Published online Aug 19, 2023. doi: 10.5498/wjp.v13.i8.573
Peer-review started: June 14, 2023
First decision: July 3, 2023
Revised: July 6, 2023
Accepted: July 14, 2023
Article in press: July 14, 2023
Published online: August 19, 2023
Processing time: 63 Days and 22.9 Hours
Due to academic pressure, social relations, and the change of adapting to indepen
To investigate college students’ present psychological well-being, identify the contributing factors to its decline, and construct a predictive nomogram model.
We analyzed the psychological health status of 40874 university students in selected universities in Hubei Province, China from March 1 to 15, 2022, using online questionnaires and random sampling. Factors influencing their mental health were also analyzed using the logistic regression approach, and R4.2.3 software was employed to develop a nomogram model for risk prediction.
We randomly selected 918 valid data and found that 11.3% of college students had psychological problems. The results of the general data survey showed that the mental health problems of doctoral students were more prominent than those of junior college students, and the mental health of students from rural areas was more likely to be abnormal than that of urban students. In addition, students who had experienced significant life events and divorced parents were more likely to have an abnormal status. The abnormal group exhibited significantly higher Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 scores than the healthy group, with these differences being statistically significant (P < 0.05). The nomogram prediction model drawn by multivariate analysis includ
In this study, nearly 11.3% of contemporary college students had psychological problems, the risk factors include students from rural areas, divorced parents, non-single children, infrequent exercise, and significant life events.
Core Tip: Mental health problems in college students have a marked impact on their physical and mental health, and learning capacity, and are also one of the key issues of concern to educators and society. This study analyzed the mental health status of 40874 college students in selected colleges and universities in Hubei Province, China. A logistic regression model was used to explore the factors affecting the mental health of college students. A risk prediction nomogram model was constructed by R software, which improved the visualization and comprehensibility of the research.