds or under the kidney capsule (KC). Graft function was evaluated by blood glucose, serum porcine insulin, glucose tolerance tests, graft cellular insulin content and histologically. PLGA and PLGA + G scaffold recipients achieved significantly superior euglycemia rates (86% and 100%, respectively) compared to PCL scaffold recipients (0% euglycemic) (* p < 0.05, ** p < 0.01, respectively). PLGA scaffolds exhibited superior glucose tolerance (* p < 0.05) and serum porcine insulin secretion (* p < 0.05) compared to PCL scaffolds. Functionalized PLGA + G scaffold recipients exhibited higher total cellular insulin contents compared to PLGA-only recipients (* p < 0.05). This study demonstrates that the bioabsorption of PLGA-based fibrous scaffolds is a key factor that facilitates the function of NPIs transplanted subcutaneously in diabetic mice.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Chelsea Castro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mandy Rosko
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (A.R.P.); (G.S.K.)
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (A.R.P.); (G.S.K.)
| |
Collapse
|
21
|
Degradable methacrylic acid-based synthetic hydrogel for subcutaneous islet transplantation. Biomaterials 2021; 281:121342. [PMID: 34995903 DOI: 10.1016/j.biomaterials.2021.121342] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022]
Abstract
Islet transplantation is a promising regenerative therapy that would reduce the dependence of type 1 diabetic patients on insulin injections. However, islet transplantation is not yet widely available, in part because there is no ideal transplant site. The subcutaneous space has been highlighted as a promising transplant site, but it does not have the vasculature required to support an islet graft. In this study we demonstrate that islets engraft in the subcutaneous space when injected in an inherently vascularizing, degradable methacrylic acid-polyethylene glycol (MAA-PEG) hydrogel; no vascularizing cells or growth factors were required. In streptozotocin-induced diabetic mice, injection of 600 rodent islet equivalents in MAA-PEG hydrogels was sufficient to reverse diabetes for 70 days; a PEG gel without MAA had no benefit. MAA-PEG hydrogel scaffolds degraded over the course of a week and were replaced by a host-derived, vascularized, innervated matrix that supported subcutaneous islets. The survival of islet grafts through the inflammatory events of subcutaneous transplantation, hydrogel degradation, and islet revascularization underscore the benefits of the MAA biomaterial. Our findings establish the MAA-PEG hydrogel as a platform for subcutaneous islet transplantation.
Collapse
|
22
|
Ogasawara H, Inagaki A, Fathi I, Imura T, Yamana H, Saitoh Y, Matsumura M, Fukuoka K, Miyagi S, Nakamura Y, Ohashi K, Unno M, Kamei T, Goto M. Preferable Transplant Site for Hepatocyte Transplantation in a Rat Model. Cell Transplant 2021; 30:9636897211040012. [PMID: 34525872 PMCID: PMC8450989 DOI: 10.1177/09636897211040012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intraportal injection is regarded as the current standard procedure of hepatocyte transplantation (HTx). In islet transplantation, which shares many aspects with HTx, recent studies have clarified that instant blood-mediated inflammatory reaction (IBMIR), characterized by strong innate immune responses, can cause poor engraftment, so other transplant sites to avoid such a reaction have been established. Although IBMIR was reported to occur in HTx, few reports have evaluated alternative transplant sites for HTx. In this study, we sought to determine the optimum transplant site for HTx. Rat hepatocytes (1.0 × 107) were transplanted at the 9 transplant sites (intraportal (IPO), intrasplenic (IS), liver parenchyma, subcutaneous, intraperitoneal, renal subcapsular, muscle, inguinal subcutaneous white adipose tissue, and omentum) of analbuminemic rats. The serum albumin levels, immunohistochemical staining (albumin, TUNEL, and BrdU), and in vivo imaging of the grafts were evaluated. The serum albumin levels of the IPO group were significantly higher than those of the other groups (p < .0001). The BrdU-positive hepatocyte ratio of liver in the IS group (0.9% ± 0.2%) was comparable to that of the IPO group (0.9% ± 0.3%) and tended to be higher than that of the spleen in the IS group (0.5% ± 0.1%, p = .16). Considering the in vivo imaging evaluation and the influence of splenectomy, the graft function in the IS group may be almost entirely achieved by hepatocytes that have migrated to the liver. The present study clearly showed that the intraportal injection procedure is more efficient than other procedures for performing HTx
Collapse
Affiliation(s)
- Hiroyuki Ogasawara
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ibrahim Fathi
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Yamana
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikatsu Saitoh
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muneyuki Matsumura
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kengo Fukuoka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigehito Miyagi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuo Ohashi
- Laboratory of Drug Development and Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Noninvasive Tracking of mPEG-poly(Ala) Hydrogel-Embedded MIN6 Cells after Subcutaneous Transplantation in Mice. Polymers (Basel) 2021; 13:polym13060885. [PMID: 33805723 PMCID: PMC7998640 DOI: 10.3390/polym13060885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, we demonstrated the feasibility of subcutaneous transplantation of MIN6 cells embedded in a scaffold with poly(ethylene glycol) methyl ether (mPEG)-poly(Ala) hydrogels. In this study, we further tracked these grafts using magnetic resonance (MR) and bioluminescence imaging. After being incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles and then mixed with mPEG-poly(Ala) hydrogels, MIN6 cells appeared as dark spots on MR scans. For in vivo experiments, we transfected MIN6 cells with luciferase and/or incubated them overnight with CSPIO overnight; 5 × 106 MIN6 cells embedded in mPEG-poly(Ala) hydrogels were transplanted into the subcutaneous space of each nude mouse. The graft of CSPIO-labeled MIN6 cells was visualized as a distinct hypointense area on MR images located at the implantation site before day 21. However, this area became hyperintense on MR scans for up to 64 days. In addition, positive bioluminescence images were also observed for up to 64 days after transplantation. The histology of removed grafts showed positive insulin and iron staining. These results indicate mPEG-poly(Ala) is a suitable scaffold for β-cell encapsulation and transplantation. Moreover, MR and bioluminescence imaging are useful noninvasive tools for detecting and monitoring mPEG-poly(Ala) hydrogel-embedded MIN6 cells at a subcutaneous site.
