1
|
Promila L, Sarkar K, Guleria S, Rakshit A, Rathore M, Singh NC, Khan S, Tomar MS, Ammanathan V, Barthwal MK, Kumaravelu J, Shrivastava A, Mitra K, Guha R, Aggarwal A, Lahiri A. Mitochondrial calcium uniporter regulates human fibroblast-like synoviocytes invasion via altering mitochondrial dynamics and dictates rheumatoid arthritis pathogenesis. Free Radic Biol Med 2025; 234:55-71. [PMID: 40188890 DOI: 10.1016/j.freeradbiomed.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that currently has no cure. Fibroblast-like synoviocytes (FLS), present in the RA synovium, play a pivotal role in RA pathogenesis. Notably, FLS in the RA patients (RA-FLS) exhibit characteristics similar to cancer cells, like enhanced migration, invasiveness, uncontrolled proliferation, resistance to apoptosis, and metabolic reprogramming. RA-FLS invasiveness is linked to radiographic joint damage in the patients, whereas inhibiting the FLS migration mitigates disease pathology. However, the molecular mechanisms underlying the migration and invasion capabilities of RA-FLS are not entirely understood. In this work, we have explored the function of mitochondrial calcium uniporter (MCU) and calcium signaling in FLS invasion. Our findings demonstrate a positive correlation between MCU expression and RA disease score. Interestingly, mitochondrial size was reduced, and peripheral localization was more pronounced in the RA-FLS when compared to the control FLS. Mitochondrial calcium import inhibition in the FLS by specific MCU inhibitor, Ruthenium-360 restored these altered mitochondrial dynamics and reduced the invasive phenotype. Through unbiased transcriptome analysis, we identified that MCU-mediated calcium signaling in RA-FLS leads to the enriched actin cytoskeleton and focal adhesion pathways responsible for the invasion phenotype, which can be effectively suppressed by inhibiting MCU. Additionally, we found that mitochondrial transport facilitator Miro1 binds to MCU in a calcium-dependent manner and regulates MCU-mediated mitochondrial dynamics and RA-FLS invasion. Experiments utilizing mice xenograft model demonstrated that MCU silencing diminishes the migration of RA-FLS toward the sites of inflammation in the immunocompromised SCID mice. Altogether, our findings highlight MCU as a promising therapeutic target to inhibit RA-FLS migration and RA progression.
Collapse
Affiliation(s)
- Lakra Promila
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kabita Sarkar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shivika Guleria
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Adrija Rakshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Manisha Rathore
- Lab Animal Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nishakumari C Singh
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shaziya Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Veena Ammanathan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagavelu Kumaravelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Kalyan Mitra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Lab Animal Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Huang Y, Gong K, Tao M, Zhu Y, Li Y, Wang Y, Wu H, Hao W, Sun X. Mechanism of berbamine-mediated DNA damage in synovial fibroblasts to alleviate rheumatoid arthritis. Eur J Pharmacol 2025; 997:177597. [PMID: 40185320 DOI: 10.1016/j.ejphar.2025.177597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease characterised by the proliferation and infiltration of fibroblast-like synoviocytes (FLS). However, pharmaceutical approaches to inhibit FLS in the treatment of RA are limited. Berbamine (BBM), a natural compound extracted from Phellodendron chinense Schneider, has demonstrated anti-tumour and anti-inflammatory effects. This study aimed to investigate the inhibitory effect of BBM on FLS in RA and to delineate the specific mechanisms involved, thereby proposing a novel therapeutic strategy for RA. Using the cell counting kit 8 assay and flow cytometry, we found that BBM reduced the proliferative ability of MH7A rheumatoid arthritis fibroblast-like synoviocytes by blocking the cell cycle and inducing apoptosis. In addition, BBM led to a decrease in the mitochondrial membrane potential and an increase in reactive oxygen species (ROS) and DNA damage. To explore the explicit mechanism of BBM, we used the ROS inhibitor N-acetyl-L-cysteine and the anti-apoptotic drug Z-VAD-FMK to rescue the effects of BBM. BBM effectively inhibited joint inflammation in RA cells in vivo. Regarding the safety confirmation, BBM does not damage the liver, spleen, and kidneys of collagen-induced arthritis mice. In summary, we found that the traditional Chinese medicine extract BBM alleviated RA by promoting ROS production and DNA damage in rheumatoid arthritis fibroblast-like synoviocytes providing new ideas for the clinical treatment of RA with traditional Chinese medicine.
Collapse
Affiliation(s)
- Yinger Huang
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Kunxiang Gong
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mengyuan Tao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yinfu Zhu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yiran Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yi Wang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Heyong Wu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaomin Sun
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Cao J, Zhang H, Ni Y, Ning X. Neferine reduces synovial inflammation and cardiac complications in a collagen-induced arthritis mouse model via inhibiting NF-κB/NLRP3 inflammasome axis. Mol Immunol 2025; 182:117-125. [PMID: 40262197 DOI: 10.1016/j.molimm.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
For the treatment of rheumatoid arthritis (RA), there are limited options for drugs with fewer side effects. Neferine possesses anti-inflammatory, anti-fibrotic, and cardioprotective properties, but its effectiveness in the treatment of RA remains unclear. Our study aimed to explore the impact of neferine administration on ankle joint inflammation and cardiac complications of collagen-induced arthritis (CIA) mice. The CIA model was introduced in male DBA/1 mice via subcutaneous injection of Type II collagen (CII) into the tail. We found that neferine alleviated ankle joint inflammation, cartilage erosion, and bone destruction, as well as reduced the levels of IL-6, TNF-α, IL-1β, and IL-18 in the serum of CIA mice. Furthermore, neferine reduced the expression of synovial damage markers (RANKL, MMP-3, and MMP-13) in the ankle joints of CIA mice. Mechanistically, neferine lowered the levels of NF-κB pathway-related molecules such as p-IκBα, p-p65, and nuclear p65 in the synovial tissue of CIA mice. Simultaneously, neferine reversed the upregulation of NLRP3, ASC, and cleaved-caspase-1 levels in the synovial tissue of CIA mice. Additionally, our results showed that neferine reduced the contents of myocardial injury markers (cTnI, CK-MB, and LDH), alleviated myocardial fibrosis, decreased expression of α-SMA and Collagen I, as well as mitigated the activation of fibrosis-related TGF-β/Smad signaling. In summary, our study demonstrates that neferine attenuates chondral and synovial inflammation in a CIA mouse model by inhibiting the activation of the NF-κB/NLRP3 inflammasome, and neferine has a protective effect on the hearts of CIA mice.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Rheumatology and Immunology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China.
| | - Huaxing Zhang
- Division of Medical Service, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Yanhui Ni
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xiaoran Ning
- Department of Rheumatology and Immunology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
4
|
Lee MS, Kim S, Lee JH, Bae YS, Lee SK. Synovium-on-a-Chip Reveals Fibroblast-Macrophage Crosstalk Underpinning Joint Homeostasis and Evaluation of Gout Therapies. Adv Healthc Mater 2025:e2501471. [PMID: 40411870 DOI: 10.1002/adhm.202501471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/08/2025] [Indexed: 05/26/2025]
Abstract
The synovium maintains joint homeostasis and regulates immune responses through fibroblast-like synoviocytes (FLS) and macrophage-like synoviocytes (MLS). However, investigation of the intricate FLS-MLS interactions is limited by the lack of physiologically relevant in vitro models. Here, this work presents a synovium-on-a-chip model that faithfully mimics the structural and functional properties of the human synovial lining, established with collagen/alginate hybrid hydrogel (CAHG). The functional phenotype of FLS observed in vivo is replicated on chip when cultured with CAHG. Moreover, co-culture with M2c macrophages derived from CD14+ monocytes enables the reconstruction of key immune functions of the synovial lining, including expression of junction proteins (ZO-1 and CLD5) and immunoregulatory markers (TREM2 and VSIG4). CD44 blockade, disrupting FLS-MLS interactions, significantly suppresses inflammasome-related pathways, underscoring the regulatory role of FLS in synovial immune responses. Our model is further validated by modeling gout, where treatment with monosodium urate crystals trigger NLRP3 inflammasome activation, macrophage polarization, and neutrophil extravasation. Pharmacological interventions with MCC950 and entrectinib effectively inhibit the inflammasome activation, demonstrating the platform's utility for preclinical drug evaluation. This synovium-on-a-chip provides a reliable in vitro model for studying synovial inflammation and serves as a valuable tool for the therapeutic discovery of inflammatory joint diseases.
Collapse
Affiliation(s)
- Min Seok Lee
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Soohyun Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Jong-Hwan Lee
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung Kyun Lee
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| |
Collapse
|
5
|
Zou AE, Kongthong S, Mueller AA, Brenner MB. Fibroblasts in immune responses, inflammatory diseases and therapeutic implications. Nat Rev Rheumatol 2025:10.1038/s41584-025-01259-0. [PMID: 40369134 DOI: 10.1038/s41584-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Once regarded as passive bystander cells of the tissue stroma, fibroblasts have emerged as active orchestrators of tissue homeostasis and disease. From regulating immunity and controlling tissue remodelling to governing cell growth and differentiation, fibroblasts assume myriad roles in guiding normal tissue development, maintenance and repair. By comparison, in chronic inflammatory diseases such as rheumatoid arthritis, fibroblasts recruit and sustain inflammatory leukocytes, become dominant producers of pro-inflammatory factors and catalyse tissue destruction. In other disease contexts, fibroblasts promote fibrosis and impair host control of cancer. Single-cell studies have uncovered striking transcriptional and functional heterogeneity exhibited by fibroblasts in both normal tissues and diseased tissues. In particular, advances in the understanding of fibroblast pathology in rheumatoid arthritis have shed light on pathogenic fibroblast states in other chronic diseases. The differentiation and activation of these fibroblast states is driven by diverse physical and chemical cues within the tissue microenvironment and by cell-intrinsic signalling and epigenetic mechanisms. These insights into fibroblast behaviour and regulation have illuminated therapeutic opportunities for the targeted deletion or modulation of pathogenic fibroblasts across many diseases.
Collapse
Affiliation(s)
- Angela E Zou
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Suppawat Kongthong
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alisa A Mueller
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA and Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Yeon KY, Ji S, Cheon HG. Role of activating transcription factor 3 as a mediator of the protective effects of berberine against lipopolysaccharide-stimulated SW982 cells and in rheumatoid arthritis animal models. Toxicol Appl Pharmacol 2025; 497:117279. [PMID: 40010574 DOI: 10.1016/j.taap.2025.117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
This study aimed to explore the protective effects of berberine against rheumatoid arthritis (RA) and clarify the role of activating transcription factor 3 (ATF3) in the mechanism of action of berberine, using a lipopolysaccharide (LPS)-stimulated SW982 human synovial cell line. Berberine treatment resulted in a concentration-dependent reduction in LPS-induced proinflammatory cytokines and matrix metalloproteinases (MMPs) in SW982 cells. These inhibitory effects were associated with increased ATF3 expression, reduced nuclear translocation of nuclear factor-κB (NF-κB), and diminished phosphorylation of mitogen-activated protein kinase (MAPK). In contrast, ATF3 knockdown reversed the suppressive effects of berberine on proinflammatory cytokines and MMP production, leading to enhanced MAPK phosphorylation; however, it had minimal impact on adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. Furthermore, AMPK knockdown negated the protective effects of berberine and reduced ATF3 levels, whereas treatment with 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, replicated the beneficial effects of berberine. In an in vivo collagen-induced arthritis (CIA) mouse model, intraperitoneal administration of berberine significantly reduced paw edema and arthritis severity, accompanied by ATF3 induction and increased AMPK phosphorylation in the synovial tissue. These findings highlighted the pivotal role of ATF3 in mediating the protective effects of berberine in RA- and LPS-activated synoviocytes, suggesting its potential as a therapeutic agent for RA management.
