1
|
Xie A, Shen X, Hong R, Xie Y, Zhang Y, Chen J, Li Z, Li M, Yue X, Quek SY. Unlocking the potential of donkey Milk: Nutritional composition, bioactive properties and future prospects. Food Res Int 2025; 209:116307. [PMID: 40253152 DOI: 10.1016/j.foodres.2025.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/27/2025] [Accepted: 03/15/2025] [Indexed: 04/21/2025]
Abstract
Donkey milk has garnered increasing attention due to its remarkable similarity to human milk and its diverse bioactive properties. Analysis of its composition shows that donkey milk is characterized by high lactose content, low protein, low fat, a balanced calcium-to‑phosphorus ratio, and abundant in vitamins C and D, making it a promising human milk alternative. Additionally, donkey milk contains a unique composition of whey proteins and polyunsaturated fatty acids, contributing to its beneficial health effects such as antimicrobial, anti-inflammatory, antioxidant, and hypoallergenic properties. This review provides a comprehensive analysis of the nutritional profile of donkey milk in comparison to other mammalian milk sources. Furthermore, it highlights its bioactive potential and discusses the current challenges and future opportunities for expanding its applications in the dairy and health industries. Despite its valuable properties, the development of donkey milk products remains limited due to low milk yield and high production costs. Further research and technological advancements are necessary to optimize its utilization and commercial potential.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruiyao Hong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanfang Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yumeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Jiangsu 213164, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand; Riddet Institute, Centre for Research Excellence in Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
2
|
Holm E, Vermeulen I, Parween S, López-Pérez A, Cillero-Pastor B, Vandenbosch M, Remeseiro S, Hörnblad A. AMPK activator ATX-304 reduces oxidative stress and improves MASLD via metabolic switching. JCI Insight 2025; 10:e179990. [PMID: 40197369 PMCID: PMC11981618 DOI: 10.1172/jci.insight.179990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide for which there is only one approved treatment. Adenosine monophosphate-activated protein kinase (AMPK) is an interesting therapeutic target since it acts as a central regulator of cellular metabolism. Despite efforts to target AMPK, no direct activators have yet been approved for treatment of this disease. This study investigated the effect of the AMPK activator ATX-304 in a preclinical mouse model of progressive fatty liver disease. The data demonstrated that ATX-304 diminishes body fat mass, lowers blood cholesterol levels, and mitigates general liver steatosis and the development of liver fibrosis, but with pronounced local heterogeneities. The beneficial effects of ATX-304 treatment were accompanied by a shift in the liver metabolic program, including increased fatty acid oxidation, reduced lipid synthesis, as well as remodeling of cholesterol and lipid transport. We also observed variations in lipid distribution among liver lobes in response to ATX-304, and a shift in the zonal distribution of lipid droplets upon treatment. Taken together, our data suggested that ATX-304 holds promise as a potential treatment for MASLD.
Collapse
Affiliation(s)
- Emanuel Holm
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| | - Isabeau Vermeulen
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, Limburg, Netherlands
| | - Saba Parween
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| | - Ana López-Pérez
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, Limburg, Netherlands
- The MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, Limburg, Netherlands
| | - Michiel Vandenbosch
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, Limburg, Netherlands
| | - Silvia Remeseiro
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Andreas Hörnblad
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| |
Collapse
|
3
|
Miro C, Cicatiello AG, Nappi A, Sagliocchi S, Acampora L, Restolfer F, Cuomo O, de Alteris G, Pugliese G, Torabinejad S, Maritato R, Murolo M, Di Cicco E, Velotti N, Capuano M, La Civita E, Terracciano D, Ciampaglia R, Stornaiuolo M, Musella M, Aprea G, Pignataro G, Savastano S, Dentice M. Leptin enhances the intracellular thyroid hormone activation in skeletal muscle to boost energy balance. Cell Metab 2025; 37:936-953.e7. [PMID: 39986272 DOI: 10.1016/j.cmet.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/15/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025]
Abstract
Thyroid hormones (THs) are key modulators of energy metabolism and cross-talk with other endocrine and metabolic factors. Notably, leptin can increase hypothalamic control of TH synthesis as an adaptive metabolic response regulating body weight. In this study, we found that the TH signal is heightened in overweight humans and is lost with obesity. In mice, systemic and intracerebroventricular leptin injection induces the expression of type 2 deiodinase (D2), the TH-activating enzyme, in skeletal muscle. Mechanistically, leptin enhances the transcription of D2 by a STAT3- and α-melanocyte-stimulating hormone (α-MSH)/cyclic AMP (cAMP)-dependent regulation. Notably, mice lacking D2 or with a mutation in the TH receptor do not exhibit the metabolic effects of leptin, such as increased insulin sensitivity and oxygen consumption, indicating that leptin's peripheral metabolic effects in skeletal muscle are mediated by TH. These findings underscore the critical role of leptin in integrating the TH-induced metabolic activation, while also contributing to appetite suppression in response to perceived fat stores.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | | | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Lucia Acampora
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Federica Restolfer
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II," 80131 Naples, Italy
| | - Giulia de Alteris
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Gabriella Pugliese
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Sepehr Torabinejad
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Rosa Maritato
- Department of Translational Medical Sciences, University of Naples "Federico II," 80131 Naples, Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Nunzio Velotti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II," 80131 Naples, Italy
| | - Marianna Capuano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples "Federico II," 80131 Naples, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples "Federico II," 80131 Naples, Italy
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples "Federico II," 80149 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples "Federico II," 80149 Naples, Italy
| | - Mario Musella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II," 80131 Naples, Italy
| | - Giovanni Aprea
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II," 80131 Naples, Italy
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate S.c.a.r.l., 80131 Naples, Italy.
| |
Collapse
|
4
|
Zhang WX, Tian G, Zhang KY, Bai SP, Ding XM, Wang JP, Xuan Y, Zeng QF. Effects of dietary supplementation with oleic acid on growth performance, dietary fat utilization, serum and intestinal lipid metabolic parameters, and enterocyte lipid droplet metabolism in Pekin ducks. Poult Sci 2025; 104:105035. [PMID: 40117933 PMCID: PMC11979522 DOI: 10.1016/j.psj.2025.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
This study aimed to investigate the effects of a diet supplemented with different levels of oleic acid (OA) on growth performance, serum biochemical parameters, nutrient utilization, and intestinal lipid metabolism in Pekin ducks. A total of 350 fourteen-d-old male ducks were randomly assigned to the following five isonitrogenous and heteroenergetic dietary treatment groups: 0.00% (control), 0.25%, 0.50%, 0.75%, and 1.00% OA groups. The experiment lasted 28 days. The findings indicated that neither growth performance nor nutrient utilization was affected by OA supplementation (P > 0.05). The 0.50% OA group displayed the lowest serum triglyceride (TG) levels among all treatment groups, with significantly lower values compared to both the 0.25%=% and 0.75% OA groups (P < 0.05). Moreover, the activities of lipid droplet (LD)-degrading enzymes in the jejunal mucosa, such as adipose triglyceride lipase (ATGL), showed a significant inverse linear relationship (P < 0.05); carboxylesterase 2 (CES2) activity exhibited a proportional dose-dependent increase (P < 0.05); and lysosomal acid lipase (LAL) activity was negatively correlated with the increased concentration of OA in the diet (P < 0.05). Moreover, the mRNA expression levels of the LD formation-related genes PLIN2 were significantly higher in the 0.50% OA group compared to the 0.25% and 0.75% OA groups (P < 0.05). The mRNA expression of LD degradation-related genes, the PNPLA2 expression in the 0.25%, 0.50%, and 0.75% OA groups and LPL expression in all OA groups were downregulated (P < 0.05) when compared with those in the control group. These results suggested that dietary supplementation with OA, especially at a level of 0.50%, may decrease the serum TG content and promote lipid deposition in the jejunum in Pekin ducks by regulating the formation and degradation of enterocyte LDs.