Collapse
|
24
|
Subcutaneous transplantation of engineered islet/adipose-derived mesenchymal stem cell sheets in diabetic pigs with total pancreatectomy. Regen Ther 2021; 16:42-52. [PMID: 33521172 PMCID: PMC7810917 DOI: 10.1016/j.reth.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Intraportal islet transplantation is a promising therapeutic approach for patients with type 1 diabetes mellitus (T1DM). However, despite being minimally invasive, the method has some limitations, such as short-term graft loss, portal venous thrombosis, and difficulty in collecting adequate amounts of islets. Subcutaneous islet transplantation on adipose-derived mesenchymal stem cell (ADSC) sheets has been suggested to overcome these limitations, and in this study, we have examined its feasibility in T1DM pigs. Methods Inguinal subcutaneous fat was harvested from young pigs and then isolated and cultured adequate ADSCs to prepare sheets. Islets were isolated from the pancreases of mature pigs and seeded on the ADSC sheets. T1DM pigs were generated by total pancreatectomy, and ADSC sheets with transplanted islets were administered subcutaneously to the waist (n = 2). The effects of the islets on the ADSC sheets and on blood glucose levels were evaluated. Insulin secretion was measured by insulin stimulation index. Results Islet viability was higher on ADSCs compared to islets alone (91.8 ± 4.3 vs. 81.7 ± 4.1%). The insulin stimulation index revealed higher glucose sensitivity of islets on ADSC sheets compared to islets alone (2.8 ± 2.0 vs. 0.8 ± 0.3). After transplantation, the blood glucose levels of two pigs were within the normal range, and sensitive insulin secretion was confirmed by intravenous glucose tolerance tests. After graftectomy, decreased insulin secretion and hyperglycemia were observed. Conclusions Subcutaneous islet transplantation using ADSC sheets can regulate the blood glucose levels of T1DM pigs.
The adipose-derived mesenchymal stem cell sheet is useful to protect the islets. Subcutaneous islet transplantation on sheet normalized blood glucose in diabetic pig. Subcutaneous islet transplantation on sheet can be a useful tool.
Collapse
Key Words
- ADSC, adipose-derived mesenchymal stem cell
- Adipose-derived mesenchymal stem cells
- CGM, continuous glucose monitor
- DMEM, Dulbecco's modified Eagle's medium
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- H & E, hematoxylin and eosin
- HGF, hepatocyte growth factor
- HSP32, heat shock protein 32
- IBMIR, instant blood-mediated inflammatory reaction
- IEQ, islet equivalent
- IVGTT, intravenous glucose tolerance test
- Islet transplantation
- MEM, minimum essential medium
- MSC, mesenchymal stem cell
- PBS, phosphate-buffered saline
- Pig
- SD, standard deviation
- Subcutaneous
- T1DM, Type 1 diabetes mellitus
- TGF, transforming growth factor
- Type 1 diabetes mellitus
- UW, University of Wisconsin
- XIAP, X-linked inhibitor of apoptosis protein
Collapse
|
25
|
Cayabyab F, Nih LR, Yoshihara E. Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes. Front Endocrinol (Lausanne) 2021; 12:732431. [PMID: 34589059 PMCID: PMC8473744 DOI: 10.3389/fendo.2021.732431] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a complex disease that affects over 400 million people worldwide. The life-long insulin injections and continuous blood glucose monitoring required in type 1 diabetes (T1D) represent a tremendous clinical and economic burdens that urges the need for a medical solution. Pancreatic islet transplantation holds great promise in the treatment of T1D; however, the difficulty in regulating post-transplantation immune reactions to avoid both allogenic and autoimmune graft rejection represent a bottleneck in the field of islet transplantation. Cell replacement strategies have been performed in hepatic, intramuscular, omentum, and subcutaneous sites, and have been performed in both animal models and human patients. However more optimal transplantation sites and methods of improving islet graft survival are needed to successfully translate these studies to a clinical relevant therapy. In this review, we summarize the current progress in the field as well as methods and sites of islet transplantation, including stem cell-derived functional human islets. We also discuss the contribution of immune cells, vessel formation, extracellular matrix, and nutritional supply on islet graft survival. Developing new transplantation sites with emerging technologies to improve islet graft survival and simplify immune regulation will greatly benefit the future success of islet cell therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Fritz Cayabyab
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Lina R. Nih
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|
26
|
Mridha AR, Dargaville TR, Dalton PD, Carroll L, Morris MB, Vaithilingam V, Tuch BE. Prevascularized Retrievable Hybrid Implant to Enhance Function of Subcutaneous Encapsulated Islets. Tissue Eng Part A 2020; 28:212-224. [PMID: 33081600 DOI: 10.1089/ten.tea.2020.0179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Replacement of pancreatic β-cells is one of the most promising treatment options for treatment of type 1 diabetes (T1D), even though, toxic immunosuppressive drugs are required. In this study, we aim to deliver allogeneic β-cell therapies without antirejection drugs using a bioengineered hybrid device that contains microencapsulated β-cells inside 3D polycaprolactone (PCL) scaffolds printed using melt electrospin writing (MEW). Mouse β-cell (MIN6) pseudoislets and QS mouse islets are encapsulated in alginate microcapsules, without affecting viability and insulin secretion. Microencapsulated MIN6 cells are then seeded within 3D MEW scaffolds, and these hybrid devices implanted subcutaneously in streptozotocin-treated diabetic NOD/SCID and BALB/c mice. Similar to NOD/SCID mice, blood glucose levels (BGL) are lowered from 30.1 to 4.8 mM in 25-41 days in BALB/c. In contrast, microencapsulated islets placed in prevascularized MEW scaffold 3 weeks after implantation in BALB/c mice normalize BGL (<12 