1
|
Sridhar D, Alheswairini SS, Barasarathi J, Enshasy HAE, Lalitha S, Mir SH, Nithyapriya S, Sayyed R. Halophilic rhizobacteria promote growth, physiology and salinity tolerance in Sesamum indicum L. grown under salt stress. Front Microbiol 2025; 16:1590854. [PMID: 40438216 PMCID: PMC12116546 DOI: 10.3389/fmicb.2025.1590854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction Salt stress is a major global issue that negatively affects plant growth and physiological processes. Plant growth-promoting rhizobacteria (PGPR) are known to alleviate salt stress and promote plant growth. This study aimed to isolate and characterize salt-tolerant PGPR from salinity-affected soils in Tamil Nadu, India, and assess their potential to enhance growth and salt tolerance in sesame (Sesamum indicum L.). Methods Salt-tolerant PGPR were isolated and screened for plant growth-promoting traits. One isolate, designated PAS1, demonstrated significant capabilities, including the production of indole-3-acetic acid (IAA; 48.56 μg ml-1), siderophore production (89.20 ± 0.65%), phosphate solubilization (7.8 mm zone of clearance), ammonia, and hydrogen cyanide (HCN) production. PAS1 was identified as Bacillus flexus. Sesame plants were inoculated with B. flexus and grown under different salt concentrations (0, 100, and 200 mM NaCl) for 45 days. Results Inoculation with B. flexus significantly improved the biochemical parameters of sesame plants under salt stress, including increased chlorophyll content (4.4 mg g-1), proline (0.0017 mg g-1), soluble sugars (61.34 mg g-1), amino acids (1.10 mg g-1), and proteins (3.31 mg g-1). Additionally, antioxidant enzyme activities were enhanced, as indicated by DPPH scavenging activity (60.25%), superoxide dismutase (231.29 U mg g-1 protein), peroxidase (6.21 U mg g-1 protein), catalase (3.38 U mg g-1 protein), and a reduction in malondialdehyde (23.32 μmol g-1). Discussion The study demonstrates that inoculation with salt-tolerant B. flexus can effectively improve sesame plant growth and enhance tolerance to salt stress. These findings suggest that halo-tolerant PGPR strains like B. flexus could serve as promising biofertilizers to improve crop productivity in salt-affected agricultural soils.
Collapse
Affiliation(s)
- Dharman Sridhar
- Department of Botany, School of Life Sciences, Periyar University, Salem, India
| | - Saleh S. Alheswairini
- Department of Plant Protection, College of Agriculture and Food, Qassim University, Buraidah, Saudi Arabia
| | - Jayanthi Barasarathi
- Faculty of Health and Life Sciences (FHLS), Inti International University, Nilai, Malaysia
| | - Hesham Ali El Enshasy
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Sundaram Lalitha
- PG and Research Department of Botany, Padmavani Arts and Science College for Women, Salem, India
| | - Sajad Hussain Mir
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - S. Nithyapriya
- PG and Research Department of Botany, Padmavani Arts and Science College for Women, Salem, India
| | - Riyaz Sayyed
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| |
Collapse
|
2
|
Srinivas M, Walsh CJ, Crispie F, O'Sullivan O, Cotter PD, van Sinderen D, Kenny JG. Evaluating the efficiency of 16S-ITS-23S operon sequencing for species level resolution in microbial communities. Sci Rep 2025; 15:2822. [PMID: 39843557 PMCID: PMC11754871 DOI: 10.1038/s41598-024-83410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Rapid advancements in long-read sequencing have facilitated species-level microbial profiling through full-length 16S rRNA sequencing (~ 1500 bp), and more notably, by the newer 16S-ITS-23S ribosomal RNA operon (RRN) sequencing (~ 4500 bp). RRN sequencing is emerging as a superior method for species resolution, exceeding the capabilities of short-read and full-length 16S rRNA sequencing. However, being in its early stages of development, RRN sequencing has several underexplored or understudied elements, highlighting the need for a critical and thorough examination of its methodologies. Key areas that require detailed analysis include understanding how primer pairs, sequencing platforms, and classifiers and databases affect the accuracy of species resolution achieved through RRN sequencing. Our study addresses these gaps by evaluating the effect of primer pairs using four RRN primer combinations, and that of sequencing platforms by employing PacBio and Oxford Nanopore Technologies (ONT) systems. Furthermore, two classification methods (Minimap2 and OTU clustering), in combination with four RRN reference databases (MIrROR, rrnDB, and two versions of GROND) were compared to identify consistent and accurate classification methods with RRN sequencing. Here we demonstrate that RRN primer pair choice and sequencing platform do not substantially bias taxonomic profiles for most of the tested mock communities, while classification methods significantly impact the accuracy of species-level assignments. Of the classification methods tested, Minimap2 classifier in combination with the GROND database most consistently provided accurate species-level classification across the communities tested, irrespective of sequencing platform.
Collapse
Affiliation(s)
- Meghana Srinivas
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Calum J Walsh
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John G Kenny
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- VistaMilk SFI Research Centre, Cork, Ireland.
| |
Collapse
|
3
|
Wang GB, Zhang XF, Liang B, Lei J, Xue J. Study on the correlation between abdominal infection and psychological stress in children based on nucleic acid detection. World J Psychiatry 2024; 14:1728-1734. [PMID: 39564175 PMCID: PMC11572668 DOI: 10.5498/wjp.v14.i11.1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Diagnosing and treating abdominal infection in children remains a challenge. Nucleic acid detection, as a rapid and accurate diagnosis tool, has great significance in this field. AIM To investigate the diagnosis and treatment of abdominal infection by nucleic acid detection and its possible correlation with psychological stress in children. METHODS A total of 50 pediatric patients diagnosed with abdominal infections between September 2020 and July 2021 were included in this study. Intra-abdominal pus samples were collected for pathogen culture, drug susceptibility testing, and broad-spectrum bacterial nucleic acid testing. Psychological stress, anxiety, depression, and coping styles were assessed using the coping with a disease (CODI) scale. RESULTS Based on susceptibility testing, a regimen of cefazoxime, piperacillin/tazobactam, and metronidazole or ornidazole achieved 100% effectiveness in treating appendicitis. Psychological assessments revealed a positive correlation between pressure level and both anxiety (r = 0.324, P = 0.001) and depressive disorders (r = 0.325, P < 0.001). Acceptance and distancing as coping strategies were negatively correlated with anxiety and depression, while negative emotional responses were strongly associated with increased anxiety (r = 0.574, P < 0.001) and depression (r = 0.511, P = 0.001). Coping strategies such as illusion and escape showed no significant correlation with emotional outcomes. CONCLUSION Nucleic acid testing helps in the diagnosis of abdominal infections in children, and also focuses on children's mental health.
Collapse
Affiliation(s)
- Gui-Bo Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Xue-Feng Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Bing Liang
- Department of Pediatric Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jie Lei
- Department of Pediatric Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| |
Collapse
|
4
|
Guo Z, Lei Y, Wang Q. Chinese expert consensus on standard technical specifications for a gut microecomics laboratory (Review). Exp Ther Med 2024; 28:403. [PMID: 39234587 PMCID: PMC11372251 DOI: 10.3892/etm.2024.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
The intestinal microbiota is a complex ecosystem that not only affects various physiological functions, such as metabolism, inflammation and the immune response, but also has an important effect on the development of tumors and response to treatment. The detection of intestinal flora enables the timely identification of disease-related flora abnormalities, which has significant implications for both disease prevention and treatment. In the field of basic and clinical research targeting gut microbiome, there is a need to recognize and understand the laboratory assays for gut microbiomics. Currently, there is no unified standard for the experimental procedure, quality management and report interpretation of intestinal microbiome assay technology. In order to clarify the process, the Tumor and Microecology Committee of China Anti-Cancer Association and the Tumor and Microecology Committee of Hubei Provincial Immunology Society organized relevant experts to discuss and put forward the standard technical specifications for gut microecomics laboratories, which provides a basis for further in-depth research in the field of intestinal microecomics.
Collapse
Affiliation(s)
- Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
5
|
Wu Y, Zhuang J, Song Y, Gao X, Chu J, Han S. Advances in single-cell sequencing technology in microbiome research. Genes Dis 2024; 11:101129. [PMID: 38545125 PMCID: PMC10965480 DOI: 10.1016/j.gendis.2023.101129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 11/11/2024] Open
Abstract
With the rapid development of histological techniques and the widespread application of single-cell sequencing in eukaryotes, researchers desire to explore individual microbial genotypes and functional expression, which deepens our understanding of microorganisms. In this review, the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well. Moreover, the characteristics of the currently emerging microbial single-cell sequencing (Microbe-seq) technology were summarized, and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status. Despite its mature development, the Microbe-seq technology was still in the optimization stage. A retrospective study was conducted, aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technology.
Collapse
Affiliation(s)
- Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Yifei Song
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xinyi Gao
- Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| |
Collapse
|
6
|
Szczuciński W, Salamon D, Sopel A, Gosiewski T. Celiac disease and human gut microbiota - how can we study the composition of microorganisms? PRZEGLAD GASTROENTEROLOGICZNY 2024; 20:17-30. [PMID: 40191515 PMCID: PMC11966506 DOI: 10.5114/pg.2024.139574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/27/2024] [Indexed: 04/09/2025]
Abstract
Celiac disease is an autoimmune disorder induced by consumption of gluten protein present in foods such as wheat and rye. In recent years there has been increasing evidence that changes in composition of gut microbiota may play a significant role in the pathogenesis of celiac disease. Multiple methods of bacterial identification may be used to find microbiota changes characteristic for celiac disease, and the latest methods such as next generation sequencing offer new possibilities of detecting previously unknown bacterial groups that may play a role in the occurrence of celiac disease. This review focuses on multiple methods of identifying bacterial gut microbiome and presents results of recent studies exploring the link between gut microbiota composition and celiac disease.