Collapse
Affiliation(s)
- W X Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - G Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - Y Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China.
| |
Collapse
|
5
|
Song L, Huang Y, Liu L, Chang X, Hu L, Wang G, Xu L, Zhang T, Wang Y, Xiao Y, Yang H, Ran S, Shi Q, Wang T, Shi M, Zhou Y, Guo B. Meteorin-like alleviates hepatic steatosis by regulating hepatic triglyceride secretion and fatty acid oxidation. Cell Rep 2025; 44:115246. [PMID: 39918960 DOI: 10.1016/j.celrep.2025.115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Amid a rising prevalence of non-alcoholic fatty liver disease (NAFLD), there is still an unmet need to better treat it. We identified a secreted factor, Meteorin-like (Metrnl), with decreased levels in livers with hepatic steatosis. Notably, recombinant Metrnl ameliorated hepatic steatosis in NAFLD mouse models. Mechanistically, Metrnl exerted dual effects by promoting triglyceride (TG) transportation by the phosphatidylinositol 3-kinase (PI3K)/Akt/Sp1/cytidylyltransferase α (CCTα) axis, thereby increasing the biosynthesis of phosphatidylcholine (PC) to facilitate TG secretion from the liver while facilitating AMP-activated protein kinase (AMPK)-dependent fatty acid oxidation (FAO). Exogenous injection of cytidine diphosphocholine (CDP)-choline, the production of CCTα, to increase PC synthesis, was shown to restore the inhibition of TG secretion in hepatic Metrnl-deficient (LKO-Met) mice. Combining CDP-choline and an AMPK activator was sufficient to rescue hepatic steatosis in LKO-Met mice. Collectively, these findings reveal unexpected roles of Metrnl as a factor in PC biosynthesis, TG secretion, and FAO, suggesting potential therapeutic application for NAFLD.
Collapse
Affiliation(s)
- Lingyu Song
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Yali Huang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Lu Liu
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Xuebing Chang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Laying Hu
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Guifang Wang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tian Zhang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Yuanyuan Wang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Ying Xiao
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Hong Yang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Suye Ran
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Qing Shi
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361005, Fujian, China
| | - Mingjun Shi
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China.
| | - Yuxia Zhou
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China.
| | - Bing Guo
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases and Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Gui'an New Area, 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New Area, 561113, Guizhou, China.
| |
Collapse
|
6
|
Dakal TC, Xiao F, Bhusal CK, Sabapathy PC, Segal R, Chen J, Bai X. Lipids dysregulation in diseases: core concepts, targets and treatment strategies. Lipids Health Dis 2025; 24:61. [PMID: 39984909 PMCID: PMC11843775 DOI: 10.1186/s12944-024-02425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/30/2024] [Indexed: 02/23/2025] Open
Abstract
Lipid metabolism is a well-regulated process essential for maintaining cellular functions and energy homeostasis. Dysregulation of lipid metabolism is associated with various conditions, including cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. This review explores the mechanisms underlying lipid metabolism, emphasizing the roles of key lipid species such as triglycerides, phospholipids, sphingolipids, and sterols in cellular physiology and pathophysiology. It also examines the genetic and environmental factors contributing to lipid dysregulation and the challenges of diagnosing and managing lipid-related disorders. Recent advancements in lipid-lowering therapies, including PCSK9 inhibitors, ezetimibe, bempedoic acid, and olpasiran, provide promising treatment options. However, these advancements are accompanied by challenges related to cost, accessibility, and patient adherence. The review highlights the need for personalized medicine approaches to address the interplay between genetics and environmental factors in lipid metabolism. As lipidomics and advanced diagnostic tools continue to progress, a deeper understanding of lipid-related disorders could pave the way for more effective therapeutic strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia, University, Udaipur, 313001, India
| | - Feng Xiao
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Chandra Kanta Bhusal
- Aarupadai Veedu Medical College and Hospital, VMRF-DU, Pondicherry, 607402, India
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Rakesh Segal
- Aarupadai Veedu Medical College and Hospital, VMRF-DU, Pondicherry, 607402, India
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Juan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China.
| | - Xiaodong Bai
- Department of Plastic Surgery, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Reyad-Ul Ferdous M, Wolde T, Pandey V, Qin P. Mitochondrial function, cell viability, pharmacokinetics and molecular simulation studies reveal the impact of CX-6258 HCl, a pan-Pim kinase inhibitor, on adipocytes. J Biomol Struct Dyn 2025:1-13. [PMID: 39936172 DOI: 10.1080/07391102.2025.2460738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/15/2024] [Indexed: 02/13/2025]
Abstract
Obesity leads to the development of several diseases and chronic death worldwide. Mitochondrial dysfunction is one of the vital causes to develop obesity. Targeting mitochondrial uncoupling protein 1 (UCP1) may well be a potential therapeutic approach against obesity or mitochondrial dysfunction-related illnesses. To assess the significance of mitochondrial adenosine triphosphate (ATP) synthesis, mitochondrial DNA quantity and in vitro pharmacodynamics and pharmacokinetics, we used CX-6258 HCl (pan-Pim kinase inhibitor) in this work. CX-6258 HCl significantly reduces ATP production both in white and brown adipocytes and, therefore, improves thermogenesis, which helps to reduce fat in adipocytes. On the HEK293T cell line, no appreciable cell growth was seen. The in silico analysis identifies a potential interaction between CX-6258 HCl and the UCP1 protein. To treat disorders linked to mitochondrial dysfunction or obesity, CX-6258 HCl may be a promising therapeutic option. The role of pan-Pim kinase inhibitor on obesity and mitochondrial dysfunction-related disorders remains unknown. Further investigation will be leading to the development of the mechanism of action and therapeutic potential of CX-6258 HCl (pan-Pim kinase inhibitor).
Collapse
Affiliation(s)
- Md Reyad-Ul Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China
| | - Tesfaye Wolde
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China
| |
Collapse
|
9
|
Francois M, Kaiser L, He Y, Xu Y, Salbaum JM, Yu S, Morrison CD, Berthoud HR, Münzberg H. Leptin receptor neurons in the dorsomedial hypothalamus require distinct neuronal subsets for thermogenesis and weight loss. Metabolism 2025; 163:156100. [PMID: 39672257 PMCID: PMC11700787 DOI: 10.1016/j.metabol.2024.156100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
The dorsomedial hypothalamus (DMH) receives inputs from the preoptic area (POA), where ambient temperature mediates physiological adaptations of energy expenditure and food intake. Warm-activated POA neurons suppress energy expenditure via brown adipose tissue (BAT) projecting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA). Our earlier work identified leptin receptor (Lepr)-expressing, BAT-projecting dDMH/DHA neurons that mediate metabolic leptin effects. Yet, the neurotransmitter (glutamate or GABA) used by dDMH/DHALepr neurons remains unexplored and was investigated in this study using mice. We report that dDMH/DHALepr neurons represent equally glutamatergic and GABAergic neurons. Surprisingly, chemogenetic activation of glutamatergic and/or GABAergic dDMH/DHA neurons were capable to increase energy expenditure and locomotion, but neither reproduced the beneficial metabolic effects observed after chemogenetic activation of dDMH/DHALepr neurons. We clarify that BAT-projecting dDMH/DHA neurons that innervate the raphe pallidus (RPa) are exclusively glutamatergic Lepr neurons. In contrast, projections of GABAergic or dDMH/DHALepr neurons overlapped in the ventromedial arcuate nucleus (vmARC), suggesting distinct energy expenditure pathways. Brain slice patch clamp recordings further demonstrate a considerable proportion of leptin-inhibited dDMH/DHALepr neurons, while removal of pre-synaptic (indirect) effects with synaptic blocker increased the proportion of leptin-activated dDMH/DHALepr neurons, suggesting that pre-synaptic Lepr neurons inhibit dDMH/DHALepr neurons. We conclude that stimulation of BAT-related, GABA- and glutamatergic dDMH/DHALepr neurons in combination mediate the beneficial metabolic effects. Our data support the idea that dDMH/DHALepr neurons integrate upstream Lepr neurons (e.g., originating from POA and ARC). We speculate that these neurons manage dynamic adaptations to a variety of environmental changes including ambient temperature and energy state. SIGNIFICANCE STATEMENT: Our earlier work identified leptin receptor expressing neurons in the dDMH/DHA as an important thermoregulatory site. Dorsomedial hypothalamus (DMH) Lepr neurons participate in processing and integration of environmental exteroceptive signals like ambient temperature and circadian rhythm, as well as interoceptive signals including leptin and the gut hormone glucagon-like-peptide-1 (GLP1). The present work further characterizes dDMH/DHALepr neurons as a mixed glutamatergic and GABAergic population, but with distinct axonal projection sites. Surprisingly, select activation of glutamatergic and/or GABAergic populations are all able to increase energy expenditure, but are unable to replicate the beneficial metabolic effects observed by Lepr activation. These findings highlighting dDMH/DHA Lepr neurons as a distinct subgroup of glutamatergic and GABAergic neurons that are under indirect and direct influence of the interoceptive hormone leptin and if stimulated are uniquely capable to mediate beneficial metabolic effects. Our work significantly expands our knowledge of thermoregulatory circuits and puts a spotlight onto DMH-Lepr neurons for the integration into whole body energy and body weight homeostasis.