mM) more rapidly, lasting for 60-105 days. The lowering of glucose levels is confirmed by an intraperitoneal glucose tolerance test. Vascularity within the implanted grafts is demonstrated and quantified by 3D-doppler ultrasound, with a linear increase over 4 weeks (r = 0.65). Examination of the device at 5 weeks shows inflammatory infiltrates of neutrophils, macrophages, and B-lymphocytes on the MEW scaffolds, but not on microcapsules, which have infrequent profibrotic walling. In conclusion, we demonstrate the fabrication of an implantable and retrievable hybrid device for vascularization and enhancing the survival of encapsulated islets implanted subcutaneously in an allotransplantation setting without immunosuppression. This study provides proof-of-concept for the application of such devices for human use, but, will require modifications to allow translation to people with T1D. Impact statement The retrievable 3D printed PCL scaffold we have produced promotes vascularization when implanted subcutaneously and allows seeded microencapsulated insulin-producing cells to normalize blood glucose of diabetic mice for at least 2 months, without the need for antirejection drugs to be administered. The scaffold is scalable for possible human use, but will require modification to ensure that normalization of blood glucose levels can be maintained long term.
Collapse
Affiliation(s)
- Auvro R Mridha
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia.,Bosch Institute, The University of Sydney, Sydney, Australia
| | - Tim R Dargaville
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Luke Carroll
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia.,Now Based at NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
| | - Michael B Morris
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Bosch Institute, The University of Sydney, Sydney, Australia
| | - Vijayaganapathy Vaithilingam
- Australian Foundation for Diabetes Research, Sydney, Australia.,Cell Biology Inspired Tissue Engineering (CBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Bernard E Tuch
- Discipline of Physiology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Australian Foundation for Diabetes Research, Sydney, Australia
| |
Collapse
|
27
|
Abstract
BACKGROUND White adipose tissue (WAT) is a candidate transplantation site for islets. However, the mechanism of islet engraftment in WAT has not been fully investigated. In this study, we attempted to clarify the therapeutic effect and mechanism of islet transplantation into visceral WAT. METHODS Two hundred mouse islets were transplanted into epididymal WAT of syngeneic diabetic mice by wrapping islets with the tissue (fat-covered group). Mice that received intraperitoneal and renal subcapsular islet transplantations were used as negative and positive control groups, respectively. RESULTS The transplant efficacy, including improvements in blood glucose and plasma insulin levels and in glucose tolerance tests, of the fat-covered group was superior to the negative control group and almost equal to the positive control group. Vessel density of engrafted islets in the fat-covered group was higher than that in the positive control group. It was speculated that the mechanism of islet engraftment in WAT might consist of trapping islets in WAT, adhesion of islets via a combination of adhesion factors (fibronectin and integrin β1), and promotion of angiogenesis in islets by expression of angiogenic factors induced by adiponectin. CONCLUSIONS Visceral WAT is an important candidate for islet transplantation. Adhesion factors and adiponectin might contribute to islet engraftment into WAT. Further studies to elucidate the detailed mechanism are necessary.
Collapse
|
28
|
Nanno Y, Burlak C. Xenotransplantation literature update, July/August 2020. Xenotransplantation 2020; 27:e12653. [PMID: 33020943 DOI: 10.1111/xen.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshihide Nanno
- Department of Surgery, Schultz Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Burlak
- Department of Surgery, Schultz Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Xu K, Xie R, Lin X, Jia J, Zeng N, Li W, Xiao D, Du T. Brown Adipose Tissue: A Potential Site for Islet Transplantation. Transplantation 2020; 104:2059-2064. [PMID: 32453253 DOI: 10.1097/tp.0000000000003322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Islet transplantation is a promising treatment in patients with complicated diabetes. The ideal transplant site that can extend islet graft survival and reduce the required number of engrafted islets remains to be established. METHODS Donor islets were isolated from red fluorescent protein (RFP) mice and transplanted into interscapular brown adipose tissue (BAT) or unilateral inguinal white adipose tissue of age-matched diabetic RFP mice. Blood glucose and body weight of the mice were monitored, and vitality and function of ectopic RFP islets were detected by fluorescence imaging, histological examination, and intraperitoneal glucose tolerance test (GTT). RESULTS BAT enabled the marginal number of grafted islets (80 islets) to restore blood glucose, insulin level, and GTT to normal values in all diabetic recipient mice in the short term after graft, and maintained these values for 1 year at the end of the experiment. Importantly, in the short term after transplantation, abundant extra- and intraislet neovasculatures were observed in BAT, but not in white adipose tissue, which allowed the ectopic islets to retain typical architecture and morphology and contributed to the normal GTT. Moreover, the islet-engrafted BAT displayed normal structure and morphology without significant immunocyte infiltration, and the recipient mice also showed normal lipid levels in the blood. CONCLUSIONS BAT remarkably enhances the viability and biological function of the transplanted ectopic islets. Moreover, the anatomical location of BAT lends itself to biopsy, removal, and islet retransplantation, which strongly suggests the BAT as a potential desirable site for islet transplantation in basic and clinical research.