Collapse
Affiliation(s)
- Wiktor Szczuciński
- Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dominika Salamon
- Department of Molecular Medical Microbiology, Division of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Sopel
- Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Gosiewski
- Microbiome Research Laboratory, Department of Molecular Medical Microbiology, Division of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
7
|
Qin Y, Huo M, Liu X, Li SC. Biomarkers and computational models for predicting efficacy to tumor ICI immunotherapy. Front Immunol 2024; 15:1368749. [PMID: 38524135 PMCID: PMC10957591 DOI: 10.3389/fimmu.2024.1368749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Numerous studies have shown that immune checkpoint inhibitor (ICI) immunotherapy has great potential as a cancer treatment, leading to significant clinical improvements in numerous cases. However, it benefits a minority of patients, underscoring the importance of discovering reliable biomarkers that can be used to screen for potential beneficiaries and ultimately reduce the risk of overtreatment. Our comprehensive review focuses on the latest advancements in predictive biomarkers for ICI therapy, particularly emphasizing those that enhance the efficacy of programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors immunotherapies. We explore biomarkers derived from various sources, including tumor cells, the tumor immune microenvironment (TIME), body fluids, gut microbes, and metabolites. Among them, tumor cells-derived biomarkers include tumor mutational burden (TMB) biomarker, tumor neoantigen burden (TNB) biomarker, microsatellite instability (MSI) biomarker, PD-L1 expression biomarker, mutated gene biomarkers in pathways, and epigenetic biomarkers. TIME-derived biomarkers include immune landscape of TIME biomarkers, inhibitory checkpoints biomarkers, and immune repertoire biomarkers. We also discuss various techniques used to detect and assess these biomarkers, detailing their respective datasets, strengths, weaknesses, and evaluative metrics. Furthermore, we present a comprehensive review of computer models for predicting the response to ICI therapy. The computer models include knowledge-based mechanistic models and data-based machine learning (ML) models. Among the knowledge-based mechanistic models are pharmacokinetic/pharmacodynamic (PK/PD) models, partial differential equation (PDE) models, signal networks-based models, quantitative systems pharmacology (QSP) models, and agent-based models (ABMs). ML models include linear regression models, logistic regression models, support vector machine (SVM)/random forest/extra trees/k-nearest neighbors (KNN) models, artificial neural network (ANN) and deep learning models. Additionally, there are hybrid models of systems biology and ML. We summarized the details of these models, outlining the datasets they utilize, their evaluation methods/metrics, and their respective strengths and limitations. By summarizing the major advances in the research on predictive biomarkers and computer models for the therapeutic effect and clinical utility of tumor ICI, we aim to assist researchers in choosing appropriate biomarkers or computer models for research exploration and help clinicians conduct precision medicine by selecting the best biomarkers.
Collapse
Affiliation(s)
- Yurong Qin
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Miaozhe Huo
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Xingwu Liu
- School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Eisenhofer R, Wright S, Weyrich L. Benchmarking a targeted 16S ribosomal RNA gene enrichment approach to reconstruct ancient microbial communities. PeerJ 2024; 12:e16770. [PMID: 38440408 PMCID: PMC10911074 DOI: 10.7717/peerj.16770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/16/2023] [Indexed: 03/06/2024] Open
Abstract
The taxonomic characterization of ancient microbiomes is a key step in the rapidly growing field of paleomicrobiology. While PCR amplification of the 16S ribosomal RNA (rRNA) gene is a widely used technique in modern microbiota studies, this method has systematic biases when applied to ancient microbial DNA. Shotgun metagenomic sequencing has proven to be the most effective method in reconstructing taxonomic profiles of ancient dental calculus samples. Nevertheless, shotgun sequencing approaches come with inherent limitations that could be addressed through hybridization enrichment capture. When employed together, shotgun sequencing and hybridization capture have the potential to enhance the characterization of ancient microbial communities. Here, we develop, test, and apply a hybridization enrichment capture technique to selectively target 16S rRNA gene fragments from the libraries of ancient dental calculus samples generated with shotgun techniques. We simulated data sets generated from hybridization enrichment capture, indicating that taxonomic identification of fragmented and damaged 16S rRNA gene sequences was feasible. Applying this enrichment approach to 15 previously published ancient calculus samples, we observed a 334-fold increase of ancient 16S rRNA gene fragments in the enriched samples when compared to unenriched libraries. Our results suggest that 16S hybridization capture is less prone to the effects of background contamination than 16S rRNA amplification, yielding a higher percentage of on-target recovery. While our enrichment technique detected low abundant and rare taxa within a given sample, these assignments may not achieve the same level of specificity as those achieved by unenriched methods.
Collapse
Affiliation(s)
| | - Sterling Wright
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Laura Weyrich
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
9
|
Yang MQ, Wang ZJ, Zhai CB, Chen LQ. Research progress on the application of 16S rRNA gene sequencing and machine learning in forensic microbiome individual identification. Front Microbiol 2024; 15:1360457. [PMID: 38371926 PMCID: PMC10869621 DOI: 10.3389/fmicb.2024.1360457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Forensic microbiome research is a field with a wide range of applications and a number of protocols have been developed for its use in this area of research. As individuals host radically different microbiota, the human microbiome is expected to become a new biomarker for forensic identification. To achieve an effective use of this procedure an understanding of factors which can alter the human microbiome and determinations of stable and changing elements will be critical in selecting appropriate targets for investigation. The 16S rRNA gene, which is notable for its conservation and specificity, represents a potentially ideal marker for forensic microbiome identification. Gene sequencing involving 16S rRNA is currently the method of choice for use in investigating microbiomes. While the sequencing involved with microbiome determinations can generate large multi-dimensional datasets that can be difficult to analyze and interpret, machine learning methods can be useful in surmounting this analytical challenge. In this review, we describe the research methods and related sequencing technologies currently available for application of 16S rRNA gene sequencing and machine learning in the field of forensic identification. In addition, we assess the potential value of 16S rRNA and machine learning in forensic microbiome science.
Collapse
Affiliation(s)
- Mai-Qing Yang
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| | - Zheng-Jiang Wang
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| | - Chun-Bo Zhai
- Department of Second Ward of Thoracic Surgery, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| | - Li-Qian Chen
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| |
Collapse
|
10
|
Zhang L, Han J, Zhou Q, He Z, Sun SW, Li R, Li RS, Zhang WK, Wang YH, Xu LL, Lu ZH, Shao ZJ. Differential microbial composition in parasitic vs. questing ticks based on 16S next-generation sequencing. Front Microbiol 2023; 14:1264939. [PMID: 38192286 PMCID: PMC10773790 DOI: 10.3389/fmicb.2023.1264939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction As tick-borne diseases rise to become the second most prevalent arthropod-transmitted disease globally, the increasing investigations focus on ticks correspondingly. Factors contributed to this increase include anthropogenic influences, changes in vertebrate faunal composition, social-recreational shifts, and climatic variation. Employing the 16S gene sequence method in next-generation sequencing (NGS) allows comprehensive pathogen identification in samples, facilitating the development of refined approaches to tick research omnidirectionally. Methods In our survey, we compared the microbial richness and biological diversity of ticks in Wuwei City, Gansu province, differentiating between questing ticks found in grass and parasitic ticks collected from sheep based on 16S NGS method. Results The results show Rickettsia, Coxiella, and Francisella were detected in all 50 Dermacentor nuttalli samples, suggesting that the co-infection may be linked to specific symbiotic bacteria in ticks. Our findings reveal significant differences in the composition and diversity of microorganisms, with the Friedmanniella and Bordetella genera existing more prevalent in parasitic ticks than in questing ticks (p < 0.05). Additionally, the network analysis demonstrates that the interactions among bacterial genera can be either promotive or inhibitive in ticks exhibiting different lifestyles with the correlation index |r| > 0.6. For instance, Francisella restrains the development of 10 other bacteria in parasitic ticks, whereas Phyllobacterium and Arthrobacter enhance colonization across all tick species. Discussion By leveraging NGS techniques, our study reveals a high degree of species and phylogenetic diversity within the tick microbiome. It further highlights the potential to investigate the interplay between bacterial genera in both parasitic and questing ticks residing in identical habitat environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhen-Hua Lu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, Shaanxi, China
| | - Zhong-Jun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Shi L, Ju P, Meng X, Wang Z, Yao L, Zheng M, Cheng X, Li J, Yu T, Xia Q, Yan J, Zhu C, Zhang X. Intricate role of intestinal microbe and metabolite in schizophrenia. BMC Psychiatry 2023; 23:856. [PMID: 37978477 PMCID: PMC10657011 DOI: 10.1186/s12888-023-05329-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The brain-gut axis has gained increasing attention due to its contribution to the etiology of various central nervous system disorders. This study aims to elucidate the hypothesis that schizophrenia is associated with disturbances in intestinal microflora and imbalance in intestinal metabolites. By exploring the intricate relationship between the gut and the brain, with the goal of offering fresh perspectives and valuable insights into the potential contribution of intestinal microbial and metabolites dysbiosis to the etiology of schizophrenia. METHODS In this study, we used a 16S ribosomal RNA (16S rRNA) gene sequence-based approach and an untargeted liquid chromatography-mass spectrometry-based metabolic profiling approach to measure the gut microbiome and microbial metabolites from 44 healthy controls, 41 acute patients, and 39 remission patients, to evaluate whether microbial dysbiosis and microbial metabolite biomarkers were linked with the severity of schizophrenic symptoms. RESULTS Here, we identified 20 dominant disturbances in the gut microbial composition of patients compared with healthy controls, with 3 orders, 4 families, 9 genera, and 4 species. Several unique bacterial taxa associated with schizophrenia severity. Compared with healthy controls, 145 unusual microflora metabolites were detected in the acute and remission groups, which were mainly involved in environmental information processing, metabolism, organismal systems, and human diseases in the Kyoto encyclopedia of genes and genomes pathway. The Sankey diagram showed that 4 abnormal intestinal and 4 anomalous intestinal microbial metabolites were associated with psychiatric clinical symptoms. CONCLUSIONS These findings suggest a possible interactive influence of the gut microbiota and their metabolites on the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Li Shi
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Peijun Ju
- Shanghai Mental Health Center, Shanghai key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China
| | - Xiaojing Meng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | | | - Lihui Yao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Mingming Zheng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Xialong Cheng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Jingwei Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Tao Yu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Junwei Yan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China
- Anhui Mental Health Center, Hefei, 230000, China
| | - Cuizhen Zhu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China.
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China.
- Anhui Mental Health Center, Hefei, 230000, China.
| | - Xulai Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China.
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui, 230000, China.
- Anhui Mental Health Center, Hefei, 230000, China.
| |
Collapse
|
12
|
Wei Y, Zhang S, Guan G, Wan Z, Wang R, Li P, Liu Y, Wang J, Jiao G, Wang H, Sun C. A specific and rapid method for detecting Bacillus and Acinetobacter species in Daqu. Front Bioeng Biotechnol 2023; 11:1261563. [PMID: 37818237 PMCID: PMC10561003 DOI: 10.3389/fbioe.2023.1261563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Daqu is a spontaneous, solid-state cereal fermentation product used for saccharification and as a starter culture for Chinese Baijiu production. Bacillus and Acinetobacter, two dominant microbial genera in Daqu, produce enzymes and organic acids that influence the Daqu quality. However, there are no rapid analytical methods for detecting Bacillus and Acinetobacter. We designed primers specific to the genera Bacillus and Acinetobacter to perform genetic comparisons using the 16 S rRNA. After amplification of polymerase chain reaction using specific primers, high-throughput sequencing was performed to detect strains of Bacillus and Acinetobacter. The results showed that the effective amplification rates for Bacillus and Acinetobacter in Daqu were 86.92% and 79.75%, respectively. Thus, we have devised and assessed a method to accurately identify the species associated with Bacillus and Acinetobacter in Daqu, which can also hold significance for bacterial typing and identification.