Collapse
Affiliation(s)
- Marie Francois
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Laura Kaiser
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Yanlin He
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - J Michael Salbaum
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA.
| |
Collapse
|
10
|
Sun Z, Liu D, An S, Zhang J, Lei L, Miao Z. Effects of Acorns on Subcutaneous Fat Deposition in Yuxi Black Pigs by Transcriptomic Analysis. Metabolites 2025; 15:71. [PMID: 39997696 PMCID: PMC11857660 DOI: 10.3390/metabo15020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: The backfat thickness of pigs is closely related to dorsal subcutaneous fat deposition and meat quality, and appropriate reduction in backfat thickness is important for improving pork quality. The present study investigated the effect of acorn diet on the backfat thickness and lipase activity of Yuxi black pigs and to gain further insight into the molecular mechanism of the acorn diet on the dorsal subcutaneous fat deposition of Yuxi black pigs by transcriptome sequencing (RNA-seq). Methods: Thirty-six Yuxi black pigs with an initial body weight of 99.60 ± 2.32 kg (three replicates per group and six pigs per replicate) were randomly divided into two groups (CON group was fed a basic diet and AEG group was fed 30% acorn diets). Pigs were individually fed twice daily and had access to water ad libitum throughout the experiment. The test period was 4 months. Results: Results showed that backfat thickness and ACC, MDH, and LPL lipase activities were significantly reduced in the AEG group than in the CON group (p < 0.05). In addition, RNA-seq identified 826 differentially expressed genes (DEGs), with 505 up-regulated and 321 down-regulated. The DEGs were significantly enriched in the lipid metabolism process and lipid catabolic process, fatty acid (FA) catabolic process, and FA β-oxidation according to GO enrichment analysis. LEP, CHPT1, UCP3, ACOX1, SCD5, and ACAA1 were screened as key differential genes regulating dorsal subcutaneous fat deposition. Conclusions: The above results indicated that feeding the 30% acorn diet could regulate the expression of genes involved in fat deposition and reduce lipase activity, thereby decreasing the backfat thickness, inhibiting the deposition of dorsal subcutaneous fat, and improving the pork quality. The findings of this experiment established a basis for subsequent research into the molecular mechanisms underlying the impact of acorn diets on fat deposition in Yuxi black pigs and provided the scientific evidence to promote the exploitation and industrialization of acorns.
Collapse
Affiliation(s)
- Zhe Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (J.Z.)
| | - Dongyang Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (J.Z.)
| | - Siyuan An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (J.Z.)
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (J.Z.)
| | - Lei Lei
- Zhengzhou Agricultural Comprehensive Administrative Law Enforcement Detachment, Zhengzhou 450044, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (J.Z.)
| |
Collapse
|
11
|
Díez-Sainz E, Milagro FI, Aranaz P, Riezu-Boj JI, Batrow PL, Contu L, Gautier N, Amri EZ, Mothe-Satney I, Lorente-Cebrián S. Human miR-1 Stimulates Metabolic and Thermogenic-Related Genes in Adipocytes. Int J Mol Sci 2024; 26:276. [PMID: 39796132 PMCID: PMC11720367 DOI: 10.3390/ijms26010276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism. This study aimed to explore the effect of miR-1 on human adipocyte browning, a process whose activation has been linked to obesity protection and counteraction. Human multipotent adipose-derived stem cells, hMADS cells, were differentiated into white and brown-like adipocytes and transfected with miR-1 mimics for gene expression and western blotting analyses. miR-1 inhibited the expression of its previously validated target PTK9/TWF1 and modulated the expression profile of key genes involved in thermogenesis and adipocyte browning (increased UCP1 at mRNA and protein level, increased CPT1M, decreased HIF3A), adipocyte differentiation and metabolism (decreased PLIN1, FASN, RXRA, PPARG, FABP4, MAPKAPK2), as well as genes related to the cytoskeleton (decreased ACTB) and extracellular matrix (decreased COL1A1). These findings suggest that miR-1 can modulate the expression of adipocyte human genes associated with thermogenesis and metabolism, which could hold value for eventual therapeutic potential in obesity.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Pierre-Louis Batrow
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Laura Contu
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Nadine Gautier
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Ez-Zoubir Amri
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Isabelle Mothe-Satney
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria (CITA), 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 PMCID: PMC11570342 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
13
|
Horakova O, Janovska P, Irodenko I, Buresova J, van der Stelt I, Stanic S, Haasova E, Shekhar N, Kobets T, Keijer J, Zouhar P, Rossmeisl M, Kopecky J, Bardova K. Postnatal surge of adipose-secreted leptin is a robust predictor of fat mass trajectory in mice. Am J Physiol Endocrinol Metab 2024; 327:E729-E745. [PMID: 39441238 DOI: 10.1152/ajpendo.00237.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
The transient postnatal increase in circulating leptin levels, known as leptin surge, may increase later susceptibility to diet-induced obesity in rodents. However, the source of leptin during the surge needs to be better characterized, and the long-term effects of leptin are contradictory. Characterization of the interaction of leptin with the genetic background, sex, and other factors is required. Here, we focused on the impact of circulating leptin levels and several related variables, measured in 2- and 4-wk-old i) obesity-prone C57BL/6 (B6) and ii) obesity-resistant A/J mice. In total, 264 mice of both sexes were used. Posttranscriptionally controlled leptin secretion from subcutaneous white adipose tissue, the largest adipose tissue depot in mice pups, was the primary determinant of plasma leptin levels. When the animals were randomly assigned standard chow or high-fat diet (HFD) between 12 and 24 wk of age, the obesogenic effect of HFD feeding was observed in B6 but not A/J mice. Only leptin levels at 2 wk, i.e., close to the maximum in the postnatal leptin surge, correlated with both body weight (BW) trajectory throughout the life and adiposity of the 24-wk-old mice. Leptin surge explained 13 and 7% of the variance in BW and adiposity of B6 mice, and 9 and 35% of the variance in these parameters in A/J mice, with a minor role of sex. Our results prove the positive correlation between the leptin surge and adiposity in adulthood, reflecting the fundamental biological role of leptin. This role could be compromised in subjects with obesity.NEW & NOTEWORTHY The postnatal surge in circulating leptin levels in mice reflects particularly posttranscriptionally controlled release of this hormone from subcutaneous white adipose tissue. Leptinemia in 2-wk-old pups predicts both body weight and adiposity in adult mice fed a high-fat diet. The extent of these effects depends on genetically determined differences in propensity to obesity between C57BL/6 and A/J mice. The leptin effect on adiposity is compromised in the obesity-prone C57BL/6 mice.
Collapse
Affiliation(s)
- Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Buresova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Inge van der Stelt
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eliska Haasova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nivasini Shekhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatyana Kobets
- Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Pollard AE. New concepts in the roles of AMPK in adipocyte stem cell biology. Essays Biochem 2024; 68:349-361. [PMID: 39175418 DOI: 10.1042/ebc20240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Obesity is a major risk factor for many life-threatening diseases. Adipose tissue dysfunction is emerging as a driving factor in the transition from excess adiposity to comorbidities such as metabolic-associated fatty liver disease, cardiovascular disease, Type 2 diabetes and cancer. However, the transition from healthy adipose expansion to the development of these conditions is poorly understood. Adipose stem cells, residing in the vasculature and stromal regions of subcutaneous and visceral depots, are responsible for the expansion and maintenance of organ function, and are now recognised as key mediators of pathological transformation. Impaired tissue expansion drives inflammation, dysregulation of endocrine function and the deposition of lipids in the liver, muscle and around vital organs, where it is toxic. Contrary to previous hypotheses, it is the promotion of healthy adipose tissue expansion and function, not inhibition of adipogenesis, that presents the most attractive therapeutic strategy in the treatment of metabolic disease. AMP-activated protein kinase, a master regulator of energy homeostasis, has been regarded as one such target, due to its central role in adipose tissue lipid metabolism, and its apparent inhibition of adipogenesis. However, recent studies utilising AMP-activated protein kinase (AMPK)-specific compounds highlight a more subtle, time-dependent role for AMPK in the process of adipogenesis, and in a previously unexplored repression of leptin, independent of adipocyte maturity. In this article, I discuss historic evidence for AMPK-mediated adipogenesis inhibition and the multi-faceted roles for AMPK in adipose tissue.
