1
|
Dumbill R, Knight S, Hunter J, Fallon J, Voyce D, Barrett J, Ellen M, Conroy E, Roberts IS, James T, Allen G, Brook J, Weissenbacher A, Ploeg R, Coussios C, Friend P. Prolonged normothermic perfusion of the kidney prior to transplantation: a historically controlled, phase 1 cohort study. Nat Commun 2025; 16:4584. [PMID: 40382321 PMCID: PMC12085653 DOI: 10.1038/s41467-025-59829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/29/2025] [Indexed: 05/20/2025] Open
Abstract
Kidney transplantation is the preferred treatment for end-stage renal disease and is limited by donor organ availability. Normothermic Machine Perfusion (NMP) might facilitate safe transplantation of marginal organs. NKP1 is a single centre, phase 1, 36-patient, three-stage cohort study investigating the safety and feasibility of up to 24 hours of renal NMP prior to transplantation. 30-day graft survival (primary endpoint) was 100%. Secondary objectives were assessment of the effect of NMP on post-transplant clinical outcomes and ischaemia-reperfusion injury, identification of predictive biomarkers, and characterisation of the performance of the preservation system. Clinical outcomes were comparable to a matched control cohort with 12-month estimated glomerular filtration rate (eGFR) 46.3 vs 49.5 mL/min/1.73m2 (p = 0.44) despite much longer total preservation times (15.7 vs 8.9 hours controls, p < 0.0001). We saw strong correlations between biomarkers measured ex-situ and post-transplant outcomes, including graft function at one year (correlation between GST-Pi delta and 12-month eGFR, R = 0.54, p = 0.001). Renal NMP is useful for optimising logistics and as an organ assessment technique, and has potential to expand the donor pool. Trial registration number: ISRCTN13292277.
Collapse
Affiliation(s)
- Richard Dumbill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
- Transplant Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Simon Knight
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Transplant Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - James Hunter
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Transplant Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- University Hospitals Coventry and Warwickshire, Coventry, UK
| | - John Fallon
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Transplant Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel Voyce
- OrganOx Ltd, Oxford, UK
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | | | | | - Elizabeth Conroy
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ian Sd Roberts
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tim James
- Biochemistry Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gabrielle Allen
- Biochemistry Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jennifer Brook
- Biochemistry Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rutger Ploeg
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Transplant Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Constantin Coussios
- OrganOx Ltd, Oxford, UK.
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Transplant Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- OrganOx Ltd, Oxford, UK
| |
Collapse
|
2
|
Kauffman H, Harter S, Yamamoto T. Does Normothermic Machine Perfusion Still Provide an Advantage for Deceased Donor Kidney Transplantation? A Systematic Review and Preliminary Meta-Analysis. Artif Organs 2025; 49:749-761. [PMID: 39878386 DOI: 10.1111/aor.14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Patients with end-stage renal disease often face prolonged waiting times for kidney transplants. Historically, the use of marginal kidneys was limited due to suboptimal preservation methods. Normothermic machine perfusion (NMP) preserves physiological activity during the preservation process, potentially improving graft function and viability, expanding the use of marginal kidneys. While preliminary results are promising, NMP has not yet undergone sufficient clinical trials to determine whether it offers advantages over more widely used techniques. The aim of this systematic review is to assess several outcomes between kidneys that underwent NMP compared to traditional preservation methods after kidney transplant. METHODS A systematic review was conducted following PRISMA guidelines. Randomized controlled trials, case series, and studies comparing NMP with hypothermic machine perfusion (HMP) or static cold storage (SCS) were included. The primary outcome assessed was delayed graft function (DGF). Secondary outcomes included primary non-function (PNF), acute rejection, and 1-year graft survival. RESULTS Eight NMP studies met the inclusion criteria. Meta-analysis showed significant differences in DGF between NMP and control (HMP or SCS) groups (OR: 0.47 [0.22, 0.99], p < 0.05). There were no significant differences between NMP and controls for PNF, acute rejection, or 1-year graft survival. CONCLUSIONS These findings suggest that NMP yields similar adverse outcome rates compared to traditional methods. Notably, NMP could be associated with reduced rates of DGF. While NMP is a promising technique for renal allograft preservation, further randomized controlled trials are necessary to definitively establish its benefits over conventional preservation methods.
Collapse
Affiliation(s)
- Hunter Kauffman
- Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Sarah Harter
- Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Takayuki Yamamoto
- Department of Surgery, Albany Medical College, Albany, New York, USA
- Division of Transplant Surgery, Department of Surgery, Albany Medical Center, Albany, New York, USA
| |
Collapse
|
3
|
de Necochea Campion R, Pesqueira M, Vallejos P, McCullough C, Bloesch A, LaRosa SP. A lectin affinity plasmapheresis device removes extracellular vesicles and microRNAs from renal perfusates following controlled oxygenated rewarming of discarded donor kidneys. Transpl Immunol 2025; 90:102215. [PMID: 40024312 DOI: 10.1016/j.trim.2025.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Kidney transplantation is considered the benchmark treatment for end-stage kidney disease patients, yet the scarcity of suitable kidneys poses a significant hindrance for patients and healthcare providers. One approach is to extend the criteria for the use of kidneys from deceased brain death and deceased circulatory death donors. Use of these organs, especially from these extended criteria donors, is associated with ischemia reperfusion injury and resultant delayed graft function as well as increased rates of allograft rejection. To lessen these complications as well as increase the time of organ viability assessment, machine perfusion has been evaluated on recovered kidneys. In this study we examined the immunogenic molecular content of perfusates from discarded organs that had undergone Controlled Oxygenated Rewarming (COR). Perfusates were analyzed for extracellular vesicles (EVs), DNA (Deoxyribonucleic acid), and microRNAs. These perfusates were then pumped over a plasma separator containing a lectin affinity resin. Following treatment, a significant diminution in extracellular vesicles, dsDNA (double-stranded DNA) associated with EVs, and microRNAs (miRNA) were observed. Specifically, in three out of the four renal perfusates analyzed there was significant removal of small EVs (<200 nm) and vesicles loaded with dsDNA (p < 0.05). Notably, depletion of larger EVs (100-500 nm) was found to be significant in all treated perfusates (p < 0.01). NanoString analysis of miRNA found 5 species potentially involved in renal dysfunction (hsa-let 7a-5p, hsa-miR-148b-3p, hsa-miR-148a-3p, hsa-miR-29b-3pb and hsa-miR-99a5p) to be significantly depleted in treated renal perfusates (p ≤ 0.05). These results support a future study incorporating this treatment method into a dynamic machine perfusion circuit to explore if reduction of these mediators is associated with improved function of retrieved kidneys.
Collapse
Affiliation(s)
| | - Miguel Pesqueira
- Aethlon Medical Inc., 11555 Sorrento Valley Rd., San Diego, CA, United States of America
| | - Paul Vallejos
- Aethlon Medical Inc., 11555 Sorrento Valley Rd., San Diego, CA, United States of America
| | - Cameron McCullough
- Aethlon Medical Inc., 11555 Sorrento Valley Rd., San Diego, CA, United States of America
| | - Alessio Bloesch
- Aethlon Medical Inc., 11555 Sorrento Valley Rd., San Diego, CA, United States of America
| | - Steven P LaRosa
- Aethlon Medical Inc., 11555 Sorrento Valley Rd., San Diego, CA, United States of America
| |
Collapse
|
4
|
Ford SL, Rogers NM. Research Highlights. Transplantation 2025; 109:759-761. [PMID: 40261840 DOI: 10.1097/tp.0000000000005376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Affiliation(s)
- Sharon L Ford
- Department of Nephrology, Austin Health, Heidelberg, VIC, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
5
|
Lin H, Bousnina K, Slagter JS, Fang Y, Cristoferi I, Garrelds IM, Danser AHJ, Reinders MEJ, Minnee RC, Hoogduijn MJ. (Pro)renin, Erythropoietin, Vitamin D and Urodilatin Release From Human Donor Kidneys During Normothermic Machine Perfusion: Predictors of Early Post-Transplant Outcome? Clin Transplant 2025; 39:e70163. [PMID: 40278798 PMCID: PMC12024645 DOI: 10.1111/ctr.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/11/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Human donor kidneys release (pro)renin, erythropoietin (EPO), active vitamin D, and urodilatin during normothermic machine perfusion (NMP). However, whether the endocrine function of donor kidneys is associated with post-transplant kidney function is unclear. METHODS We studied 28 donor kidneys, including seven from donation after brain death (DBD) donors and 21 from donation after circulatory death (DCD) donors. Prior to transplantation, we measured levels of (pro)renin, EPO, 1,25(OH)2D in the perfusate, and urodilatin in urine during NMP. Hormone release rates were compared between kidneys with and without delayed graft function (DGF), and correlations were assessed between hormone release rates and donor characteristics and transplant outcome, including DGF duration, serum creatinine levels at 1-week post-transplant, and estimated glomerular filtration rate at 1-month post-transplant. RESULTS DBD kidneys secreted significantly less EPO and more active vitamin D than DCD kidneys. Kidneys with DGF exhibited significantly higher release rates of active vitamin D and lower release rates of urodilatin compared to those without DGF. In addition, EPO release rate was positively correlated with serum creatinine levels at 1-week post-transplant. Finally, urodilatin release rates were negatively correlated with DGF duration and positively correlated with urine output. CONCLUSIONS Urodilatin release in urine and EPO and active vitamin D release in perfusate during NMP may serve as potential biomarkers for predicting early post-transplant outcomes. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04882254.
Collapse
Affiliation(s)
- Hui Lin
- Department of Internal MedicineVascular Medicine and PharmacologyUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Karim Bousnina
- Department of Internal MedicineErasmus MC Transplant InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Julia S. Slagter
- Department of SurgeryErasmus MC Transplant Institutedivision of HPB & Transplant SurgeryUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Yitian Fang
- Department of SurgeryErasmus MC Transplant Institutedivision of HPB & Transplant SurgeryUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Iacopo Cristoferi
- Department of SurgeryErasmus MC Transplant Institutedivision of HPB & Transplant SurgeryUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Ingrid M. Garrelds
- Department of Internal MedicineVascular Medicine and PharmacologyUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - A. H. Jan Danser
- Department of Internal MedicineVascular Medicine and PharmacologyUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Marlies E. J. Reinders
- Department of Internal MedicineErasmus MC Transplant InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Robert C. Minnee
- Department of SurgeryErasmus MC Transplant Institutedivision of HPB & Transplant SurgeryUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Martin J. Hoogduijn
- Department of Internal MedicineErasmus MC Transplant InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
6
|
Tingle SJ, Connelly C, Glover EK, Stenberg B, McNeill A, Kourounis G, Gibson BG, Mahendran B, Bates L, Cooper MN, Pook RR, Lee S, Brown ML, Figueiredo R, Marchbank KJ, Ali S, Sheerin NS, Wilson CH, Thompson ER. Contrast-Enhanced Ultrasound to Assess Kidney Quality During Ex Situ Normothermic Machine Perfusion. Transpl Int 2025; 38:14268. [PMID: 40242325 PMCID: PMC11999844 DOI: 10.3389/ti.2025.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Normothermic machine perfusion (NMP) provides opportunity for viability assessment of donated kidneys. Diminished microvascular perfusion, despite adequate total blood flow, is a key pathophysiology in ischaemia-mediated acute kidney injury. Contrast-enhanced ultrasound (CEUS) could allow objective assessment of microvascular perfusion during renal NMP. Blood-based NMP was performed on porcine kidneys (circulatory death model) and human kidneys declined for transplant (preclinical). CEUS was performed with a contrast bolus into the NMP circuit arterial limb. Microvascular perfusion quality was quantified and z-score normalisation allowed combination of metrics and regions into an overall "CEUS-score." In porcine kidneys, inferior microvascular perfusion of cortex and medulla correlated with increased urinary NGAL (Neutrophil gelatinase-associated lipocalin) and histological DNA-fragmentation (a hallmark of apoptosis). In human kidneys, CEUS-score at 2 h was correlated with histological DNA-fragmentation (r = -0.937; P = 0.019) and predicted urinary NGAL at 24 h of NMP (r = -0.925; P = 0.024). Total renal flow was not correlated with these outcomes. An open-source web application (stingle.shinyapps.io/Time_intensity_analysis) and R package ("tican") were developed for quantitative time-intensity curve analysis. CEUS allows objective point-of-care microvascular perfusion assessment during NMP. As 2-hour CEUS-score predicts NGAL at 24 h, CEUS warrants future clinical investigation as a potential tool to assess kidney quality in assessment and reconditioning centres.