Collapse
Affiliation(s)
- Yanwei Wei
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Shuyue Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guikun Guan
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Ziran Wan
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Yu Liu
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guanhua Jiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Hao Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Chuying Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
13
|
Moradigaravand D, Li L, Dechesne A, Nesme J, de la Cruz R, Ahmad H, Banzhaf M, Sørensen SJ, Smets BF, Kreft JU. Plasmid permissiveness of wastewater microbiomes can be predicted from 16S rRNA sequences by machine learning. Bioinformatics 2023; 39:btad400. [PMID: 37348862 PMCID: PMC10318386 DOI: 10.1093/bioinformatics/btad400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
MOTIVATION Wastewater treatment plants (WWTPs) harbor a dense and diverse microbial community. They constantly receive antimicrobial residues and resistant strains, and therefore provide conditions for horizontal gene transfer (HGT) of antimicrobial resistance (AMR) determinants. This facilitates the transmission of clinically important genes between, e.g. enteric and environmental bacteria, and vice versa. Despite the clinical importance, tools for predicting HGT remain underdeveloped. RESULTS In this study, we examined to which extent water cycle microbial community composition, as inferred by partial 16S rRNA gene sequences, can predict plasmid permissiveness, i.e. the ability of cells to receive a plasmid through conjugation, based on data from standardized filter mating assays using fluorescent bio-reporter plasmids. We leveraged a range of machine learning models for predicting the permissiveness for each taxon in the community, representing the range of hosts a plasmid is able to transfer to, for three broad host-range resistance IncP plasmids (pKJK5, pB10, and RP4). Our results indicate that the predicted permissiveness from the best performing model (random forest) showed a moderate-to-strong average correlation of 0.49 for pB10 [95% confidence interval (CI): 0.44-0.55], 0.43 for pKJK5 (0.95% CI: 0.41-0.49), and 0.53 for RP4 (0.95% CI: 0.48-0.57) with the experimental permissiveness in the unseen test dataset. Predictive phylogenetic signals occurred despite the broad host-range nature of these plasmids. Our results provide a framework that contributes to the assessment of the risk of AMR pollution in wastewater systems. AVAILABILITY AND IMPLEMENTATION The predictive tool is available as an application at https://github.com/DaneshMoradigaravand/PlasmidPerm.
Collapse
Affiliation(s)
- Danesh Moradigaravand
- Laboratory of Infectious Disease Epidemiology, KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Liguan Li
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Joseph Nesme
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Roberto de la Cruz
- Center for Computational Biology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Huda Ahmad
- Laboratory of Infectious Disease Epidemiology, KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Center for Computational Biology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jan-Ulrich Kreft
- Center for Computational Biology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
14
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Harish, Marwal A, Kumar S. Multifarious Responses of Forest Soil Microbial Community Toward Climate Change. MICROBIAL ECOLOGY 2023; 86:49-74. [PMID: 35657425 DOI: 10.1007/s00248-022-02051-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Adhishree Nagda
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tushar Mehta
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, School of Biological Science, Central University of Punjab, Bhatinda, Punjab, 151401, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
15
|
Moreira H, Dobosz A, Cwynar-Zając Ł, Nowak P, Czyżewski M, Barg M, Reichert P, Królikowska A, Barg E. Unraveling the role of Breg cells in digestive tract cancer and infectious immunity. Front Immunol 2022; 13:981847. [PMID: 36618354 PMCID: PMC9816437 DOI: 10.3389/fimmu.2022.981847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Over the past two decades, regulatory B cells (Breg cells or Bregs) have emerged as an immunosuppressive subset of B lymphocytes playing a key role in inflammation, infection, allergy, transplantation, and cancer. However, the involvement of Bregs in various pathological conditions of the gastrointestinal tract is not fully understood and is the subject of much recent research. In this review, we aimed to summarize the current state of knowledge about the origin, phenotype, and suppressive mechanisms of Bregs. The relationship between the host gut microbiota and the function of Bregs in the context of the disturbance of mucosal immune homeostasis is also discussed. Moreover, we focused our attention on the role of Bregs in certain diseases and pathological conditions related to the digestive tract, especially Helicobacter pylori infection, parasitic diseases (leishmaniasis and schistosomiasis), and gastrointestinal neoplasms. Increasing evidence points to a relationship between the presence and number of Bregs and the severity and progression of these pathologies. As the number of cases is increasing year by year, also among young people, it is extremely important to understand the role of these cells in the digestive tract.
Collapse
Affiliation(s)
- Helena Moreira
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Agnieszka Dobosz
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Łucja Cwynar-Zając
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| | - Paulina Nowak
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Czyżewski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Barg
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Reichert
- Department of Trauma Surgery, Clinical Department of Trauma and Hand Surgery, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Królikowska
- Ergonomics and Biomedical Monitoring Laboratory, Department of Physiotherapy, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Barg
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Boesch M, Horvath L, Baty F, Pircher A, Wolf D, Spahn S, Straussman R, Tilg H, Brutsche MH. Compartmentalization of the host microbiome: how tumor microbiota shapes checkpoint immunotherapy outcome and offers therapeutic prospects. J Immunother Cancer 2022; 10:jitc-2022-005401. [PMID: 36343977 PMCID: PMC9644363 DOI: 10.1136/jitc-2022-005401] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
The host microbiome is polymorphic, compartmentalized, and composed of distinctive tissue microbiomes. While research in the field of cancer immunotherapy has provided an improved understanding of the interaction with the gastrointestinal microbiome, the significance of the tumor-associated microbiome has only recently been grasped. This article provides a state-of-the-art review about the tumor-associated microbiome and sheds light on how local tumor microbiota shapes anticancer immunity and influences checkpoint immunotherapy outcome. The direct route of interaction between cancer cells, immune cells, and microbiota in the tumor microenvironment is emphasized and advocates a focus on the tumor-associated microbiome in addition to the spatially separated gut compartment. Since the mechanisms underlying checkpoint immunotherapy modulation by tumor-associated microbiota remain largely elusive, future research should dissect the pathways involved and outline strategies to therapeutically modulate microbes and their products within the tumor microenvironment. A more detailed knowledge about the mechanisms governing the composition and functional quality of the tumor microbiome will improve cancer immunotherapy and advance precision medicine for solid tumors.
Collapse
Affiliation(s)
| | - Lena Horvath
- Department of Internal Medicine V (Hematology and Oncology) and Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Florent Baty
- Lung Center, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Andreas Pircher
- Department of Internal Medicine V (Hematology and Oncology) and Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Hematology and Oncology) and Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Spahn
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Herbert Tilg
- Department of Internal Medicine I (Gastroenterology, Hepatology, Endocrinology & Metabolism), Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
17
|
Zhang Y, Ning H, Zheng W, Liu J, Li F, Chen J. Lung microbiome in children with hematological malignancies and lower respiratory tract infections. Front Oncol 2022; 12:932709. [PMID: 36212487 PMCID: PMC9533145 DOI: 10.3389/fonc.2022.932709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background Respiratory infectious complications remain a major cause of morbidity and mortality in children with hematological malignancies. Knowledge regarding the lung microbiome in aforementioned children is limited. Methods A prospective cohort was conducted, enrolling 16 children with hematological malignancies complicated with moderate-to-severe lower respiratory tract infections (LRTIs) versus 21 LRTI children with age, gender, weight, and infection severity matched, with no underlying malignancies, to evaluate the lung microbiome from bronchoalveolar lavage fluid samples in different groups. Results The lung microbiome from children with hematological malignancies and LRTIs showed obviously decreased α and β diversity; increased microbial function in infectious disease:bacteria/parasite; drug resistance:antimicrobial and human pathogenesis than the control group; a significantly reduced proportion of Firmicutes, Bacteroidota, Actinobacteriota; increased Proteobacteria at the phylum level; and distinctly elevated Parabacteroides, Klebsiella, Grimontia, Escherichia_Shigella, unclassified_Enterobacteriaceae at the genus level than the control group. Furthermore, it was revealed that α diversity (Shannon), β diversity (Bray-Curtis dissimilarity), Proteobacteria at the phylum level, and unclassified_Enterobacteriaceae and Escherichia_Shigella at the genus level were significantly negatively associated with hospitalization course whereas Firmicutes at the phylum level was established positively correlated with the hospitalization course. Conclusions Children with hematological malignancies and LRTIs showed obviously decreased α and β diversity, significantly increased function in infectious disease pathogenesis, antimicrobial drug resistance, and unfavorable environment tolerance. Moreover, α diversity (Shannon), β diversity (Bray-Curtis dissimilarity), and Proteobacteria may be used as negative correlated predictors for hospitalization course in these children whereas Firmicutes may be utilized as a positive correlated predictor.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Haonan Ning
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Wenyu Zheng
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuhai Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Junfei Chen
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
18
|
Lobanov V, Gobet A, Joyce A. Ecosystem-specific microbiota and microbiome databases in the era of big data. ENVIRONMENTAL MICROBIOME 2022; 17:37. [PMID: 35842686 PMCID: PMC9287977 DOI: 10.1186/s40793-022-00433-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/29/2022] [Indexed: 05/05/2023]
Abstract
The rapid development of sequencing methods over the past decades has accelerated both the potential scope and depth of microbiota and microbiome studies. Recent developments in the field have been marked by an expansion away from purely categorical studies towards a greater investigation of community functionality. As in-depth genomic and environmental coverage is often distributed unequally across major taxa and ecosystems, it can be difficult to identify or substantiate relationships within microbial communities. Generic databases containing datasets from diverse ecosystems have opened a new era of data accessibility despite costs in terms of data quality and heterogeneity. This challenge is readily embodied in the integration of meta-omics data alongside habitat-specific standards which help contextualise datasets both in terms of sample processing and background within the ecosystem. A special case of large genomic repositories, ecosystem-specific databases (ES-DB's), have emerged to consolidate and better standardise sample processing and analysis protocols around individual ecosystems under study, allowing independent studies to produce comparable datasets. Here, we provide a comprehensive review of this emerging tool for microbial community analysis in relation to current trends in the field. We focus on the factors leading to the formation of ES-DB's, their comparison to traditional microbial databases, the potential for ES-DB integration with meta-omics platforms, as well as inherent limitations in the applicability of ES-DB's.
Collapse
Affiliation(s)
- Victor Lobanov
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | | | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.
| |
Collapse
|
19
|
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int J Mol Sci 2022; 23:ijms23137084. [PMID: 35806089 PMCID: PMC9266447 DOI: 10.3390/ijms23137084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.