Collapse
Affiliation(s)
- Alice E Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
15
|
Wu J, Zhuang W, Lu K, Zhang L, Wang Y, Chai F, Liang XF. Study on the Function of Leptin Nutrient Acquisition and Energy Metabolism of Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:11647. [PMID: 39519205 PMCID: PMC11546987 DOI: 10.3390/ijms252111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Leptin plays an indispensable role in energy homeostasis, and its involvement in metabolic activities has been extensively explored in fish. We generated mutant lines of leptina (-5 bp) and leptinb (+8 bp) in zebrafish using CRISPR/Cas9 technology to explore the metabolic characteristics of lepa and lepb mutant zebrafish in response to high glucose nutritional stress induced by high levels of carbohydrates. The results were as follows: the body weight and food intake of adult zebrafish of the two mutant species were increased; the visceral fat accumulation, whole-body crude lipid, and crude protein contents of lepb-/- were increased; and the visceral fat accumulation and crude lipid in lepa-/- zebrafish were decreased. The blood glucose levels of the two mutant zebrafish were increased, the mRNA expression levels of glycolytic genes pk and gck were decreased in the two mutant zebrafish, and there were differences between lepa-/- and lepb-/- zebrafish. The expressions of glycogen synthesis and decomposition genes were inhibited and promoted, respectively. The expression of adipose synthesis genes in the liver and muscle was stimulated in lepb-/- zebrafish but suppressed in lepa-/- zebrafish. Lipolysis and oxidation genes were also stimulated in lepa-/- zebrafish livers, while the livers of lepb-/- zebrafish were stimulated but muscle was inhibited. In conclusion, the results indicate that lepa plays a major role in glucose metabolism, which is conducive to promoting glucose utilization and lipogenesis, while lepb mainly promotes lipolysis and oxidation, regulates protein generation, and plays a minor role in glucose metabolism.
Collapse
Affiliation(s)
- Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Wuyuan Zhuang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Lixin Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yuye Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Farui Chai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
16
|
Wang D, Wang J, Yin Z, Gong K, Zhang S, Zha Z, Duan Y. Polyoxometalates Ameliorate Metabolic Dysfunction-Associated Steatotic Liver Disease by Activating the AMPK Signaling Pathway. Int J Nanomedicine 2024; 19:10839-10856. [PMID: 39479173 PMCID: PMC11522013 DOI: 10.2147/ijn.s485084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent chronic liver disorder, has garnered increasing attention globally owing to its associated health complications. However, the lack of available therapeutic medications and inadequate management of complications in metabolic dysfunction-associated steatohepatitis (MASH) present significant challenges. There are little studies evaluating the effectiveness of POM in treating MASLD. In this study, we synthesized polyoxometalates (POM) for potential treatment of MASLD. Methods We induced liver disease in mice using two approaches: feeding a high-fat diet (HFD) to establish MASLD or feeding a methionine-choline deficient (MCD) diet to induce hepatic lipotoxicity and MASH. Various metabolic parameters were detected, and biochemical and histological evaluations were conducted on MASLD. Western blotting, qRT-PCR and immunofluorescence assays were used to elucidate the molecular mechanism of POM in the treatment of MASLD. Results POM therapy resulted in significant improvements in weight gain, dyslipidemia, liver injury, and hepatic steatosis in mice fed a HFD. Notably, in a more severe dietary-induced MASH model with MCD diet, POM significantly attenuated hepatic lipid accumulation, inflammation, and fibrosis. POM treatment effectively attenuated palmitic acid and oleic acid-induced lipid accumulation in HepG2 and Huh7 cells by targeting the AMPK pathway to regulate lipid metabolism, which was confirmed by AMPK inhibitor. Additionally, the activation of AMPK signaling by POM suppressed the expression of lipid synthesis genes, including sterol regulatory element-binding protein 1c (SREBP1c) and SREBP2, while concurrently upregulating the expression of sirtuin 1 (SIRT1) to promote fatty acid oxidation. Conclusion These findings suggest that POM is a promising therapeutic strategy with high efficacy in multiple MASLD models.
Collapse
Affiliation(s)
- Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, People’s Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Jingguo Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Zequn Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| | - Ke Gong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Shuang Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| |
Collapse
|
17
|
Kilic A, Pehlivan S, Varkal MA, Tuncel FC, Kandemir I, Ozcetin M, Poyrazoglu S, Kardelen AD, Ozdemir I, Yildiz I. Investigating Leptin Gene Variants and Methylation Status in Relation to Breastfeeding and Preventing Obesity. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1293. [PMID: 39594868 PMCID: PMC11593199 DOI: 10.3390/children11111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Objective: We investigated whether the results of leptin gene (LEP) 2548G/A (rs7799039) and leptin receptor gene (LEPR) 668 A/G (rs1137101) variants, as well as the methylation analysis of CpG regions at nucleotides -31 and -51 of the LEP gene, showed any differences between breastfed and non-breastfed children in this study. Materials and Methods: The cross-sectional study included 100 children aged 2-5 years who were attending nursery and kindergarten and had been accepted to the Department of General Paediatrics. Infants who were exclusively breastfed for the first six months after birth constituted the study group, and those who were not only breastfeed constituted the control group. Methylation percentages at CpG islands of the LEP gene were compared between exclusively breastfed and non-exclusively breastfed infants, and the statistical significance was analyzed by looking for changes in LEP -31 and -51 nt methylation and LEP 2548G/A ve LEPR 668 A/G variants. Results: Both groups were compared by feeding, and the association of LEPR and LEP gene polymorphisms and -51 nt and -31 nt methylations were analyzed. There were no significant differences between the groups regarding genotype and allele frequency for the LEPR 668 A/G, LEP 2548 G/A gene variant, -31 nt methylation, and -51 nt methylation status. Similarly, there was no significant difference in genotype and allele frequency for the LEPR 668 A/G gene variant in terms of duration of exclusive breastfeeding, total breastfeeding, body mass index, family obesity, and satiety status. However, maternal support from family elders and physical activity increased the 51 nt methylation, but this methylation was not significantly affected by BMI, age, or satiety status. Conclusions: Maternal support from family elders and physical activity were associated with increased 51 nt methylation, but this methylation was not significantly affected by BMI, age, or satiety status. However, there are not enough studies in this area to reach a definitive conclusion, and further research is needed.
Collapse
Affiliation(s)
- Ayse Kilic
- Division of General Pediatrics, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye; (A.K.); (M.A.V.); (I.Y.)