Collapse
Affiliation(s)
- Kwan Yong Yeon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 406-799, Republic of Korea
| | - Seongmi Ji
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 406-799, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 406-799, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon 406-799, Republic of Korea.
| |
Collapse
|
7
|
Jumabay M, Abud EM, Okamoto K, Dutta P, Chiang AWT, Li H, Manresa MC, Zhu YP, Frederick D, Kurten R, Croker B, Lewis NE, Kennedy JL, Dohil R, Croft M, Ay F, Wechsler JB, Aceves SS. Eosinophilic esophagitis drives tissue fibroblast regenerative programs toward pathologic dysfunction. J Allergy Clin Immunol 2025; 155:1333-1345. [PMID: 39617290 PMCID: PMC11980045 DOI: 10.1016/j.jaci.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pathologic tissue remodeling with scarring and tissue rigidity has been demonstrated in inflammatory, autoimmune, and allergic diseases. Eosinophilic esophagitis (EoE) is an allergic disease that is diagnosed and managed by repeated biopsy procurement, allowing an understanding of tissue fibroblast dysfunction. While EoE-associated tissue remodeling causes clinical dysphagia, food impactions, esophageal rigidity, and strictures, molecular mechanisms driving these complications remain under investigation. OBJECTIVE We hypothesized that chronic EoE inflammation induces pathogenic fibroblasts with dysfunctional tissue regeneration and motility. METHODS We used single-cell RNA sequencing, fluorescence-activated cell sorting analysis, and fibroblast differentiation and migration assays to decipher the induced and retained pathogenic dysfunctions in EoE versus healthy esophageal fibroblasts. RESULTS Differentiation assays demonstrated that active EoE fibroblasts retain regenerative programs for rigid cells such as chondrocytes (P < .05) but lose healthy fibroblast capacity for soft cells such as adipocytes (P < .01), which was reflected in biopsy sample immunostaining (P < .01). EoE, but not healthy, fibroblasts show proinflammatory and prorigidity transcriptional programs on single-cell RNA sequencing. In vivo, regenerative fibroblasts reside in perivascular regions and near the epithelial junction, and during EoE, they have significantly increased migration (P < .01). Flow analysis and functional assays demonstrated that regenerative EoE fibroblasts have decreased surface CD73 expression and activity (both P < .05) compared to healthy controls, indicating aberrant adenosine triphosphate handling. EoE fibroblast dysfunctions were induced in healthy fibroblasts by reducing CD73 activity and rescued in EoE using adenosine repletion. CONCLUSION A normalization of perturbed extracellular adenosine triphosphate handling and CD73 could improve pathogenic fibroblast dysfunction and tissue regeneration in type 2 inflammatory diseases.
Collapse
Affiliation(s)
- Medet Jumabay
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | - Edsel M Abud
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif; Scripps Research Translational Institute, San Diego, Calif
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | | | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, Calif; Department of Bioengineering, University of California, San Diego, Calif
| | - Haining Li
- Department of Pediatrics, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif
| | - Mario C Manresa
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | - Yanfang P Zhu
- Department of Pediatrics, University of California, San Diego, Calif
| | | | - Richard Kurten
- Department of Bioengineering, University of California, San Diego, Calif
| | - Ben Croker
- Department of Pediatrics, University of California, San Diego, Calif
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif
| | | | - Ranjan Dohil
- Department of Pediatrics, University of California, San Diego, Calif; Division of Gastroenterology, University of California, San Diego, Calif; La Jolla Institute, La Jolla, Calif
| | | | - Ferhat Ay
- Department of Pediatrics, University of California, San Diego, Calif; La Jolla Institute, La Jolla, Calif
| | | | - Seema S Aceves
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif; Division of Gastroenterology, University of California, San Diego, Calif; Department of Medicine, University of California, San Diego, Calif; Lurie Children's Hospital, Northwestern University, Chicago, Ill.
| |
Collapse
|
8
|
Laragione T, Harris C, Gulko PS. Huntingtin-Interacting Protein 1-Related (HIP1R) Regulates Rheumatoid Arthritis Synovial Fibroblast Invasiveness. Cells 2025; 14:483. [PMID: 40214437 PMCID: PMC11987873 DOI: 10.3390/cells14070483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Huntingtin-interacting protein 1-related (HIP1R) shares some function similarities with HIP1, and HIP1 regulates arthritis and RA fibroblast-like synoviocytes (FLS) invasiveness. Therefore, we hypothesized that HIP1R might be involved in the regulation of FLS phenotypes and molecular processes relevant to RA. siRNA was used to knockdown HIP1R, HIP1 or control in RA FLS, followed by cell studies for invasion in Matrigel, migration, proliferation, and adhesion. RNA was sequenced and analyzed. HIP1R knockdown significantly reduced RA FLS invasiveness and migration (p < 0.05). The DEGs in siRNA HIP1R had an enrichment for GO processes "astrocyte and glial cell projection", "small GTPase signaling", and "PDGFR signaling". The most significantly DEGs had decreased expression in siRNA HIP1R and included AKT1S1, GABBR2, GPR56, and TXNDC12. siRNA HIP1 RA FLS had an enrichment for the "Rap1 signaling pathway" and "Growth factor receptor binding". The most significantly DEGs in HIP1 siRNA included FGF2, PGF, and SLC39A8. HIP1R and HIP1 DEG lists had a greater than expected number of similar genes (p = 0.0015), suggesting that, despite the major differences detected, both have partially overlapping functions in RA FLS. The most significantly DEGs in both HIP1R and HIP1 analyses are involved in cancer cell behaviors and outcomes. HIP1R is a new gene implicated in RA FLS invasiveness and migration, and regulates unique pathways and cell processes relevant to both RA as well as cancer biology. Our study provides new insight into processes implicated in FLS invasiveness, which is relevant for joint damage in RA, and identify new potential gene targets for FLS-specific treatments.
Collapse
Affiliation(s)
| | | | - Percio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.L.); (C.H.)
| |
Collapse
|
9
|
Chen M, Wang Z, Chen H, Li J, Guo X, Zhou S. Biomimetic Nanoparticles Inhibit the HIF-1α/iNOS/NLRP3 Pathway to Alleviate Rheumatoid Arthritis. NANO LETTERS 2025; 25:3807-3816. [PMID: 40033154 DOI: 10.1021/acs.nanolett.4c05782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease distinguished by inflammatory synovitis. Chrysin can alleviate the inflammatory response and inhibit the progression of RA. However, unfavorable physicochemical properties and nonselective biodistribution of chrysin make it difficult to achieve good therapeutic efficacy. To address these challenges, we developed a biomimetic nanocarrier to enhance the targeted delivery of chrysin to synoviocytes, a key cellular component in RA pathology. Our nanodrug, FMPlipo@C, was engineered by integrating fibroblast-like synoviocyte (FLS) membrane proteins into chrysin-loaded liposomes. This innovative approach harnesses homologous targeting mediated by FLS membrane proteins to direct liposomes to inflamed joints, facilitating cargo release within synoviocytes. We showed that FMPlipo@C reduces inflammation in collagen-induced rheumatoid arthritis (CIA) model mice by inhibiting the HIF-1α/iNOS/NLRP3 pathway, protecting cartilage, and preventing bone erosion, thus reducing swelling and stiffness. This study offers valuable insights into the development of novel therapeutic strategies for the treatment of RA.
Collapse
MESH Headings
- Animals
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- Mice
- Nanoparticles/chemistry
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Biomimetic Materials/chemistry
- Biomimetic Materials/pharmacology
- Liposomes/chemistry
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Humans
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Arthritis, Experimental/metabolism
- Flavonoids/chemistry
- Flavonoids/pharmacology
- Flavonoids/administration & dosage
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Mo Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Zhenhua Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Haolong Chen
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jin Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xing Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
10
|
Yang M, Lu S, Li J, Zhu L. Carboxyaminotriazole: A bone savior in collagen-induced arthritis-Halting osteoclastogenesis via interleukin-1β downregulation. Life Sci 2025; 364:123440. [PMID: 39920985 DOI: 10.1016/j.lfs.2025.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
AIMS Rheumatoid arthritis (RA), a prevalent autoimmune disease, features inflammation and bone erosion, correlating with osteoclast hyperactivation and enhanced responsiveness to inflammatory factors. Reducing osteoclast formation and inflammatory mediator expression might avert bone erosion in RA. Carboxyaminotriazole (CAI) holds potential for treating autoinflammatory disorders and impeding cancer-related bone metastases. Yet, its bone-protective role and mechanism remain elusive. This study targets to explore the impacts and underlying mechanisms of CAI in preventing bone erosion in RA. MATERIALS AND METHODS A collagen-induced arthritis (CIA) rat model was utilized to evaluate the anti-RA potential of CAI. CCK-8, TRAP staining, TRAP activity assay, pit formation assay, RT-qPCR, Western blotting, immunofluorescence, and ELISA, were conducted to assess the effects and potential mechanisms of CAI in the management of RA. KEY FINDINGS CAI not only reduces inflammatory symptoms, but it also offers superior bone protection compared to methotrexate (MTX) and works synergistically with MTX, the preferred anchoring agent for the treatment of RA. In vitro studies show that CAI inhibits osteoclast differentiation and function, as well as the expression of specific genes, by inhibiting NF-κB/MAPK pathways and reducing IL-1β levels. The deletion of Il-1 and the application of IL-1β inhibitors suggest that CAI retards osteoclastogenesis through the downregulation of IL-1β. SIGNIFICANCE CAI may have therapeutic value in treating RA-related bone erosion, likely due to its inhibition of overactive osteoclasts by suppressing the NF-κB/MAPK pathways and the subsequent expression of IL-1β.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Shan Lu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
11
|
Zeinert I, Schmidt L, Baar T, Gatto G, De Giuseppe A, Korb-Pap A, Pap T, Mahabir E, Zaucke F, Brachvogel B, Krüger M, Krieg T, Eckes B. Matrix-mediated activation of murine fibroblast-like synoviocytes. Exp Cell Res 2025; 445:114408. [PMID: 39765309 DOI: 10.1016/j.yexcr.2025.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation. Integrin α11β1 might be involved in the activation, as it is increased in RA patients and hTNFtg mice, an RA mouse model. We treated murine chondrocytes with TNFα to produce a damaged, RA-like matrix. Comparison to healthy chondrocyte matrix revealed decreased ECM proteins, e.g. collagens and proteoglycans, increased matrix-degrading proteins and elevated levels of inflammatory cytokines. FLS responded to the damaged chondrocyte matrix with a matrix-remodeling and pro-inflammatory phenotype characterized by a gene signature involved in matrix degradation and increased production of CLL11 and CCL19. Damaged chondrocyte matrix stimulated increased Itga11 expression in FLS, correlating with the increased α11β1 amounts in RA patients. FLS deficient in integrin α11β1 released lower amounts of inflammation-associated cytokines. Our results demonstrate differences in healthy and RA-like chondrocyte ECM and distinctly different responses of wt FLS to damaged versus healthy ECM.