Collapse
|
20
|
Zhang Y, Cui R, Shi G, Dai Y, Dong J, Wu Q, Zhang H, Dai J. Dioxin-like polychlorinated biphenyl 126 (PCB126) disrupts gut microbiota-host metabolic dysfunction in mice via aryl hydrocarbon receptor activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113448. [PMID: 35367886 DOI: 10.1016/j.ecoenv.2022.113448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 05/15/2023]
Abstract
Exposure to environmental pollutants, including dioxin-like pollutants, can cause numerous health issues. A common exposure route to pollutants is through contaminated foods, and thus the gastrointestinal system and gut microbiota are often exposed to high amounts of pollutants. Multiple studies have focused on the imbalance in intestinal microbiota composition caused by dioxin-like pollutants. Here, we examined the effects of polychlorinated biphenyl 126 (PCB126) on the composition and functions of gut microbes through metagenomic sequencing, and explored the correlations between microflora dysbiosis and aryl hydrocarbon receptor (AHR) signaling. Adult male wild-type and Ahr-/- mice with a C57BL/6 background were weekly exposed to 50 μg/kg body weight of PCB126 for 8 weeks. Results showed that PCB126 had the opposite effect on gut microbiota composition and diversity in the wild-type and Ahr-/- mice. Functional prediction found that PCB126 exposure mainly altered carbon metabolism and signal regulatory pathways in wild-type mice but impacted DNA replication and lipopolysaccharide biosynthesis in Ahr-/- mice. In wild-type mice, PCB126 exposure induced liver injury, decreased serum lipid content, and delayed gastrointestinal motility, which were significantly correlated to several specific bacterial taxa, such as Helicobacter. Following AHR knockout, however, the holistic effects of PCB126 on the host were lessened or abolished. These results suggest that PCB126 may disrupt host metabolism and gut microbiota dynamics via AHR activation. Overall, our findings provide new insight into the complex interactions between host metabolism and gut microbiota, which may contribute to grouped assessment of environmental pollutants in the future.
Collapse
Affiliation(s)
- Yaran Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Mreyoud Y, Song M, Lim J, Ahn TH. MegaD: Deep Learning for Rapid and Accurate Disease Status Prediction of Metagenomic Samples. Life (Basel) 2022; 12:life12050669. [PMID: 35629336 PMCID: PMC9143510 DOI: 10.3390/life12050669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022] Open
Abstract
The diversity within different microbiome communities that drive biogeochemical processes influences many different phenotypes. Analyses of these communities and their diversity by countless microbiome projects have revealed an important role of metagenomics in understanding the complex relation between microbes and their environments. This relationship can be understood in the context of microbiome composition of specific known environments. These compositions can then be used as a template for predicting the status of similar environments. Machine learning has been applied as a key component to this predictive task. Several analysis tools have already been published utilizing machine learning methods for metagenomic analysis. Despite the previously proposed machine learning models, the performance of deep neural networks is still under-researched. Given the nature of metagenomic data, deep neural networks could provide a strong boost to growth in the prediction accuracy in metagenomic analysis applications. To meet this urgent demand, we present a deep learning based tool that utilizes a deep neural network implementation for phenotypic prediction of unknown metagenomic samples. (1) First, our tool takes as input taxonomic profiles from 16S or WGS sequencing data. (2) Second, given the samples, our tool builds a model based on a deep neural network by computing multi-level classification. (3) Lastly, given the model, our tool classifies an unknown sample with its unlabeled taxonomic profile. In the benchmark experiments, we deduced that an analysis method facilitating a deep neural network such as our tool can show promising results in increasing the prediction accuracy on several samples compared to other machine learning models.
Collapse
Affiliation(s)
- Yassin Mreyoud
- Program in Bioinformatics and Computational Biology, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Myoungkyu Song
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE 68182, USA;
| | - Jihun Lim
- Saint Paul Preparatory, Seoul 06593, Korea;
| | - Tae-Hyuk Ahn
- Program in Bioinformatics and Computational Biology, Saint Louis University, Saint Louis, MO 63104, USA;
- Department of Computer Science, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence:
| |
Collapse
|
22
|
Jones CB, White JR, Ernst SE, Sfanos KS, Peiffer LB. Incorporation of Data From Multiple Hypervariable Regions when Analyzing Bacterial 16S rRNA Gene Sequencing Data. Front Genet 2022; 13:799615. [PMID: 35432480 PMCID: PMC9009396 DOI: 10.3389/fgene.2022.799615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Short read 16 S rRNA amplicon sequencing is a common technique used in microbiome research. However, inaccuracies in estimated bacterial community composition can occur due to amplification bias of the targeted hypervariable region. A potential solution is to sequence and assess multiple hypervariable regions in tandem, yet there is currently no consensus as to the appropriate method for analyzing this data. Additionally, there are many sequence analysis resources for data produced from the Illumina platform, but fewer open-source options available for data from the Ion Torrent platform. Herein, we present an analysis pipeline using open-source analysis platforms that integrates data from multiple hypervariable regions and is compatible with data produced from the Ion Torrent platform. We used the ThermoFisher Ion 16 S Metagenomics Kit and a mock community of twenty bacterial strains to assess taxonomic classification of six amplicons from separate hypervariable regions (V2, V3, V4, V6-7, V8, V9) using our analysis pipeline. We report that different amplicons have different specificities for taxonomic classification, which also has implications for global level analyses such as alpha and beta diversity. Finally, we utilize a generalized linear modeling approach to statistically integrate the results from multiple hypervariable regions and apply this methodology to data from a representative clinical cohort. We conclude that examining sequencing results across multiple hypervariable regions provides more taxonomic information than sequencing across a single region. The data across multiple hypervariable regions can be combined using generalized linear models to enhance the statistical evaluation of overall differences in community structure and relatedness among sample groups.
Collapse
Affiliation(s)
- Carli B. Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Sarah E. Ernst
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Karen S. Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Deparment of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Lauren B. Peiffer, ; Karen S. Sfanos,
| | - Lauren B. Peiffer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Lauren B. Peiffer, ; Karen S. Sfanos,
| |
Collapse
|
23
|
Jasbi P, Mohr AE, Shi X, Mahmood T, Zhu Q, Bruening M, Gu H, Whisner C. Microbiome and metabolome profiles of high screen time in a cohort of healthy college students. Sci Rep 2022; 12:3452. [PMID: 35236903 PMCID: PMC8891328 DOI: 10.1038/s41598-022-07381-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
As screens are increasingly integrated into every facet of modern life, there is growing concern over the potential effects of high screen time. Previous studies have largely utilized self-report data on mood and behavioral aspects of screen time, and no molecular theory has yet been developed. In this study, we explored the fecal microbiome and metabolome of a diverse group of 60 college students, classified by high (≥ 75 min/day) or low (0–75 min/day) self-reported screen time using 16S rRNA amplicon sequencing, targeted liquid chromatography-tandem mass spectrometry, and targeted detection of short-chain fatty acids using gas chromatography-mass spectrometry. Several key taxa and metabolites were significantly altered between groups and found to be highly co-occurrent. Results of pathway and enzyme enrichment analyses were synthesized to articulate an integrated hypothesis indicating widespread mitochondrial dysfunction and aberrant amino acid metabolism. High screen time was also predicted to be significantly associated with type I diabetes, obesity, chronic fatigue syndrome, and various manifestations of inflammatory bowel. This is the first-ever study to report the effects of high screen time at the molecular level, and these results provide a data-driven hypothesis for future experimental research.
Collapse
Affiliation(s)
- Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Xiaojian Shi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Tara Mahmood
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Meg Bruening
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA. .,Center for Translational Science, Florida International University, Port St. Lucie, FL, USA.
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA. .,Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
24
|
Zarei A, Javid H, Sanjarian S, Senemar S, Zarei H. Metagenomics studies for the diagnosis and treatment of prostate cancer. Prostate 2022; 82:289-297. [PMID: 34855234 DOI: 10.1002/pros.24276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
AIM Mutation occurs in the prostate cell genes, leading to abnormal prostate proliferation and ultimately cancer. Prostate cancer (PC) is one of the most common cancers amongst men, and its prevalence worldwide increases relative to men's age. About 16% of the world's cancers are the result of microbes in the human body. Impaired population balance of symbiosis microbes in the human reproductive system is linked to PC development. DISCUSSION With the advent of metagenomics science, the genome sequence of the microbiota of the human body has been unveiled. Therefore, it is now possible to identify a higher range of microbiome changes in PC tissue via the Next Generation Technique, which will have positive consequences in personalized medicine. In this review, we intend to question the role of metagenomics studies in the diagnosis and treatment of PC. CONCLUSION The microbial imbalance in the men's genital tract might have an effect on prostate health. Based on next-generation sequencing-generated data, Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes are the nine frequent phyla detected in a PC sample, which might be involved in inducing mutation in the prostate cells that cause cancer.
Collapse
Affiliation(s)
- Ali Zarei
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hossein Javid
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Sanjarian
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Senemar
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hanieh Zarei
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Boesch M, Baty F, Albrich WC, Flatz L, Rodriguez R, Rothschild SI, Joerger M, Früh M, Brutsche MH. Local tumor microbial signatures and response to checkpoint blockade in non-small cell lung cancer. Oncoimmunology 2021; 10:1988403. [PMID: 34912592 PMCID: PMC8667931 DOI: 10.1080/2162402x.2021.1988403] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In cancer patients, the clinical response to checkpoint-based immunotherapy is associated with the composition and functional quality of the host microbiome. While the relevance of the gut microbiome for checkpoint immunotherapy outcome has been addressed intensively, data on the role of the local tumor microbiome are missing. Here, we set out to molecularly characterize the local non-small cell lung cancer microbiome using 16S rRNA gene amplicon sequencing of bronchoscopic tumor biopsies from patients treated with PD-1/PD-L1-targeted checkpoint inhibitors. Our analyses showed significant diversity of the tumor microbiome with high proportions of Firmicutes, Bacteroidetes and Proteobacteria. Correlations with clinical data revealed that high microbial diversity was associated with improved patient survival irrespective of radiology-based treatment response. Moreover, we found that the presence of Gammaproteobacteria correlated with low PD-L1 expression and poor response to checkpoint-based immunotherapy, translating into poor survival. Our study suggests novel microbiome-specific/derived biomarkers for checkpoint immunotherapy response prediction and prognosis in lung cancer. In a broader sense, our data draw attention to the local tumor microbial habitat as an important addition to the spatially separated microbiome of the gut compartment.
Collapse
Affiliation(s)
| | - Florent Baty
- Lung Center, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Werner C. Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Lukas Flatz
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute of Immunobiology, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Regulo Rodriguez
- Institute of Pathology, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Sacha I. Rothschild
- Department of Medical Oncology and Comprehensive Cancer Center, University Hospital of Basel, Basel, Switzerland
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Martin Früh
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Department of Medical Oncology, University Hospital Bern, Bern, Switzerland
| | | |
Collapse
|
26
|
Smorodin EP. Prospects and Challenges of the Study of Anti-Glycan Antibodies and Microbiota for the Monitoring of Gastrointestinal Cancer. Int J Mol Sci 2021; 22:ijms222111608. [PMID: 34769037 PMCID: PMC8584091 DOI: 10.3390/ijms222111608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Over the past decades, a large amount of data has been accumulated in various subfields of glycobiology. However, much clinically relevant data and many tools are still not widely used in medicine. Synthetic glycoconjugates with the known structure of glycans are an accurate tool for the study of glycan-binding proteins. We used polyacrylamide glycoconjugates (PGs) including PGs with tumour-associated glycans (TAGs) in immunoassays to assess the prognostic potential of the serum level of anti-glycan antibodies (AG Abs) in gastrointestinal cancer patients and found an association of AG Abs with survival. The specificity of affinity-isolated AG Abs was investigated using synthetic and natural glycoconjugates. AG Abs showed mainly a low specificity to tumour-associated and tumour-derived mucins; therefore, the protective role of the examined circulating AG Abs against cancer remains a challenge. In this review, our findings are analysed and discussed in the context of the contribution of bacteria to the AG Abs stimulus and cancer progression. Examples of the influence of pathogenic bacteria colonising tumours on cancer progression and patient survival through mechanisms of interaction with tumours and dysregulated immune response are considered. The possibilities and problems of the integrative study of AG Abs and the microbiome using high-performance technologies are discussed.