Collapse
Affiliation(s)
- Kang Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Raoying Xie
- Department of Radiation and Medical Oncology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Xiaolin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Junshuang Jia
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Nan Zeng
- Department of Endocrinology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Tao Du
- Department of Endocrinology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Berney T, Berishvili E. I've got you under my skin. Nat Metab 2020; 2:993-994. [PMID: 32895575 DOI: 10.1038/s42255-020-0268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland.
- Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland.
- Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
31
|
White Adipose Tissue as a Site for Islet Transplantation. TRANSPLANTOLOGY 2020. [DOI: 10.3390/transplantology1010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although islet transplantation is recognized as a useful cellular replacement therapy for severe diabetes, surgeons face difficulties in islet engraftment. The transplant site is a pivotal factor that influences the engraftment. Although the liver is the current representative site for clinical islet transplantation, it is not the best site because of limitations in immunity, inflammation, and hypoxia. White adipose tissue, including omentum, is recognized as a useful candidate site for islet transplantation. Its effectiveness has been evaluated in not only various basic and translational studies using small and large animals but also in some recent clinical trials. In this review, we attempt to shed light on the characteristics and usefulness of white adipose tissue as a transplant site for islets.
Collapse
|
32
|
White Adipose Tissue as a Site for Islet Transplantation. TRANSPLANTOLOGY 2020. [DOI: 10.3390/transplantology1020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although islet transplantation is recognized as a useful cellular replacement therapy for severe diabetes, surgeons face difficulties in islet engraftment. The transplant site is a pivotal factor that influences the engraftment. Although the liver is the current representative site for clinical islet transplantation, it is not the best site because of limitations in immunity, inflammation, and hypoxia. White adipose tissue, including omentum, is recognized as a useful candidate site for islet transplantation. Its effectiveness has been evaluated in not only various basic and translational studies using small and large animals but also in some recent clinical trials. In this review, we attempt to shed light on the characteristics and usefulness of white adipose tissue as a transplant site for islets.
Collapse
|
33
|
Evaluation of Multi-Layered Pancreatic Islets and Adipose-Derived Stem Cell Sheets Transplanted on Various Sites for Diabetes Treatment. Cells 2020; 9:cells9091999. [PMID: 32878048 PMCID: PMC7563383 DOI: 10.3390/cells9091999] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Islet cell transplantation is considered an ideal treatment for insulin-deficient diabetes, but implantation sites are limited and show low graft survival. Cell sheet technology and adipose-derived stem cells (ADSCs) can be useful tools for improving islet cell transplantation outcomes since both can increase implantation efficacy and graft survival. Herein, the optimal transplantation site in diabetic mice was investigated using islets and stem cell sheets. We constructed multi-layered cell sheets using rat/human islets and human ADSCs. Cell sheets were fabricated using temperature-responsive culture dishes. Islet/ADSC sheet (AI sheet) group showed higher viability and glucose-stimulated insulin secretion than islet-only group. Compared to islet transplantation alone, subcutaneous AI sheet transplantation showed better blood glucose control and CD31+ vascular traits. Because of the adhesive properties of cell sheets, AI sheets were easily applied on liver and peritoneal surfaces. Liver or peritoneal surface grafts showed better glucose control, weight gain, and intraperitoneal glucose tolerance test (IPGTT) profiles than subcutaneous site grafts using both rat and human islets. Stem cell sheets increased the therapeutic efficacy of islets in vivo because mesenchymal stem cells enhance islet function and induce neovascularization around transplanted islets. The liver and peritoneal surface can be used more effectively than the subcutaneous site in future clinical applications.
Collapse
|
34
|
Li F, Lv Y, Li X, Yang Z, Guo T, Zhang J. Comparative Study of Two Different Islet Transplantation Sites in Mice: Hepatic Sinus Tract vs Splenic Parenchyma. Cell Transplant 2020; 29:963689720943576. [PMID: 32731817 PMCID: PMC7563812 DOI: 10.1177/0963689720943576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although 90% of clinical islet transplantations are performed via the portal vein approach, it is still far from the ideal transplant site. Alternative islet transplant sites are promising to reduce the islet dose required to reverse hyperglycemia, thereby improving the efficiency of islet transplantation. The aim of this study was to compare the differences in survival and metabolic function of islet grafts transplanted into the hepatic sinus tract (HST) and the splenic parenchyma (SP). Approximately 300 syngeneic mouse islets were transplanted into the HST (n = 6) and the SP (n = 6) of recipient diabetic mice, respectively. After transplantation, the glycemic control, glucose tolerance, and morphology of islet grafts were evaluated and compared in each group. The nonfasting blood glucose of the two groups of mice receiving islet transplantation gradually decreased to the normal range and sustained for more than 100 d. There is no significant difference in the time required to restore normoglycemia (P > 0.05). The results of the glucose tolerance test showed that the SP group presented a smaller area under the curve than the HST group (P < 0.05). Histopathological results showed that islet grafts in the HST and the SP were characterized with normal islet morphology and robust insulin production. Compared with the HST, islet transplantation in the SP presents better blood glucose regulation, although there is no significant difference in the time required to restore normoglycemia.