Collapse
Affiliation(s)
- Samuel J. Tingle
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Chloe Connelly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily K. Glover
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ben Stenberg
- Department of Radiology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Andrew McNeill
- Department of Radiology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Georgios Kourounis
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Beth G. Gibson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Balaji Mahendran
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Lucy Bates
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
| | - Madison N. Cooper
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
| | - Rhys R. Pook
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
| | - Samantha Lee
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
| | - Marnie L. Brown
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
| | - Rodrigo Figueiredo
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Kevin J. Marchbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
| | - Simi Ali
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
| | - Neil S. Sheerin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Colin H. Wilson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Emily R. Thompson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, United Kingdom
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Chandak P, Bennett DP, Phillips BL, Uwechue R, Kessaris N, Hunt BJ, Callaghan CJ, Dorling A, Hayes W, Mamode N, Day JCC. Real-time organ perfusion monitoring of human kidney transplants using ex vivo normothermic perfusion and reflectance spectroscopy. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242008. [PMID: 40078915 PMCID: PMC11897824 DOI: 10.1098/rsos.242008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 03/14/2025]
Abstract
Transplantation is the standard treatment for end-stage kidney disease but carries with it a non-trivial risk of post-operative complication. There is a need for a continuous, real-time, not additionally invasive method of monitoring organ perfusion. We present an approach to allograft perfusion monitoring using a human kidney model using ex vivo normothermic perfusion (EVNP) and custom spectroscopic optical reflectance probes. Five discarded human kidneys underwent EVNP, spectroscopic measurement and were subjected to perfusion compromising events (rejection, thrombosis or haemorrhage). Oxygenated and deoxygenated haemoglobin spectra were fitted to the spectra acquired from the kidneys in order to estimate the oxygen saturation. Average oxygen saturations before the perfusion compromising events were estimated to be higher than after (or similar in the control cases). Changes in oxygen saturation estimated from measurements made continuously were synchronized well with changes in renal blood flow index measurements. This proof of concept study proves promising in identifying a technique for continuous monitoring of perfusion and oxygenation of a transplanted kidney in vivo with minimal additional invasiveness.
Collapse
Affiliation(s)
- P. Chandak
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - D. P. Bennett
- Interface Analysis Centre, HH Wills Physics Laboratory, School of Physics, University of Bristol, Bristol, UK
| | - B. L. Phillips
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - R. Uwechue
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - N. Kessaris
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
- Department of Nephrology and Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - B. J. Hunt
- Thrombosis and Vascular Biology Group, Rayne Institute, Guys and St Thomas’ NHS Foundation Trust and King’s Health Partners, St Thomas’ Hospital, London, UK
| | - C. J. Callaghan
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - A. Dorling
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - W. Hayes
- Department of Nephrology and Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - N. Mamode
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - J. C. C. Day
- Interface Analysis Centre, HH Wills Physics Laboratory, School of Physics, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Klein Nulend R, Hameed A, Singla A, Yuen L, Lee T, Yoon P, Nahm C, Wong G, Laurence J, Lim WH, Hawthorne WJ, Pleass H. Normothermic Machine Perfusion and Normothermic Regional Perfusion of DCD Kidneys Before Transplantation: A Systematic Review. Transplantation 2025; 109:362-375. [PMID: 39020460 DOI: 10.1097/tp.0000000000005132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
BACKGROUND To overcome organ shortages, donation after circulatory death (DCD) kidneys are being increasingly used for transplantation. Prior research suggests that DCD kidneys have inferior outcomes compared with kidneys donated after brain death. Normothermic machine perfusion (NMP) and normothermic regional perfusion (NRP) may enhance the preservation of DCD kidneys and improve transplant outcomes. This study aimed to review the evidence surrounding NMP and NRP in DCD kidney transplantation. METHODS Two independent reviewers conducted searches for all publications reporting outcomes for NMP and NRP-controlled DCD kidneys, focusing on delayed graft function, primary nonfunction, graft function, graft survival, and graft utilization. Weighted means were calculated for all relevant outcomes and controls. Formal meta-analyses could not be conducted because of significant heterogeneity. RESULTS Twenty studies were included for review (6 NMP studies and 14 NRP studies). Delayed graft function rates seemed to be lower for NRP kidneys (24.6%) compared with NMP kidneys (54.3%). Both modalities yielded similar outcomes with respect to primary nonfunction (NMP 3.3% and NRP 5.6%), graft function (12-mo creatinine 149.3 μmol/L for NMP and 129.9 μmol/L for NRP), and graft utilization (NMP 83.3% and NRP 89%). Although no direct comparisons exist, our evidence suggests that both modalities have good short- and medium-term graft outcomes and high graft survival rates. CONCLUSIONS Current literature demonstrates that both NMP and NRP are feasible strategies that may increase donor organ utilization while maintaining acceptable transplant outcomes and likely improved outcomes compared with cold-stored DCD kidneys. Further research is needed to directly compare NRP and NMP outcomes.
Collapse
Affiliation(s)
| | - Ahmer Hameed
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Animesh Singla
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Lawrence Yuen
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Taina Lee
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Peter Yoon
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Chris Nahm
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Germaine Wong
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jerome Laurence
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
- RPA Institute of Academic Surgery, University of Sydney, Sydney, NSW, Australia
| | - Wai H Lim
- Faculty of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Wayne J Hawthorne
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Henry Pleass
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Fang Y, Ambagtsheer G, Xia L, Clahsen-van Groningen MC, Minnee RC, de Bruin RW. Physiological arterial pressure improves renal performance during normothermic machine perfusion in a porcine kidney DCD model. Heliyon 2025; 11:e41610. [PMID: 39877618 PMCID: PMC11773052 DOI: 10.1016/j.heliyon.2024.e41610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Background Normothermic machine perfusion (NMP) provides a platform for kidney quality assessment. Donation after circulatory death (DCD) donor kidneys are associated with great ischemic injury and high intrarenal resistance (IRR). This experimental study aims to investigate the impact of different perfusion pressures on marginal kidney function and injury during NMP. Methods Twenty-seven slaughterhouse porcine kidneys were retrieved and subjected to 60 min of warm ischemia time to mimic DCD condition. These kidneys were randomized into 75 mmHg (subphysiological, n = 9), 95 mmHg (physiological, n = 9), and 115 mmHg NMP (high physiological, n = 9). Renal function and injury were assessed during NMP. Results Three groups showed comparable IRR, with the 115 mmHg group exhibiting the highest blood flow. The 95 mmHg group [0.48 (0.36-1.15) ml/min/100g] and 115 mmHg group [0.93 (0.45-1.41) ml/min/100g] showed significantly higher creatinine clearance compared to the 75 mmHg group [0.16 (0.08-0.37) ml/min/100g] during the first hour of NMP (p = 0.049, p = 0.009, respectively). The 115 mmHg group exhibited significantly higher oxygen consumption compared to the 75 mmHg group at 30 min of NMP [1.37 (1.05-1.92) versus 0.72 (0.61-0.82) mlO2/min/100g, p = 0.009]. Perfusate neutrophil gelatinase-associated lipocalin (NGAL) levels were consistently lowest in the 95 mmHg group and highest in the 75 mmHg group. Aspartate aminotransferase (AST) levels of the 115 mmHg group were significantly higher than the 75 mmHg group. Conclusions For kidneys with high IRR, both 95 mmHg and 115 mmHg perfusion pressures enable an early improvement in renal hemodynamics and function compared to 75 mmHg during NMP, while a high physiological perfusion can cause additional injury.
Collapse
Affiliation(s)
- Yitian Fang
- Division of HPB and Transplant Surgery, Department of Surgery, Transplant Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gisela Ambagtsheer
- Division of HPB and Transplant Surgery, Department of Surgery, Transplant Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lin Xia
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Marian C. Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, the Netherlands
- Institute of Experimental and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Robert C. Minnee
- Division of HPB and Transplant Surgery, Department of Surgery, Transplant Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron W.F. de Bruin
- Division of HPB and Transplant Surgery, Department of Surgery, Transplant Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Lantinga VA, Arykbaeva AS, Spraakman NA, Blom EWP, Huijink TM, de Vries DK, Ploeg RJ, Alwayn IPJ, Leuvenink HGD, Moers C, van Leeuwen LL. Impact of device variability and protocol differences on kidney function during normothermic machine perfusion: A comparative study using porcine and human kidneys. Artif Organs 2025; 49:93-107. [PMID: 39193869 PMCID: PMC11687212 DOI: 10.1111/aor.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION A growing interest in renal normothermic machine perfusion (NMP) has resulted in more clinically available perfusion devices. While all perfusion systems have the same aim, there are significant differences in their circuits, pumps, sensors, and software. Therefore, our objective was to assess the impact of different perfusion protocols and devices on kidney function and perfusion parameters during NMP. METHODS Porcine kidneys were subjected to 30 min of warm ischemia, 24 h of static cold storage, and subsequently perfused for 6 h using (1) the Kidney Assist (KA) machine with a pressure of 75 mm Hg, (2) the KA device incorporating several adjustments and a pressure of 85 mm Hg (modified KA), or (3) the Perlife (PL) perfusion device (n = 4). Consecutively, discarded human kidneys were perfused using the KA or modified KA (n = 3) protocol. RESULTS The PL group quickly reached the device's upper flow limit and consequently received a significantly lower pressure compared to the KA groups. The arterial pO2 was significantly lower in the PL group. Yet, hemoglobin concentration increased over time, and oxygen consumption was significantly higher compared to the KA groups. Fractional sodium excretion was significantly lower in the PL group. Tissue ATP levels, urine production, and creatinine clearance rates did not differ between groups. In human kidneys, the modified KA group showed significantly lower vascular resistance, higher oxygen delivery, and lower levels of lactate in the perfusate compared to the KA group. CONCLUSIONS This study shows that perfusion characteristics and kidney function are significantly influenced by the perfusion protocol and the device and its settings during normothermic machine perfusion and therefore should be interpreted with caution.
Collapse
Affiliation(s)
- Veerle A. Lantinga
- Department of Surgery, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Asel S. Arykbaeva
- Department of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Nora A. Spraakman
- Department of Anaesthesiology, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Elwin W. P. Blom
- Department of Surgery, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Tobias M. Huijink
- Department of Surgery, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Dorottya K. de Vries
- Department of Surgery, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Rutger J. Ploeg
- Department of SurgeryLeiden University Medical CenterLeidenthe Netherlands
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Ian P. J. Alwayn
- Department of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Cyril Moers
- Department of Surgery, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - L. Leonie van Leeuwen
- Department of Surgery, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Recanati/Miller Transplantation InstituteIcahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| |
Collapse
|
11
|
Yemaneberhan KH, Kang M, Jang JH, Kim JH, Kim KS, Park HB, Choi D. Beyond the icebox: modern strategies in organ preservation for transplantation. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:377-403. [PMID: 39743232 PMCID: PMC11732768 DOI: 10.4285/ctr.24.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 01/04/2025]
Abstract
Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP. HMP, which is now the gold standard for high-risk donor kidneys, reduces metabolic activity and improves posttransplant outcomes. NMP allows real-time organ viability assessment and reconditioning, especially for liver transplants. Controlled oxygenated rewarming further minimizes IRI by addressing mitochondrial dysfunction. The review also highlights the potential of cryopreservation for long-term organ storage, despite challenges with ice formation. These advances are crucial for expanding the donor pool, improving transplant success rates, and addressing organ shortages. Continued innovation is necessary to meet the growing demands of transplantation and save more lives.
Collapse
Affiliation(s)
- Kidus Haile Yemaneberhan
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Jun Hwan Jang
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Jin Hee Kim
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
12
|
Feizi A, DiRito JR, Richfield O, Stendahl JC, Harris M, Spindler S, Edwards CM, Lysyy T, Lee SR, Boutagy NE, Feher A, Yoo P, Hosgood SA, Mulligan DC, Nicholson ML, Sinusas AJ, Haakinson DJ, Tietjen GT. Contrast-enhanced computed tomography for ex vivo assessment of human kidneys: A proof-of-concept study. Artif Organs 2024; 48:1536-1548. [PMID: 39189738 DOI: 10.1111/aor.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Ex vivo perfusion of transplant-declined human organs has emerged as a promising platform to study the response of an organ to novel therapeutic strategies. However, to fully realize the capability of this platform for performing translational research in human organ pathophysiology, there is a need for robust assays to assess organ function and disease. State-of-the-art research methods rely on analyses of biopsies taken during perfusion, which both damages the organ and only provides localized information. Developing non-invasive, whole organ methods of assessment is critical to the further development of this research platform. METHODS We use ex vivo cold infusion scanning (EXCIS) with contrast-enhanced computed tomography (CT) to quantify perfusion in kidneys preserved ex vivo. EXCIS-CT computes three complementary metrics for whole organ assessment: a dynamic assessment of contrast filling, a measure of vascular network anatomical structure, and a static assessment of perfusion heterogeneity. RESULTS These metrics were applied to a series of six transplant-declined human kidneys, which demonstrated a range of anatomies and perfusion. Lastly, two transplant-declined human kidneys were imaged before and after a 1-h period of ex vivo normothermic perfusion (NMP). We found variable responses to NMP, with one kidney maintaining the vascular network and hemodynamics and the other showing significant changes in vessel size and spatial perfusion profile. CONCLUSIONS EXCIS-CT provides metrics that can be used to characterize whole organ perfusion and vascular function.