Collapse
Affiliation(s)
- Eugeniy P Smorodin
- Department of Virology and Immunology, National Institute for Health Development, 11619 Tallinn, Estonia
| |
Collapse
|
27
|
Harkins P, Burke E, Swales C, Silman A. 'All disease begins in the gut'-the role of the intestinal microbiome in ankylosing spondylitis. Rheumatol Adv Pract 2021; 5:rkab063. [PMID: 34557624 PMCID: PMC8452999 DOI: 10.1093/rap/rkab063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Ankylosing spondylitis is a chronic, debilitating arthritis with a predilection for the axial skeleton. It has a strong genetic predisposition, but the precise pathogenetic mechanisms involved in its development have not yet been fully elucidated. This has implications both for early diagnosis and for effective management. Recently, alterations in the intestinal microbiome have been implicated in disease pathogenesis. In this review, we summarize studies assessing the intestinal microbiome in AS pathogenesis, in addition to synthesizing the literature exploring the postulated mechanisms by which it exerts it pathogenic potential. Finally, we review studies analysing manipulation of the microbiome as a potential therapeutic avenue in AS management.
Collapse
Affiliation(s)
- Patricia Harkins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eoghan Burke
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Catherine Swales
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alan Silman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Comparison of DNA and RNA sequencing of total nucleic acids from human cervix for metagenomics. Sci Rep 2021; 11:18852. [PMID: 34552145 PMCID: PMC8458301 DOI: 10.1038/s41598-021-98452-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Although metagenomics and metatranscriptomics are commonly used to identify bacteria and viruses in human samples, few studies directly compare these strategies. We wished to compare DNA and RNA sequencing of bacterial and viral metagenomes and metatranscriptomes in the human cervix. Total nucleic acids from six human cervical samples were subjected to DNA and RNA sequencing. The effect of DNase-treatment before reverse transcription to cDNA were also analyzed. Similarities and differences in the metagenomic findings with the three different sequencing approaches were evaluated. A higher proportion of human sequences were detected by DNA sequencing (93%) compared to RNA sequencing without (76%) and with prior DNase-treatment (11%). On the contrary, bacterial sequences increased 17 and 91 times. However, the number of detected bacterial genera were less by RNA sequencing, suggesting that only a few contribute to most of the bacterial transcripts. The viral sequences were less by RNA sequencing, still twice as many virus genera were detected, including some RNA viruses that were missed by DNA sequencing. Metatranscriptomics of total cDNA provided improved detection of mainly transcribed bacteria and viruses in cervical swabs as well as detection of RNA viruses, compared to metagenomics.
Collapse
|
29
|
Carr C, Wilcox H, Burton JP, Menon S, Al KF, O’Gorman D, Lanting BA, Vasarhelyi EM, Neufeld M, Teeter MG. Deciphering the low abundance microbiota of presumed aseptic hip and knee implants. PLoS One 2021; 16:e0257471. [PMID: 34520499 PMCID: PMC8439452 DOI: 10.1371/journal.pone.0257471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
16S rRNA gene sequencing of DNA extracted from clinically uninfected hip and knee implant samples has revealed polymicrobial populations. However, previous studies assessed 16S rRNA gene sequencing as a technique for the diagnosis of periprosthetic joint infections, leaving the microbiota of presumed aseptic hip and knee implants largely unstudied. These communities of microorganisms might play important roles in aspects of host health, such as aseptic loosening. Therefore, this study sought to characterize the bacterial composition of presumed aseptic joint implant microbiota using next generation 16S rRNA gene sequencing, and it evaluated this method for future investigations. 248 samples were collected from implants of 41 patients undergoing total hip or knee arthroplasty revision for presumed aseptic failure. DNA was extracted using two methodologies-one optimized for high throughput and the other for human samples-and amplicons of the V4 region of the 16S rRNA gene were sequenced. Sequencing data were analyzed and compared with ancillary specific PCR and microbiological culture. Computational tools (SourceTracker and decontam) were used to detect and compensate for environmental and processing contaminants. Microbial diversity of patient samples was higher than that of open-air controls and differentially abundant taxa were detected between these conditions, possibly reflecting a true microbiota that is present in clinically uninfected joint implants. However, positive control-associated artifacts and DNA extraction methodology significantly affected sequencing results. As well, sequencing failed to identify Cutibacterium acnes in most culture- and PCR-positive samples. These challenges limited characterization of bacteria in presumed aseptic implants, but genera were identified for further investigation. In all, we provide further support for the hypothesis that there is likely a microbiota present in clinically uninfected joint implants, and we show that methods other than 16S rRNA gene sequencing may be ideal for its characterization. This work has illuminated the importance of further study of microbiota of clinically uninfected joint implants with novel molecular and computational tools to further eliminate contaminants and artifacts that arise in low bacterial abundance samples.
Collapse
MESH Headings
- Adult
- Aged
- Arthroplasty, Replacement, Hip
- Arthroplasty, Replacement, Knee
- Artifacts
- Bacteria/genetics
- Bacteria/isolation & purification
- Female
- Hip Joint/microbiology
- Humans
- Knee Joint/microbiology
- Male
- Microbiota
- Middle Aged
- Polymerase Chain Reaction
- Prosthesis-Related Infections/microbiology
- Prosthesis-Related Infections/pathology
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Charles Carr
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Hannah Wilcox
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Jeremy P. Burton
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario, Canada
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Sharanya Menon
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Kait F. Al
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario, Canada
| | - David O’Gorman
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Brent A. Lanting
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Edward M. Vasarhelyi
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Michael Neufeld
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Orthopaedics, Adult Hip and Knee Reconstruction Service, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew G. Teeter
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Daskova N, Heczkova M, Modos I, Videnska P, Splichalova P, Pelantova H, Kuzma M, Gojda J, Cahova M. Determination of Butyrate Synthesis Capacity in Gut Microbiota: Quantification of but Gene Abundance by qPCR in Fecal Samples. Biomolecules 2021; 11:1303. [PMID: 34572516 PMCID: PMC8469203 DOI: 10.3390/biom11091303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Butyrate is formed in the gut during bacterial fermentation of dietary fiber and is attributed numerous beneficial effects on the host metabolism. We aimed to develop a method for the assessment of functional capacity of gut microbiota butyrate synthesis based on the qPCR quantification of bacterial gene coding butyryl-CoA:acetate CoA-transferase, the key enzyme of butyrate synthesis. In silico, we identified bacteria possessing but gene among human gut microbiota by searching but coding sequences in available databases. We designed and validated six sets of degenerate primers covering all selected bacteria, based on their phylogenetic nearness and sequence similarity, and developed a method for gene abundance normalization in human fecal DNA. We determined but gene abundance in fecal DNA of subjects with opposing dietary patterns and metabolic phenotypes-lean vegans (VG) and healthy obese omnivores (OB) with known fecal microbiota and metabolome composition. We found higher but gene copy number in VG compared with OB, in line with higher fecal butyrate content in VG group. We further found a positive correlation between the relative abundance of target bacterial genera identified by next-generation sequencing and groups of but gene-containing bacteria determined by specific primers. In conclusion, this approach represents a simple and feasible tool for estimation of microbial functional capacity.
Collapse
Affiliation(s)
- Nikola Daskova
- Institute for Clinical and Experimental Medicine, Videnska 1958, 140 21 Prague 4, Czech Republic; (M.H.); (I.M.); (M.C.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Marie Heczkova
- Institute for Clinical and Experimental Medicine, Videnska 1958, 140 21 Prague 4, Czech Republic; (M.H.); (I.M.); (M.C.)
| | - Istvan Modos
- Institute for Clinical and Experimental Medicine, Videnska 1958, 140 21 Prague 4, Czech Republic; (M.H.); (I.M.); (M.C.)
| | - Petra Videnska
- RECETOX, Faculty of Science Masaryk University, Kamenice 753, 625 00 Brno, Czech Republic; (P.V.); (P.S.)
| | - Petra Splichalova
- RECETOX, Faculty of Science Masaryk University, Kamenice 753, 625 00 Brno, Czech Republic; (P.V.); (P.S.)
| | - Helena Pelantova
- Institute of Microbiology, AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic; (H.P.); (M.K.)
| | - Marek Kuzma
- Institute of Microbiology, AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic; (H.P.); (M.K.)
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 1192/12, 779 00 Olomouc, Czech Republic
| | - Jan Gojda
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Srobarova 1150, 100 34 Prague 10, Czech Republic;
| | - Monika Cahova
- Institute for Clinical and Experimental Medicine, Videnska 1958, 140 21 Prague 4, Czech Republic; (M.H.); (I.M.); (M.C.)
| |
Collapse
|
31
|
Wajda A, Sivitskaya L, Paradowska-Gorycka A. Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases. J Clin Med 2021; 10:3334. [PMID: 34362117 PMCID: PMC8348854 DOI: 10.3390/jcm10153334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
NGS technologies have transformed clinical diagnostics and broadly used from neonatal emergencies to adult conditions where the diagnosis cannot be made based on clinical symptoms. Autoimmune diseases reveal complicate molecular background and traditional methods could not fully capture them. Certainly, NGS technologies meet the needs of modern exploratory research, diagnostic and pharmacotherapy. Therefore, the main purpose of this review was to briefly present the application of NGS technology used in recent years in the understanding of autoimmune diseases paying particular attention to autoimmune connective tissue diseases. The main issues are presented in four parts: (a) panels, whole-genome and -exome sequencing (WGS and WES) in diagnostic, (b) Human leukocyte antigens (HLA) as a diagnostic tool, (c) RNAseq, (d) microRNA and (f) microbiome. Although all these areas of research are extensive, it seems that epigenetic impact on the development of systemic autoimmune diseases will set trends for future studies on this area.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Larysa Sivitskaya
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
32
|
Blanchette ML, Lund MA. Aquatic Ecosystems of the Anthropocene: Limnology and Microbial Ecology of Mine Pit Lakes. Microorganisms 2021; 9:microorganisms9061207. [PMID: 34204924 PMCID: PMC8228816 DOI: 10.3390/microorganisms9061207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Mine pit lakes ('pit lakes') are new aquatic ecosystems of the Anthropocene. Potentially hundreds of meters deep, these lakes are prominent in the landscape and in the public consciousness. However, the ecology of pit lakes is underrepresented in the literature. The broad goal of this research was to determine the environmental drivers of pelagic microbe assemblages in Australian coal pit lakes. The overall experimental design was four lakes sampled three times, top and bottom, in 2019. Instrument chains were installed in lakes and measurements of in situ water quality and water samples for metals, metalloids, nutrients and microbe assemblage were collected. Lakes were monomictic and the timing of mixing was influenced by high rainfall events. Water quality and microbial assemblages varied significantly across space and time, and most taxa were rare. Lakes were moderately saline and circumneutral; Archeans were not prevalent. Richness also varied by catchment. Microbial assemblages correlated to environmental variables, and no one variable was consistently significant, spatially or temporally. Study lakes were dominated by 'core' taxa exhibiting temporal turnover likely driven by geography, water quality and interspecific competition, and the presence of water chemistry associated with an artificial aquifer likely influenced microbial community composition. Pit lakes are deceptively complex aquatic ecosystems that host equally complex pelagic microbial communities. This research established links between microbial assemblages and environmental variables in pit lakes and determined core communities; the first steps towards developing a monitoring program using microbes.
