Published online Dec 19, 2021. doi: 10.5498/wjp.v11.i12.1301
Peer-review started: March 16, 2021
First decision: May 5, 2021
Revised: May 25, 2021
Accepted: September 16, 2021
Article in press: September 16, 2021
Published online: December 19, 2021
Processing time: 273 Days and 13.3 Hours
Suicide is a major public health problem. Worldwide, around 800000 people die by suicide every year. Suicide is a multifactorial disorder, with numerous environmental and genetic risk factors involved. Among the candidate genes, changes in the BDNF locus at the gene, epigenetic, mRNA, and protein expression levels have been implicated in psychiatric disorders, including suicidal behavior and completed suicides.
To investigate changes in BDNF methylation and expression of four alternative BDNF transcripts for association with completed suicide.
This case-control study included 42 unrelated male Caucasian subjects, where 20 were control subjects who died following acute cardiac arrest, and 22 were suicide victims who died by hanging. DNA and RNA were extracted from brain tissue (Brodmann area 9 and hippocampus) and from blood. DNA methylation and mRNA expression levels were determined by targeted bisulfite next-generation sequencing and reverse-transcription quantitative PCR. Statistical analysis was done by use of two-tailed Student’s t tests for two independent samples, and the Benjamini-Hochberg procedure was implemented for correction for multiple comparisons.
In DNA from brain tissue, there were no significant differences in BDNF methylation between the study groups. However, data showed significantly reduced DNA methylation of the BDNF region upstream of exon I in blood samples of suicide victims compared to the controls (5.67 ± 0.57 vs 6.83 ± 0.64, Pcorr = 0.01). In Brodmann area 9 of the brain of the suicide victims but not in their hippocampus, there was higher expression of BDNF transcript I-IX (NM_170731.4) compared to the controls (0.077 ± 0.024 vs 0.05 ± 0.013, P = 0.042). In blood, expression analysis for the BDNF transcripts was not feasible due to extensive RNA degradation.
Despite the limitations of the study, the obtained data further support a role for BDNF in suicidality. However, it should be noted that suicidal behavior is a multifactorial disorder with numerous environmental and genetic risk factors involved.
Core Tip: BDNF methylation analysis of brain tissues did not show differences between control subjects and suicide victims, although there was higher expression of BDNF transcript I-IX in Brodmann area 9 of the suicide victims. Furthermore, the data obtained from blood were interesting, especially in terms of the direction of the effects. Although due to the extensively degraded RNA in the blood, we were not able to confirm these effects on mRNA expression. Although suicide is a multifactorial disorder, our data overall further support the previously implicated role of BDNF in suicidality.