Collapse
Affiliation(s)
- Feng Li
- Hepatobiliary Surgery Department, the First Hospital of China Medical University, Shenyang, China
| | - Yi Lv
- Hepatobiliary Surgery Department, the First Hospital of China Medical University, Shenyang, China
| | - Xiaohang Li
- Hepatobiliary Surgery Department, the First Hospital of China Medical University, Shenyang, China
| | - Zhaoming Yang
- Hepatobiliary Surgery Department, the First Hospital of China Medical University, Shenyang, China
| | - Tingwei Guo
- Hepatobiliary Surgery Department, the First Hospital of China Medical University, Shenyang, China
| | - Jialin Zhang
- Hepatobiliary Surgery Department, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Kim YH, Ko JH, Lee S, Oh JY, Jeong GS, Park SN, Shim IK, Kim SC. Long-term reversal of diabetes by subcutaneous transplantation of pancreatic islet cells and adipose-derived stem cell sheet using surface-immobilized heparin and engineered collagen scaffold. BMJ Open Diabetes Res Care 2020; 8:8/1/e001128. [PMID: 32565421 PMCID: PMC7307580 DOI: 10.1136/bmjdrc-2019-001128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Esterified collagen (EC) can be functionalized with heparin to enhance islet graft stability. Growth factors secreted by human adipose-derived stem cells (hADSCs) can bind efficiently to EC-heparin (EC-Hep), which enhances revascularization and cell protection. We investigated the therapeutic potential of a combined heparin-esterified collagen-hADSC (HCA)-islet sheet to enhance islet engraftment. RESEARCH DESIGN AND METHODS This study was designed to assess the efficiency of using EC-Hep as a scaffold for subcutaneous islet transplantation in diabetic athymic mice. After the hADSC-cocultured islets were seeded in the EC-Hep scaffold, islet function was measured by glucose-stimulated insulin secretion test and growth factors in the culture supernatants were detected by protein array. Islet transplantation was performed in mice, and graft function and survival were monitored by measuring the blood glucose levels. β-Cell mass and vascular densities were assessed by immunohistochemistry. RESULTS The EC-Hep composite allowed sustained release of growth factors. Secretion of growth factors and islet functionality in the HCA-islet sheet were significantly increased compared with the control groups of islets alone or combined with native collagen. In vivo, stable long-term glucose control by the graft was achieved after subcutaneous transplantation of HCA-islet sheet due to enhanced capillary network formation around the sheet. CONCLUSIONS The findings indicate the potential of the HCA-islet sheet to enhance islet revascularization and engraftment in a hADSC dose-dependent manner, following clinical islet transplantation for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yang Hee Kim
- Laboratory of Stem Cell Biology and Cell Therapy, Asan Institute for Life Sciences, Songpa-gu, Seoul, The Republic of Korea
- Regenerative Medicine Research Center, Dalim Tissen Co, Ltd, Seoul, The Republic of Korea
| | - Jae Hyung Ko
- Regenerative Medicine Research Center, Dalim Tissen Co, Ltd, Seoul, The Republic of Korea
| | - Song Lee
- Laboratory of Stem Cell Biology and Cell Therapy, Asan Institute for Life Sciences, Songpa-gu, Seoul, The Republic of Korea
| | - Ju Yun Oh
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, The Republic of Korea
| | - Gi Seok Jeong
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, The Republic of Korea
- Biomedical Engineering Research Center, Asan Institute for Life Science, Seoul, The Republic of Korea
| | - Si-Nae Park
- Regenerative Medicine Research Center, Dalim Tissen Co, Ltd, Seoul, The Republic of Korea
| | - In Kyong Shim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, The Republic of Korea
- Biomedical Engineering Research Center, Asan Institute for Life Science, Seoul, The Republic of Korea
| | - Song Cheol Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, The Republic of Korea
- Department of Surgery, University of Ulsan College of Medicine & Asan Medical Center, Songpa-gu, Seoul, The Republic of Korea
| |
Collapse
|
36
|
Lin HC, Chen CY, Kao CW, Wu ST, Chen CL, Shen CR, Juang JH, Chu IM. In situ gelling-polypeptide hydrogel systems for the subcutaneous transplantation of MIN6 cells. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2032-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Yu CP, Juang JH, Lin YJ, Kuo CW, Hsieh LH, Huang CC. Enhancement of Subcutaneously Transplanted β Cell Survival Using 3D Stem Cell Spheroids with Proangiogenic and Prosurvival Potential. ACTA ACUST UNITED AC 2020; 4:e1900254. [PMID: 32293147 DOI: 10.1002/adbi.201900254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Indexed: 01/20/2023]
Abstract
Islet transplantation has been demonstrated to be a promising therapy for type 1 diabetes mellitus. Although it is a minimally invasive operating procedure and provides easy access for graft monitoring, subcutaneous transplantation of the islet only has limited therapeutic outcomes, owing to the poor capacity of skin tissue to foster revascularization in a short period. Herein, 3D cell spheroids of clinically accessible umbilical cord blood mesenchymal stem cells and human umbilical vein endothelial cells are formed and employed for codelivery with β cells subcutaneously. The 3D stem cell spheroids, which can secrete multiple proangiogenic and prosurvival growth factors, induce robust angiogenesis and prevent β cell graft death, as indicated by the results of in vivo bioluminescent tracking and histological analysis. These experimental data highlight the efficacy of the 3D stem cell spheroids that are fabricated using translationally applicable cell types in promoting the survival and function of subcutaneously transplanted β cells.
