1
|
Balmer GL, Guha S, Poll S. Engrams across diseases: Different pathologies - unifying mechanisms? Neurobiol Learn Mem 2025; 219:108036. [PMID: 40023216 DOI: 10.1016/j.nlm.2025.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Memories are our reservoir of knowledge and thus, are crucial for guiding decisions and defining our self. The physical correlate of a memory in the brain is termed an engram and since decades helps researchers to elucidate the intricate nature of our imprinted experiences and knowledge. Given the importance that memories have for our lives, their impairment can present a tremendous burden. In this review we aim to discuss engram malfunctioning across diseases, covering dementia-associated pathologies, epilepsy, chronic pain and psychiatric disorders. Current neuroscientific tools allow to witness the emergence and fate of engram cells and enable their manipulation. We further suggest that specific mechanisms of mnemonic malfunction can be derived from engram cell readouts. While depicting the way diseases act on the mnemonic component - specifically, on the cellular engram - we emphasize a differentiation between forms of amnesia and hypermnesia. Finally, we highlight commonalities and distinctions of engram impairments on the cellular level across diseases independent of their pathogenic origins and discuss prospective therapeutic measures.
Collapse
Affiliation(s)
- Greta Leonore Balmer
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Shuvrangshu Guha
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Stefanie Poll
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.
| |
Collapse
|
2
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
3
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. A New Concept of Associations between Gut Microbiota, Immunity and Central Nervous System for the Innovative Treatment of Neurodegenerative Disorders. Metabolites 2022; 12:1052. [PMID: 36355135 PMCID: PMC9692629 DOI: 10.3390/metabo12111052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Nerve cell death accounts for various neurodegenerative disorders, in which altered immunity to the integrated central nervous system (CNS) might have destructive consequences. This undesirable immune response often affects the progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, schizophrenia and/or amyotrophic lateral sclerosis (ALS). It has been shown that commensal gut microbiota could influence the brain and/or several machineries of immune function. In other words, neurodegenerative disorders may be connected to the gut-brain-immune correlational system. The engrams in the brain could retain the information of a certain inflammation in the body which might be involved in the pathogenesis of neurodegenerative disorders. Tactics involving the use of probiotics and/or fecal microbiota transplantation (FMT) are now evolving as the most promising and/or valuable for the modification of the gut-brain-immune axis. More deliberation of this concept and the roles of gut microbiota would lead to the development of stupendous treatments for the prevention of, and/or therapeutics for, various intractable diseases including several neurodegenerative disorders.
Collapse
|
4
|
Vignoli B, Sansevero G, Sasi M, Rimondini R, Blum R, Bonaldo V, Biasini E, Santi S, Berardi N, Lu B, Canossa M. Astrocytic microdomains from mouse cortex gain molecular control over long-term information storage and memory retention. Commun Biol 2021; 4:1152. [PMID: 34611268 PMCID: PMC8492720 DOI: 10.1038/s42003-021-02678-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Memory consolidation requires astrocytic microdomains for protein recycling; but whether this lays a mechanistic foundation for long-term information storage remains enigmatic. Here we demonstrate that persistent synaptic strengthening invited astrocytic microdomains to convert initially internalized (pro)-brain-derived neurotrophic factor (proBDNF) into active prodomain (BDNFpro) and mature BDNF (mBDNF) for synaptic re-use. While mBDNF activates TrkB, we uncovered a previously unsuspected function for the cleaved BDNFpro, which increases TrkB/SorCS2 receptor complex at post-synaptic sites. Astrocytic BDNFpro release reinforced TrkB phosphorylation to sustain long-term synaptic potentiation and to retain memory in the novel object recognition behavioral test. Thus, the switch from one inactive state to a multi-functional one of the proBDNF provides post-synaptic changes that survive the initial activation. This molecular asset confines local information storage in astrocytic microdomains to selectively support memory circuits. Beatrice Vignoli et al. examine potential molecular mechanisms of long-term storage information in mice. Their results suggest that astrocytes may help convert neuronal BDNF precursor into active prodomain and mature forms to enhance post-synaptic signaling and memory, providing further insight into the development of memory circuits.
Collapse
Affiliation(s)
- Beatrice Vignoli
- Department of Physics, University of Trento, 38123, Povo (TN), Italy. .,Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| | - Gabriele Sansevero
- Neuroscience Institute, National Research Council (IN-CNR), 56100, Pisa, Italy
| | - Manju Sasi
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Robert Blum
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Valerio Bonaldo
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Emiliano Biasini
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Spartaco Santi
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", National Research Council of Italy, 40136, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Nicoletta Berardi
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), University of Florence, 50100, Florence, Italy
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Marco Canossa
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| |
Collapse
|
5
|
Gebicke-Haerter PJ. Systems psychopharmacology: A network approach to developing novel therapies. World J Psychiatry 2016; 6:66-83. [PMID: 27014599 PMCID: PMC4804269 DOI: 10.5498/wjp.v6.i1.66] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 02/05/2023] Open
Abstract
The multifactorial origin of most chronic disorders of the brain, including schizophrenia, has been well accepted. Consequently, pharmacotherapy would require multi-targeted strategies. This contrasts to the majority of drug therapies used until now, addressing more or less specifically only one target molecule. Nevertheless, quite some searches for multiple molecular targets specific for mental disorders have been undertaken. For example, genome-wide association studies have been conducted to discover new target genes of disease. Unfortunately, these attempts have not fulfilled the great hopes they have started with. Polypharmacology and network pharmacology approaches of drug treatment endeavor to abandon the one-drug one-target thinking. To this end, most approaches set out to investigate network topologies searching for modules, endowed with "important" nodes, such as "hubs" or "bottlenecks", encompassing features of disease networks, and being useful as tentative targets of drug therapies. This kind of research appears to be very promising. However, blocking or inhibiting "important" targets may easily result in destruction of network integrity. Therefore, it is suggested here to study functions of nodes with lower centrality for more subtle impact on network behavior. Targeting multiple nodes with low impact on network integrity by drugs with multiple activities ("dirty drugs") or by several drugs, simultaneously, avoids to disrupt network integrity and may reset deviant dynamics of disease. Natural products typically display multi target functions and therefore could help to identify useful biological targets. Hence, future efforts should consider to combine drug-target networks with target-disease networks using mathematical (graph theoretical) tools, which could help to develop new therapeutic strategies in long-term psychiatric disorders.
Collapse
|
6
|
Borovok N, Nesher E, Levin Y, Reichenstein M, Pinhasov A, Michaelevski I. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation. Mol Cell Proteomics 2015; 15:523-41. [PMID: 26598641 DOI: 10.1074/mcp.m115.051318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams.
Collapse
Affiliation(s)
- Natalia Borovok
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Elimelech Nesher
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Yishai Levin
- ¶de Botton Institute for Protein Profiling, The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Reichenstein
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Albert Pinhasov
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Izhak Michaelevski
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel; ‖Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|