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye; (S.P.); (F.C.T.)
| | - Muhammet Ali Varkal
- Division of General Pediatrics, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye; (A.K.); (M.A.V.); (I.Y.)
| | - Fatima Ceren Tuncel
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye; (S.P.); (F.C.T.)
| | - Ibrahim Kandemir
- Department of Pediatrics, Faculty of Medicine, Istanbul Health and Technology University, 34445 Istanbul, Türkiye
| | - Mustafa Ozcetin
- Institute of Child Health, Istanbul University, 34093 Istanbul, Türkiye;
| | - Sükran Poyrazoglu
- Division of Pediatric Endocrinology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye; (S.P.); (A.D.K.)
| | - Asli Derya Kardelen
- Division of Pediatric Endocrinology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye; (S.P.); (A.D.K.)
| | - Irem Ozdemir
- Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye;
| | - Ismail Yildiz
- Division of General Pediatrics, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye; (A.K.); (M.A.V.); (I.Y.)
| |
Collapse
|
18
|
Kar R, Panchali T, Das P, Dutta A, Phoujdar M, Pradhan S. Overview of the therapeutic efficacy of marine fish oil in managing obesity and associated metabolic disorders. Physiol Rep 2024; 12:e70019. [PMID: 39358834 PMCID: PMC11446837 DOI: 10.14814/phy2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
In the present scenario, obesity is a challenging health problem and its prevalence along with comorbidities are on the rise around the world. Ingestion of fish becomes trendy in daily meals. Recent research has shown that marine fish oil (FO) (found in tuna, sardines, and mackerel) may offer an alternative method for reducing obesity and problems associated with it. Marine FO rich in long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) and long-chain omega-6 polyunsaturated fatty acids (LC n-6 PUFA) plays an important role in reducing abnormalities associated with the metabolic syndrome and has a variety of disease-fighting properties, including cardioprotective activity, anti-atherosclerotic, anti-obesity, anti-cancer, anti-inflammatory activity. Studies in rodents and humans have indicated that LC n-3 PUFA potentially elicit a number of effects which might be useful for reducing obesity, including suppression of appetite, improvements in circulation, enhanced fat oxidation, energy expenditure, and reduced fat deposition. This review discusses the interplay between inflammation and obesity, and their subsequent regulation via the beneficial role of marine FO, suggesting an alternative dietary strategy to ameliorate obesity and obesity-associated chronic diseases.
Collapse
Affiliation(s)
- Riya Kar
- Biodiversity and Environmental Studies Research CenterMidnapore City College, affiliated to Vidyasagar UniversityMidnaporeWest BengalIndia
- Central Research Laboratory, Department of Paramedical and Allied Health SciencesMidnapore City CollegeMidnaporeWest BengalIndia
| | - Titli Panchali
- Biodiversity and Environmental Studies Research CenterMidnapore City College, affiliated to Vidyasagar UniversityMidnaporeWest BengalIndia
- Central Research Laboratory, Department of Paramedical and Allied Health SciencesMidnapore City CollegeMidnaporeWest BengalIndia
| | - Pipika Das
- Biodiversity and Environmental Studies Research CenterMidnapore City College, affiliated to Vidyasagar UniversityMidnaporeWest BengalIndia
- Central Research Laboratory, Department of Paramedical and Allied Health SciencesMidnapore City CollegeMidnaporeWest BengalIndia
| | - Ananya Dutta
- Biodiversity and Environmental Studies Research CenterMidnapore City College, affiliated to Vidyasagar UniversityMidnaporeWest BengalIndia
- Central Research Laboratory, Department of Paramedical and Allied Health SciencesMidnapore City CollegeMidnaporeWest BengalIndia
| | - Manisha Phoujdar
- Biodiversity and Environmental Studies Research CenterMidnapore City College, affiliated to Vidyasagar UniversityMidnaporeWest BengalIndia
- Central Research Laboratory, Department of Paramedical and Allied Health SciencesMidnapore City CollegeMidnaporeWest BengalIndia
| | - Shrabani Pradhan
- Central Research Laboratory, Department of Paramedical and Allied Health SciencesMidnapore City CollegeMidnaporeWest BengalIndia
| |
Collapse
|
19
|
Yang H, Ran S, Zhou Y, Shi Q, Yu J, Wang W, Sun C, Li D, Hu Y, Pan C, Yuan Q, Zhen Y, Liu Q, Song L. Exposure to Succinate Leads to Steatosis in Non-Obese Non-Alcoholic Fatty Liver Disease by Inhibiting AMPK/PPARα/FGF21-Dependent Fatty Acid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21052-21064. [PMID: 39268842 DOI: 10.1021/acs.jafc.4c05671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Succinate is an important metabolite and a critical chemical with diverse applications in the food, pharmaceutical, and agriculture industries. Recent studies have demonstrated several protective or detrimental functions of succinate in diseases; however, the effect of succinate on lipid metabolism is still unclear. Here, we identified a role of succinate in nonobese nonalcoholic fatty liver disease (NAFLD). Specifically, the level of succinate is increased in the livers and serum of mice with hepatic steatosis. The administration of succinate promotes triglyceride (TG) deposition and hepatic steatosis by suppressing fatty acid oxidation (FAO) in nonobese NAFLD mouse models. RNA-Seq revealed that succinate suppressed fibroblast growth factor 21 (FGF21) expression. Then, the restoration of FGF21 was sufficient to alleviate hepatic steatosis and FAO inhibition induced by succinate treatment in vitro and in vivo. Furthermore, the inhibition of FGF21 expression and FAO mediated by succinate was dependent on the AMPK/PPARα axis. This study provides evidence linking succinate exposure to abnormal hepatic lipid metabolism and the progression of nonobese NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Suye Ran
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qing Shi
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jiangnan Yu
- Department of Gastroenterology, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou 550000, China
| | - Wenjuan Wang
- Department of Gastroenterology, Xingyi People's Hospital, Xingyi, Guizhou 562400, China
| | - Chengqin Sun
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Dengke Li
- Luoyang Vocational and Technical College, Luoyang, Henan 471000, China
| | - Yue Hu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Chen Pan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Yuan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
20
|
Lin HY, Lin CH, Kuo YH, Shih CC. Antidiabetic and Antihyperlipidemic Activities and Molecular Mechanisms of Phyllanthus emblica L. Extract in Mice on a High-Fat Diet. Curr Issues Mol Biol 2024; 46:10492-10529. [PMID: 39329975 PMCID: PMC11430370 DOI: 10.3390/cimb46090623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
We planned to explore the protective activities of extract of Phyllanthus emblica L. (EPE) on insulin resistance and metabolic disorders including hyperlipidemia, visceral obesity, and renal dysfunction in high-fat diet (HFD)-progressed T2DM mice. Mice treatments included 7 weeks of HFD induction followed by EPE, fenofibrate (Feno), or metformin (Metf) treatment daily for another 4-week HFD in HFD-fed mice. Finally, we harvested blood to analyze some tests on circulating glycemia and blood lipid levels. Western blotting analysis was performed on target gene expressions in peripheral tissues. The present findings indicated that EPE treatment reversed the HFD-induced increases in blood glucose, glycosylated HbA1C, and insulin levels. Our findings proved that treatment with EPE in HFD mice effectively controls hyperglycemia and hyperinsulinemia. Our results showed that EPE reduced blood lipid levels, including a reduction in blood triglyceride (TG), total cholesterol (TC), and free fatty acid (FFA); moreover, EPE reduced blood leptin levels and enhanced adiponectin concentrations. EPE treatment in HFD mice reduced BUN and creatinine in both blood and urine and lowered albumin levels in urine; moreover, EPE decreased circulating concentrations of inflammatory NLR family pyrin domain containing 3 (NLRP3) and kidney injury molecule-1 (KIM-1). These results indicated that EPE displayed antihyperglycemic and antihyperlipidemic activities but alleviated renal dysfunction in HFD mice. The histology examinations indicated that EPE treatment decreased adipose hypertrophy and hepatic ballooning, thus contributing to amelioration of lipid accumulation. EPE treatment decreased visceral fat amounts and led to improved systemic insulin resistance. For target gene expression levels, EPE enhanced AMP-activated protein kinase (AMPK) phosphorylation expressions both in livers and skeletal muscles and elevated the muscular membrane glucose transporter 4 (GLUT4) expressions. Treatment with EPE reduced hepatic glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) expressions to suppress glucose production in the livers and decreased phosphorylation of glycogen synthase kinase 3β (GSK3β) expressions to affect hepatic glycogen synthesis, thus convergently contributing to an antidiabetic effect and improving insulin resistance. The mechanism of the antihyperlipidemic activity of EPE involved a decrease in the hepatic phosphorylation of mammalian target of rapamycin complex C1 (mTORC1) and p70 S6 kinase 1 (S6K1) expressions to improve insulin resistance but also a reduction in hepatic sterol regulatory element binding protein (SREBP)-1c expressions, and suppression of ACC activity, thus resulting in the decreased fatty acid synthesis but elevated hepatic peroxisome proliferator-activated receptor (PPAR) α and SREBP-2 expressions, resulting in lowering TG and TC concentrations. Our results demonstrated that EPE improves insulin resistance and ameliorates hyperlipidemia in HFD mice.