Collapse
Affiliation(s)
- Chih-Ping Yu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.,Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ching-Wen Kuo
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Hung Hsieh
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
38
|
Kuppan P, Seeberger K, Kelly S, Rosko M, Adesida A, Pepper AR, Korbutt GS. Co‐transplantation of human adipose‐derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation 2020; 27:e12581. [DOI: 10.1111/xen.12581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Karen Seeberger
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Sandra Kelly
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Mandy Rosko
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Adetola Adesida
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| |
Collapse
|
39
|
Najdahmadi A, Smink AM, de Vos P, Lakey JR, Botvinick E. Non-Invasive Monitoring of Oxygen Tension and Oxygen Transport Inside Subcutaneous Devices After H 2S Treatment. Cell Transplant 2020; 29:963689719893936. [PMID: 32024377 PMCID: PMC7444232 DOI: 10.1177/0963689719893936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Medical devices for cell therapy can be improved through prevascularization. In this work we study the vascularization of a porous polymer device, previously used by our group for pancreatic islet transplantation with results indicating improved glycemic control. Oxygen partial pressure within such devices was monitored non-invasively using an optical technique. Oxygen-sensitive tubes were fabricated and placed inside devices prior to subcutaneous implantation in nude mice. We tested the hypothesis that vascularization will be enhanced by administration of the pro-angiogenic factor hydrogen sulfide (H2S). We found that oxygen dynamics were unique to each implant and that the administration of H2S does not result in significant changes in perfusion of the devices as compared with control. These observations suggest that vascular perfusion and density are not necessarily correlated, and that the rate of vascularization was not enhanced by the pro-angiogenic agent.
Collapse
Affiliation(s)
- Avid Najdahmadi
- Department of Materials Science and Engineering, University of
California Irvine, Irvine, CA, USA
| | - Alexandra M. Smink
- Department of Pathology and Medical Biology, University Medical
Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical
Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jonathan R.T. Lakey
- Department of Biomedical Engineering, University of California
Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA,
USA
| | - Elliot Botvinick
- Department of Materials Science and Engineering, University of
California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California
Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA,
USA
| |
Collapse
|
40
|
Salama BF, Seeberger KL, Korbutt GS. Fibrin supports subcutaneous neonatal porcine islet transplantation without the need for pre‐vascularization. Xenotransplantation 2019; 27:e12575. [DOI: 10.1111/xen.12575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Bassem F. Salama
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Department of Surgery University of Alberta Edmonton Alberta Canada
| | - Karen L. Seeberger
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Department of Surgery University of Alberta Edmonton Alberta Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Department of Surgery University of Alberta Edmonton Alberta Canada
| |
Collapse
|
41
|
White AM, Shamul JG, Xu J, Stewart S, Bromberg JS, He X. Engineering Strategies to Improve Islet Transplantation for Type 1 Diabetes Therapy. ACS Biomater Sci Eng 2019; 6:2543-2562. [PMID: 33299929 DOI: 10.1021/acsbiomaterials.9b01406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease in which the immune system attacks insulin-producing beta cells of pancreatic islets. Type 1 diabetes can be treated with islet transplantation; however, patients must be administered immunosuppressants to prevent immune rejection of the transplanted islets if they are not autologous or not engineered with immune protection/isolation. To overcome biological barriers of islet transplantation, encapsulation strategies have been developed and robustly investigated. While islet encapsulation can prevent the need for immunosuppressants, these approaches have not shown much success in clinical trials due to a lack of long-term insulin production. Multiple engineering strategies have been used to improve encapsulation and post-transplantation islet survival. In addition, more efficient islet cryopreservation methods have been designed to facilitate the scaling-up of islet transplantation. Other islet sources have been identified including porcine islets and stem cell-derived islet-like aggregates. Overall, islet-laden capsule transplantation has greatly improved over the past 30 years and is moving towards becoming a clinically feasible treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA, Baltimore, MD 21201, USA
| |
Collapse
|
42
|
Song W, Chiu A, Wang LH, Schwartz RE, Li B, Bouklas N, Bowers DT, An D, Cheong SH, Flanders JA, Pardo Y, Liu Q, Wang X, Lee VK, Dai G, Ma M. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat Commun 2019; 10:4602. [PMID: 31601796 PMCID: PMC6787187 DOI: 10.1038/s41467-019-12373-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
The success of engineered cell or tissue implants is dependent on vascular regeneration to meet adequate metabolic requirements. However, development of a broadly applicable strategy for stable and functional vascularization has remained challenging. We report here highly organized and resilient microvascular meshes fabricated through a controllable anchored self-assembly method. The microvascular meshes are scalable to centimeters, almost free of defects and transferrable to diverse substrates, ready for transplantation. They promote formation of functional blood vessels, with a density as high as ~220 vessels mm-2, in the poorly vascularized subcutaneous space of SCID-Beige mice. We further demonstrate the feasibility of fabricating microvascular meshes from human induced pluripotent stem cell-derived endothelial cells, opening a way to engineer patient-specific microvasculature. As a proof-of-concept for type 1 diabetes treatment, we combine microvascular meshes and subcutaneously transplanted rat islets and achieve correction of chemically induced diabetes in SCID-Beige mice for 3 months.