Collapse
Affiliation(s)
- Isabel Zeinert
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Till Baar
- Institute for Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Giulio Gatto
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Anna De Giuseppe
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Frank Zaucke
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Bent Brachvogel
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| |
Collapse
|
12
|
Li G, Du S, Yan S, Wang Y, Bu R, Cheng M, Zhang Y, Chen Q, Wu Y, Zhang X, Wang D, Wang T. Mechanism of Biqi capsules in the treatment of gout based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118817. [PMID: 39284427 DOI: 10.1016/j.jep.2024.118817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 11/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gout is a crystal-related arthropathy caused by monosodium urate (MSU) deposition, resulting from purine metabolism disorders and hyperuricemia (HUA). Gout belongs to the traditional medicine category of Bi syndrome. Biqi capsules (BQ) is a traditional Chinese medicine formula used to treat Bi syndrome. The BQ prescription is derived from the ancient prescription of Hua Tuo, a famous physician in the Han Dynasty. AIM OF THE STUDY To study the effect and mechanism of BQ in treating acute gouty arthritis (AGA) and HUA. MATERIALS AND METHODS Analyzing BQ's signaling pathways for gout treatment via network pharmacology. The HUA model was induced orally with adenine and potassium oxonate. The rat AGA model was established by MSU injection. In vitro, MH7A and RAW 246.7 cells were treated with LPS and MSU. Serum uric acid, creatinine, and urea nitrogen levels were evaluated. Kidney and ankle joint pathology was observed via HE staining. Inflammatory signaling pathway proteins, epithelial-mesenchymal transition (EMT) pathway proteins, and uric acid metabolism-related proteins were detected by Western blot. RESULTS 1780 potential targets for gout treatment were identified, and 1039 target proteins corresponding to BQ's active ingredients were obtained. Pathway enrichment analysis revealed BQ improved gout mainly through inflammatory pathways. Experimental results showed BQ could reduce serum uric acid level and increase uric acid clearance rate by regulating the expression of adenosine deaminase (ADA), and organic anion transporter 1 (OAT1) and glucose transporter 9 (GLUT9) in HUA mice. BQ could improve renal function and injury by inhibiting the NLRP3 pathway in HUA mice' kidneys. Additionally, BQ could alleviate ankle joint swelling and synovial injury, inhibit the TLR4/NLRP3 pathway, and reduce levels of inflammatory factors including interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) in AGA rats. The main component of BQ, brucine, could inhibit the activation of NLRP3/NF-κB pathway induced by MSU and reduce the expression level of inflammatory factors (IL-6, IL-1β, and TNF-α) in macrophages. Brucine could inhibit the activation of the EMT pathway and reduce the expression level of inflammatory factors (IL-6, TNF-α) in human fibroblast-like synoviocytes (MH7A cells) induced by MSU. CONCLUSIONS BQ effectively reduced serum uric acid levels, improved kidney and joint damage, and ameliorated the inflammatory response caused by MSU. Its main component, brucine, effectively improved the inflammatory response and reduced the invasive ability of synoviocytes induced by MSU.
Collapse
Affiliation(s)
- Ge Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Simiao Du
- Tianjin Darentang Jingwanhong Pharmaceutical Co., Ltd., 20 Daming Road, Xiqing District, Tianjin, 300112, China
| | - Siya Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Yang Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Ruizhen Bu
- Tianjin Darentang Jingwanhong Pharmaceutical Co., Ltd., 20 Daming Road, Xiqing District, Tianjin, 300112, China
| | - Meifang Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Yi Zhang
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Qian Chen
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Xiangqi Zhang
- Tianjin Darentang Jingwanhong Pharmaceutical Co., Ltd., 20 Daming Road, Xiqing District, Tianjin, 300112, China.
| | - Dan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China.
| | - Tao Wang
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
13
|
Neofotistou-Themeli E, Goutakoli P, Chanis T, Semitekolou M, Sevdali E, Sidiropoulos P. Fibroblasts in rheumatoid arthritis: novel roles in joint inflammation and beyond. Front Med (Lausanne) 2025; 11:1376925. [PMID: 39906351 PMCID: PMC11790453 DOI: 10.3389/fmed.2024.1376925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
High-throughput technologies in human and animal studies have revealed novel molecular and cellular pathways involved in tissue inflammation of rheumatoid arthritis (RA). Fibroblasts have been in the forefront of research for several decades. Subpopulations with specific phenotypic and functional properties have been characterized both in mouse models and human disease. Data supporting the active involvement of fibroblasts in immune responses and tissue remodeling processes, as well as their central role in promoting clinical relapses and contributing to treatment resistance, have clearly reshaped their role in disease evolution. The lung is an important non-synovial component of RA both from a clinical and an immunopathogenic aspect. Interstitial lung disease (ILD) is a significant contributor to disease burden affecting morbidity and mortality. Although our knowledge of ILD has progressed, significant gaps in both basic and clinical science remain, posing hurdles to efficient diagnosis, prediction of disease course and its effective treatment. The specific role and contribution of fibroblasts to this process has not been clearly defined. The focus of this review is on fibroblasts and their contribution to RA and RA-ILD, presenting data on genetics and immune responses associated with RA-ILD in humans and animal models.
Collapse
Affiliation(s)
- Elpida Neofotistou-Themeli
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Panagiota Goutakoli
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Theodoros Chanis
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institute, Solna, Sweden
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Maria Semitekolou
- Dendritic Cells and Adaptive Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- Developmental Biology and Stem Cells, UMR3738 – National Center for Scientific Research (CNRS), Pasteur Institute, Paris, France
| | - Eirini Sevdali
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| |
Collapse
|
14
|
Alivernini S, Masserdotti A, Magatti M, Cargnoni A, Papait A, Silini AR, Romoli J, Ficai S, Di Mario C, Gremese E, Tolusso B, Parolini O. Exploring perinatal mesenchymal stromal cells as a potential therapeutic strategy for rheumatoid arthritis. Heliyon 2025; 11:e41438. [PMID: 39811302 PMCID: PMC11732555 DOI: 10.1016/j.heliyon.2024.e41438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by inflammation in the synovial tissue, driven by aberrant activation of both the innate and adaptive immune systems, which can lead to irreversible disability. Despite the increasing therapeutic approaches for RA, only a low percentage of patients achieve sustained disease remission, and the persistence of immune dysregulation is likely responsible for disease recurrence once remission is attained. Cell therapy is an attractive, wide-spectrum strategy to modulate inflammation, and mesenchymal stromal cells (MSC) derived from perinatal tissues provide valuable tools for their use in regenerative medicine, mainly due to their immunomodulatory properties. Several in vitro studies have shown that perinatal MSC modulate the proliferation, maturation, and cytokine secretion profile of both innate and adaptive immune cells. Moreover, different beneficial effects have also been described when perinatal MSC were used to treat animal models of diseases associated with inflammatory conditions and degenerative processes. Specifically, in experimental models of RA, treatment with perinatal MSC resulted in a strong reduction of articular damage, which was associated with the modulation of both inflammation and activation of stromal resident cells in the synovial tissue. Here, we present in vitro and in vivo evidence supporting the use of perinatal MSC in RA. We also highlight the promising results from the few published clinical trials, which demonstrate the safety of perinatal MSC.
Collapse
Affiliation(s)
- Stefano Alivernini
- Immunology Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Andrea Papait
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Jacopo Romoli
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Sara Ficai
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Clara Di Mario
- Immunology Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| | - Elisa Gremese
- Rheumatology and Clinical Immunology Unit, Humanitas Research Hospital, Milan, Italy
| | - Barbara Tolusso
- Immunology Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
15
|
Thangadurai M, Sethuraman S, Subramanian A. Drug Delivery Approaches for Rheumatoid Arthritis: Recent Advances and Clinical Translation Aspects. Crit Rev Ther Drug Carrier Syst 2025; 42:1-54. [PMID: 40084516 DOI: 10.1615/critrevtherdrugcarriersyst.v42.i3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease characterized with symmetrical progression of joint deformity that is often diagnosed at a chronic condition with other associated pathological conditions such as pericarditis, keratitis, pulmonary granuloma. Despite the understanding of RA pathophysiology in disease progression, current clinical treatment options such as disease-modifying anti-rheumatic drugs (DMARDs), biologics, steroids, and non-steroidal anti-inflammatory drugs (NSAIDs) provide only palliative therapy while causing adverse side effects such as off-target multi-organ toxicity and risk of infections. Further, available drug delivery strategies to treat RA pathogenicity does not successfully reach the site of action due to various barriers such as phagocytosis and first pass effect in addition to the disease complexity and unknown etiology, thereby leading to the development of irreversible joint dysfunction. Therefore, novel and effective strategies remain an unmet need to control the disease progression and to maintain the balance between pro- and anti-inflammatory cytokines. This review provides a comprehensive outlook on the RA pathophysiology and its corresponding disease progression. Contributions of synoviocytes such as macrophages, fibroblast-like cells in increasing invasiveness to exacerbate joint damage is also outlined in this review, which could be a potential future therapeutic target to complement the existing treatment regimens in controlling RA pathogenesis. Further, various smart drug delivery approaches under research to achieve maximum therapeutic efficacy with minimal adverse side effects have been discussed, which in turn emphasize the unmet challenges and future perspectives in addressing RA complications.
Collapse
Affiliation(s)
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Laboratory, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Laboratory, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
16
|
Tang N, Luo X, Ding Z, Shi Y, Cao X, Wu S. Single-Cell Multi-Dimensional data analysis reveals the role of ARL4C in driving rheumatoid arthritis progression and Macrophage polarization dynamics. Int Immunopharmacol 2024; 141:112987. [PMID: 39182267 DOI: 10.1016/j.intimp.2024.112987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis (RA) is an enduring autoimmune inflammatory condition distinguished by continual joint inflammation, hyperplasia of the synovium, erosion of bone, and deterioration of cartilage.Fibroblast-like synoviocytes (FLSs) exhibiting "tumor-like" traits are central to this mechanism.ADP-ribosylation factor-like 4c (ARL4C) functions as a Ras-like small GTP-binding protein, significantly impacting tumor migration, invasion, and proliferation.However, it remains uncertain if ARL4C participates in the stimulation of RA FLSs exhibiting "tumor-like" features, thereby fostering the advancement of RA. In our investigation, we unveiled, for the inaugural instance, via the amalgamated scrutiny of single-cell RNA sequencing (scRNA-seq) and Bulk RNA sequencing (Bulk-seq) datasets, that activated fibroblast-like synoviocytes (FLSs) showcase high expression of ARL4C, and the ARL4C protein expression in FLSs derived from RA patients significantly surpasses that observed in individuals with osteoarthritis (OA) and traumatic injury (trauma).Silencing of the ARL4C gene markedly impeded the proliferation of RA FLSs by hindered the transition of cells from the G0/G1 phase to the S phase, and intensified cell apoptosis and diminished the migratory and invasive capabilities. Co-culture of ARL4C gene-silenced RA FLSs with monocytes/macrophages significantly inhibited the polarization of monocytes/macrophages toward M1 and the repolarization of M2 to M1.Furthermore, intra-articular injection of shARL4C significantly alleviated synovial inflammation and cartilage erosion in collagen-induced arthritis (CIA) rats. In conclusion, our discoveries propose that ARL4C assumes a central role in the synovial inflammation, cartilage degradation, and bone erosion associated with RA by triggering the PI3K/AKT and MAPK signaling pathways within RA FLSs.ARL4C holds promise as a prospective target for the development of pharmaceutical agents targeting FLSs, with the aim of addressing RA.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xin Luo
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhiyu Ding
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yanbin Shi
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xu Cao
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Song Wu
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
17
|