Collapse
Affiliation(s)
- Hsing-Yi Lin
- Department of Internal Medicine, Cheng Ching Hospital, No. 139, Pingdeng St., Central District, Taichung City 40045, Taiwan
| | - Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Fengyuan District, Taichung City 42055, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung City 40402, Taiwan
| | - Chun-Ching Shih
- Department of Nursing, College of Nursing, Central Taiwan University of Science and Technology, No. 666 Buzih Road, Beitun District, Taichung City 40601, Taiwan
| |
Collapse
|
21
|
Bardova K, Janovska P, Vavrova A, Kopecky J, Zouhar P. Adaptive Induction of Nonshivering Thermogenesis in Muscle Rather Than Brown Fat Could Counteract Obesity. Physiol Res 2024; 73:S279-S294. [PMID: 38752772 PMCID: PMC11412341 DOI: 10.33549/physiolres.935361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Warm-blooded animals such as birds and mammals are able to protect stable body temperature due to various thermogenic mechanisms. These processes can be facultative (occurring only under specific conditions, such as acute cold) and adaptive (adjusting their capacity according to long-term needs). They can represent a substantial part of overall energy expenditure and, therefore, affect energy balance. Classical mechanisms of facultative thermogenesis include shivering of skeletal muscles and (in mammals) non-shivering thermogenesis (NST) in brown adipose tissue (BAT), which depends on uncoupling protein 1 (UCP1). Existence of several alternative thermogenic mechanisms has been suggested. However, their relative contribution to overall heat production and the extent to which they are adaptive and facultative still needs to be better defined. Here we focus on comparison of NST in BAT with thermogenesis in skeletal muscles, including shivering and NST. We present indications that muscle NST may be adaptive but not facultative, unlike UCP1-dependent NST. Due to its slow regulation and low energy efficiency, reflecting in part the anatomical location, induction of muscle NST may counteract development of obesity more effectively than UCP1-dependent thermogenesis in BAT.
Collapse
Affiliation(s)
- K Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic. or
| | | | | | | | | |
Collapse
|
22
|
Yu S, Yu H, Wang J, Liu H, Guo J, Wang S, Mei C, Zan L. LEP inhibits intramuscular adipogenesis through the AMPK signaling pathway in vitro. FASEB J 2024; 38:e23836. [PMID: 39044640 DOI: 10.1096/fj.202400590rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Leptin can indirectly regulate fatty-acid metabolism and synthesis in muscle in vivo and directly in incubated muscle ex vivo. In addition, non-synonymous mutations in the bovine leptin gene (LEP) are associated with carcass intramuscular fat (IMF) content. However, the effects of LEP on lipid synthesis of adipocytes have not been clearly studied at the cellular level. Therefore, this study focused on bovine primary intramuscular preadipocytes to investigate the effects of LEP on the proliferation and differentiation of intramuscular preadipocytes, as well as its regulatory mechanism in lipid synthesis. The results showed that both the LEP and leptin receptor gene (LEPR) were highly expressed in IMF tissues, and their mRNA expression levels were positively correlated at different developmental stages of intramuscular preadipocytes. The overexpression of LEP inhibited the proliferation and differentiation of intramuscular preadipocytes, while interference with LEP had the opposite effect. Additionally, LEP significantly promoted the phosphorylation level of AMPKα by promoting the protein expression of CAMKK2. Meanwhile, rescue experiments showed that the increasing effect of AMPK inhibitors on the number of intramuscular preadipocytes was significantly weakened by the overexpression of LEP. Furthermore, the overexpression of LEP could weaken the promoting effect of AMPK inhibitor on triglyceride content and droplet accumulation, and prevent the upregulation of adipogenic protein expression (SREBF1, FABP4, FASN, and ACCα) caused by AMPK inhibitor. Taken together, LEP acted on the AMPK signaling pathway by regulating the protein expression of CAMKK2, thereby downregulating the expression of proliferation-related and adipogenic-related genes and proteins, ultimately reducing intramuscular adipogenesis.
Collapse
Affiliation(s)
- Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haibing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| |
Collapse
|
23
|
Zhang Y, Munshi S, Burrows K, Kuplicki R, Figueroa-Hall LK, Aupperle RL, Khalsa SS, Teague TK, Taki Y, Paulus MP, Savitz J, Zheng H. Leptin's Inverse Association With Brain Morphology and Depressive Symptoms: A Discovery and Confirmatory Study Across 2 Independent Samples. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:714-725. [PMID: 38631553 PMCID: PMC11913349 DOI: 10.1016/j.bpsc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Major depressive disorder has a complex, bidirectional relationship with metabolic dysfunction, but the neural correlates of this association are not well understood. METHODS In this cross-sectional investigation, we used a 2-step discovery and confirmatory strategy utilizing 2 independent samples (sample 1: 288 participants, sample 2: 196 participants) to examine the association between circulating indicators of metabolic health (leptin and adiponectin) and brain structures in individuals with major depressive disorder. RESULTS We found a replicable inverse correlation between leptin levels and cortical surface area within essential brain areas responsible for emotion regulation, such as the left posterior cingulate cortex, right pars orbitalis, right superior temporal gyrus, and right insula (standardized beta coefficient range: -0.27 to -0.49, puncorrected < .05). Notably, this relationship was independent of C-reactive protein levels. We also identified a significant interaction effect of leptin levels and diagnosis on the cortical surface area of the right superior temporal gyrus (standardized beta coefficient = 0.26 in sample 1, standardized beta coefficient = 0.30 in sample 2, puncorrected < .05). We also observed a positive correlation between leptin levels and atypical depressive symptoms in both major depressive disorder groups (r = 0.14 in sample 1, r = 0.29 in sample 2, puncorrected < .05). CONCLUSIONS The inverse association between leptin and cortical surface area in brain regions that are important for emotion processing and leptin's association with atypical depressive symptoms support the hypothesis that metabolic processes may be related to emotion regulation. However, the molecular mechanisms through which leptin may exert these effects should be explored further.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| | | | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, Oklahoma
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan; Smart-Aging Research Center, Tohoku University, Sendai, Japan
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
24
|
Gong W, Chen W, Dong J, Liao L. Rabson-Mendenhall Syndrome: Analysis of the Clinical Characteristics and Gene Mutations in 42 Patients. J Endocr Soc 2024; 8:bvae123. [PMID: 38957655 PMCID: PMC11216847 DOI: 10.1210/jendso/bvae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 07/04/2024] Open
Abstract
Aims Rabson-Mendenhall syndrome (RMS) is a rare autosomal, recessive disorder characterized by severe insulin resistance due to mutations in the insulin receptor (INSR) gene. This study aims to analyze the clinical features and gene mutations in RMS, which have not been extensively studied. Methods PubMed, Embase, the China National Knowledge Infrastructure, and Wanfang were searched for "Rabson-Mendenhall syndrome" or "Black acanthosis hirsutism insulin resistance syndrome." Results A total of 42 cases from 33 articles were included. The body mass index ranged from 18.50 to 20.00 kg/m2 with an average of 16.00 kg/m2. There were no overweight (25.00∼29.90 kg/m2) or obese (≥30.00 kg/m2) patients. Acanthosis was present in 29 cases (29/42, 69.05%); growth retardation in 25 cases (25/42, 59.52%); dental anomalies including absence of teeth, crowding, and malocclusion in 23 cases (23/42, 54.76%); and hirsutism in 17 cases (17/42, 40.48%). The average glycosylated hemoglobin was 9.35%, and the average fasting blood-glucose was 8.44 mmol/L; the mean fasting insulin was 349.96 μIU/mL, and the average fasting C-peptide was 6.00 ng/mL. Diabetes was reported in 25 cases (25/33, 75.76%) all of which were diagnosed before 23 years old. All 42 patients had recorded gene mutations, with 22 patients (22/42, 52.38%) having ≥ 2 mutations and 20 cases (20/42, 47.62%) having only 1 mutation. No statistical differences were found in clinical features and laboratory parameters between patients with different mutations. Conclusion The study indicates that RMS should be considered in young patients with hyperinsulinemia, hyperglycemia with low weight, acanthosis nigricans, growth retardation, dental anomalies, and hirsutism.