Collapse
|
33
|
Jia X, Zhai T, Qu C, Ye J, Zhao J, Liu X, Zhang JA, Qian Q. Metformin Reverses Hashimoto's Thyroiditis by Regulating Key Immune Events. Front Cell Dev Biol 2021; 9:685522. [PMID: 34124070 PMCID: PMC8193849 DOI: 10.3389/fcell.2021.685522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hashimoto's thyroiditis (HT) is a common autoimmune disease characterized by high levels of thyroid peroxidase antibody (TPOAb) and thyroid globulin antibody (TgAb) as well as infiltration of lymphocytes in thyroid. In recent years, metformin has been proven to be effective in a variety of autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. Methods This study systematically explored the therapeutic effect of metformin on HT and its underlying mechanism by comprehensively utilizing methods including animal model, in vitro cell culture and differentiation, mRNA sequencing and 16S rRNA sequencing. Findings We found that metformin indeed had a therapeutic effect on mice with HT mainly by reducing TgAb and lymphocyte infiltration in thyroid tissue. In addition, metformin also significantly suppressed the number and function of Th17 cells and M1 macrophages polarization in HT mice. Furthermore, metformin can inhibit the differentiation and function of Th17 in vitro. The results of mRNA sequencing of thyroid tissue illustrated that the therapeutic effect of metformin on HT was mainly achieved by regulating immune pathways. 16S RNA sequencing of the intestinal flora found that the intestinal flora of HT mice differs significantly from that of the normal mice and also were altered by metformin treatment. Interpretation These experiments provided a preliminary theoretical basis for the clinical application of metformin in the treatment of HT.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Tianyu Zhai
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Chunjie Qu
- Shanghai Pudong New Area Center for Disease Control, Shanghai, China
| | - Jianjun Ye
- Shanghai Kangqiao Community Health Service Center, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xuerong Liu
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Qiaohui Qian
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
34
|
Dhungel E, Mreyoud Y, Gwak HJ, Rajeh A, Rho M, Ahn TH. MegaR: an interactive R package for rapid sample classification and phenotype prediction using metagenome profiles and machine learning. BMC Bioinformatics 2021; 22:25. [PMID: 33461494 PMCID: PMC7814621 DOI: 10.1186/s12859-020-03933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diverse microbiome communities drive biogeochemical processes and evolution of animals in their ecosystems. Many microbiome projects have demonstrated the power of using metagenomics to understand the structures and factors influencing the function of the microbiomes in their environments. In order to characterize the effects from microbiome composition for human health, diseases, and even ecosystems, one must first understand the relationship of microbes and their environment in different samples. Running machine learning model with metagenomic sequencing data is encouraged for this purpose, but it is not an easy task to make an appropriate machine learning model for all diverse metagenomic datasets. RESULTS We introduce MegaR, an R Shiny package and web application, to build an unbiased machine learning model effortlessly with interactive visual analysis. The MegaR employs taxonomic profiles from either whole metagenome sequencing or 16S rRNA sequencing data to develop machine learning models and classify the samples into two or more categories. It provides various options for model fine tuning throughout the analysis pipeline such as data processing, multiple machine learning techniques, model validation, and unknown sample prediction that can be used to achieve the highest prediction accuracy possible for any given dataset while still maintaining a user-friendly experience. CONCLUSIONS Metagenomic sample classification and phenotype prediction is important particularly when it applies to a diagnostic method for identifying and predicting microbe-related human diseases. MegaR provides various interactive visualizations for user to build an accurate machine-learning model without difficulty. Unknown sample prediction with a properly trained model using MegaR will enhance researchers to identify the sample property in a fast turnaround time.
Collapse
Affiliation(s)
- Eliza Dhungel
- Program in Bioinformatics and Computational Biology, Saint Louis University, Saint Louis, MO, USA
| | - Yassin Mreyoud
- Program in Bioinformatics and Computational Biology, Saint Louis University, Saint Louis, MO, USA
| | - Ho-Jin Gwak
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
| | - Ahmad Rajeh
- Program in Bioinformatics and Computational Biology, Saint Louis University, Saint Louis, MO, USA
| | - Mina Rho
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
| | - Tae-Hyuk Ahn
- Program in Bioinformatics and Computational Biology, Saint Louis University, Saint Louis, MO, USA.
- Department of Computer Science, Saint Louis University, Saint Louis, MO, USA.
| |
Collapse
|
35
|
Eukaryotic and Prokaryotic Microbiota Interactions. Microorganisms 2020; 8:microorganisms8122018. [PMID: 33348551 PMCID: PMC7767281 DOI: 10.3390/microorganisms8122018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
The nature of the relationship between the communities of microorganisms making up the microbiota in and on a host body has been increasingly explored in recent years. Microorganisms, including bacteria, archaea, viruses, parasites and fungi, have often long co-evolved with their hosts. In human, the structure and diversity of microbiota vary according to the host’s immunity, diet, environment, age, physiological and metabolic status, medical practices (e.g., antibiotic treatment), climate, season and host genetics. The recent advent of next generation sequencing (NGS) technologies enhanced observational capacities and allowed for a better understanding of the relationship between distinct microorganisms within microbiota. The interaction between the host and their microbiota has become a field of research into microorganisms with therapeutic and preventive interest for public health applications. This review aims at assessing the current knowledge on interactions between prokaryotic and eukaryotic communities. After a brief description of the metagenomic methods used in the studies were analysed, we summarise the findings of available publications describing the interaction between the bacterial communities and protozoa, helminths and fungi, either in vitro, in experimental models, or in humans. Overall, we observed the existence of a beneficial effect in situations where some microorganisms can improve the health status of the host, while the presence of other microorganisms has been associated with pathologies, resulting in an adverse effect on human health.
Collapse
|
36
|
Sirichoat A, Sankuntaw N, Engchanil C, Buppasiri P, Faksri K, Namwat W, Chantratita W, Lulitanond V. Comparison of different hypervariable regions of 16S rRNA for taxonomic profiling of vaginal microbiota using next-generation sequencing. Arch Microbiol 2020; 203:1159-1166. [PMID: 33221964 DOI: 10.1007/s00203-020-02114-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/15/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022]
Abstract
The exploration of vaginal microbiota by using next-generation sequencing (NGS) of 16S ribosomal RNA (rRNA) gene is widely used. Up to now, different hypervariable regions have been selected to study vaginal microbiota by NGS and there is no standard method for analysis. The study aimed to characterize vaginal microbiota from clinical samples using NGS targeting the 16S rRNA gene and to determine the performance of individual and concatenated hypervariable region sequences to generate the taxonomic profiles of the vaginal microbiota. Fifty-one vaginal DNA samples were subjected to 16S rRNA gene NGS based on the Ion Torrent PGM platform with the use of two primer sets spanning seven hypervariable regions of the 16S rRNA gene. Our analysis revealed that the predominant bacterial genera were Lactobacillus, Gardnerella and Atopobium, which accounted for 78%, 14% and 2%, respectively, of sequences from all vaginal bacterial genera. At the species level, Lactobacillus iners, Gardnerella vaginalis and Atopobium vaginae accounted for 72%, 10% and 6%, respectively, of the bacterial cells present. Analyses using the V3 region generally indicated the highest bacterial diversity followed by the V6-V7 and V4 regions, while the V9 region gave the lowest bacterial resolution. NGS based on the 16S rRNA gene can give comprehensive estimates of the diversity of vaginal bacterial communities. Selection of sequences from appropriate hypervariable regions is necessary to provide reliable information on bacterial community diversity.
Collapse
Affiliation(s)
- Auttawit Sirichoat
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nipaporn Sankuntaw
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Chulapan Engchanil
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pranom Buppasiri
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kiatichai Faksri
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wises Namwat
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wasun Chantratita
- Medical Genome Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Viraphong Lulitanond
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
37
|
Zhao Q, Yang T, Yan Y, Zhang Y, Li Z, Wang Y, Yang J, Xia Y, Xiao H, Han H, Zhang C, Xue W, Zhao H, Chen H, Wang B. Alterations of Oral Microbiota in Chinese Patients With Esophageal Cancer. Front Cell Infect Microbiol 2020; 10:541144. [PMID: 33194789 PMCID: PMC7609410 DOI: 10.3389/fcimb.2020.541144] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence supports that oral microbiota are associated with health and diseases of the esophagus. How oral microbiota change in Chinese patients with esophageal cancer (EC) is unknown, neither is their biomarker role. For an objective to understand alterations of oral microbiota in Chinese EC patients, we conducted a case-control study including saliva samples from 39 EC patients and 51 healthy volunteers. 16S rDNA genes of V3-V4 variable regions were sequenced to identify taxon. Relationship between oral flora and disease was analyzed according to alpha diversity and beta diversity. Resultantly, the Shannon index (p = 0.2) and the Simpson diversity index (p = 0.071) were not significant between the two groups. Yet we still found several species different in abundance between the two groups. For the EC group, the most significantly increased taxa were Firmicutes, Negativicutes, Selenomonadales, Prevotellaceae, Prevotella, and Veillonellaceae, while the most significantly decreased taxa were Proteobacteria, Betaproteobacteria, Neisseriales, Neisseriaceae, and Neisseria. In conclusion, there are significant alterations in abundance of some oral microbiomes between the EC patients and the healthy controls in the studied Chinese participants, which may be meaningful for predicting the development of EC, and the potential roles of these species in EC development deserve further studies.