Han Z, Liu C, Li M, Deng M, Ding Y, Li Y, Huo M, Xu H, Qiao H, Gao N. Discovery of CYP2E1 as a novel target in rheumatoid arthritis and validation by a new specific CYP2E1 inhibitor. Biochem Pharmacol 2024; 229:116501. [PMID: 39173843 DOI: 10.1016/j.bcp.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Considerable evidence indicates that CYP2E1 is associated with a variety of inflammatory diseases. Here we evaluated CYP2E1 as a potential therapeutic target for rheumatoid arthritis (RA) and established the protective effect of a new CYP2E1 inhibitor. Gene-expression datasets were used to analyze the change in expression of CYP2E1 in RA patients; CYP2E1 activity in collagen-induced arthritis (CIA) rats was determined by HPLC. We further evaluated the protective effects of Cyp2e1 knockout and a CYP2E1-specific inhibitor, Q11, synthesized by our group, in CIA and adjuvant-induced arthritis (AIA) rats. The expression of CYP2E1 in synovial tissue was elevated in RA patients and in CIA rats and the activity of CYP2E1 in vivo and in vitro in CIA rats was greater than that of controls. Cyp2e1 knockout significantly reduced the incidence of CIA and alleviated the severity of symptoms. Treatment with different doses of Q11 decreased paw thickness, volume and arthritis scores and reduced the serum levels of IL-6, TNF-α, IL-1β and MDA, and increased the level of GSH in CIA rats. A similar inhibitory effect was exhibited for Q11 in the AIA rats. Moreover, Q11 significantly impeded proliferation, migration, and invasion of human rheumatoid arthritis synovial fibroblasts cells. Q11 decreased the release of ROS and enhanced Nrf2 nuclear translocation and HO-1 expression in the cell nucleus. Overall, our results indicated that CYP2E1 may be a new target for RA and Q11 has potential protective effects against RA by reducing oxidative stress and opposing the inflammatory response via the ROS/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zixinying Han
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxu Liu
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingrui Li
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Ding
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunchao Li
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Meidan Huo
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Na Gao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Aubert A, Liu A, Kao M, Goeres J, Richardson KC, Nierves L, Jung K, Nabai L, Zhao H, Orend G, Krawetz R, Lange PF, Younger A, Chan J, Granville DJ. Granzyme B cleaves tenascin-C to release its C-terminal domain in rheumatoid arthritis. JCI Insight 2024; 9:e181935. [PMID: 39475853 PMCID: PMC11623945 DOI: 10.1172/jci.insight.181935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disorder characterized by exacerbated joint inflammation. Despite the well-documented accumulation of the serine protease granzyme B (GzmB) in RA patient biospecimens, little is understood pertaining to its role in pathobiology. In the present study, tenascin-C (TNC) - a large, pro-inflammatory extracellular matrix glycoprotein - was identified as a substrate for GzmB in RA. GzmB cleaves TNC to generate 3 fragments in vitro: a 130 kDa fragment that remains anchored to the matrix and 2 solubilized fragments of 70 and 30 kDa. Mass spectrometry results suggested that the 30 kDa fragment contained the pro-inflammatory TNC C-terminal fibrinogen-like domain. In the synovial fluids of patients with RA, soluble levels of GzmB and TNC were significantly elevated compared with healthy controls. Further, immunoblotting revealed soluble 70 and 30 kDa TNC fragments in the synovial fluids of patients with RA, matching TNC fragment sizes generated by GzmB cleavage in vitro. Granzyme K (GzmK), another serine protease of the granzyme family, also cleaves TNC in vitro; however, the molecular weights of GzmK-generated TNC fragments did not correspond to TNC fragment sizes detected in patients. Our data support that GzmB, but not GzmK, contributes to RA through the cleavage of TNC.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Liu
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Kao
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenna Goeres
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katlyn C. Richardson
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lorenz Nierves
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Cuccione Childhood Cancer Research Program and the BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
| | - Layla Nabai
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongyan Zhao
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d’Hématologie et d’Immunologie, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Philipp F. Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Cuccione Childhood Cancer Research Program and the BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Alastair Younger
- Department of Orthopaedics, Foot & Ankle Research, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Jonathan Chan
- Department of Medicine, Division of Rheumatology, University of British Columbia, Vancouver, British Columbia, Canada
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
20
|
Roumelioti F, Tzaferis C, Konstantopoulos D, Papadopoulou D, Prados A, Sakkou M, Liakos A, Chouvardas P, Meletakos T, Pandis Y, Karagianni N, Denis MC, Fousteri M, Armaka M, Kollias G. Mir221/222 drive synovial hyperplasia and arthritis by targeting cell cycle inhibitors and chromatin remodeling components. eLife 2024; 13:e84698. [PMID: 39235454 PMCID: PMC11377061 DOI: 10.7554/elife.84698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
miRNAs constitute fine-tuners of gene expression and are implicated in a variety of diseases spanning from inflammation to cancer. miRNA expression is deregulated in rheumatoid arthritis (RA); however, their specific role in key arthritogenic cells such as the synovial fibroblast (SF) remains elusive. Previous studies have shown that Mir221/222 expression is upregulated in RA SFs. Here, we demonstrate that TNF and IL-1β but not IFN-γ activated Mir221/222 gene expression in murine SFs. SF-specific overexpression of Mir221/222 in huTNFtg mice led to further expansion of SFs and disease exacerbation, while its total ablation led to reduced SF expansion and attenuated disease. Mir221/222 overexpression altered the SF transcriptional profile igniting pathways involved in cell cycle and ECM (extracellular matrix) regulation. Validation of targets of Mir221/222 revealed cell cycle inhibitors Cdkn1b and Cdkn1c, as well as the epigenetic regulator Smarca1. Single-cell ATAC-seq data analysis revealed increased Mir221/222 gene activity in pathogenic SF subclusters and transcriptional regulation by Rela, Relb, Junb, Bach1, and Nfe2l2. Our results establish an SF-specific pathogenic role of Mir221/222 in arthritis and suggest that its therapeutic targeting in specific subpopulations could lead to novel fibroblast-targeted therapies.
Collapse
Grants
- 115142-2 BTCure Innovative Medicines Initiative
- MIS 5002135 ΙnfrafrontierGR Operational Programme "Competitiveness, Entrepreneurship and Innovation", NSRF 2014-2020, ERDF, EU/Greece
- MIS 6004752 Regional Operational Programme "ATTICA" (NSRF 2021-2027), ERDF, Greece/EU
- HFRI-FM17C3-3780, SingleOut Hellenic Foundation for Research and Innovation
- 10.3030/101055093 HORIZON EUROPE European Research Council
- MIS 5002802 pMedGR Operational Programme "Competitiveness, Entrepreneurship and Innovation", NSRF 2014-2020, ERDF, EU/Greece
Collapse
Affiliation(s)
- Fani Roumelioti
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Konstantopoulos
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | - Dimitra Papadopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | - Maria Sakkou
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Anastasios Liakos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Panagiotis Chouvardas
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | - Theodore Meletakos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Yiannis Pandis
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | | | | | - Maria Fousteri
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Maria Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
21
|
Lee HR, Yoo SJ, Kim J, Ran Lee Y, Kyoung Joo H, Hwa Jeon B, Wook Kang S. Apurinic/apyrimidinic endonuclease 1 alleviates inflammation in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Cent Eur J Immunol 2024; 49:113-125. [PMID: 39381557 PMCID: PMC11457561 DOI: 10.5114/ceji.2024.141946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Apurinic/apyrimidinic endonuclease 1 (APEX1) is a protein with elevated expression in synovial fluids from rheumatoid arthritis (RA) patients. However, its role in RA pathogenesis remains unexplored. This study investigated the influence of APEX1 on inflammatory pathways in fibroblast-like synoviocytes (FLS) isolated from RA patients. Material and methods FLS from RA patients (n = 5) were stimulated with recombinant tumor necrosis factor α (TNF-α) and interleukin (IL)-17. Subsequently, cells were treated with recombinant APEX1, and assessments were made on reactive oxygen species (ROS) production and mitochondrial membrane potential. Additionally, mRNA levels of IL-1 family members were quantified. Cell migration was evaluated through Transwell chamber assays, and levels of key secreted inflammatory cytokines were measured via enzyme-linked immunosorbent assay (ELISA). Results The results demonstrated that APEX1 significantly reduced mitochondrial-specific ROS expression and restored mitochondrial membrane potential in TNF-α/IL-17-stimulated RA FLS. Furthermore, APEX1 treatments attenuated TNF-α/IL-17-induced activation of p38 MAPK, NF-κB, and PI3K 110 δ signaling pathways. Similarly, APEX1 significantly diminished TNF-α/IL-17-induced expression of inflammatory cytokines, including IL-1 family members, IL-6, IL-8, and vascular endothelial growth factor (VEGF). Notably, APEX1 downregulated cell migration of TNF-α/IL-17-treated RA FLS via inhibition of matrix metalloproteinase 3 (MMP3). Conclusions These findings collectively underscore the role of APEX1 as a key mediator of cytokine-amplified migration, modulating ROS and MMP3 in RA FLS, thus supporting its potential as a therapeutic target in RA treatment.
Collapse
Affiliation(s)
- Ha-Reum Lee
- Chungnam National University, South Korea
- Chungnam National University Hospital, South Korea
| | - Su-Jin Yoo
- Chungnam National University, South Korea
- Chungnam National University Hospital, South Korea
| | - Jinhyun Kim
- Chungnam National University, South Korea
- Chungnam National University Hospital, South Korea
| | - Yu Ran Lee
- Chungnam National University, South Korea
| | | | | | - Seong Wook Kang
- Chungnam National University, South Korea
- Chungnam National University Hospital, South Korea
| |
Collapse
|
22
|
Miao MZ, Lee JS, Yamada KM, Loeser RF. Integrin signalling in joint development, homeostasis and osteoarthritis. Nat Rev Rheumatol 2024; 20:492-509. [PMID: 39014254 PMCID: PMC11886400 DOI: 10.1038/s41584-024-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/18/2024]
Abstract
Integrins are key regulators of cell-matrix interactions during joint development and joint tissue homeostasis, as well as in the development of osteoarthritis (OA). The signalling cascades initiated by the interactions of integrins with a complex network of extracellular matrix (ECM) components and intracellular adaptor proteins orchestrate cellular responses necessary for maintaining joint tissue integrity. Dysregulated integrin signalling, triggered by matrix degradation products such as matrikines, disrupts this delicate balance, tipping the scales towards an environment conducive to OA pathogenesis. The interplay between integrin signalling and growth factor pathways further underscores the multifaceted nature of OA. Moreover, emerging insights into the role of endocytic trafficking in regulating integrin signalling add a new layer of complexity to the understanding of OA development. To harness the therapeutic potential of targeting integrins for mitigation of OA, comprehensive understanding of their molecular mechanisms across joint tissues is imperative. Ultimately, deciphering the complexities of integrin signalling will advance the ability to treat OA and alleviate its global burden.
Collapse
Affiliation(s)
- Michael Z Miao
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Bieri S, Möller B, Amsler J. Ferroptosis in Arthritis: Driver of the Disease or Therapeutic Option? Int J Mol Sci 2024; 25:8212. [PMID: 39125782 PMCID: PMC11311315 DOI: 10.3390/ijms25158212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Ferroptosis is a form of iron-dependent regulated cell death caused by the accumulation of lipid peroxides. In this review, we summarize research on the impact of ferroptosis on disease models and isolated cells in various types of arthritis. While most studies have focused on rheumatoid arthritis (RA) and osteoarthritis (OA), there is limited research on spondylarthritis and crystal arthropathies. The effects of inducing or inhibiting ferroptosis on the disease strongly depend on the studied cell type. In the search for new therapeutic targets, inhibiting ferroptosis in chondrocytes might have promising effects for any type of arthritis. On the other hand, ferroptosis induction may also lead to a desired decrease of synovial fibroblasts in RA. Thus, ferroptosis research must consider the cell-type-specific effects on arthritis. Further investigation is needed to clarify these complexities.
Collapse
Affiliation(s)
- Shania Bieri
- Faculty of Medicine, University of Bern, 3012 Bern, Switzerland
| | - Burkhard Möller
- Department of Rheumatology and Immunology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Jennifer Amsler
- Department of Rheumatology and Immunology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
24
|
Peng W, Chen Q, Zheng F, Xu L, Fang X, Wu Z. The emerging role of the semaphorin family in cartilage and osteoarthritis. Histochem Cell Biol 2024:10.1007/s00418-024-02303-y. [PMID: 38849589 DOI: 10.1007/s00418-024-02303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
In the pathogenesis of osteoarthritis, various signaling pathways may influence the bone joint through a common terminal pathway, thereby contributing to the pathological remodeling of the joint. Semaphorins (SEMAs) are cell-surface proteins actively involved in and primarily responsible for regulating chondrocyte function in the pathophysiological process of osteoarthritis (OA). The significance of the SEMA family in OA is increasingly acknowledged as pivotal. This review aims to summarize the mechanisms through which different members of the SEMA family impact various structures within joints. The findings indicate that SEMA3A and SEMA4D are particularly relevant to OA, as they participate in cartilage injury, subchondral bone remodeling, or synovitis. Additionally, other elements such as SEMA4A and SEMA5A may also contribute to the onset and progression of OA by affecting different components of the bone and joint. The mentioned mechanisms demonstrate the indispensable role of SEMA family members in OA, although the detailed mechanisms still require further exploration.
