Published online Jun 19, 2021. doi: 10.5498/wjp.v11.i6.222
Peer-review started: February 28, 2021
First decision: April 6, 2021
Revised: April 14, 2021
Accepted: May 20, 2021
Article in press: May 20, 2021
Published online: June 19, 2021
Processing time: 102 Days and 8 Hours
Mental health symptoms secondary to trauma exposure and substance use disorders (SUDs) co-occur frequently in both clinical and community samples. The possibility of a shared aetiology remains an important question in translational neuroscience. Advancements in genetics, basic science, and neuroimaging have led to an improved understanding of the neural basis of these disorders, their frequent comorbidity and high rates of relapse remain a clinical challenge. This project aimed to conduct a review of the field’s current understanding regarding the neural circuitry underlying posttraumatic stress disorder and SUD. A comprehensive review was conducted of available published literature regarding the shared neurobiology of these disorders, and is summarized in detail, including evidence from both animal and clinical studies. Upon summarizing the relevant literature, this review puts forth a hypothesis related to their shared neurobiology within the context of fear processing and reward cues. It provides an overview of brain reward circuitry and its relation to the neurobiology, symptomology, and phenomenology of trauma and substance use. This review provides clinical insights and implications of the proposed theory, including the potential development of novel pharmacological and therapeutic treatments to address this shared neurobiology. Limitations and extensions of this theory are discussed to provide future directions and insights for this shared phenomena.
Core Tip: Traumatic stress disorders and substance use disorders are highly co-morbid in community and clinical samples. Recent findings from basic and clinical neuroscience support a shared neural basis of these disorders, specifically related to the processing of fear and reward cues. Understanding the overlapping neurobiology of these disorders will improve our understanding of disease aetiology and improve prevention and treatment efforts.