Collapse
Affiliation(s)
- Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Alan Chiu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Robert E Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Bin Li
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nikolaos Bouklas
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Duo An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - James A Flanders
- Department of Clinical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yehudah Pardo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Qingsheng Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Vivian K Lee
- Department of Bioengineering, Northeastern University, Boston, MA, 02120, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA, 02120, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
43
|
Liang S, Louchami K, Holvoet B, Verbeke R, Deroose CM, Manshian B, Soenen SJ, Lentacker I, Himmelreich U. Tri-modal In vivo Imaging of Pancreatic Islets Transplanted Subcutaneously in Mice. Mol Imaging Biol 2019; 20:940-951. [PMID: 29671177 DOI: 10.1007/s11307-018-1192-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Transplantation of pancreatic islets (PIs) is a promising therapeutic approach for type 1 diabetes. The main obstacle for this strategy is that the outcome of islet engraftment depends on the engraftment site. It was our aim to develop a strategy for using non-invasive imaging techniques to assess the location and fate of transplanted PIs longitudinally in vivo. PROCEDURES In order to overcome the limitations of individual imaging techniques and cross-validate findings by different modalities, we have combined fluorine magnetic resonance imaging (F-19 MRI), fluorescence imaging (FLI), and bioluminescent imaging (BLI) for studying subcutaneously transplanted PIs and beta cell-like cells (INS-1E cell line) in vivo. We optimized the transduction (using lentiviral vectors) and labeling procedures (using perfluoro crown ether nanoparticles with a fluorescence dye) for PIs and INS-1E cell imaging. RESULTS The feasibility of using the proposed imaging methods for PI assessment was demonstrated both in vitro and in vivo. Our data suggested that F-19 MRI is suitable for high-resolution localization of transplanted cells and PIs; FLI is essential for confirmation of contrast localization by histology; and BLI is a reliable method to assess cell viability and survival after transplantation. No significant side effects on cell viability and function have been observed. CONCLUSIONS The proposed tri-modal imaging platform is a valuable approach for the assessment of engrafted PIs in vivo. It is potentially suitable for comparing different transplantation sites and evaluating novel strategies for improving PI transplantation technique in the future.
Collapse
Affiliation(s)
- Sayuan Liang
- Biomedical MRI, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium.,Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium.,Philips Research China, Shanghai, China
| | - Karim Louchami
- Biomedical MRI, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium.,Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Bryan Holvoet
- Nuclear Medicine & Molecular Imaging, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Rein Verbeke
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Christophe M Deroose
- Nuclear Medicine & Molecular Imaging, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Bella Manshian
- Biomedical MRI, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Stefaan J Soenen
- Biomedical MRI, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Ine Lentacker
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
44
|
De Mesmaeker I, Robert T, Suenens KG, Stangé GM, Van Hulle F, Ling Z, Tomme P, Jacobs-Tulleneers-Thevissen D, Keymeulen B, Pipeleers DG. Increase Functional β-Cell Mass in Subcutaneous Alginate Capsules With Porcine Prenatal Islet Cells but Loss With Human Adult Islet Cells. Diabetes 2018; 67:2640-2649. [PMID: 30305364 DOI: 10.2337/db18-0709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022]
Abstract
Alginate (Alg)-encapsulated porcine islet cell grafts are developed to overcome limitations of human islet transplantation. They can generate functional implants in animals when prepared from fetal, perinatal, and adult pancreases. Implants have not yet been examined for efficacy to establish sustained, metabolically adequate functional β-cell mass (FBM) in comparison with human islet cells. This study in immune-compromised mice demonstrates that subcutaneous implants of Alg-encapsulated porcine prenatal islet cells with 4 × 105 β-cells form, over 10 weeks, a FBM that results in glucose-induced plasma C-peptide >2 ng/mL and metabolic control over the following 10 weeks, with higher efficiency than nonencapsulated, while failing in peritoneum. This intracapsular FBM formation involves β-cell replication, increasing number fourfold, and maturation toward human adult β-cells. Subcutaneous Alg-encapsulated human islet cells with similar β-cell number establish implants with plasma C-peptide >2 ng/mL for the first 10 weeks, with nonencapsulated cells failing; their β-cells do not replicate but progressively die (>70%), explaining C-peptide decline and insufficient metabolic control. An Alg matrix thus helps establish β-cell functions in subcutis. It allows formation of sustained metabolically adequate FBM by immature porcine β-cells with proliferative activity but not by human adult islet cells. These findings define conditions for evaluating its immune-protecting properties.
Collapse
Affiliation(s)
- Ines De Mesmaeker
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Robert
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Krista G Suenens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert M Stangé
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Freya Van Hulle
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Daniel Jacobs-Tulleneers-Thevissen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel G Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
45
|
Subcutaneous Islet Allotransplantation Without Immunosuppression Therapy: The Dream of the Diabetologists and of Their Patients. Transplantation 2018; 102:351-352. [PMID: 28902774 DOI: 10.1097/tp.0000000000001947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Stephens CH, Orr KS, Acton AJ, Tersey SA, Mirmira RG, Considine RV, Voytik-Harbin SL. In situ type I oligomeric collagen macroencapsulation promotes islet longevity and function in vitro and in vivo. Am J Physiol Endocrinol Metab 2018; 315:E650-E661. [PMID: 29894201 PMCID: PMC6230705 DOI: 10.1152/ajpendo.00073.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Widespread use of pancreatic islet transplantation for treatment of type 1 diabetes (T1D) is currently limited by requirements for long-term immunosuppression, limited donor supply, and poor long-term engraftment and function. Upon isolation from their native microenvironment, islets undergo rapid apoptosis, which is further exacerbated by poor oxygen and nutrient supply following infusion into the portal vein. Identifying alternative strategies to restore critical microenvironmental cues, while maximizing islet health and function, is needed to advance this cellular therapy. We hypothesized that biophysical properties provided through type I oligomeric collagen macroencapsulation are important considerations when designing strategies to improve islet survival, phenotype, and function. Mouse islets were encapsulated at various Oligomer concentrations (0.5 -3.0 mg/ml) or suspended in media and cultured for 14 days, after which viability, protein expression, and function were assessed. Oligomer-encapsulated islets showed a density-dependent improvement in in vitro viability, cytoarchitecture, and insulin secretion, with 3 mg/ml yielding values comparable to freshly isolated islets. For transplantation into streptozotocin-induced diabetic mice, 500 islets were mixed in Oligomer and injected subcutaneously, where rapid in situ macroencapsulation occurred, or injected with saline. Mice treated with Oligomer-encapsulated islets exhibited rapid (within 24 h) diabetes reversal and maintenance of normoglycemia for 14 (immunocompromised), 90 (syngeneic), and 40 days (allogeneic). Histological analysis showed Oligomer-islet engraftment with maintenance of islet cytoarchitecture, revascularization, and no foreign body response. Oligomer-islet macroencapsulation may provide a useful strategy for prolonging the health and function of cultured islets and has potential as a subcutaneous injectable islet transplantation strategy for treatment of T1D.