Collapse
Affiliation(s)
- Wenjing Peng
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Chen
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Fengjuan Zheng
- The Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, China
| | - Li Xu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Xinyi Fang
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| | - Zuping Wu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
25
|
Haloi P, Choudhary R, Lokesh BS, Konkimalla VB. Dual drug nanoparticle synergistically induced apoptosis, suppressed inflammation, and protected autophagic response in rheumatoid arthritis fibroblast-like synoviocytes. Immunol Lett 2024; 267:106854. [PMID: 38537719 DOI: 10.1016/j.imlet.2024.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated joint inflammatory disorder associated with aberrant activation of fibroblast-like synoviocytes (FLS). Recently, FLS gained importance due to its crucial role in RA pathogenesis, and thus, targeting FLS is suggested as an attractive treatment strategy for RA. FLS-targeted approaches may be combined with disease-modifying antirheumatic drugs (DMARDs) and natural phytochemicals to improve efficacy in RA control and negate immunosuppression. In this study, we assessed the therapeutic effectiveness of DD NP HG in primary RA-FLS cells isolated from the synovial tissue of FCA-induced RA rats. We observed that DD NP HG had good biosafety for healthy FLS cells and, at higher concentrations, a mild inhibitory effect on RA-FLS. The combination therapy (DD NP HG) of MTX NP and PEITC NE in RA-FLS showed a higher rate of apoptosis with significantly reduced LPS-induced expression of pro-inflammatory cytokines (TNF-α, IL-17A, and IL-6) in arthritic FLS. Further, the gene expression studies showed that DD NP HG significantly down-regulated the mRNA expression of IL-1β, RANKL, NFATc1, DKK1, Bcl-xl, Mcl-1, Atg12, and ULK1, and up-regulated the mRNA expression of OPG, PUMA, NOXA and SQSTM1 in LPS-stimulated RA-FLS cells. Collectively, our results demonstrated that DD NP HG significantly inhibited the RA-FLS proliferation via inducing apoptosis, down-regulating pro-inflammatory cytokines, and further enhancing the expression of genes associated with bone destruction in RA pathogenesis. A nanotechnology approach is a promising strategy for the co-delivery of dual drugs to regulate the RA-FLS function and achieve synergistic treatment of RA.
Collapse
Affiliation(s)
- Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rajat Choudhary
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - B Siva Lokesh
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
26
|
Jiang T, Yang T, Zhang W, Doherty M, Zhang Y, Zeng C, Sarmanova A, Yang Z, Li J, Wang Y, Wang Y, Obotiba AD, Lei G, Wei J. Prevalence and distribution of ultrasound-detected hand synovial abnormalities in a middle-aged and older population. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2024; 45:277-284. [PMID: 36882153 DOI: 10.1055/a-2048-8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
OBJECTIVE Synovial abnormalities are modifiable targets for hand pain and osteoarthritis. We examined the prevalence and distribution of ultrasound-detected hand synovial abnormalities in a community-derived sample of older people in China. METHODS Within the Xiangya Osteoarthritis Study, a community-based study, we assessed synovial hypertrophy (SH), joint effusion, and Power Doppler signal (PDS) on all fingers and thumbs of both hands using standardized ultrasound examinations (score: 0-3). We assessed distribution patterns of SH and effusion using χ2-test and interrelationships of SH and effusion in different joints and hands by generalized estimating equations. RESULTS Among 3,623 participants (mean age: 64.4 years; women: 58.1%), prevalence of SH, effusion and PDS were 85.5%, 87.3% and 1.5%, respectively. Prevalence of SH, effusion and PDS increased with age, was higher in the right hand than in the left hand and was more common in proximal than in distal hand joints. SH and effusion often occurred in multiple joints (P < 0.001). SH in one joint was strongly associated with presence of SH in the same joint of the opposite hand (odds ratio [OR]= 6.60, 95% confidence interval [CI]: 6.19-7.03) followed by SH in other joints in the same row, (OR=5.70, 95%CI: 5.32-6.11), and then other joints in the same ray of the same hand (OR=1.49, 95%CI: 1.39-1.60). Similar patterns were observed for effusion. CONCLUSION Hand synovial abnormalities are common among older people, often affect multiple hand joints and present a unique pattern. These findings suggest both systemic and mechanical factors play roles in their occurrence.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthopaedics, Xiangya Hospital, Xiangya Hospital Central South University, Changsha, China
- Department of Ultrasonography, Xiangya Hospital Central South University, Changsha, China
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
- Pain Centre Versus Arthritis UK, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
| | - Tuo Yang
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
- Pain Centre Versus Arthritis UK, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
- Health Management Center, Xiangya Hospital Central South University, Changsha, China
| | - Weiya Zhang
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
- Pain Centre Versus Arthritis UK, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
| | - Michael Doherty
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
- Pain Centre Versus Arthritis UK, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Aliya Sarmanova
- Musculoskeletal Research Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland
| | - Zidan Yang
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
| | - Jiatian Li
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
| | - Yilun Wang
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
| | - Yuqing Wang
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
| | - Abasiama D Obotiba
- Department of Health and Care Professions, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom of Great Britain and Northern Ireland
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Jie Wei
- Health Management Center, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Central South University Xiangya School of Public Health, Changsha, China
| |
Collapse
|
27
|
Choi E, Machado CR, Okano T, Boyle D, Wang W, Firestein GS. Joint-specific rheumatoid arthritis fibroblast-like synoviocyte regulation identified by integration of chromatin access and transcriptional activity. JCI Insight 2024; 9:e179392. [PMID: 38781031 PMCID: PMC11383168 DOI: 10.1172/jci.insight.179392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The mechanisms responsible for the distribution and severity of joint involvement in rheumatoid arthritis (RA) are not known. To explore whether site-specific fibroblast-like synoviocyte (FLS) biology might be associated with location-specific synovitis and explain the predilection for hand (wrist/metacarpal phalangeal joints) involvement in RA, we generated transcriptomic and chromatin accessibility data from FLS to identify the transcription factors and pathways. Networks were constructed by integration of chromatin accessibility and gene expression data. Analysis revealed joint-specific patterns of FLS phenotype, with proliferative, migratory, proinflammatory, and matrix-degrading characteristics observed in resting FLS derived from the hand joints compared with hip or knee. TNF stimulation amplified these differences, with greater enrichment of proinflammatory and proliferative genes in hand FLS compared with hip and knee FLS. Hand FLS also had the greatest expression of markers associated with an "activated" state relative to the "resting" state, with the greatest cytokine and MMP expression in TNF-stimulated hand FLS. Predicted differences in proliferation and migration were biologically validated with hand FLS exhibiting greater migration and cell growth than hip or knee FLS. Distinctive joint-specific FLS biology associated with a more aggressive inflammatory response might contribute to the distribution and severity of joint involvement in RA.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- Department of Chemistry and Biochemistry
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, California, USA
| | | |
Collapse
|
28
|
Yang J, Wei Z, Li H, Lv S, Fu Y, Xiao L. Paeoniflorin inhibits the inflammation of rheumatoid arthritis fibroblast-like synoviocytes by downregulating hsa_circ_009012. Heliyon 2024; 10:e30555. [PMID: 38726183 PMCID: PMC11079323 DOI: 10.1016/j.heliyon.2024.e30555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to progressive joint damage. Circular RNA (circRNA) can regulate the inflammatory response of fibroblast-like synoviocytes (FLSs) in RA, influencing the disease progression. Paeoniflorin (PF) is the main active ingredient extracted from Paeonia lactiflora and is known for its anti-inflammatory effect. This study aims to explore the potential mechanisms by which hsa_circ_009012 and PF regulate the inflammatory response in RA. Methods RNA expression of hsa_circ_009012, has-microRNA-1286 (miR-1286), toll-like receptor 4 (TLR4), NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was assessed by real-time quantitative polymerase chain reaction (RT-qPCR) or western blotting (WB). Cell inflammation markers (TNF-α, IL-1β, IL-6) were assessed by RT-qPCR and immunofluorescence (IF). Counting Kit-8 (CCK-8) assay, flow cytometry, and transwell assay were utilized to test cell viability, cell cycle distribution, and migration. Results Hsa_circ_009012 was highly expressed in RA-FLS. Hsa_circ_009012 over-expression facilitated the inflammation in RA-FLS and was closely associated with the miR-1286/TLR4 axis. Paeoniflorin inhibited inflammation and the expression of hsa_circ_009012 and TLR4, while upregulating the expression of miR-1286 in RA-FLS. Moreover, the upregulation of hsa_circ_009012 reversed the repressive effect of paeoniflorin on RA-FLS progression. Conclusion Paeoniflorin inhibits the inflammation of RA-FLS via mediating the hsa_circ_009012/miR-1286/TLR4/NLRP3 axis.
Collapse
Affiliation(s)
- Junping Yang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zehong Wei
- Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Huaiyu Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
- Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Senhao Lv
- Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yong Fu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liang Xiao
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
29
|
Chang MH, Fuhlbrigge RC, Nigrovic PA. Joint-specific memory, resident memory T cells and the rolling window of opportunity in arthritis. Nat Rev Rheumatol 2024; 20:258-271. [PMID: 38600215 PMCID: PMC11295581 DOI: 10.1038/s41584-024-01107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
In rheumatoid arthritis, juvenile idiopathic arthritis and other forms of inflammatory arthritis, the immune system targets certain joints but not others. The pattern of joints affected varies by disease and by individual, with flares most commonly involving joints that were previously inflamed. This phenomenon, termed joint-specific memory, is difficult to explain by systemic immunity alone. Mechanisms of joint-specific memory include the involvement of synovial resident memory T cells that remain in the joint during remission and initiate localized disease recurrence. In addition, arthritis-induced durable changes in synovial fibroblasts and macrophages can amplify inflammation in a site-specific manner. Together with ongoing systemic processes that promote extension of arthritis to new joints, these local factors set the stage for a stepwise progression in disease severity, a paradigm for arthritis chronicity that we term the joint accumulation model. Although durable drug-free remission through early treatment remains elusive for most forms of arthritis, the joint accumulation paradigm defines new therapeutic targets, emphasizes the importance of sustained treatment to prevent disease extension to new joints, and identifies a rolling window of opportunity for altering the natural history of arthritis that extends well beyond the initiation phase of disease.
Collapse
Affiliation(s)
- Margaret H Chang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Robert C Fuhlbrigge
- Department of Paediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
30
|
Laragione T, Harris C, Gulko PS. KIF1C and new Huntingtin-interacting protein 1 binding proteins regulate rheumatoid arthritis fibroblast-like synoviocytes' phenotypes. Front Immunol 2024; 15:1323410. [PMID: 38726004 PMCID: PMC11079228 DOI: 10.3389/fimmu.2024.1323410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
Background Huntingtin-interacting protein-1 (HIP1) is a new arthritis severity gene implicated in the regulation of the invasive properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). These invasive properties of FLS strongly correlate with radiographic and histology damage in patients with RA and rodent models of arthritis. While HIP1 has several intracellular functions, little is known about its binding proteins, and identifying them has the potential to expand our understanding of its role in cell invasion and other disease-contributing phenotypes, and potentially identify new targets for therapy. Methods FLS cell lines from arthritic DA (highly invasive) and from arthritis-protected congenic rats R6 (minimally invasive), which differ in an amino-acid changing HIP1 SNP, were cultured and lysed, and proteins were immunoprecipitated with an anti-HIP1 antibody. Immunoprecipitates were analyzed by mass spectrometry. Differentially detected (bound) proteins were selected for functional experiments using siRNA knockdown in human RA FLS to examine their effect in cell invasiveness, adhesion, cell migration and proliferation, and immunofluorescence microscopy. Results Proteins detected included a few known HIP1-binding proteins and several new ones. Forty-five proteins differed in levels detected in the DA versus R6 congenic mass spectrometry analyses. Thirty-two of these proteins were knocked down and studied in vitro, with 10 inducing significant changes in RA FLS phenotypes. Specifically, knockdown of five HIP1-binding protein genes (CHMP4BL1, COPE, KIF1C, YWHAG, and YWHAH) significantly decreased FLS invasiveness. Knockdown of KIF1C also reduced RA FLS migration. The binding of four selected proteins to human HIP1 was confirmed. KIF1C colocalized with lamellipodia, and its knockdown prevented RA FLS from developing an elongated morphology with thick linearized actin fibers or forming polarized lamellipodia, all required for cell mobility and invasion. Unlike HIP1, KIF1C knockdown did not affect Rac1 signaling. Conclusion We have identified new HIP1-binding proteins and demonstrate that 10 of them regulate key FLS phenotypes. These HIP1-binding proteins have the potential to become new therapeutic targets and help better understand the RA FLS pathogenic behavior. KIF1C knockdown recapitulated the morphologic changes previously seen in the absence of HIP1, but did not affect the same cell signaling pathway, suggesting involvement in the regulation of different processes.