Collapse
Affiliation(s)
- Alborz Feizi
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Jenna R DiRito
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Owen Richfield
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - John C Stendahl
- Yale Translational Research Imaging Center, New Haven, Connecticut, USA
- Department of Medicine (cardiology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew Harris
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susann Spindler
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Taras Lysyy
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shin Rong Lee
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Translational Research Imaging Center, New Haven, Connecticut, USA
| | - Nabil E Boutagy
- Yale Translational Research Imaging Center, New Haven, Connecticut, USA
- Department of Medicine (cardiology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Yale Translational Research Imaging Center, New Haven, Connecticut, USA
- Department of Medicine (cardiology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Peter Yoo
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - David C Mulligan
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Albert J Sinusas
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale Translational Research Imaging Center, New Haven, Connecticut, USA
- Department of Medicine (cardiology), Yale School of Medicine, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Gregory T Tietjen
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Ahmadi A, Yu J, Loza JE, Howard BC, Palma I, Goussous N, Sageshima J, Roshanravan B, Perez RV. Deceased donor kidney function and branched chain amino acid metabolism during ex vivo normothermic perfusion. Kidney Int 2024; 106:712-722. [PMID: 39074554 PMCID: PMC11908963 DOI: 10.1016/j.kint.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/03/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Current kidney perfusion protocols are not optimized for addressing the ex vivo physiological and metabolic needs of the kidney. Ex vivo normothermic perfusion may be utilized to distinguish high-risk kidneys to determine suitability for transplantation. Here, we assessed the association of tissue metabolic changes with changes in a kidney injury biomarker and functional parameters in eight deceased donor kidneys deemed unsuitable for transplantation during a 12-hour ex vivo normothermic perfusion. The kidneys were grouped into good and poor performers based on blood flow and urine output. The mean age of the deceased kidney donors was 43 years with an average cold ischemia time of 37 hours. Urine output and creatinine clearance progressively increased and peaked at six hours post-perfusion among good performers. Poor performers had 71 ng/ml greater (95% confidence interval 1.5, 140) urinary neutrophil gelatinase-associated lipocalin at six hours compared to good performers corresponding to peak functional differences. Organ performance was distinguished by tissue metabolic differences in branched chain amino acid metabolism and that their tissue levels negatively correlated with urine output among all kidneys at six hours. Tissue lipid profiling showed poor performers were highlighted by the accumulation of membrane structure components including glycerolipids and sphingolipids at early perfusion time points. Thus, we showed that six hours is needed for kidney function recovery during ex vivo normothermic perfusion and that branched chain amino acid metabolism may be a major determinant of organ function and resilience.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Medicine, Division of Nephrology, University of California, Davis, California, USA
| | - Jacquelyn Yu
- Department of Surgery, Division of Transplant, University of California Davis Health, Sacramento, California, USA
| | - Jennifer E Loza
- Department of Surgery, Division of Transplant, University of California Davis Health, Sacramento, California, USA
| | - Brian C Howard
- Department of Surgery, Division of Transplant, University of California Davis Health, Sacramento, California, USA
| | - Ivonne Palma
- Department of Surgery, Division of Transplant, University of California Davis Health, Sacramento, California, USA
| | - Naeem Goussous
- Department of Surgery, Division of Transplant, University of California Davis Health, Sacramento, California, USA
| | - Junichiro Sageshima
- Department of Surgery, Division of Transplant, University of California Davis Health, Sacramento, California, USA
| | - Baback Roshanravan
- Department of Medicine, Division of Nephrology, University of California, Davis, California, USA.
| | - Richard V Perez
- Department of Surgery, Division of Transplant, University of California Davis Health, Sacramento, California, USA.
| |
Collapse
|
14
|
Hamelink TL, Ogurlu B, Pamplona CC, Castelein J, Bennedsgaard SS, Qi H, Weiss T, Lantinga VA, Pool MBF, Laustsen C, Jespersen B, Leuvenink HGD, Ringgaard S, Borra RJH, Keller AK, Moers C. Magnetic resonance imaging as a noninvasive adjunct to conventional assessment of functional differences between kidneys in vivo and during ex vivo normothermic machine perfusion. Am J Transplant 2024; 24:1761-1771. [PMID: 38615901 DOI: 10.1016/j.ajt.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Normothermic machine perfusion (NMP) is increasingly considered for pretransplant kidney quality assessment. However, fundamental questions about differences between in vivo and ex vivo renal function, as well as the impact of ischemic injury on ex vivo physiology, remain unanswered. This study utilized magnetic resonance imaging (MRI), alongside conventional parameters to explore differences between in vivo and ex vivo renal function and the impact of warm ischemia on a kidney's behavior ex vivo. Renal MRI scans and samples were obtained from living pigs (n = 30) in vivo. Next, kidney pairs were procured and exposed to minimal, or 75 minutes of warm ischemia, followed by 6 hours of hypothermic machine perfusion. Both kidneys simultaneously underwent 6-hour ex vivo perfusion in MRI-compatible NMP circuits to obtain multiparametric MRI data. Ischemically injured ex vivo kidneys showed a significantly altered regional blood flow distribution compared to in vivo and minimally damaged organs. Both ex vivo groups showed diffusion restriction relative to in vivo. Our findings underscore the differences between in vivo and ex vivo MRI-based renal characteristics. Therefore, when assessing organ viability during NMP, it should be considered to incorporate parameters beyond the conventional functional markers that are common in vivo.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Baran Ogurlu
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carolina C Pamplona
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johannes Castelein
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Haiyun Qi
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Weiss
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Veerle A Lantinga
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ronald J H Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna K Keller
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Steinhauser C, Yakac AE, Markgraf W, Kromnik S, Döcke A, Talhofer P, Thiele C, Malberg H, Füssel S, Thomas C, Putz J. Assessment of hemodynamic and blood parameters that may reflect macroscopic quality of porcine kidneys during normothermic machine perfusion using whole blood. World J Urol 2024; 42:471. [PMID: 39110171 PMCID: PMC11306647 DOI: 10.1007/s00345-024-05139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
PURPOSE Using ex vivo normothermic machine perfusion (NMP) with whole blood we assessed marginal porcine kidneys under reperfusion. The aim was to link measureable machine and clinical blood parameters with the currently used visual assessment. This could serve as a baseline for a standardized evaluation score to identify potentially transplantable kidneys in the future. METHODS Kidneys and autologous whole blood were procured from slaughterhouse pigs (n = 33) and were perfused for 4 h using NMP. The hemodynamic parameters arterial pressure (AP), renal blood flow (RBF) and intrarenal resistance (IRR) were measured. Activity of aspartate transaminase (AST), gamma-glutamyltransferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and lactate were assessed in blood at 0/1/2/4 h. Kidneys were grouped into "potentially transplantable" (PT) or "not transplantable" (NT) based on their overall macroscopic appearance after NMP by an experienced physician. RESULTS PT-kidneys (n = 20) had a significantly lower IRR and higher RBF than NT-kidneys (n = 13). GGT, ALP and LDH did not differ significantly, but at 4 h, AST was significantly higher in PT-kidneys compared to NT-kidneys. Lactate levels kept increasing during NMP in NT-kidneys and were significantly higher at 1/2/4 h than in PT-kidneys. CONCLUSION The immediately assessed macroscopic aspects of examined kidneys correlated with hemodynamic parameters, increased lactate and lower AST in this study. In the future, NMP with whole blood could be a useful tool to extend the donor pool by allowing the assessment of otherwise unknown characteristics of marginal kidneys before transplantation.
Collapse
Affiliation(s)
- Carla Steinhauser
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Abdulbaki Emre Yakac
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Wenke Markgraf
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Susanne Kromnik
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Andreas Döcke
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Philipp Talhofer
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Christine Thiele
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Hagen Malberg
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Susanne Füssel
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Juliane Putz
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
16
|
Tingle SJ, Thompson ER, Figueiredo RS, Moir JA, Goodfellow M, Talbot D, Wilson CH. Normothermic and hypothermic machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev 2024; 7:CD011671. [PMID: 38979743 PMCID: PMC11232102 DOI: 10.1002/14651858.cd011671.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
BACKGROUND Kidney transplantation is the optimal treatment for kidney failure. Donation, transport and transplant of kidney grafts leads to significant ischaemia reperfusion injury. Static cold storage (SCS), whereby the kidney is stored on ice after removal from the donor until the time of implantation, represents the simplest preservation method. However, technology is now available to perfuse or "pump" the kidney during the transport phase ("continuous") or at the recipient centre ("end-ischaemic"). This can be done at a variety of temperatures and using different perfusates. The effectiveness of these treatments manifests as improved kidney function post-transplant. OBJECTIVES To compare machine perfusion (MP) technologies (hypothermic machine perfusion (HMP) and (sub) normothermic machine perfusion (NMP)) with each other and with standard SCS. SEARCH METHODS We contacted the information specialist and searched the Cochrane Kidney and Transplant Register of Studies until 15 June 2024 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and quasi-RCTs comparing machine perfusion techniques with each other or versus SCS for deceased donor kidney transplantation were eligible for inclusion. All donor types were included (donor after circulatory death (DCD) and brainstem death (DBD), standard and extended/expanded criteria donors). Both paired and unpaired studies were eligible for inclusion. DATA COLLECTION AND ANALYSIS The results of the literature search were screened, and a standard data extraction form was used to collect data. Both of these steps were performed by two independent authors. Dichotomous outcome results were expressed as risk ratios (RR) with 95% confidence intervals (CI). Survival analyses (time-to-event) were performed with the generic inverse variance meta-analysis of hazard ratios (HR). Continuous scales of measurement were expressed as a mean difference (MD). Random effects models were used for data analysis. The primary outcome was the incidence of delayed graft function (DGF). Secondary outcomes included graft survival, incidence of primary non-function (PNF), DGF duration, economic implications, graft function, patient survival and incidence of acute rejection. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Twenty-two studies (4007 participants) were included. The risk of bias was generally low across all studies and bias domains. The majority of the evidence compared non-oxygenated HMP with standard SCS (19 studies). The use of non-oxygenated HMP reduces the rate of DGF compared to SCS (16 studies, 3078 participants: RR 0.78, 95% CI 0.69 to 0.88; P < 0.0001; I2 = 31%; high certainty evidence). Subgroup analysis revealed that continuous (from donor hospital to implanting centre) HMP reduces DGF (high certainty evidence). In contrast, this benefit over SCS was not seen when non-oxygenated HMP was not performed continuously (low certainty evidence). Non-oxygenated HMP reduces DGF in both DCD and DBD settings in studies performed in the 'modern era' and when cold ischaemia times (CIT) were short. The number of perfusions required to prevent one episode of DGF was 7.69 and 12.5 in DCD and DBD grafts, respectively. Continuous non-oxygenated HMP versus SCS also improves one-year graft survival (3 studies, 1056 participants: HR 0.46, 0.29 to 0.75; P = 0.002; I2 = 0%; high certainty evidence). Assessing graft survival at maximal follow-up confirmed a benefit of continuous non-oxygenated HMP over SCS (4 studies, 1124 participants (follow-up 1 to 10 years): HR 0.55, 95% CI 0.40 to 0.77; P = 0.0005; I2 = 0%; high certainty evidence). This effect was not seen in studies where HMP was not continuous. The effect of non-oxygenated HMP on our other outcomes (PNF, incidence of acute rejection, patient survival, hospital stay, long-term graft function, duration of DGF) remains uncertain. Studies performing economic analyses suggest that HMP is either cost-saving (USA and European settings) or cost-effective (Brazil). One study investigated continuous oxygenated HMP versus non-oxygenated HMP (low risk of bias in all domains); the simple addition of oxygen during continuous HMP leads to additional benefits over non-oxygenated HMP in DCD donors (> 50 years), including further improvements in graft survival, improved one-year kidney function, and reduced acute rejection. One large, high-quality study investigated end-ischaemic oxygenated HMP versus SCS and found end-ischaemic oxygenated HMP (median machine perfusion time 4.6 hours) demonstrated no benefit compared to SCS. The impact of longer periods of end-ischaemic HMP is unknown. One study investigated NMP versus SCS (low risk of bias in all domains). One hour of end ischaemic NMP did not improve DGF compared with SCS alone. An indirect comparison revealed that continuous non-oxygenated HMP (the most studied intervention) was associated with improved graft survival compared with end-ischaemic NMP (indirect HR 0.31, 95% CI 0.11 to 0.92; P = 0.03). No studies investigated normothermic regional perfusion (NRP) or included any donors undergoing NRP. AUTHORS' CONCLUSIONS Continuous non-oxygenated HMP is superior to SCS in deceased donor kidney transplantation, reducing DGF, improving graft survival and proving cost-effective. This is true for both DBD and DCD kidneys, both short and long CITs, and remains true in the modern era (studies performed after 2008). In DCD donors (> 50 years), the simple addition of oxygen to continuous HMP further improves graft survival, kidney function and acute rejection rate compared to non-oxygenated HMP. Timing of HMP is important, and benefits have not been demonstrated with short periods (median 4.6 hours) of end-ischaemic HMP. End-ischaemic NMP (one hour) does not confer meaningful benefits over SCS alone and is inferior to continuous HMP in an indirect comparison of graft survival. Further studies assessing NMP for viability assessment and therapeutic delivery are warranted and in progress.