Collapse
Affiliation(s)
- Wenfeng Gong
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, 250014, China
| | - Wenzhe Chen
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, 250014, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, 250014, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, 250014, China
| |
Collapse
|
25
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
26
|
Vigouroux C, Mosbah H, Vatier C. Leptin replacement therapy in the management of lipodystrophy syndromes. ANNALES D'ENDOCRINOLOGIE 2024; 85:201-204. [PMID: 38871500 DOI: 10.1016/j.ando.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Lipodystrophy syndromes are rare diseases of genetic or acquired origin, characterized by quantitative and qualitative defects in adipose tissue. The metabolic consequences of lipodystrophy syndromes, such as insulin resistant diabetes, hypertriglyceridemia and hepatic steatosis, are frequently very difficult to treat, resulting in significant risks of acute and/or chronic complications and of decreased quality of life. The production of leptin by lipodystrophic adipose tissue is decreased, more severely in generalized forms of lipodystrophy, where adipose tissue is absent from almost all body fat depots, than in partial forms of the disease, where lipoatrophy affects only some parts of the body and can be associated with increased body fat in other anatomical regions. Several lines of evidence in preclinical and clinical models have shown that leptin replacement therapy could improve the metabolic complications of lipodystrophy syndromes. Metreleptin, a recombinant leptin analogue, was approved as an orphan drug to treat the metabolic complications of leptin deficiency in patients with generalized lipodystrophy in the USA or with either generalized or partial lipodystrophy in Japan and Europe. In this brief review, we will discuss the benefits and limitations of this therapy, and the new expectations arising from the recent development of a therapeutic monoclonal antibody able to activate the leptin receptor.
Collapse
Affiliation(s)
- Corinne Vigouroux
- Service d'endocrinologie, diabétologie et endocrinologie de la reproduction, centre national de référence des pathologies rares de l'insulino-secrétion et de l'insulino-sensibilité (PRISIS), hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France; Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France.
| | - Héléna Mosbah
- Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France; Service endocrinologie, diabétologie, nutrition, centre de compétence PRISIS, CHU La Milétrie, Poitiers, France; Université Paris Cité, ECEVE UMR 1123, Inserm, Paris, France
| | - Camille Vatier
- Service d'endocrinologie, diabétologie et endocrinologie de la reproduction, centre national de référence des pathologies rares de l'insulino-secrétion et de l'insulino-sensibilité (PRISIS), hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France; Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France
| |
Collapse
|
27
|
Langer HT, Rohm M, Goncalves MD, Sylow L. AMPK as a mediator of tissue preservation: time for a shift in dogma? Nat Rev Endocrinol 2024:10.1038/s41574-024-00992-y. [PMID: 38760482 DOI: 10.1038/s41574-024-00992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcus DaSilva Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lykke Sylow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Zhou N, Gong L, Zhang E, Wang X. Exploring exercise-driven exerkines: unraveling the regulation of metabolism and inflammation. PeerJ 2024; 12:e17267. [PMID: 38699186 PMCID: PMC11064867 DOI: 10.7717/peerj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.
Collapse
Affiliation(s)
- Nihong Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- NanoLund Center for NanoScience, Lund University, Lund, Sweden
| | - Xintang Wang
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
29
|
de Medeiros WF, Gomes AFT, Aguiar AJFC, de Queiroz JLC, Bezerra IWL, da Silva-Maia JK, Piuvezam G, Morais AHDA. Anti-Obesity Therapeutic Targets Studied In Silico and In Vivo: A Systematic Review. Int J Mol Sci 2024; 25:4699. [PMID: 38731918 PMCID: PMC11083175 DOI: 10.3390/ijms25094699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
In the age of information technology and the additional computational search tools and software available, this systematic review aimed to identify potential therapeutic targets for obesity, evaluated in silico and subsequently validated in vivo. The systematic review was initially guided by the research question "What therapeutic targets have been used in in silico analysis for the treatment of obesity?" and structured based on the acronym PECo (P, problem; E, exposure; Co, context). The systematic review protocol was formulated and registered in PROSPERO (CRD42022353808) in accordance with the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis Protocols (PRISMA-P), and the PRISMA was followed for the systematic review. The studies were selected according to the eligibility criteria, aligned with PECo, in the following databases: PubMed, ScienceDirect, Scopus, Web of Science, BVS, and EMBASE. The search strategy yielded 1142 articles, from which, based on the evaluation criteria, 12 were included in the systematic review. Only seven these articles allowed the identification of both in silico and in vivo reassessed therapeutic targets. Among these targets, five were exclusively experimental, one was exclusively theoretical, and one of the targets presented an experimental portion and a portion obtained by modeling. The predominant methodology used was molecular docking and the most studied target was Human Pancreatic Lipase (HPL) (n = 4). The lack of methodological details resulted in more than 50% of the papers being categorized with an "unclear risk of bias" across eight out of the eleven evaluated criteria. From the current systematic review, it seems evident that integrating in silico methodologies into studies of potential drug targets for the exploration of new therapeutic agents provides an important tool, given the ongoing challenges in controlling obesity.
Collapse
Affiliation(s)
- Wendjilla F. de Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; (W.F.d.M.); (A.F.T.G.); (I.W.L.B.); (J.K.d.S.-M.)
| | - Ana Francisca T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; (W.F.d.M.); (A.F.T.G.); (I.W.L.B.); (J.K.d.S.-M.)
| | - Ana Júlia F. C. Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.)
| | - Jaluza Luana C. de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.)
| | - Ingrid Wilza L. Bezerra
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; (W.F.d.M.); (A.F.T.G.); (I.W.L.B.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; (W.F.d.M.); (A.F.T.G.); (I.W.L.B.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil;
- Public Health Department, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Ana Heloneida de A. Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; (W.F.d.M.); (A.F.T.G.); (I.W.L.B.); (J.K.d.S.-M.)
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| |
Collapse
|
30
|
Dagogo-Jack S. Leptin and Insulin Sensitivity: Endogenous Signals of Metabolic Homeostasis. J Clin Endocrinol Metab 2024; 109:e1402-e1403. [PMID: 37943695 DOI: 10.1210/clinem/dgad653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
31
|
Liu M, Li S, Guan M, Bai S, Bai W, Jiang X. Leptin pathway is a crucial target for anthocyanins to protect against metabolic syndrome. Crit Rev Food Sci Nutr 2024; 65:2046-2061. [PMID: 38567995 DOI: 10.1080/10408398.2024.2323093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The high prevalence of metabolic syndrome is threatening the health of populations all over the world. Contemporary work demonstrates that high leptin concentration is directly related to the development of metabolic syndrome such as obesity, fatty liver diseases, type 2 diabetes mellitus and cardiovascular diseases. Anthocyanins are a widespread group of dietary polyphenols, which can ameliorate chronic diseases related to metabolic syndrome. In addition, anthocyanins can regulate the leptin pathway in chronic metabolic diseases, however the potential mechanism between anthocyanin and leptin is complex and elusive. In this review paper, we have evaluated the bioactivity of anthocyanins on the mediation of leptin level and the upstream and downstream pathways in chronic metabolic diseases. Anthocyanins could regulate the hypertrophy of adipose tissue, and the expression of leptin level via mediating TNF-α, C/EBP, PPAR, CREB and SREBP-1. Anthocyanins promoted the leptin sensitivity by increasing the level of leptin receptor, phosphorylation of JAK2/STAT3, PI3K/AKT, and additionally ameliorated metabolic disorder related outcome, including oxidative stress, inflammation, lipid accumulation, insulin resistance and the balance of gut microbiota. However, direct evidence of anthocyanins treatment on leptin signal transduction is still limited which calls for future molecular binding and gene regulation test.
Collapse
Affiliation(s)
- Maomao Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Siyu Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Meiyi Guan
- Department of Food Science and Engineering, International School, Jinan University, Guangzhou, P. R. China
| | - Shun Bai
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
32
|
Bustraan S, Bennett J, Whilding C, Pennycook BR, Smith D, Barr AR, Read J, Carling D, Pollard A. AMP-activated protein kinase activation suppresses leptin expression independently of adipogenesis in primary murine adipocytes. Biochem J 2024; 481:345-362. [PMID: 38314646 PMCID: PMC11088909 DOI: 10.1042/bcj20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/06/2024]
Abstract
Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis. Primary murine adipose-derived stem cells were treated with a small molecule AMPK activator (BI-9774) during key phases of adipogenesis, to determine the effect of AMPK activation on adipocyte commitment, maturation and function. To determine the contribution of the repression of lipogenesis by AMPK in these processes, we compared the effect of pharmacological inhibition of acetyl-CoA carboxylase (ACC). We show that AMPK activation inhibits adipogenesis in a time- and concentration-dependent manner. Transient AMPK activation during adipogenic commitment leads to a significant, ACC-independent, repression of adipogenic transcription factor expression. Furthermore, we identify a striking, previously unexplored inhibition of leptin gene expression in response to both short-term and chronic AMPK activation irrespective of adipogenesis. These findings reveal that in addition to its effect on adipogenesis, AMPK activation switches off leptin gene expression in primary mouse adipocytes independently of adipogenesis. Our results identify leptin expression as a novel target of AMPK through mechanisms yet to be identified.