Collapse
Affiliation(s)
| | | | - Percio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
31
|
Yu J, Wang S, Chen SJ, Zheng MJ, Yuan CR, Lai WD, Wen JJ, You WT, Liu PQ, Khanna R, Jin Y. Sinomenine ameliorates fibroblast-like synoviocytes dysfunction by promoting phosphorylation and nuclear translocation of CRMP2. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117704. [PMID: 38176664 DOI: 10.1016/j.jep.2024.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and arthritic pain. Sinomenine (SIN), derived from the rhizome of Chinese medical herb Qing Teng (scientific name: Sinomenium acutum (Thunb.) Rehd. Et Wils), has a longstanding use in Chinese traditional medicine for treating rheumatoid arthritis. It has been shown to possess anti-inflammatory, analgesic, and immunosuppressive effects with minimal side-effects clinically. However, the mechanisms governing its effects in treatment of joint pathology, especially on fibroblast-like synoviocytes (FLSs) dysfunction, and arthritic pain remains unclear. AIM This study aimed to investigate the effect and underlying mechanism of SIN on arthritic joint inflammation and joint FLSs dysfunctions. MATERIALS AND METHODS Collagen-induced arthritis (CIA) was induced in rats and the therapeutic effects of SIN on joint pathology were evaluated histopathologically. Next, we conducted a series of experiments using LPS-induced FLSs, which were divided into five groups (Naïve, LPS, SIN 10, 20, 50 μg/ml). The expression of inflammatory factors was measured by qPCR and ELISA. The invasive ability of cells was detected by modified Transwell assay and qPCR. Transwell migration and cell scratch assays were used to assess the migration ability of cells. The distribution and content of relevant proteins were observed by immunofluorescence and laser confocal microscopy, as well as Western Blot and qPCR. FLSs were transfected with plasmids (CRMP2 T514A/D) to directly modulate the post-translational modification of CRMP2 protein and downstream effects on FLSs function was monitored. RESULTS SIN alleviated joint inflammation in rats with CIA, as evidenced by improvement of synovial hyperplasia, inflammatory cell infiltration and cartilage damage, as well as inhibition of pro-inflammatory cytokines release from FLSs induced by LPS. In vitro studies revealed a concentration-dependent suppression of SIN on the invasion and migration of FLSs induced by LPS. In addition, SIN downregulated the expression of cellular CRMP2 that was induced by LPS in FLSs, but increased its phosphorylation at residue T514. Moreover, regulation of pCRMP2 T514 by plasmids transfection (CRMP2 T514A/D) significantly influenced the migration and invasion of FLSs. Finally, SIN promoted nuclear translocation of pCRMP2 T514 in FLSs. CONCLUSIONS SIN may exert its anti-inflammatory and analgesic effects by modulating CRMP2 T514 phosphorylation and its nuclear translocation of FLSs, inhibiting pro-inflammatory cytokine release, and suppressing abnormal invasion and migration. Phosphorylation of CRMP2 at the T514 site in FLSs may present a new therapeutic target for treating inflammatory joint's destruction and arthritic pain in RA.
Collapse
Affiliation(s)
- Jie Yu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Song Wang
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Si-Jia Chen
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Meng-Jia Zheng
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Cun-Rui Yuan
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Wei-Dong Lai
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Jun-Jun Wen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Wen-Ting You
- Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, China
| | - Pu-Qing Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, College of Dentistry, and NYU Pain Research Center, New York, 10010, USA.
| | - Yan Jin
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Chen J, Shi X, Deng Y, Dang J, Liu Y, Zhao J, Liang R, Zeng D, Wu W, Xiong Y, Yuan J, Chen Y, Wang J, Lin W, Chen X, Huang W, Olsen N, Pan Y, Fu Q, Zheng SG. miRNA-148a-containing GMSC-derived EVs modulate Treg/Th17 balance via IKKB/NF-κB pathway and treat a rheumatoid arthritis model. JCI Insight 2024; 9:e177841. [PMID: 38652539 PMCID: PMC11141912 DOI: 10.1172/jci.insight.177841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA. Through in vivo experiments using an experimental RA model, our results demonstrate that GMSC-EVs selectively homed to inflamed joints and recovered Treg and Th17 cell balance, resulting in the reduction of arthritis progression. Our investigations also uncovered miR-148a-3p as a critical contributor to the Treg/Th17 balance modulation via IKKB/NF-κB signaling orchestrated by GMSC-EVs, which was subsequently validated in a model of human xenograft versus host disease (xGvHD). Furthermore, we successfully developed a humanized animal model by utilizing synovial fibroblasts obtained from patients with RA (RASFs). We found that GMSC-EVs impeded the invasiveness of RASFs and minimized cartilage destruction, indicating their potential therapeutic efficacy in the context of patients with RA. Overall, the unique characteristics - including reduced immunogenicity, simplified administration, and inherent ability to target inflamed tissues - position GMSC-EVs as a viable alternative for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Jingrong Chen
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Shi
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanan Deng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junlong Dang
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Zhao
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongzhen Liang
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Yiding Xiong
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yuan
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Julie Wang
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Lin
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangfang Chen
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, The Penn State University Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Yunfeng Pan
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Wu G, Cao B, Zhai H, Liu B, Huang Y, Chen X, Ling H, Ling S, Jin S, Yang X, Wang J. EPO promotes the progression of rheumatoid arthritis by inducing desialylation via increasing the expression of neuraminidase 3. Ann Rheum Dis 2024; 83:564-575. [PMID: 38272667 PMCID: PMC11041559 DOI: 10.1136/ard-2023-224852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVE Erythropoietin (EPO) known as an erythrocyte-stimulating factor is increased in patients with rheumatoid arthritis (RA). Nevertheless, the function of EPO in the process of RA and relative mechanism needs to be further clarified. METHODS The level of EPO in serum and synovial fluid from patients with RA and healthy controls was determined by . Collagen-induced arthritis (CIA) mice were constructed to confirm the role of EPO on RA pathogenesis. Differentially expressed genes (DEGs) of EPO-treated fibroblast-like synoviocyte (FLS) were screened by transcriptome sequencing. The transcription factor of neuraminidase 3 (NEU3) of DEGs was verified by double luciferase reporting experiment, DNA pulldown, electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR (qPCR) assay. RESULTS The overexpression of EPO was confirmed in patients with RA, which was positively associated with Disease Activity Score 28-joint count. Additionally, EPO intervention could significantly aggravate the joint destruction in CIA models. The upregulation of NEU3 was screened and verified by transcriptome sequencing and qPCR in EPO-treated FLS, and signal transducer and activator of transcription 5 was screened and verified to be the specific transcription factor of NEU3. EPO upregulates NEU3 expression via activating the Janus kinase 2 (JAK2)-STAT5 signalling pathway through its receptor EPOR, thereby to promote the desialylation through enhancing the migration and invasion ability of FLS, which is verified by JAK2 inhibitor and NEU3 inhibitor. CONCLUSION EPO, as a proinflammatory factor, accelerates the process of RA through transcriptional upregulation of the expression of NEU3 by JAK2/STAT5 pathway.
Collapse
Affiliation(s)
- Gan Wu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ben Cao
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haige Zhai
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Liu
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Huang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaowei Chen
- Department of Immunology and Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hanzhi Ling
- Department of Immunology and Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
34
|
Wang X, Zhang X, Liu Z, Zhao N, Li X, Su P, Zheng G, Zhang X, Wang H, Zhang Y. Naringenin nanoparticles targeting cyclin B1 suppress the progression of rheumatoid arthritis-associated lung cancer by inhibiting fibroblast-to-myofibroblast transition. Int J Biochem Cell Biol 2024; 169:106557. [PMID: 38460905 DOI: 10.1016/j.biocel.2024.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
There is growing evidence of an elevated risk of lung cancer in patients with rheumatoid arthritis. The poor prognosis of rheumatoid arthritis-associated lung cancer and the lack of therapeutic options pose an even greater challenge to the clinical management of patients. This study aimed to identify potential molecular targets associated with the progression of rheumatoid arthritis-associated lung cancer and examine the efficacy of naringenin nanoparticles targeting cyclin B1. Mendelian randomizatio analysis revealed that rheumatoid arthritis has a positive correlation with the risk of lung cancer. Cyclin B1 was significantly upregulated in patients with rheumatoid arthritis-associated lung cancer and was significantly overexpressed in synovial tissue fibroblasts. Furthermore, the overexpression of cyclin B1 in rheumatoid arthritis fibroblast-like synoviocytes, which promotes their proliferation and fibroblast-to-myofibroblast transition, can significantly contribute to the growth and infiltration of lung cancer cells. Importantly, our prepared naringenin nanoparticles targeting cyclin B1 effectively attenuated proliferation and fibroblast-to-myofibroblast transition by blocking cells at the G2/M phase. In vivo experiments, naringenin nanoparticles targeting cyclin B1 significantly alleviated the development of collagen-induced arthritis and lung orthotopic tumors. Collectively, our results reveal that naringenin nanoparticles targeting cyclin B1 can suppress the progression of rheumatoid arthritis-associated lung cancer by inhibiting fibroblast-to-myofibroblast transition. These findings provide new insights into the treatment of rheumatoid arthritis-associated lung cancer therapy.
Collapse
Affiliation(s)
- Xilong Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhipu Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Na Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Xiaohan Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Hongxing Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China.
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China.
| |
Collapse
|
35
|
Holmberg SR, Sakamoto Y, Kato A, Romero MF. The role of Na +-coupled bicarbonate transporters (NCBT) in health and disease. Pflugers Arch 2024; 476:479-503. [PMID: 38536494 PMCID: PMC11338471 DOI: 10.1007/s00424-024-02937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.
Collapse
Affiliation(s)
- Shannon R Holmberg
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA
| | - Yohei Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA.
- Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA.
| |
Collapse
|
36
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
37
|
Hu Z, Li Y, Zhang L, Jiang Y, Long C, Yang Q, Yang M. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: state of the art review. Front Immunol 2024; 15:1250884. [PMID: 38482018 PMCID: PMC10933078 DOI: 10.3389/fimmu.2024.1250884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Fibroblast-like synoviocytes (FLS) are important components of the synovial membrane. They can contribute to joint damage through crosstalk with inflammatory cells and direct actions on tissue damage pathways in rheumatoid arthritis (RA). Recent evidence suggests that, compared with FLS in normal synovial tissue, FLS in RA synovial tissue exhibits significant differences in metabolism. Recent metabolomic studies have demonstrated that metabolic changes, including those in glucose, lipid, and amino acid metabolism, exist before synovitis onset. These changes may be a result of increased biosynthesis and energy requirements during the early phases of the disease. Activated T cells and some cytokines contribute to the conversion of FLS into cells with metabolic abnormalities and pro-inflammatory phenotypes. This conversion may be one of the potential mechanisms behind altered FLS metabolism. Targeting metabolism can inhibit FLS proliferation, providing relief to patients with RA. In this review, we aimed to summarize the evidence of metabolic changes in FLS in RA, analyze the mechanisms of these metabolic alterations, and assess their effect on RA phenotype. Finally, we aimed to summarize the advances and challenges faced in targeting FLS metabolism as a promising therapeutic strategy for RA in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Martínez-Ramos S, García S. An update of murine models and their methodologies in immune-mediated joint damage and pain research. Int Immunopharmacol 2024; 128:111440. [PMID: 38176343 DOI: 10.1016/j.intimp.2023.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Murine models have played an indispensable role in the understanding of rheumatic and musculoskeletal disorders (RMD), elucidating the genetic, endocrine and biomechanical pathways involved in joint pathology and associated pain. To date, the available models in RMD can be classified as induced or spontaneous, both incorporating transgenic alternatives that improve specific insights. It is worth noting that the selection of the most appropriate model together with the evaluation of their specific characteristics and technical capabilities are crucial when designing the experiments. Furthermore, it is also imperative to consistently adhere to the ethical standards concerning animal experimentation. Recognizing the inherent limitation that any model can entirely encapsulates the complexity of the pathophysiology of these conditions, the aim of this review is to provide an updated overview on the methodology of current murine models in major arthropathies and their immune-mediated pathways, addressing to basic, translational and pharmacological research in joint damage and pain.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain.