Collapse
Affiliation(s)
- Samuel J Tingle
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, UK
| | - Emily R Thompson
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | | | - David Talbot
- The Liver/Renal Unit, The Freeman Hospital, Newcastle upon Tyne, UK
| | - Colin H Wilson
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Malik AK, Tingle SJ, Chung N, Owen R, Mahendran B, Counter C, Sinha S, Muthasamy A, Sutherland A, Casey J, Drage M, van Dellen D, Callaghan CJ, Elker D, Manas DM, Pettigrew GJ, Wilson CH, White SA. The impact of time to death in donors after circulatory death on recipient outcome in simultaneous pancreas-kidney transplantation. Am J Transplant 2024; 24:1247-1256. [PMID: 38360185 DOI: 10.1016/j.ajt.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The time to arrest donors after circulatory death is unpredictable and can vary. This leads to variable periods of warm ischemic damage prior to pancreas transplantation. There is little evidence supporting procurement team stand-down times based on donor time to death (TTD). We examined what impact TTD had on pancreas graft outcomes following donors after circulatory death (DCD) simultaneous pancreas-kidney transplantation. Data were extracted from the UK transplant registry from 2014 to 2022. Predictors of graft loss were evaluated using a Cox proportional hazards model. Adjusted restricted cubic spline models were generated to further delineate the relationship between TTD and outcome. Three-hundred-and-seventy-five DCD simultaneous kidney-pancreas transplant recipients were included. Increasing TTD was not associated with graft survival (adjusted hazard ratio HR 0.98, 95% confidence interval 0.68-1.41, P = .901). Increasing asystolic time worsened graft survival (adjusted hazard ratio 2.51, 95% confidence interval 1.16-5.43, P = .020). Restricted cubic spline modeling revealed a nonlinear relationship between asystolic time and graft survival and no relationship between TTD and graft survival. We found no evidence that TTD impacts pancreas graft survival after DCD simultaneous pancreas-kidney transplantation; however, increasing asystolic time was a significant predictor of graft loss. Procurement teams should attempt to minimize asystolic time to optimize pancreas graft survival rather than focus on the duration of TTD.
Collapse
Affiliation(s)
- Abdullah K Malik
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK; NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, Cambridge, UK.
| | - Samuel J Tingle
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK; NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, Cambridge, UK
| | - Nicholas Chung
- Northumbria Healthcare NHS Foundation Trust, Cramlington, UK
| | - Ruth Owen
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Balaji Mahendran
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, Cambridge, UK
| | | | - Sanjay Sinha
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | - John Casey
- Edinburgh Royal Infirmary, Edinburgh, UK
| | - Martin Drage
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Chris J Callaghan
- NHS Blood and Transplant, Bristol, UK; Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Doruk Elker
- Cardiff and Vale University Health Board, Cardiff, UK
| | - Derek M Manas
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK; NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, Cambridge, UK; NHS Blood and Transplant, Bristol, UK
| | - Gavin J Pettigrew
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Colin H Wilson
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK; NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, Cambridge, UK
| | - Steven A White
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK; NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, Cambridge, UK; NHS Blood and Transplant, Bristol, UK
| |
Collapse
|
18
|
De Beule J, De Craemer S, Verstraeten L, Ghesquière B, Jochmans I. Ischemia-induced Metabolic Patterns Associate With Kidney Function During Normothermic Kidney Perfusion: A Preclinical Study. Ann Surg 2024; 280:156-164. [PMID: 37870241 DOI: 10.1097/sla.0000000000006137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
OBJECTIVE To investigate whether ischemia alters donor kidney metabolism and whether these changes are associated with organ function. BACKGROUND An unmet need in kidney transplantation is the ability to predict posttransplant organ function before transplantation. Key to such viability testing is a profound understanding of the organ's complex biochemistry and how ischemia, inevitable during the transplantation process, influences this. METHODS First, metabolic changes in perfusate glucose, lactate, and 20 amino acids, induced by no, 1 hour of warm, or 22 hours of cold ischemia, were investigated during 4-hour perfusion of pig kidneys with autologous whole blood (n = 6/group), simulating the ischemia-reperfusion phase of transplantation. Next, we confirmed similar metabolic changes during normothermic preservation of pigs (n = 3/group; n = 4 for cold ischemia) and discarded human kidneys (n = 6) perfused with a red blood cell-based perfusate. RESULTS At 2 hours of perfusion with autologous whole blood, abundances of 17/20 amino acids were significantly different between groups, reflecting the type of ischemia. Amino acid changes at 15 minutes and 2 hours of perfusion correlated with future kidney function during perfusion. Similar metabolic patterns were observed during perfusion preservation of pig and discarded human donor kidneys, suggesting an opportunity to assess kidney viability before transplantation. CONCLUSIONS Perfusate metabolite changes during normothermic kidney perfusion represent a unique noninvasive opportunity to assess graft viability. These findings now need validation in transplant studies.
Collapse
Affiliation(s)
- Julie De Beule
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Abdominal Transplantation, Transplantation Research Group, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Facility Leuven, VIB, Leuven, Belgium
| | - Sam De Craemer
- Center for Cancer Biology, Metabolomics Core Facility Leuven, VIB, Leuven, Belgium
| | - Laurence Verstraeten
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Abdominal Transplantation, Transplantation Research Group, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Facility Leuven, VIB, Leuven, Belgium
| | - Bart Ghesquière
- Center for Cancer Biology, Metabolomics Core Facility Leuven, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, Leuven, Belgium
| | - Ina Jochmans
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Abdominal Transplantation, Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
19
|
de Haan MJA, Jacobs ME, Witjas FMR, de Graaf AMA, Sánchez-López E, Kostidis S, Giera M, Calderon Novoa F, Chu T, Selzner M, Maanaoui M, de Vries DK, Kers J, Alwayn IPJ, van Kooten C, Heijs B, Wang G, Engelse MA, Rabelink TJ. A cell-free nutrient-supplemented perfusate allows four-day ex vivo metabolic preservation of human kidneys. Nat Commun 2024; 15:3818. [PMID: 38740760 DOI: 10.1038/s41467-024-47106-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/20/2024] [Indexed: 05/16/2024] Open
Abstract
The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.
Collapse
Affiliation(s)
- Marlon J A de Haan
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Franca M R Witjas
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemarie M A de Graaf
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tunpang Chu
- Ajmera Transplant Centre, Department of Surgery, University Health Network, Toronto, ON, Canada
| | - Markus Selzner
- Ajmera Transplant Centre, Department of Surgery, University Health Network, Toronto, ON, Canada
| | - Mehdi Maanaoui
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, Lille, France
| | - Dorottya K de Vries
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian P J Alwayn
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bram Heijs
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Marten A Engelse
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
20
|
Nikolaev AV, Fang Y, Essers J, Panth KM, Ambagtsheer G, Clahsen-van Groningen MC, Minnee RC, van Soest G, de Bruin RW. Pre-transplant kidney quality evaluation using photoacoustic imaging during normothermic machine perfusion. PHOTOACOUSTICS 2024; 36:100596. [PMID: 38379853 PMCID: PMC10877941 DOI: 10.1016/j.pacs.2024.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Due to the shortage of kidneys donated for transplantation, surgeons are forced to use the organs with an elevated risk of poor function or even failure. Although the existing methods for pre-transplant quality evaluation have been validated over decades in population cohort studies across the world, new methods are needed as long as delayed graft function or failure in a kidney transplant occurs. In this study, we explored the potential of utilizing photoacoustic (PA) imaging during normothermic machine perfusion (NMP) as a means of evaluating kidney quality. We closely monitored twenty-two porcine kidneys using 3D PA imaging during a two-hour NMP session. Based on biochemical analyses of perfusate and produced urine, the kidneys were categorized into 'non-functional' and 'functional' groups. Our primary focus was to quantify oxygenation (sO2) within the kidney cortical layer of depths 2 mm, 4 mm, and 6 mm using two-wavelength PA imaging. Next, receiver operating characteristic (ROC) analysis was performed to determine an optimal cortical layer depth and time point for the quantification of sO2 to discriminate between functional and non-functional organs. Finally, for each depth, we assessed the correlation between sO2 and creatinine clearance (CrCl), oxygen consumption (VO2), and renal blood flow (RBF). We found that hypoxia of the renal cortex is associated with poor renal function. In addition, the determination of sO2 within the 2 mm depth of the renal cortex after 30 min of NMP effectively distinguishes between functional and non-functional kidneys. The non-functional kidneys can be detected with the sensitivity and specificity of 80% and 85% respectively, using the cut-off point of sO2 < 39%. Oxygenation significantly correlates with RBF and VO2 in all kidneys. In functional kidneys, sO2 correlated with CrCl, which is not the case for non-functional kidneys. We conclude that the presented technique has a high potential for supporting organ selection for kidney transplantation.
Collapse
Affiliation(s)
- Anton V. Nikolaev
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Yitian Fang
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, Erasmus Medical Center, Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
- Department of Radiotherapy, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
- Department of Vascular Surgery, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Kranthi M. Panth
- Department of Molecular Genetics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Gisela Ambagtsheer
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, Erasmus Medical Center, Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Marian C. Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Robert C. Minnee
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, Erasmus Medical Center, Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Gijs van Soest
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Van Mourilk Broekmanweg 6, 2628 XE, Delft, the Netherlands
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
| | - Ron W.F. de Bruin
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, Erasmus Medical Center, Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| |
Collapse
|
21
|
van Leeuwen LL, Ruigrok MJR, Kessler BM, Leuvenink HGD, Olinga P. Targeted delivery of galunisertib using machine perfusion reduces fibrogenesis in an integrated ex vivo renal transplant and fibrogenesis model. Br J Pharmacol 2024; 181:464-479. [PMID: 37596999 DOI: 10.1111/bph.16220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Fibrosis in kidney allografts is a major post-transplant complication that contributes to graft failure. Lately, multiple potent inhibitors of fibrosis-related pathways have been developed such as galunisertib, an inhibitor of the transforming growth factor-beta (TGF-β/TGFβ1) signalling pathway. This drug, however, poses risks for adverse effects when administered systemically. Therefore, we devised a new repurposing strategy in which galunisertib is administered ex vivo. We combined machine perfusion and tissue slices to explore the antifibrotic effects of galunisertib in renal grafts. EXPERIMENTAL APPROACH Porcine kidneys were subjected to 30 min of warm ischaemia, 24 h of oxygenated hypothermic machine perfusion and 6 h of normothermic machine perfusion with various treatments (i.e. untreated control, TGFβ1, galunisertib or TGFβ1 + galunisertib; n = 8 kidneys per group). To determine whether effects persisted upon ceasing treatment, kidney slices were prepared from respective kidneys and incubated for 48 h. KEY RESULTS Galunisertib treatment improved general viability without negatively affecting renal function or elevating levels of injury markers or by-products of oxidative stress during perfusion. Galunisertib also reduced inflammation and, more importantly, reduced the onset of fibrosis after 48 h of incubation. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate the value of using machine perfusion for administering antifibrotic drugs such as galunisertib, proving it to be an effective example of repurposing.