Collapse
Affiliation(s)
- Qiaofei Zhao
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Tian Yang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Yifan Yan
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Yu Zhang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Zhibin Li
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Youchun Wang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Jing Yang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Yanli Xia
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Hongli Xiao
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Hongfeng Han
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Chunfen Zhang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Weihong Xue
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Hongyi Zhao
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Hongwei Chen
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Baoyong Wang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
38
|
Kurian SM, Gordon S, Barrick B, Dadlani MN, Fanelli B, Cornell JB, Head SR, Marsh CL, Case J. Feasibility and Comparison Study of Fecal Sample Collection Methods in Healthy Volunteers and Solid Organ Transplant Recipients Using 16S rRNA and Metagenomics Approaches. Biopreserv Biobank 2020; 18:425-440. [PMID: 32833508 DOI: 10.1089/bio.2020.0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human microbiome encompasses a variety of microorganisms that change dynamically and are in close contact with the body. The microbiome influences health and homeostasis, as well as the immune system, and any significant change in this equilibrium (dysbiosis) triggers both acute and chronic health conditions. Microbiome research has surged, in part, due to advanced sequencing technologies enabling rapid, accurate, and cost-effective identification of the microbiome. A major prerequisite for stool sample collection to study the gut microbiome in longitudinal prospective studies requires standardized protocols that can be easily replicated. However, there are still significant bottlenecks to stool specimen collection that contribute to low patient retention rates in microbiome studies. These barriers are further exacerbated in solid organ transplant recipients where diarrhea is estimated to occur in up to half the patient population. We sought to test two relatively easy sample collection methods (fecal swab and wipes) and compare them to the more cumbersome "gold" standard collection method (scoop) using two different sequencing technologies (16S ribosomal RNA sequencing and shotgun metagenomics). Our comparison of the collection methods shows that both the swabs and the wipes are comparable to the scoop method in terms of bacterial abundance and diversity. The swabs, however, were closer in representation to the scoop and were easier to collect and process compared to the wipes. Potential contamination of the swab and the wipe samples by abundant skin commensals was low in our analysis. Comparison of the two sequencing technologies showed that they were complementary, and that 16S sequencing provided enough coverage to detect and differentiate between bacterial species identified in the collected samples. Our pilot study demonstrates that alternative collection methods for stool sampling are a viable option in clinical applications, such as organ transplant studies. The use of these methods may result in better patient retention recruitment rates in serial microbiome studies.
Collapse
Affiliation(s)
- Sunil M Kurian
- Scripps Clinic Bio-Repository and Bio-Informatics Core, La Jolla, California, USA.,Scripps Center for Organ Transplantation, La Jolla, California, USA
| | - Skyler Gordon
- Genomics Core, Scripps Research, La Jolla, California, USA
| | - Bethany Barrick
- Scripps Clinic Bio-Repository and Bio-Informatics Core, La Jolla, California, USA.,Scripps Center for Organ Transplantation, La Jolla, California, USA
| | | | | | | | - Steven R Head
- Genomics Core, Scripps Research, La Jolla, California, USA
| | - Christopher L Marsh
- Scripps Clinic Bio-Repository and Bio-Informatics Core, La Jolla, California, USA.,Scripps Center for Organ Transplantation, La Jolla, California, USA
| | - Jamie Case
- Scripps Clinic Bio-Repository and Bio-Informatics Core, La Jolla, California, USA.,Scripps Center for Organ Transplantation, La Jolla, California, USA
| |
Collapse
|
39
|
Modelling Free-Living and Particle-Associated Bacterial Assemblages across the Deep and Hypoxic Lower St. Lawrence Estuary. mSphere 2020; 5:5/3/e00364-20. [PMID: 32434843 PMCID: PMC7380577 DOI: 10.1128/msphere.00364-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Estuary and Gulf of St. Lawrence (EGSL) in eastern Canada is an appealing ecosystem for studying how microbial communities and metabolic processes are related to environmental change. Ocean and climate variability result in large spatiotemporal variations in environmental conditions and oceanographic processes. The EGSL is also exposed to a variety of additional human pressures that threaten its integrity and sustainable use, including shipping, aquiculture, coastal development, and oil exploration. To monitor and perhaps mitigate the impacts of these human activities on the EGSL, a comprehensive understanding of the biological communities is required. In this study, we provide the first comprehensive view of bacterial diversity in the EGSL and describe the distinct bacterial assemblages associated with different environmental habitats. This work therefore provides an important baseline ecological framework for bacterial communities in the EGSL useful for further studies on how these communities may respond to environmental change. The Estuary and Gulf of St. Lawrence (EGSL) in eastern Canada are among the largest and most productive coastal ecosystems in the world. Very little information on bacterial diversity exists, hampering our understanding of the relationships between bacterial community structure and biogeochemical function in the EGSL. During the productive spring period, we investigated free-living and particle-associated bacterial communities across the stratified waters of the Lower St. Lawrence Estuary, including the particle-rich surface and bottom boundary layers. Modelling of community structure based on 16S rRNA gene and transcript diversity identified bacterial assemblages specifically associated with four habitat types defined by water mass (upper water or lower water column) and size fraction (free living or particle associated). Assemblages from the upper waters represent sets of cooccurring bacterial populations that are widely distributed across Lower St. Lawrence Estuary surface waters and likely key contributors to organic matter degradation during the spring. In addition, we provide strong evidence that particles in deep hypoxic waters and the bottom boundary layer support a metabolically active bacterial community that is compositionally distinct from those of surface particles and the free-living communities. Among the distinctive features of the bacterial assemblage associated with lower-water particles was the presence of uncultivated lineages of Deltaproteobacteria, including marine myxobacteria. Overall, these results provide an important ecological framework for further investigations of the biogeochemical contributions of bacterial populations in this important coastal marine ecosystem. IMPORTANCE The Estuary and Gulf of St. Lawrence (EGSL) in eastern Canada is an appealing ecosystem for studying how microbial communities and metabolic processes are related to environmental change. Ocean and climate variability result in large spatiotemporal variations in environmental conditions and oceanographic processes. The EGSL is also exposed to a variety of additional human pressures that threaten its integrity and sustainable use, including shipping, aquiculture, coastal development, and oil exploration. To monitor and perhaps mitigate the impacts of these human activities on the EGSL, a comprehensive understanding of the biological communities is required. In this study, we provide the first comprehensive view of bacterial diversity in the EGSL and describe the distinct bacterial assemblages associated with different environmental habitats. This work therefore provides an important baseline ecological framework for bacterial communities in the EGSL useful for further studies on how these communities may respond to environmental change.
Collapse
|
40
|
Heravi FS, Zakrzewski M, Vickery K, Hu H. Host DNA depletion efficiency of microbiome DNA enrichment methods in infected tissue samples. J Microbiol Methods 2020; 170:105856. [DOI: 10.1016/j.mimet.2020.105856] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/13/2023]
|
41
|
A generic workflow for Single Locus Sequence Typing (SLST) design and subspecies characterization of microbiota. Sci Rep 2019; 9:19834. [PMID: 31882601 PMCID: PMC6934516 DOI: 10.1038/s41598-019-56065-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/01/2019] [Indexed: 12/24/2022] Open
Abstract
We present TaxPhlAn, a new method and bioinformatics pipeline for design and analysis of single-locus sequence typing (SLST) markers to type and profile bacteria beyond the species-level in a complex microbial community background. TaxPhlAn can be applied to any group of phylogenetically-related bacteria, provided reference genomes are available. As TaxPhlAn requires the SLST targets identified to fit the phylogenetic pattern as determined through comprehensive evolutionary reconstruction of input genomes, TaxPhlAn allows for the identification and phylogenetic inference of new biodiversity. Here, we present a clinically relevant case study of high-resolution Staphylococcus profiling on skin of atopic dermatitis (AD) patients. We demonstrate that SLST enables profiling of cutaneous Staphylococcus members at (sub)species level and provides higher resolution than current 16S-based techniques. With the higher discriminative ability provided by our approach, we further show that the presence of Staphylococcus capitis on the skin together with Staphylococcus aureus associates with AD disease.
Collapse
|
42
|
Tsonis O, Gkrozou F, Harrison E, Stefanidis K, Vrachnis N, Paschopoulos M. Female genital tract microbiota affecting the risk of preterm birth: What do we know so far? A review. Eur J Obstet Gynecol Reprod Biol 2019; 245:168-173. [PMID: 31923737 DOI: 10.1016/j.ejogrb.2019.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Spontaneous Preterm birth (SPTB) is a common obstetric complication affecting 12.9 million births worldwide and is the leading cause of neonatal morbidity and mortality. Disruption in the vaginal microbiota has an impact on the maternal immunological profile leading to SPTBs. Scientists have struggled to link maternal infectious agents with the dysregulation of the maternal immune response in cases of SPTBs. Throughout the last decade, important findings regarding the role of microbiota and its genome, the so-called microbiome, have linked alterations within the population of the microorganisms in our bodies with changes in nutrition, immunity, behaviour and diseases. In this review, evidence regarding the female genital tract microbiota and microbiome has been examined to help further our understanding of its role in disrupting the maternal immune system resulting in spontaneous preterm birth.
Collapse
Affiliation(s)
- O Tsonis
- Department of Obstetrics and Gynaecology, University Hospital of Ioannina, Greece.
| | - F Gkrozou
- Department of Obstetrics and Gynaecology, University Hospitals of Birmingham, UK
| | - E Harrison
- Department of Obstetrics and Gynaecology, University Hospitals of Birmingham, UK
| | - K Stefanidis
- Department of Obstetrics and Gynaecology, University Hospital of Athens, "Alexandra", Greece
| | - N Vrachnis
- 3rd Department of Obstetrics and Gynaecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece
| | - M Paschopoulos
- Department of Obstetrics and Gynaecology, University Hospital of Ioannina, Greece
| |
Collapse
|
43
|
16S rDNA based skin microbiome data of healthy individuals and leprosy patients from India. Sci Data 2019; 6:225. [PMID: 31641132 PMCID: PMC6805899 DOI: 10.1038/s41597-019-0232-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022] Open
Abstract
Leprosy is an infectious disease that has predilection in skin and peripheral nerves. Skin has its own microbiome, however it is not extensively studied in Indian leprosy patients. Here, by using next-generation 16S rDNA sequencing, we have attempted to assess the skin associated microbial diversity pertaining to affected and unaffected skin of Indian leprosy patients. A total of 90 skin swab samples were collected from 60 individuals (30 healthy controls, 30 patients) residing in Hyderabad and Miraj, two distinct geographical locations in India to assess the homo/heterogeneity of skin microbial signatures. While a large increase in genus Methylobacterium and Pseudomonas was seen in patients from Miraj and Hyderabad respectively, a considerable decrease in genus Staphylococcus in the leprosy patients (as compared to controls) from both geographical locations was also observed. We expect that, these datasets can not-only provide further interesting insights, but will also help to observe dynamics of microbiome in the diseased state and generate hypotheses to test for skin microbiome transplantation studies in leprosy.