| | - Samuel García
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| |
Collapse
|
39
|
Choi E, Machado CRL, Okano T, Boyle D, Wang W, Firestein GS. Joint-specific rheumatoid arthritis fibroblast-like synoviocyte regulation identified by integration of chromatin access and transcriptional activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575379. [PMID: 38293079 PMCID: PMC10827126 DOI: 10.1101/2024.01.12.575379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The mechanisms responsible for the distribution and severity of joint involvement in rheumatoid arthritis (RA) are not known. To explore whether site-specific FLS biology might be associated with location-specific synovitis and explain the predilection for hand (wrist/metacarpal phalangeal joints) involvement in RA, we generated transcriptomic and chromatin accessibility data from FLS to identify the transcription factors (TFs) and pathways. Networks were constructed by integration of chromatin accessibility and gene expression data. Analysis revealed joint-specific patterns of FLS phenotype, with proliferative, migratory, proinflammatory, and matrix-degrading characteristics observed in resting FLS derived from the hand joints compared with hip or knee. TNF-stimulation amplified these differences, with greater enrichment of proinflammatory and proliferative genes in hand FLS compared with hip and knee FLS. Hand FLS also had the greatest expression of markers associated with an 'activated' state relative to the 'resting' state, with the greatest cytokine and MMP expression in TNF-stimulated hand FLS. Predicted differences in proliferation and migration were biologically validated with hand FLS exhibiting greater migration and cell growth than hip or knee FLS. Distinctive joint-specific FLS biology associated with a more aggressive inflammatory response might contribute to the distribution and severity of joint involvement in RA.
Collapse
|
40
|
Zhang Y, Kang X, Li J, Song J, Li X, Li W, Qi J. Inflammation-Responsive Nanoagents for Activatable Photoacoustic Molecular Imaging and Tandem Therapies in Rheumatoid Arthritis. ACS NANO 2024; 18:2231-2249. [PMID: 38189230 DOI: 10.1021/acsnano.3c09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rheumatoid arthritis (RA) severely lowers the life quality by progressively destructing joint functions and eventually causing permanent disability, representing a pressing public health concern. The pathogenesis of RA includes the excessive production of proinflammatory cytokines and harmful oxygen-derived free radicals, such as nitric oxide (NO), which constitute vital targets for precise diagnosis and effective treatment of RA. In this study, we introduce an advanced nanoagent that integrates the RA microenvironment-activatable photoacoustic (PA) imaging with multitarget synergistic treatment for RA. A highly sensitive organic probe with NO-tunable energy transformation and molecular geometry is developed, which enables strong near-infrared absorption with a turn-on PA signal, and the active intramolecular motion could further boost PA conversion. The probe is coassembled with an inflammation-responsive prodrug to construct the theranostic nanoagent, on which a macrophage-derived cell membrane with natural tropism to the inflammatory sites is camouflaged to improve the targeting ability to inflamed joints. The nanoagent could not only sensitively detect RA and differentiate the severity but also efficiently alleviate RA symptoms and improve joint function. The combination of activatable probe-mediated NO scavenging and on-demand activation of anti-inflammatory prodrug significantly inhibits the proinflammatory factors and promotes macrophage repolarization from M1 to M2 phenotype. This meticulously designed nanoagent ingeniously integrates RA-specific PA molecular imaging with synergistic multitarget therapy, rendering tremendous promise for precise intervention of RA-related diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueping Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Wei Z, Li H, Lv S, Yang J. Current situation and trend of non-coding RNA in rheumatoid arthritis: a review and bibliometric analysis. Front Immunol 2024; 14:1301545. [PMID: 38292492 PMCID: PMC10824985 DOI: 10.3389/fimmu.2023.1301545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects multiple joints and has adverse effects on various organs throughout the body, often leading to a poor prognosis. Recent studies have shown significant progress in the research of non-coding RNAs (ncRNAs) in RA. Therefore, this study aims to comprehensively assess the current status and research trends of ncRNAs in RA through a bibliometric analysis. Methods This study retrieved articles relevant to ncRNAs and RA from the Science Citation Index Expanded Database of the Web of Science Core Collection between January 1st, 2003, and July 31st, 2023. The relevant articles were screened based on the inclusion criteria. VOSviewer and CiteSpace are utilized for bibliometric and visual analysis. Results A total of 1697 publications were included in this study, and there was a noticeable increase in annual publications from January 1st, 2003, to July 31st, 2023. China, the United States, and the United Kingdom were the most productive countries in this field, contributing to 43.81%, 13.09%, and 3.87% of the publications. Anhui Medical University and Lu Qianjin were identified as the most influential institution and author. Frontiers In Immunology stood out as the most prolific journal, while Arthritis & Rheumatology was the most co-cited journal. Additionally, the research related to "circular RNA", "oxidative stress", "proliferation", and "migration" have emerged as new hotspots in the field. Conclusion In this study, we have summarized the publication characteristics related to ncRNA and RA and identified the most productive countries, institutions, authors, journals, hot topics, and trends.
Collapse
Affiliation(s)
- Zehong Wei
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huaiyu Li
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Senhao Lv
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Junping Yang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
42
|
Barrera-Vázquez OS, Hernández-González O. Structural and Pharmacological Network Focused on MiRNAs Involved in Rheumatoid Arthritis: A Systematic Review. Curr Mol Med 2024; 24:599-609. [PMID: 37185324 DOI: 10.2174/1566524023666230423144114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Rheumatoid Arthritis (RA) is a chronic autoimmune disease that has a prevalence of over one percent of the world population, causing substantial pain, joint deformity, and functional disability in patients. The identification and measurement of miRNAs are relatively easy to perform. Future studies will corroborate if miRNAs can fulfill their roles as biomarkers with either predictive or diagnostic evaluation of treatment potential and provide actual clinical utility. METHODS In the last decade, various advances have been made regarding the identification of the origin and exact functions of miRNAs, allowing us to have a potential use both in the research and clinical fields. OBJECTIVE This systematic review aimed to collect, analyze, and improve the current understanding of RA-related miRNAs and their applicability in therapeutics. A bibliographic search of the miRNAs involved in RA was carried out, and through the use of databases, their target genes and small molecules that had some relationship with their expression were searched. The analysis of these data was done through structural network analysis. RESULTS During the network analysis, miR-30a, miR-30c, let-7a, miR-144, miR-17-5p, miR-124, miR -23b, miR-23, miR-15a, miR-16 were the most connected, which could be used as possible biomarkers or be candidates for further analysis due to their interaction with other miRNAs and genes. CONCLUSION Additionally, this is the first systematic review, in which we proposed that small compounds like toxicants and drugs could have a potential role within RA because they regulate the expression of miRNAs involved in this pathology. Some of these compounds are commonly found as environmental contaminants, and others as drugs. These ideas open a new panorama of understanding RA, proposing possible causes or treatments against this pathology. Therefore, these small molecules would give us some indication of a relationship with RA, thereby helping in seeking causes, treatment, or prevention of this disease. CONCLUSION This is the first time it is intended to use structural network analysis to determine possible biomarkers of AR for diagnosis and prognosis through the expression of these miRNAs and their relationship with compounds of daily life.
Collapse
Affiliation(s)
| | - Olivia Hernández-González
- Laboratorio de Microscopia Electrónica, Instituto Nacional de Rehabilitación, Mexico City, 14389, Mexico
| |
Collapse
|
43
|
Neumann E, Heck C, Müller-Ladner U. Recent developments in the synovial fibroblast pathobiology field in rheumatoid arthritis. Curr Opin Rheumatol 2024; 36:69-75. [PMID: 37720975 DOI: 10.1097/bor.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
PURPOSE OF REVIEW Synovial fibroblasts are the central cells of connective tissue homeostasis. In rheumatoid arthritis (RA) tissue, synovial fibroblasts are activated because of the proinflammatory environment very early in the disease. Epigenetic alterations in RASF result in a permanently activated stage, and activated RASF are involved in many processes of RA pathophysiology. Therefore, several recent findings of the last 18 months with focus on RASF activation and function are summarized. RECENT FINDINGS RASF activation because of a profoundly altered epigenome leads to an invasive phenotype with increased migration, adhesion and invasion into cartilage, which was further characterized in several studies. RASF subtypes and subtype dynamics were evaluated using high-resolution techniques to better understand RASF pathophysiology. Many studies addressing interactions with immune or stromal cell types have been published showing that RASF interact with many different cell types contributing not only to their own activation and pro-inflammatory response but also to the activation of the other cells. SUMMARY Highly interesting findings revealing mechanisms of RASF activation and altered functions have been published, RASF subsets further characterized, and interactions with cell types elucidated, which all contribute to a better understanding of the role of RASF in RA development and progression.
Collapse
Affiliation(s)
- Elena Neumann
- Department of Rheumatology and Clinical Immunology, Justus Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Germany
| | | | | |
Collapse
|
44
|
Mihaylova V, Kazakova M, Batalov Z, Karalilova R, Batalov A, Sarafian V. JAK inhibitors improve ATP production and mitochondrial function in rheumatoid arthritis: a pilot study. Rheumatol Int 2024; 44:57-65. [PMID: 37985499 PMCID: PMC10766792 DOI: 10.1007/s00296-023-05501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease associated by inflammation of the synovial tissue and autoantibody production. Oxidative stress and free radicals are known to be indirectly implicated in joint damage and cartilage destruction in RA. Several studies describe the presence of mitochondrial dysfunction in RA, but few of them follow the dynamics in energy parameters after therapy. The aim of our investigation is to evaluate the direct effect of JAK inhibitors on cellular metabolism (and under induced oxidative stress) in RA patients. Ten newly diagnosed RA patients were included in the study. Peripheral blood mononuclear cells (PBMCs) and plasma were isolated before and 6 months after therapy with JAK inhibitors. A real-time metabolic analysis was performed to assess mitochondrial function and cell metabolism in PBMCs. Sonographic examination, DAS28 and conventional clinical laboratory parameters were determined also prior and post therapy. A significant decrease in proton leak after therapy with JAK inhibitors was found. The increased production of ATP indicates improvement of cellular bioenergetics status. These findings could be related to the catalytic action of JAK inhibitors on oxidative phosphorylation which corresponds to the amelioration of clinical and ultra-sonographic parameters after treatment. Our study is the first to establish the dynamics of mitochondrial parameters in PBMCs from RA patients before and after in vivo therapy with JAK inhibitors.
Collapse
Affiliation(s)
- Valentina Mihaylova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria.
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Zguro Batalov
- Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital "Kaspela", Plovdiv, Plovdiv, Bulgaria
| | - Rositsa Karalilova
- Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital "Kaspela", Plovdiv, Plovdiv, Bulgaria
| | - Anastas Batalov
- Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital "Kaspela", Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
45
|
Jiang X, He Y, Zhao Y, Pan Z, Wang Y. Danggui Buxue Decoction exerts its therapeutic effect on rheumatoid arthritis through the inhibition of Wnt/β-catenin signaling pathway. J Orthop Surg Res 2023; 18:944. [PMID: 38066567 PMCID: PMC10709948 DOI: 10.1186/s13018-023-04439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Danggui Buxue Decoction (DBD) is a traditional Chinese medicine prescription, which has the functions of benefiting Qi, generating blood and regulating the immune system. At present, various clinical reports suggest that DBD has some efficacy in Rheumatoid arthritis (RA), but its mechanism of action is still unclear. Thus, the present study explored mechanism of this preparation on RA. METHODS The effect of DBD was evaluated by tumor necrosis factor (TNF)-α-induced Human fibroblast-like synoviocyte of rheumatoid arthritis (HFLS-RA) cell model and collagen-induced arthritis (CIA) rat model, respectively. Inflammatory factors including TNF-ɑ, IL-1β, IL-6 and IL-10 in the culture supernatants or rat serum were measured using ELISA. The related indexes including fur luster, mental state and activity of rat and the symptoms including swelling and deformation of toes and ankles were also measured. RESULTS In vitro results showed that DBD cannot only inhibit the proliferation of HFLS-RA cells but also reduce the levels of pro-inflammatory factors while increasing the level of anti-inflammatory factors. Similar results were obtained from in vivo experiments. Rats receiving DBD showed a decrease in the severity of rheumatoid arthritis in rat models. Moreover, the protein levels of c-myc and β-catenin decreased significantly, while the protein level of SFRP4 increased, which indicated that DBD might inhibit the inflammatory reaction by regulating Wnt/β-catenin signaling pathway, thus alleviating the symptoms of RA. CONCLUSION Our findings not only provide insights for understanding the molecular mechanism of DBD in treating RA, but also provide the theoretical basis for further clinical prevention and treatment.