Collapse
Affiliation(s)
- L Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Nuffield Department of Medicine, Centre for Medicines Discovery, Target Discovery Institute, University of Oxford, Oxford, UK
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Mitchel J R Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Centre for Medicines Discovery, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Mazilescu LI, Goto T, John R, Rosales R, Ganesh S, Yu F, Noguchi Y, Kawamura M, Dezard V, Gao F, Urbanellis P, Parmentier C, Konvalinka A, Bagli DJ, Reichman TW, Robinson LA, Selzner M. Combining Oxygenated Cold Perfusion With Normothermic Ex Vivo Perfusion Improves the Outcome of Donation After Circulatory Death Porcine Kidney Transplantation. Transplantation 2024; 108:184-191. [PMID: 37505906 DOI: 10.1097/tp.0000000000004734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
BACKGROUND Ex vivo machine perfusion is a novel preservation technique for storing and assessing marginal kidney grafts. All ex vivo perfusion techniques have advantages and shortcomings. The current study analyzed whether a combination of oxygenated hypothermic machine perfusion (oxHMP) followed by a short period of normothermic ex vivo kidney perfusion (NEVKP) could combine the advantages of both techniques. METHODS Porcine kidneys were exposed to 30 min of warm ischemia followed by perfusion. Kidneys underwent either 16-h NEVKP or 16-h oxHMP. The third group was exposed to 16-h oxHMP followed by 3-h NEVKP (oxHMP + NEVKP group). After contralateral nephrectomy, grafts were autotransplanted and animals were followed up for 8 d. RESULTS All animals survived the follow-up period. Grafts preserved by continuous NEVKP showed improved function with lower peak serum creatinine and more rapid recovery compared with the other 2 groups. Urine neutrophil gelatinase-associated lipocalin, a marker of kidney injury, was found to be significantly lowered on postoperative day 3 in the oxHMP + NEVKP group compared with the other 2 groups. CONCLUSIONS A short period of NEVKP after oxHMP provides comparable short-term outcomes to prolonged NEVKP and is superior to oxHMP alone. A combination of oxHMP with end-ischemic NEVKP could be an attractive, practical strategy to combine the advantages of both preservation techniques.
Collapse
Affiliation(s)
- Laura Ioana Mazilescu
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
- Division of General Surgery, University Health Network, Toronto, ON, Canada
| | - Toru Goto
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
- Division of General Surgery, University Health Network, Toronto, ON, Canada
| | - Rohan John
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Roizar Rosales
- Division of General Surgery, University Health Network, Toronto, ON, Canada
| | - Sujani Ganesh
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
| | - Frank Yu
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
| | - Yuki Noguchi
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
- Division of General Surgery, University Health Network, Toronto, ON, Canada
| | - Masataka Kawamura
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
- Division of General Surgery, University Health Network, Toronto, ON, Canada
| | - Victoria Dezard
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
| | - Fei Gao
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
| | - Peter Urbanellis
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
- Division of General Surgery, University Health Network, Toronto, ON, Canada
| | - Catherine Parmentier
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
- Division of General Surgery, University Health Network, Toronto, ON, Canada
| | - Ana Konvalinka
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Darius J Bagli
- Department of Urology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Trevor W Reichman
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
- Division of General Surgery, University Health Network, Toronto, ON, Canada
| | - Lisa A Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Markus Selzner
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
- Division of General Surgery, University Health Network, Toronto, ON, Canada
| |
Collapse
|
23
|
López-Martínez S, Simón C, Santamaria X. Normothermic Machine Perfusion Systems: Where Do We Go From Here? Transplantation 2024; 108:22-44. [PMID: 37026713 DOI: 10.1097/tp.0000000000004573] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Normothermic machine perfusion (NMP) aims to preserve organs ex vivo by simulating physiological conditions such as body temperature. Recent advancements in NMP system design have prompted the development of clinically effective devices for liver, heart, lung, and kidney transplantation that preserve organs for several hours/up to 1 d. In preclinical studies, adjustments to circuit structure, perfusate composition, and automatic supervision have extended perfusion times up to 1 wk of preservation. Emerging NMP platforms for ex vivo preservation of the pancreas, intestine, uterus, ovary, and vascularized composite allografts represent exciting prospects. Thus, NMP may become a valuable tool in transplantation and provide significant advantages to biomedical research. This review recaps recent NMP research, including discussions of devices in clinical trials, innovative preclinical systems for extended preservation, and platforms developed for other organs. We will also discuss NMP strategies using a global approach while focusing on technical specifications and preservation times.
Collapse
Affiliation(s)
- Sara López-Martínez
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Department of Obstetrics and Gynecology, Universidad de Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Xavier Santamaria
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
24
|
Unes M, Kurashima K, Caliskan Y, Portz E, Jain A, Nazzal M. Normothermic ex vivo perfusion of deceased donor kidneys and its clinical potential in kidney transplantation outcomes. Int J Artif Organs 2023; 46:618-628. [PMID: 37897367 DOI: 10.1177/03913988231207719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
In recent years, normothermic machine perfusion (NMP) has emerged in conversation surrounding organ preservation and transplantation techniques with the goal of improving patient and clinical outcomes. This is in great attempt to address the rate of non-utilization and the shortage of available organs in kidney transplantation. This focus in mind, normothermic perfusion presents itself as a potential tool to mimic physiological conditions and improve current preservation methods, such as static cold storage. This review serves to improve understanding of the observed connection between the consequences of ischemia and reperfusion injury and traditional preservation techniques as well as how renal NMP may mitigate these issues. Previous studies suggest that reducing time in static cold storage methods by promoting the normothermic perfusion model results in decreased delayed graft function and post-transplant complications. This review also aims to present the immense clinical potential NMP has on future kidney transplantation success and what this means for the fields of nephrology and transplantation. While great strides have been made to evaluate normothermic perfusion's impact on kidney graft viability and transplant success, future research into unified protocol, clinically relevant biomarkers, cost-utility analysis, and use with associated therapeutic and imaging modalities is paramount.
Collapse
Affiliation(s)
| | - Kento Kurashima
- Department of Pediatrics, SSM Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Yasar Caliskan
- Division of Nephrology, SSM Saint Louis University Hospital, Saint Louis, MO, USA
| | | | - Ajay Jain
- Department of Pediatrics, SSM Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Mustafa Nazzal
- Department of Surgery, SSM Saint Louis University Hospital, Saint Louis, MO, USA
| |
Collapse
|
25
|
Castelein J, Pamplona C, Armstrong Junior R, Vidal dos Santos M, Sack I, Dierckx R, Moers C, Borra R. Effects of kidney perfusion on renal stiffness and tissue fluidity measured with tomoelastography in an MRI-compatible ex vivo model. Front Bioeng Biotechnol 2023; 11:1236949. [PMID: 38026891 PMCID: PMC10665518 DOI: 10.3389/fbioe.2023.1236949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Stiffness plays a vital role in diagnosing renal fibrosis. However, perfusion influences renal stiffness in various chronic kidney diseases. Therefore, we aimed to characterize the effect of tissue perfusion on renal stiffness and tissue fluidity measured by tomoelastography based on multifrequency magnetic resonance elastography in an ex vivo model. Five porcine kidneys were perfused ex vivo in an MRI-compatible normothermic machine perfusion setup with adjusted blood pressure in the 50/10-160/120 mmHg range. Simultaneously, renal cortical and medullary stiffness and fluidity were obtained by tomoelastography. For the cortex, a statistically significant (p < 0.001) strong positive correlation was observed between both perfusion parameters (blood pressure and resulting flow) and stiffness (r = 0.95, 0.91), as well as fluidity (r = 0.96, 0.92). For the medulla, such significant (p < 0.001) correlations were solely observed between the perfusion parameters and stiffness (r = 0.88, 0.71). Our findings demonstrate a strong perfusion dependency of renal stiffness and fluidity in an ex vivo setup. Moreover, changes in perfusion are rapidly followed by changes in renal mechanical properties-highlighting the sensitivity of tomoelastography to fluid pressure and the potential need for correcting mechanics-derived imaging biomarkers when addressing solid structures in renal tissue.
Collapse
Affiliation(s)
- Johannes Castelein
- Department of Radiology & Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
- Department for Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolina Pamplona
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | | | | | - Ingolf Sack
- Department of Radiology, Charité University Medicine Berlin, Berlin, Germany
| | - Rudi Dierckx
- Department of Radiology & Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Cyril Moers
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Ronald Borra
- Department of Radiology & Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
Hosgood SA, Nicholson ML. Vitrification and Nanowarming. Is this the Future of Kidney Transplantation. Transpl Int 2023; 36:11948. [PMID: 38020753 PMCID: PMC10663284 DOI: 10.3389/ti.2023.11948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Messner F, Soleiman A, Öfner D, Neuwirt H, Schneeberger S, Weissenbacher A. 48 h Normothermic Machine Perfusion With Urine Recirculation for Discarded Human Kidney Grafts. Transpl Int 2023; 36:11804. [PMID: 37901298 PMCID: PMC10603233 DOI: 10.3389/ti.2023.11804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023]
Abstract
Normothermic machine perfusion (NMP) has reshaped organ preservation in recent years. In this preclinical study, prolonged normothermic perfusions of discarded human kidney grafts were performed in order to investigate perfusion dynamics and identify potential quality and assessment indicators. Five human discarded kidney grafts were perfused normothermically (37°C) for 48 h using the Kidney Assist device with a red-blood-cell based perfusate with urine recirculation. Perfusion dynamics, perfusate and urine composition as well as injury markers were measured and analyzed. Donor age ranged from 41 to 68 years. All but one kidney were from brain dead donors. Perfusions were performed successfully for 48 h with all discarded kidneys. Median arterial flow ranged from 405 to 841 mL/min. All kidneys excreted urine until the end of perfusion (median 0.43 mL/min at the end of perfusion). While sodium levels were consistently lower in urine compared to perfusate samples, this was only seen for chloride and potassium in kidney KTX 2. Lactate, AST, LDH as well as pro-inflammatory cytokines increased over time, especially in kidneys KTX 3 and 4. Ex vivo normothermic perfusion is able to identify patterns of perfusion, biological function, and changes in inflammatory markers in heterogenous discarded kidney grafts.
Collapse
Affiliation(s)
- Franka Messner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Afschin Soleiman
- INNPATH, Institute of Pathology, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannes Neuwirt
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Fang Y, van Ooijen L, Ambagtsheer G, Nikolaev AV, Clahsen-van Groningen MC, Dankelman J, de Bruin RWF, Minnee RC. Real-time laser speckle contrast imaging measurement during normothermic machine perfusion in pretransplant kidney assessment. Lasers Surg Med 2023; 55:784-793. [PMID: 37555246 DOI: 10.1002/lsm.23715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Normothermic machine perfusion (NMP) provides a platform for pre-transplant kidney quality assessment that is essential for the use of marginal donor kidneys. Laser speckle contrast imaging (LSCI) presents distinct advantages as a real-time and noncontact imaging technique for measuring microcirculation. In this study, we aimed to assess the value of LSCI in visualizing renal cortical perfusion and investigate the additional value of dual-side LSCI measurements compared to single aspect measurement during NMP. METHODS Porcine kidneys were obtained from a slaughterhouse and then underwent NMP. LSCI was used to measure one-sided cortical perfusion in the first 100 min of NMP. Thereafter, the inferior renal artery branch was occluded to induce partial ischemia and LSCI measurements on both ventral and dorsal sides were performed. RESULTS LSCI fluxes correlated linearly with the renal blood flow (R2 = 0.90, p < 0.001). After renal artery branch occlusion, absence of renal cortical perfusion could be visualized and semiquantified by LSCI. The overall ischemic area percentage of the ventral and dorsal sides was comparable (median interquartile range [IQR], 38 [24-43]% vs. 29 [17-46]%, p = 0.43), but heterogenous patterns between the two aspects were observed. There was a significant difference in oxygen consumption (mean ± standard deviation [SD], 2.57 ± 0.63 vs. 1.83 ± 0.49 mLO2 /min/100 g, p < 0.001), urine output (median [IQR], 1.3 [1.1-1.7] vs. 0.8 [0.6-1.3] mL/min, p < 0.05), lactate dehydrogenase (mean ± SD, 768 ± 370 vs. 905 ± 401 U/L, p < 0.05) and AST (mean ± SD, 352 ± 285 vs. 462 ± 383 U/L, p < 0.01) before and after renal artery occlusion, while no significant difference was found in creatinine clearance, fractional excretion of sodium, total sodium reabsorption and histological damage. CONCLUSIONS LSCI fluxes correlated linearly with renal blood flow during NMP. Renal cortical microcirculation and absent perfusion can be visualized and semiquantified by LSCI. It provides a relative understanding of perfusion levels, allowing for a qualitative comparison between regions in the kidney. Dual-side LSCI measurements are of added value compared to single aspect measurement and renal function markers.