Measurement(s) | DNA | Technology Type(s) | DNA sequencing | Factor Type(s) | experimental condition | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Environment | microbial community | Sample Characteristic - Location | India |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.9897089
Collapse
|
44
|
Pendegraft AH, Guo B, Yi N. Bayesian hierarchical negative binomial models for multivariable analyses with applications to human microbiome count data. PLoS One 2019; 14:e0220961. [PMID: 31437194 PMCID: PMC6706006 DOI: 10.1371/journal.pone.0220961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
The analyses of large volumes of metagenomic data extracted from aggregate populations of microscopic organisms residing on and in the human body are advancing contemporary understandings of the integrated participation of microbes in human health and disease. Next generation sequencing technology facilitates said analyses in terms of diversity, community composition, and differential abundance by filtering and binning microbial 16S rRNA genes extracted from human tissues into operational taxonomic units. However, current statistical tools restrict study designs to investigations of limited numbers of host characteristics mediated by limited numbers of samples potentially yielding a loss of relevant information. This paper presents a Bayesian hierarchical negative binomial model as an efficient technique capable of compensating for multivariable sets including tens or hundreds of host characteristics as covariates further expanding analyses of human microbiome count data. Simulation studies reveal that the Bayesian hierarchical negative binomial model provides a desirable strategy by often outperforming three competing negative binomial model in terms of type I error while simultaneously maintaining consistent power. An application of the Bayesian hierarchical negative binomial model using subsets of the open data published by the American Gut Project demonstrates an ability to identify operational taxonomic units significantly differentiable among persons diagnosed by a medical professional with either inflammatory bowel disease or irritable bowel syndrome that are consistent with contemporary gastrointestinal literature.
Collapse
Affiliation(s)
- Amanda H. Pendegraft
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Boyi Guo
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nengjun Yi
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
45
|
D'Argenio V. The Prenatal Microbiome: A New Player for Human Health. High Throughput 2018; 7:ht7040038. [PMID: 30544936 PMCID: PMC6306741 DOI: 10.3390/ht7040038] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
The last few years have featured an increasing interest in the study of the human microbiome and its correlations with health status. Indeed, technological advances have allowed the study of microbial communities to reach a previously unthinkable sensitivity, showing the presence of microbes also in environments usually considered as sterile. In this scenario, microbial communities have been described in the amniotic fluid, the umbilical blood cord, and the placenta, denying a dogma of reproductive medicine that considers the uterus like a sterile womb. This prenatal microbiome may play a role not only in fetal development but also in the predisposition to diseases that may develop later in life, and also in adulthood. Thus, the aim of this review is to report the current knowledge regarding the prenatal microbiome composition, its association with pathological processes, and the future perspectives regarding its manipulation for healthy status promotion and maintenance.
Collapse
Affiliation(s)
- Valeria D'Argenio
- CEINGE-BiotecnologieAvanzate, via G. Salvatore via G. Salvatore 486, 80145 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
46
|
Feng XW, Ding WP, Xiong LY, Guo L, Sun JM, Xiao P. Recent Advancements in Intestinal Microbiota Analyses: A Review for Non-Microbiologists. Curr Med Sci 2018; 38:949-961. [PMID: 30536055 DOI: 10.1007/s11596-018-1969-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Microbial constituents naturally inhabiting the gastrointestinal tract may influence the homeostasis of the gut environment. The presence or overabundance of some bacterial taxa has been reported to be associated with complex diseases, and the metabolites of certain bacteria may contribute to diverse disorders by influencing signaling pathways. Therefore, the study of gut microbial population has emerged as a crucial field and a new potential area of clinical significance. Advances in the methods of microbiota analysis have shed light upon the details including species diversity, microfloral activities as well as the entire gut microbiota. Nevertheless, comprehensive reviews on this subject are still limited. For elucidating the appropriate selection strategy of the methods to address a particular research question, we comprehensively reviewed the continuously improving technologies, classical to newly developed, and dissected their relative advantages and drawbacks. In addition, aiming at the rapidly advancing next-generation sequencing, we enumerated the improvements in mainstream platforms and made the horizontal and vertical comparison among them. Additionally, we demonstrated the four main -omics methods, which may provide further mechanistic insights into the role of microbiota, to propel phylotyping analysis to functional analysis.
Collapse
Affiliation(s)
- Xiao-Wei Feng
- Department of Psychiatry, Wuhan Youfu Hospital, Wuhan, 430050, China
| | - Wen-Ping Ding
- Department of Ultrasound, Wuhan Women and Children's Health Care Center, Wuhan, 430016, China
| | - Ling-Yun Xiong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Xiao
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
47
|
Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci Rep 2018; 8:5143. [PMID: 29572539 PMCID: PMC5865204 DOI: 10.1038/s41598-018-23296-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
The information on microbiota composition in the human gastrointestinal tract predominantly originates from the analyses of human faeces by application of next generation sequencing (NGS). However, the detected composition of the faecal bacterial community can be affected by various factors including experimental design and procedures. This study evaluated the performance of different protocols for collection and storage of faecal samples (native and OMNIgene.GUT system) and bacterial DNA extraction (MP Biomedicals, QIAGEN and MO BIO kits), using two NGS platforms for 16S rRNA gene sequencing (Ilumina MiSeq and Ion Torrent PGM). OMNIgene.GUT proved as a reliable and convenient system for collection and storage of faecal samples although favouring Sutterella genus. MP provided superior DNA yield and quality, MO BIO depleted Gram positive organisms while using QIAGEN with OMNIgene.GUT resulted in greatest variability compared to other two kits. MiSeq and IT platforms in their supplier recommended setups provided comparable reproducibility of donor faecal microbiota. The differences included higher diversity observed with MiSeq and increased capacity of MiSeq to detect Akkermansia muciniphila, [Odoribacteraceae], Erysipelotrichaceae and Ruminococcaceae (primarily Faecalibacterium prausnitzii). The results of our study could assist the investigators using NGS technologies to make informed decisions on appropriate tools for their experimental pipelines.
Collapse
|
48
|
Koo H, Hakim JA, Morrow CD, Eipers PG, Davila A, Andersen DT, Bej AK. Comparison of two bioinformatics tools used to characterize the microbial diversity and predictive functional attributes of microbial mats from Lake Obersee, Antarctica. J Microbiol Methods 2017; 140:15-22. [PMID: 28655556 PMCID: PMC6108183 DOI: 10.1016/j.mimet.2017.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
In this study, using NextGen sequencing of the collective 16S rRNA genes obtained from two sets of samples collected from Lake Obersee, Antarctica, we compared and contrasted two bioinformatics tools, PICRUSt and Tax4Fun. We then developed an R script to assess the taxonomic and predictive functional profiles of the microbial communities within the samples. Taxa such as Pseudoxanthomonas, Planctomycetaceae, Cyanobacteria Subsection III, Nitrosomonadaceae, Leptothrix, and Rhodobacter were exclusively identified by Tax4Fun that uses SILVA database; whereas PICRUSt that uses Greengenes database uniquely identified Pirellulaceae, Gemmatimonadetes A1-B1, Pseudanabaena, Salinibacterium and Sinobacteraceae. Predictive functional profiling of the microbial communities using Tax4Fun and PICRUSt separately revealed common metabolic capabilities, while also showing specific functional IDs not shared between the two approaches. Combining these functional predictions using a customized R script revealed a more inclusive metabolic profile, such as hydrolases, oxidoreductases, transferases; enzymes involved in carbohydrate and amino acid metabolisms; and membrane transport proteins known for nutrient uptake from the surrounding environment. Our results present the first molecular-phylogenetic characterization and predictive functional profiles of the microbial mat communities in Lake Obersee, while demonstrating the efficacy of combining both the taxonomic assignment information and functional IDs using the R script created in this study for a more streamlined evaluation of predictive functional profiles of microbial communities.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Joseph A Hakim
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey D Morrow
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter G Eipers
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alfonso Davila
- NASA Ames Research Center, MS 245-3, Moffett Field, CA, USA
| | | | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
49
|
Kinoti WM, Constable FE, Nancarrow N, Plummer KM, Rodoni B. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus. Front Microbiol 2017; 8:1219. [PMID: 28713347 PMCID: PMC5491605 DOI: 10.3389/fmicb.2017.01219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 01/01/2023] Open
Abstract
The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus, occurring in 48 of the 61 Ilarvirus-positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus-like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus-like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus-like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the need for a standardized approach to accurately determine what constitutes an active, viable virus infection after detection by molecular based methods.
Collapse
Affiliation(s)
- Wycliff M. Kinoti
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
- AgriBio, School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| | - Fiona E. Constable
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Narelle Nancarrow
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Kim M. Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Brendan Rodoni
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
- AgriBio, School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
50
|
Te SH, Tan BF, Thompson JR, Gin KYH. Relationship of Microbiota and Cyanobacterial Secondary Metabolites in Planktothricoides-Dominated Bloom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4199-4209. [PMID: 28345890 DOI: 10.1021/acs.est.6b05767] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The identification of phytoplankton species and microbial biodiversity is necessary to assess water ecosystem health and the quality of water resources. We investigated the short-term (2 days) vertical and diel variations in bacterial community structure and microbially derived secondary metabolites during a cyanobacterial bloom that emerged in a highly urbanized tropical reservoir. The waterbody was largely dominated by the cyanobacteria Planktothricoides spp., together with the Synechococcus, Pseudanabaena, Prochlorothrix, and Limnothrix. Spatial differences (i.e., water depth) rather than temporal differences (i.e., day versus night) better-explained the short-term variability in water quality parameters and bacterial community composition. Difference in bacterial structure suggested a resource-driven distribution pattern for the community. We found that the freshwater bacterial community associated with cyanobacterial blooms is largely conserved at the phylum level, with Proteobacteria (β-proteobateria), Bacteroidetes, and Actinobacteria as the main taxa despite the cyanobacterial species present and geographical (Asia, Europe, Australia, and North America) or climatic distinctions. Through multivariate statistical analyses of the bacterial community, environmental parameters, and secondary metabolite concentrations, we observed positive relationships between the occurrences of cyanobacterial groups and off-flavor compounds (2-methyisoborneol and β-ionone), suggesting a cyanobacterial origin. This study demonstrates the potential of 16S rRNA gene amplicon sequencing as a supporting tool in algal bloom monitoring or water-resource management.
Collapse
Affiliation(s)
- Shu Harn Te
- NUS Environmental Research Institute, National University of Singapore , 5A Engineering Drive 1, No. 02-01 T-Lab Building, Singapore 117411
| | - Boon Fei Tan
- Centre for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology Centre , 1 CREATE Way, #09-03 CREATE Tower, Singapore 138602
| | - Janelle R Thompson
- Centre for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology Centre , 1 CREATE Way, #09-03 CREATE Tower, Singapore 138602
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore , 5A Engineering Drive 1, No. 02-01 T-Lab Building, Singapore 117411
- Department of Civil and Environmental Engineering, National University of Singapore , 1 Engineering Drive 2, E1A 07-03, Singapore 117576
| |
Collapse
|