Collapse
Affiliation(s)
- Xin Jiang
- College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin He
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ying Zhao
- College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| | - Yinghang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
46
|
Ye Z, Liu Y, Song J, Gao Y, Fang H, Hu Z, Zhang M, Liao W, Cui L, Liu Y. Expanding the therapeutic potential of Salvia miltiorrhiza: a review of its pharmacological applications in musculoskeletal diseases. Front Pharmacol 2023; 14:1276038. [PMID: 38116081 PMCID: PMC10728493 DOI: 10.3389/fphar.2023.1276038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Salvia miltiorrhiz, commonly known as "Danshen" in Chinese medicine, has longstanding history of application in cardiovascular and cerebrovascular diseases. Renowned for its diverse therapeutic properties, including promoting blood circulation, removing blood stasis, calming the mind, tonifying the blood, and benefiting the "Qi", recent studies have revealed its significant positive effects on bone metabolism. This potential has garnered attention for its promising role in treating musculoskeletal disorders. Consequently, there is a high anticipation for a comprehensive review of the potential of Salvia miltiorrhiza in the treatment of various musculoskeletal diseases, effectively introducing an established traditional Chinese medicine into a burgeoning field. AIM OF THE REVIEW Musculoskeletal diseases (MSDs) present significant challenges to healthcare systems worldwide. Previous studies have demonstrated the high efficacy and prospects of Salvia miltiorrhiza and its active ingredients for treatment of MSDs. This review aims to illuminate the newfound applications of Salvia miltiorrhiza and its active ingredients in the treatment of various MSDs, effectively bridging the gap between an established medicine and an emerging field. METHODS In this review, previous studies related to Salvia miltiorrhiza and its active ingredients on the treatment of MSD were collected, the specific active ingredients of Salvia miltiorrhiza were summarized, the effects of Salvia miltiorrhiza and its active ingredients for the treatment of MSDs, as well as their potential molecular mechanisms were reviewed and discussed. RESULTS Based on previous publications, Salvianolic acid A, salvianolic acid B, tanshinone IIA are the representative active ingredients of Salvia miltiorrhiza. Their application has shown significant beneficial outcomes in osteoporosis, fractures, and arthritis. Salvia miltiorrhiza and its active ingredients protect against MSDs by regulating different signaling pathways, including ROS, Wnt, MAPK, and NF-κB signaling. CONCLUSION Salvia miltiorrhiza and its active ingredients demonstrate promising potential for bone diseases and have been explored across a wide variety of MSDs. Further exploration of Salvia miltiorrhiza's pharmacological applications in MSDs holds great promise for advancing therapeutic interventions and improving the lives of patients suffering from these diseases.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, China
| | - Yuyu Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jintong Song
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, China
| | - Yin Gao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute of Zhanjiang, Zhanjiang, China
| | - Haiping Fang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Zilong Hu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Min Zhang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Wenwei Liao
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, China
| |
Collapse
|
47
|
Promila L, Joshi A, Khan S, Aggarwal A, Lahiri A. Role of mitochondrial dysfunction in the pathogenesis of rheumatoid arthritis: Looking closely at fibroblast- like synoviocytes. Mitochondrion 2023; 73:62-71. [PMID: 38506094 DOI: 10.1016/j.mito.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/28/2023] [Accepted: 10/28/2023] [Indexed: 03/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune, and inflammatory disease that primarily targets the joints, leading to cartilage and bone destruction.Fibroblast-like synoviocytes (FLS) are specialized cells of the synovial lining in the joint that plays a fundamental role in the development of RA. Particularly, FLS of RA patients (RA-FLS) in the joint exhibit specific characteristics like higher invading and immunogenic properties, hyperproliferation, and reduced apoptotic capacity, suggesting a dysfunctional mitochondrial pool in these cells. Mitochondria are emerging as a potential organelle that can decide cellular immunometabolism, invasion properties, and cell death. Accordingly, multiplestudies established that mitochondria are crucial in establishing RA. However, the underlying mechanism of impaired mitochondrial function in RA remains poorly understood. This review will provide an overview of the mitochondrial role in the progression of RA, specifically in the context of FLS biology. We will also outline how mitochondria-centric therapeutics can be achieved that would yield novel avenues of research in pathological mediation and prevention.
Collapse
Affiliation(s)
- Lakra Promila
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anubha Joshi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shazia Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amita Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medicine, Lucknow, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
48
|
He ZH, Zou JT, Chen X, Gong JS, Chen Y, Jin L, Liu YW, Rao SS, Yin H, Tan YJ, Wang Z, Du W, Li HM, Qian YX, Wang ZX, Wang YY, Wan TF, Luo Y, Zhu H, Chen CY, Xie H. Ångstrom-scale silver particles ameliorate collagen-induced and K/BxN-transfer arthritis in mice via the suppression of inflammation and osteoclastogenesis. Inflamm Res 2023; 72:2053-2072. [PMID: 37816881 DOI: 10.1007/s00011-023-01778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE Nanoparticles (NPs) hold a great promise in combating rheumatoid arthritis, but are often compromised by their toxicities because the currently used NPs are usually synthesized by chemical methods. Our group has previously fabricated Ångstrom-scale silver particles (AgÅPs) and demonstrated the anti-tumor and anti-sepsis efficacy of fructose-coated AgÅPs (F-AgÅPs). This study aimed to uncover the efficacy and mechanisms of F-AgÅPs for arthritis therapy. METHODS We evaluated the efficacy of F-AgÅPs in collagen-induced arthritis (CIA) mice. We also compared the capacities of F-AgÅPs, the commercial AgNPs, and the clinical drug methotrexate (MTX) in protecting against K/BxN serum-transfer arthritis (STA) mice. Moreover, we evaluated the effects of F-AgÅPs and AgNPs on inflammation, osteoclast formation, synoviocytes migration, and matrix metalloproteinases (MMPs) production in vitro and in vivo. Meanwhile, the toxicities of F-AgÅPs and AgNPs in vitro and in vivo were also tested. RESULTS F-AgÅPs significantly prevented bone erosion, synovitis, and cartilage damage, attenuated rheumatic pain, and improved the impaired motor function in mouse models of CIA or STA, the anti-rheumatic effects of which were comparable or stronger than AgNPs and MTX. Further studies revealed that F-AgÅPs exhibited similar or greater inhibitory abilities than AgNPs to suppress inflammation, osteoclast formation, synoviocytes migration, and MMPs production. No obvious toxicities were observed in vitro and in vivo after F-AgÅPs treatment. CONCLUSIONS F-AgÅPs can effectively alleviate arthritis without notable toxicities and their anti-arthritic effects are associated with the inhibition of inflammation, osteoclastogenesis, synoviocytes migration, and MMPs production. Our study suggests the prospect of F-AgÅPs as an efficient and low-toxicity agent for arthritis therapy.
Collapse
Affiliation(s)
- Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Jing-Tao Zou
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Xia Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Ya Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Ling Jin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yi-Wei Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Shan-Shan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yi-Juan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Nursing, Central South University, Changsha, Hunan, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong-Ming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yu-Xuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Teng-Fei Wan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yi Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Hao Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China.
- Angmedicine Research Center, Central south university, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China.
- Angmedicine Research Center, Central south university, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
49
|
Bruckner S, Capria VM, Zeno B, Leblebicioglu B, Goyal K, Vasileff WK, Awan H, Willis WL, Ganesan LP, Jarjour WN. The therapeutic effects of gingival mesenchymal stem cells and their exosomes in a chimeric model of rheumatoid arthritis. Arthritis Res Ther 2023; 25:211. [PMID: 37885040 PMCID: PMC10601129 DOI: 10.1186/s13075-023-03185-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis is a chronic systemic autoimmune disease that involves transformation of the lining of synovial joints into an invasive and destructive tissue. Synovial fibroblasts become transformed, invading and destroying the bone and cartilage of the affected joint(s). Due to the significant role these cells play in the progression of the disease process, developing a therapeutic strategy to target and inhibit their invasive destructive nature could help patients who are afflicted with this debilitating disease. Gingival-derived mesenchymal stem cells are known to possess immunomodulatory properties and have been studied extensively as potential cell-based therapeutics for several autoimmune disorders. METHODS A chimeric human/mouse model of synovitis was created by surgically implanting SCID mice with a piece of human articular cartilage surrounded by RASF. Mice were injected once with either GMSC or GMSCExo at 5-7 days post-implantation. Histology and IHC were used to assess RASF invasion of the cartilage. Flow cytometry was used to understand the homing ability of GMSC in vivo and the incidence of apoptosis of RASF in vitro. RESULTS We demonstrate that both GMSC and GMSCExo are potent inhibitors of the deleterious effects of RASF. Both treatments were effective in inhibiting the invasive destructive properties of RASF as well as the potential for these cells to migrate to secondary locations and attack the cartilage. GMSC home to the site of the implant and induce programmed cell death of the RASF. CONCLUSIONS Our results indicate that both GMSC and GMSCExo can block the pathological effects of RASF in this chimeric model of RA. A single dose of either GMSC or GMSCExo can inhibit the deleterious effects of RASF. These treatments can also block the invasive migration of the RASF, suggesting that they can inhibit the spread of RA to other joints. Because the gingival tissue is harvested with little difficulty, relatively small amounts of tissue are required to expand the cells, the simple in vitro expansion process, and the increasing technological advances in the production of therapeutic exosomes, we believe that GMSCExo are excellent candidates as a potential therapeutic for RA.
Collapse
Affiliation(s)
- Shane Bruckner
- Division of Immunology & Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vittoria M Capria
- University Laboratory Animal Resources, The Ohio State University, Columbus, OH, USA
| | - Braden Zeno
- Division of Immunology & Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Binnaz Leblebicioglu
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Kanu Goyal
- Department of Orthopaedic Surgery, The Ohio State Wexner Medical Center, Hand & Upper Extremity Center, Columbus, OH, USA
| | - William K Vasileff
- Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - Hisham Awan
- Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - William L Willis
- Division of Immunology & Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Latha P Ganesan
- Division of Immunology & Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Wael N Jarjour
- Division of Immunology & Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
50
|
Mao Y, Liu C, Liu D, Wei X, Tan X, Zhou J, Yu X, Liu M. In vitro inhibitory effect of zingerone on TNFα-stimulated fibroblast-like synoviocytes. In Vitro Cell Dev Biol Anim 2023; 59:615-623. [PMID: 37728855 DOI: 10.1007/s11626-023-00810-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Targeting Fibroblast-like synoviocytes (FLSs) is an attractive complementary approach for RA therapy. This study aimed to investigate the inhibitory effects of zingerone on TNFα-induced arthritic FLSs. MTS, EdU, wound healing, DHE staining and real-time PCR were used to determine the effects of zingerone on the destructive behaviors of arthritic FLSs induced by TNFα. Western blot analysis was used to analyze cell signaling pathways. Zingerone treatment significantly inhibited TNFα-induced proliferation, migration, ROS formation and pro-inflammatory cytokines expression of FLSs. Molecular mechanism studies revealed that zingerone could suppress TNFα-induced activations of MAPKs (ERK, JNK and p38) in arthritic FLSs. Zingerone attenuated pathological features of FLSs via MAPKs pathways, indicating its potential as a complementary or alternative drug for RA therapy.
Collapse
Affiliation(s)
- Yuhang Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Changze Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Dan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Xianhua Wei
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Xin Tan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Junnan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaolu Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|