Collapse
Affiliation(s)
- Yitian Fang
- Department of Surgery, Division of HPB and Transplant Surgery, Transplant Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lisanne van Ooijen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Gisela Ambagtsheer
- Department of Surgery, Division of HPB and Transplant Surgery, Transplant Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anton V Nikolaev
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marian C Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, the Netherlands
- Institute of Experimental and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Division of HPB and Transplant Surgery, Transplant Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robert C Minnee
- Department of Surgery, Division of HPB and Transplant Surgery, Transplant Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
29
|
Griffiths C, Scott WE, Ali S, Fisher AJ. Maximizing organs for donation: the potential for ex situ normothermic machine perfusion. QJM 2023; 116:650-657. [PMID: 31943119 DOI: 10.1093/qjmed/hcz321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Currently, there is a shortfall in the number of suitable organs available for transplant resulting in a high number of patients on the active transplant waiting lists worldwide. To address this shortfall and increase the utilization of donor organs, the acceptance criteria for donor organs is gradually expanding including increased use of organs from donation after circulatory death. Use of such extended criteria donors and exposure of organs to more prolonged periods of warm or cold ischaemia also increases the risk of primary graft dysfunction occurring. Normothermic machine perfusion (NMP) offers a unique opportunity to objectively assess donor organ function outside the donor body and potentially recondition those deemed unsuitable on initial evaluation prior to implantation in the recipient. Furthermore, NMP provides a platform to support the use of established and novel therapeutics delivered directly to the organ, without the need to worry about potential deleterious 'off-target' side effects typically considered when treating the whole patient. This review will explore some of the novel therapeutics currently being added to perfusion platforms during NMP experimentally in an attempt to improve organ function and post-transplant outcomes.
Collapse
Affiliation(s)
- C Griffiths
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - W E Scott
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - S Ali
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - A J Fisher
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
30
|
Ghoneima AS, Sousa Da Silva RX, Gosteli MA, Barlow AD, Kron P. Outcomes of Kidney Perfusion Techniques in Transplantation from Deceased Donors: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:3871. [PMID: 37373568 DOI: 10.3390/jcm12123871] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
The high demand for organs in kidney transplantation and the expansion of the donor pool have led to the widespread implementation of machine perfusion technologies. In this study, we aim to provide an up-to-date systematic review of the developments in this expanding field over the past 10 years, with the aim of answering the question: "which perfusion technique is the most promising technique in kidney transplantation?" A systematic review of the literature related to machine perfusion in kidney transplantation was performed. The primary outcome measure was delayed graft function (DGF), and secondary outcomes included rates of rejection, graft survival, and patient survival rates after 1 year. Based on the available data, a meta-analysis was performed. The results were compared with data from static cold storage, which is still the standard of care in many centers worldwide. A total of 56 studies conducted in humans were included, and 43 studies reported outcomes of hypothermic machine perfusion (HMP), with a DGF rate of 26.4%. A meta-analysis of 16 studies showed significantly lower DGF rates in the HMP group compared to those of static cold storage (SCS). Five studies reported outcomes of hypothermic machine perfusion + O2, with an overall DGF rate of 29.7%. Two studies explored normothermic machine perfusion (NMP). These were pilot studies, designed to assess the feasibility of this perfusion approach in the clinical setting. Six studies reported outcomes of normothermic regional perfusion (NRP). The overall incidence of DGF was 71.5%, as it was primarily used in uncontrolled DCD (Maastricht category I-II). Three studies comparing NRP to in situ cold perfusion showed a significantly lower rate of DGF with NRP. The systematic review and meta-analysis provide evidence that dynamic preservation strategies can improve outcomes following kidney transplantation. More recent approaches such as normothermic machine perfusion and hypothermic machine perfusion + O2 do show promising results but need further results from the clinical setting. This study shows that the implementation of perfusion strategies could play an important role in safely expanding the donor pool.
Collapse
Affiliation(s)
- Ahmed S Ghoneima
- Department of HPB and Transplant Surgery, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Richard X Sousa Da Silva
- Swiss HPB and Transplantation Center, Department of Surgery and Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Adam D Barlow
- Department of HPB and Transplant Surgery, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Philipp Kron
- Department of HPB and Transplant Surgery, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
- Swiss HPB and Transplantation Center, Department of Surgery and Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Optimizing deceased donor organ utilization is gaining recognition as a topical and important issue, both in the United Kingdom (UK) and globally. This review discusses pertinent issues in the field of organ utilization, with specific reference to UK data and recent developments within the UK. RECENT FINDINGS A multifaceted approach is likely required in order to improve organ utilization. Having a solid evidence-base upon which transplant clinicians and patients on national waiting lists can base decisions regarding organ utilization is imperative in order to bridge gaps in knowledge regarding the optimal use of each donated organ. A better understanding of the risks and benefits of the uses of higher risk organs, along with innovations such as novel machine perfusion technologies, can help clinician decision-making and may ultimately reduce the unnecessary discard of precious deceased donor organs. SUMMARY The issues facing the UK with regards to organ utilization are likely to be similar to those in many other developed countries. Discussions around these issues within organ donation and transplantation communities may help facilitate shared learning, lead to improvements in the usage of scarce deceased donor organs, and enable better outcomes for patients waiting for transplants.
Collapse
Affiliation(s)
- Maria Ibrahim
- Department of Nephrology and Transplantation, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester
| | - Chris J Callaghan
- Department of Nephrology and Transplantation, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London
- NHS Blood and Transplant, Bristol, UK
| |
Collapse
|
32
|
Qiu J, Wang M, Yu S, Wu G, Wu W, Chen H, He Y, Chen T, Tu Y, Ruan H, Chen G, Zhou Y, Wang C, Chang G, He X. Organ-quarantined therapy: in situ normothermic machine perfusion of the renal allograft in a patient with a kidney transplant and an abdominal aortic aneurysm. Br J Surg 2023:7187241. [PMID: 37257046 DOI: 10.1093/bjs/znad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/02/2023]
Affiliation(s)
- Jiang Qiu
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Organ Transplantation Center, Guizhou Hospital, Branch of the First Affiliated hospital of Sun Yat-sen University, Guiyang, China
| | - Mian Wang
- Department of Vascular Surgery, First Affiliated Hospital of Sun Yat-sen University, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Shuangjin Yu
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guobin Wu
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibin Wu
- Department of Vascular Surgery, First Affiliated Hospital of Sun Yat-sen University, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Haiwei Chen
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu He
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tong Chen
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizhong Tu
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hehuan Ruan
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guodong Chen
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Zhou
- Medical Research Centre, Sun Yat-sen Memory Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangqi Chang
- Department of Vascular Surgery, First Affiliated Hospital of Sun Yat-sen University, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiaoshun He
- Organ Transplantation Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Parmentier C, Ray S, Mazilescu LI, Kawamura M, Noguchi Y, Nogueira E, Ganesh S, Arulratnam B, Kalimuthu SN, Selzner M, Reichman TW. Normothermic Ex Vivo Machine Perfusion of Discarded Human Pancreas Allografts: A Feasibility Study. Transpl Int 2023; 36:10936. [PMID: 37252614 PMCID: PMC10210159 DOI: 10.3389/ti.2023.10936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Pancreas transplantation is the only curative treatment for patients with complicated diabetes, and organ shortage is a common and increasing problem. Strategies to expand the donor pool are needed, and normothermic ex vivo perfusion of the pancreas has the potential to test and repair grafts before implantation. Between January 2021 and April 2022, six human pancreases, declined for transplantation or islet isolation, were perfused using a previously established method by our group. All 6 cases were successfully perfused for 4 h, with minimal edema. The mean age of the donors was 44.16 ± 13.8 years. Five grafts were obtained from neurological death donors, and one was obtained from a donation after cardiac death. The mean glucose and lactate levels decreased throughout perfusion and insulin levels increased. All 6 grafts were metabolically active during perfusion and histopathology showed minimal tissue injury and no edema. Human normothermic ex vivo perfusion of the pancreas is feasible and safe and has the potential to expand the donor pool. Future studies will focus on tests and biomarkers for the assessment of grafts.
Collapse
Affiliation(s)
- Catherine Parmentier
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
| | - Samrat Ray
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
| | - Laura I. Mazilescu
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
- Essen University Hospital, Essen, North Rhine-Westphalia, Germany
| | - Masataka Kawamura
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
| | - Yuki Noguchi
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
| | - Emmanuel Nogueira
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
| | - Sujani Ganesh
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
| | - Bhranavi Arulratnam
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
| | - Sangeetha N. Kalimuthu
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
| | - Markus Selzner
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
| | - Trevor W. Reichman
- Toronto General Hospital, Toronto, ON, Canada
- University Health Network (UHN), Toronto, ON, Canada
| |
Collapse
|
34
|
Foguenne M, MacMillan S, Kron P, Nath J, Devresse A, De Meyer M, Michel M, Hosgood S, Darius T. Current Evidence and Future Perspectives to Implement Continuous and End-Ischemic Use of Normothermic and Oxygenated Hypothermic Machine Perfusion in Clinical Practice. J Clin Med 2023; 12:3207. [PMID: 37176647 PMCID: PMC10178893 DOI: 10.3390/jcm12093207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The use of high-risk renal grafts for transplantation requires the optimization of pretransplant assessment and preservation reconditioning strategies to decrease the organ discard rate and to improve short- and long-term clinical outcomes. Active oxygenation is increasingly recognized to play a central role in dynamic preservation strategies, independent of preservation temperature, to recondition mitochondria and to restore the cellular energy profile. The oxygen-related decrease in mitochondrial succinate accumulation ameliorates the harmful effects of ischemia-reperfusion injury. The differences between normothermic and hypothermic machine perfusion with regard to organ assessment, preservation, and reconditioning, as well as the logistic and economic implications, are factors to take into consideration for implementation at a local level. Therefore, these different techniques should be considered complementary to the perfusion strategy selected depending on functional intention and resource availability. This review provides an overview of the current clinical evidence of normothermic and oxygenated hypothermic machine perfusion, either as a continuous or end-ischemic preservation strategy, and future perspectives.
Collapse
Affiliation(s)
- Maxime Foguenne
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Serena MacMillan
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Philipp Kron
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jay Nath
- Department of Renal Transplantation, Southmead Hospital Bristol, Bristol BS10 5NB, UK
| | - Arnaud Devresse
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Nephrology, University Clinics Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Martine De Meyer
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Mourad Michel
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Tom Darius
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
35
|
Werenski H, Stratta RJ, Sharda B, Garner M, Farney AC, Orlando G, McCracken E, Jay CL. Knowing When to Ignore the Numbers: Single-Center Experience Transplanting Deceased Donor Kidneys with Poor Perfusion Parameters. J Am Coll Surg 2023; 236:848-857. [PMID: 36735482 DOI: 10.1097/xcs.0000000000000611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hypothermic machine perfusion is frequently used in evaluating marginal kidneys with poor perfusion parameters (PPP) contributing to delays in kidney placement or discard. We examined outcomes in deceased donor kidney transplants with PPP compared with those with optimal perfusion parameters (OPP). STUDY DESIGN We conducted a retrospective single-center cohort study from 2001 to 2021 comparing PPP (n = 91) with OPP (n = 598) deceased donor kidney transplants. PPP was defined as terminal flow ≤80 mL/min and terminal resistance ≥0.40 mmHg/mL/min. OPP was defined as terminal flow ≥120 mL/min and terminal resistance ≤0.20 mmHg/mL/min. RESULTS Mean terminal flow was PPP 66 ± 16 vs OPP 149 ± 21 mL/min and resistance was PPP 0.47 ± 0.10 vs OPP 0.15 ± 0.04 mmHg/mL/min (both p < 0.001). Donor age, donation after cardiac death, and terminal serum creatinine levels were similar between groups. Mean Kidney Donor Profile Index was higher among PPP donors (PPP 65 ± 23% vs OPP 52 ± 27%, p < 0.001). The PPP transplant group had more females and lower weight and BMI. Delayed graft function was comparable (PPP 32% vs OPP 27%, p = 0.33) even though cold ischemia times trended toward longer in PPP kidneys (PPP 28 ± 10 vs OPP 26 ± 9 hours, p = 0.09). One-year patient survival (PPP 98% vs OPP 97%, p = 0.84) and graft survival (PPP 91% vs OPP 92%, p = 0.23) were equivalent. PPP did predict inferior overall and death-censored graft survival long-term (overall hazard ratio 1.63, 95% CI 1.19 to 2.23 and death-censored hazard ratio 1.77, 95% CI 1.15 to 2.74). At 1 year, the estimated glomerular filtration rate was higher with OPP kidneys (PPP 40 ± 17 vs OPP 52 ± 19 mL/min/1.73 m 2 , p < 0.001). CONCLUSIONS Short-term outcomes in PPP kidneys were comparable to OPP kidneys despite higher Kidney Donor Profile Index and longer cold ischemia times, suggesting a role for increased utilization of these organs with careful recipient selection.