Collapse
Affiliation(s)
| | - Kara S Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Anthony J Acton
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Raghavendra G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Robert V Considine
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana
- Department of Basic Medical Sciences, Purdue University , West Lafayette, Indiana
| |
Collapse
|
47
|
Perez-Basterrechea M, Esteban MM, Vega JA, Obaya AJ. Tissue-engineering approaches in pancreatic islet transplantation. Biotechnol Bioeng 2018; 115:3009-3029. [PMID: 30144310 DOI: 10.1002/bit.26821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic islet transplantation is a promising alternative to whole-pancreas transplantation as a treatment of type 1 diabetes mellitus. This technique has been extensively developed during the past few years, with the main purpose of minimizing the complications arising from the standard protocols used in organ transplantation. By using a variety of strategies used in tissue engineering and regenerative medicine, pancreatic islets have been successfully introduced in host patients with different outcomes in terms of islet survival and functionality, as well as the desired normoglycemic control. Here, we describe and discuss those strategies to transplant islets together with different scaffolds, in combination with various cell types and diffusible factors, and always with the aim of reducing host immune response and achieving islet survival, regardless of the site of transplantation.
Collapse
Affiliation(s)
- Marcos Perez-Basterrechea
- Unidad de Terapia Celular y Medicina Regenerativa, Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Plataforma de Terapias Avanzadas, Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Manuel M Esteban
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Alvaro J Obaya
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
48
|
Stice MJ, Dunn TB, Bellin MD, Skube ME, Beilman GJ. Omental Pouch Technique for Combined Site Islet Autotransplantation Following Total Pancreatectomy. Cell Transplant 2018; 27:1561-1568. [PMID: 30215272 PMCID: PMC6180729 DOI: 10.1177/0963689718798627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Total pancreatectomy and islet autotransplantation (TPIAT) is an effective treatment for selected patients with chronic pancreatitis. The portal circulation is the standard infusion site for islet transplant, but marked elevation of portal pressures may prevent complete islet infusion. Herein we report a novel technique of combined site islet autotransplantation using an omental pouch. This technique may be useful when technical limitations prevent complete intraportal transplantation. In four TPIAT recipients with intraoperative issues precluding the complete intraportal infusion of islets, an omental pouch was created to contain the remaining islet mass. Patients were monitored for complications, and islet graft function was assessed using mixed meal tolerance testing and compared with matched controls who received only intraportally transplanted islets. All patients had decreasing insulin requirements as their recovery progressed. At 3 months follow-up there were no significant differences in glycemic control or graft function for the combined site recipients compared with their matched controls who only received an intraportal islet infusion. The omentum has potentially desirable qualities such as accessibility, capacity, and systemic/portal vascularity comparable to the native pancreas. The omental pouch technique may represent a safe and effective alternate site for islet autotransplantation. Further study is needed to confirm these findings.
Collapse
Affiliation(s)
- Mark J Stice
- 1 Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Ty B Dunn
- 1 Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Melena D Bellin
- 2 Department of Pediatric Endocrinology, University of Minnesota, Minneapolis, MN, USA
| | - Mariya E Skube
- 1 Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Greg J Beilman
- 1 Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
49
|
|
50
|
Kim JS, Jung Y, Kim SH, Shin JS, Kim SH, Park CG. Vascularization of PLGA-based bio-artificial beds by hypoxia-preconditioned mesenchymal stem cells for subcutaneous xenogeneic islet transplantation. Xenotransplantation 2018; 26:e12441. [PMID: 30054954 DOI: 10.1111/xen.12441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/06/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Subcutaneous tissue is an attractive extra-hepatic heterotopic site for islet transplantation; however, poor oxygen tension and blood supply during early engraftment of implanted islets have limited the use of this site in clinical applications. METHODS This study investigated the vascularization potential of hypoxia-preconditioned mesenchymal stem cells (3% O2 ; hypo-MSCs) in PLGA-based bio-artificial beds for subsequent subcutaneous islet transplantation. Sheet-typed polymeric PLGA scaffolds coated with hypo-MSCs or normo-MSCs (MSCs cultured under normoxia conditions, 21% O2 ) were implanted subcutaneously in mice. RESULTS Compared to normo-MSCs, hypo-MSCs significantly enhanced vasculogenesis, both on the interior and exterior surfaces of the implanted PLGA devices, which peaked 4 weeks after implantation. Further, infusion of porcine islets inside the prevascularized PLGA bed restored normal glycemic control in 6 of 6 STZ-induced diabetic mice. The mass of the marginal islet was approximately 2000 IEQs, which is comparable to that required for the renal subcapsular space, a highly vascularized site. CONCLUSIONS Therefore, PLGA-based bio-artificial devices prevascularized with hypo-MSCs could be a useful modality for successful subcutaneous islet transplantation, which is of high clinical relevance.
Collapse
Affiliation(s)
- Jung-Sik Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Su Hee Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|