Collapse
Affiliation(s)
- Hope Werenski
- From the Department of Surgery, Section of Abdominal Organ Transplantation, Atrium Health Wake Forest Baptist, Winston-Salem, NC
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zarnitz L, Doorschodt BM, Ernst L, Hosseinnejad A, Edgworth E, Fechter T, Theißen A, Djudjaj S, Boor P, Rossaint R, Tolba RH, Bleilevens C. Taurine as Antioxidant in a Novel Cell- and Oxygen Carrier-Free Perfusate for Normothermic Machine Perfusion of Porcine Kidneys. Antioxidants (Basel) 2023; 12:antiox12030768. [PMID: 36979015 PMCID: PMC10045130 DOI: 10.3390/antiox12030768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Donor organ-shortage has resulted in the increased use of marginal grafts; however, normothermic machine perfusion (NMP) holds the potential for organ viability assessment and restoration of marginal grafts prior to transplantation. Additionally, cell-, oxygen carrier-free and antioxidants-supplemented solutions could potentially prevent adverse effects (transfusion reactions, inflammation, hemolysis), associated with the use of autologous packed red blood cell (pRBC)-based perfusates. This study compared 6 h NMP of porcine kidneys, using an established pRBC-based perfusate (pRBC, n = 7), with the novel cell- and oxygen carrier-free organ preservation solution Ecosol, containing taurine (Ecosol, n = 7). Despite the enhanced tissue edema and tubular injury in the Ecosol group, related to a suboptimal molecular mass of polyethylene glycol as colloid present in the solution, functional parameters (renal blood flow, intrarenal resistance, urinary flow, pH) and oxygenation (arterial pO2, absence of hypoxia-inducible factor 1-alpha) were similar to the pRBC group. Furthermore, taurine significantly improved the antioxidant capacity in the Ecosol group, reflected in decreased lactate dehydrogenase, urine protein and tubular vacuolization compared to pRBC. This study demonstrates the feasibility of 6 h NMP using a taurine containing, cell- and oxygen carrier-free perfusate, achieving a comparable organ quality to pRBC perfused porcine kidneys.
Collapse
Affiliation(s)
- Laura Zarnitz
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Benedict M Doorschodt
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Lisa Ernst
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Aisa Hosseinnejad
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
| | - Eileen Edgworth
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Tamara Fechter
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Alexander Theißen
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sonja Djudjaj
- Institute of Pathology & Division of Nephrology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Peter Boor
- Institute of Pathology & Division of Nephrology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - René H Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Christian Bleilevens
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
37
|
Ogurlu B, Pamplona CC, Van Tricht IM, Hamelink TL, Lantinga VA, Leuvenink HG, Moers C, Pool MB. Prolonged Controlled Oxygenated Rewarming Improves Immediate Tubular Function and Energetic Recovery of Porcine Kidneys During Normothermic Machine Perfusion. Transplantation 2023; 107:639-647. [PMID: 36525548 PMCID: PMC9946163 DOI: 10.1097/tp.0000000000004427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/11/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) is typically performed after a period of hypothermic preservation, which exposes the kidney to an abrupt increase in temperature and intravascular pressure. The resultant rewarming injury could be alleviated by gradual rewarming using controlled oxygenated rewarming (COR). This study aimed to establish which rewarming rate during COR results in the best protective effect on renal rewarming injury during subsequent NMP. METHODS Twenty-eight viable porcine kidneys (n = 7/group) were obtained from a slaughterhouse. After these kidneys had sustained 30 min of warm ischemia and 24 h of oxygenated HMP, they were either rewarmed abruptly from 4-8 °C to 37 °C by directly initiating NMP or gradually throughout 30, 60, or 120 min of COR (rate of increase in kidney temperature of 4.46%/min, 2.20%/min, or 1.10%/min) before NMP. RESULTS Kidneys that were rewarmed during the course of 120 min (COR-120) had significantly lower fractional excretion of sodium and glucose at the start of NMP compared with rewarming durations of 30 min (COR-30) and 60 min (COR-60). Although COR-120 kidneys showed superior immediate tubular function at the start of normothermic perfusion, this difference disappeared during NMP. Furthermore, energetic recovery was significantly improved in COR-30 and COR-120 kidneys compared with abruptly rewarmed and COR-60 kidneys. CONCLUSIONS This study suggests that a rewarming rate of 1.10%/min during COR-120 could result in superior immediate tubular function and energetic recovery during NMP. Therefore, it may provide the best protective effect against rewarming injury.
Collapse
Affiliation(s)
- Baran Ogurlu
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolina C. Pamplona
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Isa M. Van Tricht
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Tim L. Hamelink
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Veerle A. Lantinga
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Henri G.D. Leuvenink
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Merel B.F. Pool
- Department of Surgery – Organ Donation and Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
39
|
Abou Taka M, Dugbartey GJ, Sener A. The Optimization of Renal Graft Preservation Temperature to Mitigate Cold Ischemia-Reperfusion Injury in Kidney Transplantation. Int J Mol Sci 2022; 24:ijms24010567. [PMID: 36614006 PMCID: PMC9820138 DOI: 10.3390/ijms24010567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Renal transplantation is the preferred treatment for patients with end-stage renal disease. The current gold standard of kidney preservation for transplantation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal ischemia-reperfusion injury (IRI), a pathological process that negatively impacts graft survival and function. Recent efforts to mitigate cold renal IRI involve preserving renal grafts at higher or subnormothermic temperatures. These temperatures may be beneficial in reducing the risk of cold renal IRI, while also maintaining active biological processes such as increasing the expression of mitochondrial protective metabolites. In this review, we discuss different preservation temperatures for renal transplantation and pharmacological supplementation of kidney preservation solutions with hydrogen sulfide to determine an optimal preservation temperature to mitigate cold renal IRI and enhance renal graft function and recipient survival.
Collapse
Affiliation(s)
- Maria Abou Taka
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
| | - George J. Dugbartey
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 1181, Ghana
| | - Alp Sener
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Correspondence: ; Tel.: +519-685-8500 (ext. 33352)
| |
Collapse
|
40
|
Stratta RJ. Kidney utility and futility. Clin Transplant 2022; 36:e14847. [PMID: 36321653 DOI: 10.1111/ctr.14847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/01/2022] [Accepted: 10/29/2022] [Indexed: 11/25/2022]
Abstract
Changes in kidney allocation coupled with the COVID-19 pandemic have placed tremendous strain on current systems of organ distribution and logistics. Although the number of deceased donors continues to rise annually in the United States, the proportion of marginal deceased donors (MDDs) is disproportionately growing. Cold ischemia times and kidney discard rates are rising in part related to inadequate planning, resources, and shortages. Complexity in kidney allocation and distribution has contributed to this dilemma. Logistical issues and the ability to reperfuse the kidney within acceptable time constraints increasingly determine clinical decision-making for organ acceptance. We have a good understanding of the phenotype of "hard to place" MDD kidneys, yet continue to promote a "one size fits all" approach to organ allocation. Allocation and transportation systems need to be agile, mobile, and flexible in order to accommodate the expanding numbers of MDD organs. By identifying "hard to place" MDD kidneys early and implementing a "fast-track" or open offer policy to expedite placement, the utilization rate of MDDs would improve dramatically. Organ allocation and distribution based on location, motivation, and innovation must lead the way. In the absence of change, we are sacrificing utility for futility and discard rates will continue to escalate.
Collapse
Affiliation(s)
- Robert J Stratta
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| |
Collapse
|
41
|
Li JH, Xu X, Wang YF, Xie HY, Chen JY, Dong NG, Badiwala M, Xin LM, Ribeiro RVP, Yin H, Zhang H, Zhang JZ, Huo F, Yang JY, Yang HJ, Pan H, Li SG, Qiao YB, Luo J, Li HY, Jia JJ, Yu H, Liang H, Yang SJ, Wang H, Liu ZY, Zhang LC, Hu XY, Wu H, Hu YQ, Tang PF, Ye QF, Zheng SS. Chinese expert consensus on organ protection of transplantation (2022 edition). Hepatobiliary Pancreat Dis Int 2022; 21:516-526. [PMID: 36376226 DOI: 10.1016/j.hbpd.2022.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jian-Hui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yan-Feng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Hai-Yang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jing-Yu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi 214023, China
| | - Nian-Guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mitesh Badiwala
- Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Canada
| | - Li-Ming Xin
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | | | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hao Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Jian-Zheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Feng Huo
- Department of Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510040, China
| | - Jia-Yin Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong-Ji Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Pan
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shao-Guang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Yin-Biao Qiao
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jia Luo
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hao-Yu Li
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Yu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Han Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Si-Jia Yang
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Zhong-Yang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Li-Cheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Xiao-Yi Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yi-Qing Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Qi-Fa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
42
|
Arcolino FO, Hosgood S, Akalay S, Jordan N, Herman J, Elliott T, Veys K, Vermeire K, Sprangers B, Nicholson M, van den Heuvel L, Levtchenko E. De novo SIX2 activation in human kidneys treated with neonatal kidney stem/progenitor cells. Am J Transplant 2022; 22:2791-2803. [PMID: 35913414 PMCID: PMC10087644 DOI: 10.1111/ajt.17164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023]
Abstract
During development, nephron structures are derived from a SIX2+ stem cell population. After 36 weeks of gestation, these cells are exhausted, and no new nephrons are formed. We have previously described a non-invasive strategy to isolate and expand the native SIX2+ kidney stem cells from the urine of preterm neonates, named neonatal kidney stem/progenitor cells (nKSPC). Here, we investigated the safety and feasibility of administering nKSPC into human kidneys discarded for transplantation during normothermic machine perfusion (NMP) and evaluated the regenerative and immunomodulatory potential of nKSPC treatment. We found that nKSPC administration during NMP is safe and feasible. Interestingly, nKSPC induced the de novo expression of SIX2 in proximal tubular cells of the donor kidneys and upregulated regenerative markers such as SOX9 and VEGF. This is the first time that SIX2 re-expression is observed in adult human kidneys. Moreover, nKSPC administration significantly lowered levels of kidney injury biomarkers and reduced inflammatory cytokine levels via the tryptophan-IDO-kynurenine pathway. In conclusion, nKSPC is a novel cell type to be applied in kidney-targeted cell therapy, with the potential to induce an endogenous regenerative process and immunomodulation.
Collapse
Affiliation(s)
- Fanny Oliveira Arcolino
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Paediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Sara Akalay
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Paediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Nina Jordan
- Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Jean Herman
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute,KU Leuven, Leuven, Belgium.,Interface Valorisation Platform (IVAP), KU Leuven, Leuven, Belgium.,Department of Paediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Tegwen Elliott
- Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Koenraad Veys
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Paediatric Nephrology, KU Leuven, Leuven, Belgium.,Department of Paediatric Nephrology, University Hospitals Leuven, UZ Leuven, Leuven, Belgium
| | - Kurt Vermeire
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute,KU Leuven, Leuven, Belgium.,Interface Valorisation Platform (IVAP), KU Leuven, Leuven, Belgium.,Department of Internal Medicine, Division of Nephrology, University Hospitals Leuven, UZ Leuven, Leuven, Belgium
| | - Michael Nicholson
- Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Lambertus van den Heuvel
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Paediatric Nephrology, KU Leuven, Leuven, Belgium.,Department of Paediatric Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Paediatric Nephrology, KU Leuven, Leuven, Belgium.,Department of Internal Medicine, Division of Nephrology, University Hospitals Leuven, UZ Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Preoperative Function Assessment of Ex Vivo Kidneys with Supervised Machine Learning Based on Blood and Urine Markers Measured during Normothermic Machine Perfusion. Biomedicines 2022; 10:biomedicines10123055. [PMID: 36551812 PMCID: PMC9776285 DOI: 10.3390/biomedicines10123055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Establishing an objective quality assessment of an organ prior to transplantation can help prevent unnecessary discard of the organ and reduce the probability of functional failure. In this regard, normothermic machine perfusion (NMP) offers new possibilities for organ evaluation. However, to date, few studies have addressed the identification of markers and analytical tools to determine graft quality. In this study, function and injury markers were measured in blood and urine during NMP of 26 porcine kidneys and correlated with ex vivo inulin clearance behavior. Significant differentiation of kidneys according to their function could be achieved by oxygen consumption, oxygen delivery, renal blood flow, arterial pressure, intrarenal resistance, kidney temperature, relative urea concentration, and urine production. In addition, classifications were accomplished with supervised learning methods and histological analysis to predict renal function ex vivo. Classificators (support vector machines, k-nearest-neighbor, logistic regression and naive bayes) based on relevant markers in urine and blood achieved 75% and 83% accuracy in the validation and test set, respectively. A correlation between histological damage and function could not be detected. The measurement of blood and urine markers provides information of preoperative renal quality, which can used in future to establish an objective quality assessment.
Collapse
|
44
|
Schutter R, Vrijlandt WAL, Weima GM, Pol RA, Sanders JSF, Crop MJ, Leuvenink HGD, Moers C. Kidney utilization in the Netherlands - do we optimally use our donor organs? Nephrol Dial Transplant 2022; 38:787-796. [PMID: 36318454 PMCID: PMC9976738 DOI: 10.1093/ndt/gfac300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To ensure optimal utilization of deceased donor kidneys, it is important to understand the precise reasons why kidneys are discarded. In this study we aimed to obtain a comprehensive overview of kidney utilization and discard during the entire donation process in the Netherlands. METHODS In this retrospective cohort study we analysed kidney utilization of 3856 kidneys in the Netherlands between 1 January 2015 and 31 December 2020. For every kidney that was not transplanted, we determined the moment of and reason for discard through a unique case-by-case assessment. RESULTS Kidney discard according to the traditional definition (procured but not transplanted) was 7.8%. However, when kidneys that seemed medically suitable at the beginning of the donation process were also included, many more potential donor kidneys were lost and the total non-utilization was 24.4%. Subjectively presumed impaired organ quality was responsible for 34.2% of all discarded kidneys. Two-thirds of kidneys discarded due to acute kidney injury (AKI) had only AKI stage 1 or 2. CONCLUSION The classical definition of organ discard underestimates the non-utilization of deceased donor kidneys. Strategies to improve kidney utilization could be a revision of the maximum allowed agonal time in donation after circulatory death, careful consideration in reporting and accepting kidneys from donors with AKI and a prospectively filled registry of detailed organ discard reasons, including the 'silent' non-utilization before procurement.
Collapse
Affiliation(s)
| | | | | | - Robert A Pol
- Department of Surgery – Organ Donation and Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Stephan F Sanders
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Meindert J Crop
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery – Organ Donation and Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery – Organ Donation and Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Application of Ex Vivo Normothermic Machine Perfusion in Deceased Donors With Acute Kidney Injury With Successful Renal Transplantation: A Preliminary Experience. Transplant Direct 2022; 8:e1391. [PMID: 36299442 PMCID: PMC9592475 DOI: 10.1097/txd.0000000000001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Ex vivo normothermic machine perfusion (NMP) has improved organ preservation and viability assessment among heart, liver, and lung transplantation. However, literature regarding the application of NMP in human clinical kidney transplantation remains limited. Numerous kidneys, especially from donors with stage 3 acute kidney injury (AKI), are not utilized concerning the high rate of delayed graft function (DGF) and primary nonfunction. The present study investigated the impact of NMP (135-150 min) on short-term outcomes after kidney transplantation from deceased donors with AKI. Methods Graft outcomes of NMP kidneys were compared with contralateral kidneys stored in static cold storage (SCS) from the same donor with AKI during December 2019-June 2021. The study's primary aim is to assess the safety and feasibility of NMP in deceased donors with AKI. The primary outcome was DGF. Secondary outcomes were duration of DGF, biopsy-proven rejection, postoperative intrarenal resistive index, postoperative infections, hospital stay duration, primary nonfunction, and kidney function estimated glomerular filtrate rate at discharge, 3 mo, and 1 y. Results Five pairs of AKI kidneys (NMP versus SCS) were included in the final analysis. The results show no statistically significant differences in clinical outcomes between NMP versus SCS kidneys; however, NMP kidneys demonstrated slightly improved estimated glomerular filtrate rate at 3 mo (59.8 ± 5.93 [59] versus 75.20 ± 14.94 [74]) mL/min/1.73 m2 (P < 0.065) and at the last follow-up (12-29 mo) (72.80 ± 10.71 [75]) versus (94 ± 22.67 [82]) mL/min/1.73 m2 (P < 0.059) as compared with SCS kidneys. A higher proportion of NMP kidneys had normal intrarenal resistive index (0.5-0.7) and mild acute tubular injury on protocol biopsy, suggesting NMP is safe and feasible in deceased donors with acute kidney injury. Conclusions NMPs of AKI donor kidneys are safe and feasible. A larger cohort is required to explore the reconditioning effect of NMP on AKI kidneys.
Collapse
|
46
|
Ferrer-Fàbrega J, Folch-Puy E, Llaves-López A, García-Pérez R, Fuster J. Breaking the limits of experimental pancreas transplantation: Working toward the clinical ideal graft. FRONTIERS IN TRANSPLANTATION 2022; 1:1035480. [PMID: 38994386 PMCID: PMC11235275 DOI: 10.3389/frtra.2022.1035480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 07/13/2024]
Abstract
Pancreas transplantation is, at present, the only curative treatment for type-1 diabetes that maintains normoglycemia thus avoiding complications arising from poor glycemic control. Despite its great benefits, the number of pancreas transplants has decreased significantly since its inception in the late 1960s, largely due to demographic changes and the consequent suboptimal quality of donors. The selection criteria for pancreas donors mainly depend on morphological variables such as fatty infiltration, fibrosis, or edema, as well as both functional (amylase and lipase) and clinical variables of the donor. However, the final criterion in the decision-making process is the somewhat subjective assessment of a trained surgeon. That being said, the recent incorporation of graft perfusion machines into clinical practice seems to be changing the work dynamics of the donor organ retrieval team, facilitating decision-making based on objective morphological and functional criteria. Normothermic perfusion using perfusate with supplemental oxygen replicates near physiological parameters thus being a promising strategy for organ preservation. Nevertheless, optimum perfusion parameters are difficult to establish in pancreas transplantation given its complex vascular anatomy combined with an intrinsically low blood flow. The objective of this work is to analyze the results published in the recent literature relating to the considerations of ex-vivo normothermic graft perfusion machines and their usefulness in the field of pancreas transplantation.
Collapse
Affiliation(s)
- Joana Ferrer-Fàbrega
- Hepatobiliopancreatic Surgery and Liver and Pancreatic Transplantation Unit, Clinic Institute of Digestive and Metabolic Diseases (ICMDiM), Hospital Clínic, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Network for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Emma Folch-Puy
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain
| | - Andrea Llaves-López
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain
| | - Rocío García-Pérez
- Hepatobiliopancreatic Surgery and Liver and Pancreatic Transplantation Unit, Clinic Institute of Digestive and Metabolic Diseases (ICMDiM), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Josep Fuster
- Hepatobiliopancreatic Surgery and Liver and Pancreatic Transplantation Unit, Clinic Institute of Digestive and Metabolic Diseases (ICMDiM), Hospital Clínic, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Network for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| |
Collapse
|
47
|
Messner F, Bogensperger C, Hunter JP, Kaths MJ, Moers C, Weissenbacher A. Normothermic machine perfusion of kidneys: current strategies and future perspectives. Curr Opin Organ Transplant 2022; 27:446-453. [PMID: 35857331 DOI: 10.1097/mot.0000000000001003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize the latest original preclinical and clinical articles in the setting of normothermic machine perfusion (NMP) of kidney grafts. RECENT FINDINGS Kidney NMP can be safely translated into the clinical routine and there is increasing evidence that NMP may be beneficial in graft preservation especially in marginal kidney grafts. Due to the near-physiological state during NMP, this technology may be used as an ex-vivo organ assessment and treatment platform. There are reports on the application of mesenchymal stromal/stem cells, multipotent adult progenitor cells and microRNA during kidney NMP, with first data indicating that these therapies indeed lead to a decrease in inflammatory response and kidney injury. Together with the demonstrated possibility of prolonged ex-vivo perfusion without significant graft damage, NMP could not only be used as a tool to perform preimplant graft assessment. Some evidence exists that it truly has the potential to be a platform to treat and repair injured kidney grafts, thereby significantly reducing the number of declined organs. SUMMARY Kidney NMP is feasible and can potentially increase the donor pool not only by preimplant graft assessment, but also by ex-vivo graft treatment.
Collapse
Affiliation(s)
- Franka Messner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Bogensperger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - James P Hunter
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Moritz J Kaths
- Department of General, Visceral and Transplantation Surgery, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
48
|
The Impact of Nutritional Supplementation on Donor Kidneys During Oxygenated Ex Vivo Subnormothermic Preservation. Transplant Direct 2022; 8:e1382. [PMID: 36204184 PMCID: PMC9529041 DOI: 10.1097/txd.0000000000001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/27/2022] Open
Abstract
Evidence suggests that nutritional supplementation during normothermic ex vivo perfusion improves organ preservation. However, it is unclear whether the same benefit is observed during room temperature (subnormothermic) oxygenated perfusion. In this study, we tested the impact of providing complete nutrition during subnormothermic perfusion on kidney outcomes.
Collapse
|
49
|
Normothermic Machine Perfusion in Renal Transplantation. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Purpose of Review
Normothermic machine perfusion (NMP) is a promising new tool in kidney transplantation to improve the outcome of marginal donor kidney transplantation. This review examines the current evidence for NMP in clinical practice and considers how the technology may be used in the future.
Recent Findings and Summary
There is emerging evidence to suggest that NMP has the potential to expand the donor pool of transplantable organs. The safety and feasibility of NMP have been established in a number of clinical studies but more research is needed to optimise the perfusion conditions. NMP shows promise as a viability assessment tool with particular focus on biomarkers and imaging techniques which provide real-time information to facilitate transplantation decision-making. Moreover, the exciting development of new potential therapeutics such as cell and gene-based therapies which are deliverable during NMP may also improve and recondition grafts prior to implantation.
Collapse
|
50
|
Venema LH, van Leeuwen LL, Posma RA, van Goor H, Ploeg RJ, Hannaert P, Hauet T, Minor T, Leuvenink HG. Impact of Red Blood Cells on Function and Metabolism of Porcine Deceased Donor Kidneys During Normothermic Machine Perfusion. Transplantation 2022; 106:1170-1179. [PMID: 34456268 PMCID: PMC9128616 DOI: 10.1097/tp.0000000000003940] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) protocols using blood-based solutions are commonly used in the assessment of kidneys before transplantation. This procedure is, nevertheless, limited by blood availability and warrants the search for alternatives. We compared a blood-based solution with a serum-like preservation solution (Aqix) enriched with colloids with and without red blood cells (RBCs). METHODS Porcine kidneys retrieved from an abattoir were subjected to 30 min of warm ischemia, followed by 3 h of hypothermic oxygenated machine perfusion at 4 °C. Subsequently, kidneys (n = 6 per group) were evaluated with NMP for 4 h with 5 different solutions: diluted blood, Aqix with BSA ± RBCs, or Aqix with dextran 40 ± RBCs. RESULTS Throughout NMP, markers of renal function and tubular metabolism were favorable in groups with RBCs. The addition of RBCs resulted in 4- to 6-fold higher oxygen consumption rates. Controls had significantly higher ATP levels post-NMP, exhibited decreased production of oxidative stress markers, and had the highest creatinine clearance. In conclusion, this study shows that the addition of RBCs during NMP reduced renal injury, improved function, and was associated with increased renal metabolism. CONCLUSIONS Although the RBC-BSA-supplemented Aqix solution was also able to support metabolism and renal function, a blood-based perfusion solution remains superior.
Collapse
Affiliation(s)
- Leonie H. Venema
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - L. Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rene A. Posma
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rutger J. Ploeg
- Department of Surgery, Nuffield Department of Surgical Science, University of Oxford, Oxford, United Kingdom
| | - Patrick Hannaert
- IRTOMIT, INSERM U1082, Faculté de Médecine et de Pharmacie, Université de Poitiers, France
| | - Thierry Hauet
- IRTOMIT, INSERM U1082, Faculté de Médecine et de Pharmacie, Université de Poitiers, France
| | - Thomas Minor
- Department for Surgical Research/General Surgery, University Hospital Essen, Essen, Germany
| | - Henri G.D. Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|