Collapse
Affiliation(s)
- Sophia Bustraan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Jane Bennett
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Chad Whilding
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | | | - David Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Jon Read
- Mechanistic and Structural Biology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, U.K
| | - David Carling
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Alice Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
33
|
Vilariño-García T, Polonio-González ML, Pérez-Pérez A, Ribalta J, Arrieta F, Aguilar M, Obaya JC, Gimeno-Orna JA, Iglesias P, Navarro J, Durán S, Pedro-Botet J, Sánchez-Margalet V. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int J Mol Sci 2024; 25:2338. [PMID: 38397015 PMCID: PMC10888594 DOI: 10.3390/ijms25042338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus (DM) is a highly prevalent disease worldwide, estimated to affect 1 in every 11 adults; among them, 90-95% of cases are type 2 diabetes mellitus. This is partly attributed to the surge in the prevalence of obesity, which has reached epidemic proportions since 2008. In these patients, cardiovascular (CV) risk stands as the primary cause of morbidity and mortality, placing a substantial burden on healthcare systems due to the potential for macrovascular and microvascular complications. In this context, leptin, an adipocyte-derived hormone, plays a fundamental role. This hormone is essential for regulating the cellular metabolism and energy balance, controlling inflammatory responses, and maintaining CV system homeostasis. Thus, leptin resistance not only contributes to weight gain but may also lead to increased cardiac inflammation, greater fibrosis, hypertension, and impairment of the cardiac metabolism. Understanding the relationship between leptin resistance and CV risk in obese individuals with type 2 DM (T2DM) could improve the management and prevention of this complication. Therefore, in this narrative review, we will discuss the evidence linking leptin with the presence, severity, and/or prognosis of obesity and T2DM regarding CV disease, aiming to shed light on the potential implications for better management and preventive strategies.
Collapse
Affiliation(s)
- Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen del Rocio University Hospital, University of Seville, Seville 41013, Spain;
| | - María L. Polonio-González
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Josep Ribalta
- Departament de Medicina i Cirurgia, University Rovira i Vigili, IISPV, CIBERDEM, 43007 Tarragona, Spain;
| | - Francisco Arrieta
- Endocrinology and Nutrition Service, Ramón y Cajal University Hospital, 28034 Madrid, Spain;
| | - Manuel Aguilar
- Endocrinology and Nutrition Service, Puerta del Mar University Hospital, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz University (UCA), 11001 Cádiz, Spain;
| | - Juan C. Obaya
- Chopera Helath Center, Alcobendas Primary Care,Alcobendas 28100 Madrid, Spain;
| | - José A. Gimeno-Orna
- Endocrinology and Nutrition Department, Hospital Clinico Universitario Lozano Blesa, 15 50009 Zaragoza, Spain;
| | - Pedro Iglesias
- Endocrinology and Nutrition Service, Puerta de Hierro University Hospital, Majadahonda, 28220 Madrid, Spain;
| | - Jorge Navarro
- Hospital Clínico Universitario de Valencia,46011 Valencia, Spain;
| | - Santiago Durán
- Endodiabesidad Clínica Durán & Asociados,41018 Seville, Spain;
| | - Juan Pedro-Botet
- Lipids and Cardiovascular Risk Unit, Hospital del Mar, Autonomous University of Barcelona, 08003 Barcelona, Spain;
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
- Institute of Biomedicine of Seville (IBIS), Hospital Universitario Virgen del Rocío/Virgen Macarena, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
34
|
Min SH, Song DK, Lee CH, Roh E, Kim MS. Hypothalamic AMP-Activated Protein Kinase as a Whole-Body Energy Sensor and Regulator. Endocrinol Metab (Seoul) 2024; 39:1-11. [PMID: 38356211 PMCID: PMC10901667 DOI: 10.3803/enm.2024.1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
5´-Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a cellular energy sensor, is an essential enzyme that helps cells maintain stable energy levels during metabolic stress. The hypothalamus is pivotal in regulating energy balance within the body. Certain neurons in the hypothalamus are sensitive to fluctuations in food availability and energy stores, triggering adaptive responses to preserve systemic energy equilibrium. AMPK, expressed in these hypothalamic neurons, is instrumental in these regulatory processes. Hypothalamic AMPK activity is modulated by key metabolic hormones. Anorexigenic hormones, including leptin, insulin, and glucagon-like peptide 1, suppress hypothalamic AMPK activity, whereas the hunger hormone ghrelin activates it. These hormonal influences on hypothalamic AMPK activity are central to their roles in controlling food consumption and energy expenditure. Additionally, hypothalamic AMPK activity responds to variations in glucose concentrations. It becomes active during hypoglycemia but is deactivated when glucose is introduced directly into the hypothalamus. These shifts in AMPK activity within hypothalamic neurons are critical for maintaining glucose balance. Considering the vital function of hypothalamic AMPK in the regulation of overall energy and glucose balance, developing chemical agents that target the hypothalamus to modulate AMPK activity presents a promising therapeutic approach for metabolic conditions such as obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Do Kyeong Song
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Chan Hee Lee
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Korea
| | - Eun Roh
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
36
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
37
|
Xu C, Xia L, Xu D, Liu Y, Jin P, Zhai M, Mao Y, Wang Y, Wen A, Yang J, Yang L. Cardioprotective effects of asiaticoside against diabetic cardiomyopathy: Activation of the AMPK/Nrf2 pathway. J Cell Mol Med 2024; 28:e18055. [PMID: 38113341 PMCID: PMC10826442 DOI: 10.1111/jcmm.18055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a chronic microvascular complication of diabetes that is generally defined as ventricular dysfunction occurring in patients with diabetes and unrelated to known causes. Several mechanisms have been proposed to contribute to the occurrence and persistence of DCM, in which oxidative stress and autophagy play a non-negligible role. Diabetic cardiomyopathy is involved in a variety of physiological and pathological processes. The 5' adenosine monophosphate-activated protein kinase/nuclear factor-erythroid 2-related factor 2 (AMPK/Nrf2) are expressed in the heart, and studies have shown that asiaticoside (ASI) and activated AMPK/Nrf2 have a protective effect on the myocardium. However, the roles of ASI and AMPK/Nrf2 in DCM are unknown. The intraperitoneal injection of streptozotocin (STZ) and high-fat feed were used to establish the DCM models in 100 C57/BL mice. Asiaticoside and inhibitors of AMPK/Nrf2 were used for intervention. Cardiac function, oxidative stress, and autophagy were measured in mice. DCM mice displayed increased levels of oxidative stress while autophagy levels declined. In addition, AMPK/Nrf2 was activated in DCM mice with ASI intervention. Further, we discovered that AMPK/Nrf2 inhibition blocked the protective effect of ASI by compound C and treatment with ML-385. The present study demonstrates that ASI exerts a protective effect against DCM via the potential activation of the AMPK/Nrf2 pathway. Asiaticoside is a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Chennian Xu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of PharmacyAir Force Medical UniversityXi'anShaanxiChina
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
- Department of Cardiovascular SurgeryGeneral Hospital of Northern Theatre CommandShenyangLiaoningChina
| | - Lin Xia
- Department of Cardiovascular SurgeryGeneral Hospital of Northern Theatre CommandShenyangLiaoningChina
| | - Dengyue Xu
- Department of Cardiovascular SurgeryGeneral Hospital of Northern Theatre CommandShenyangLiaoningChina
- School of Biomedical Engineering, Faculty of MedicineDalian University of TechnologyDalianChina
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Yu Mao
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Yiwei Wang
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Anguo Wen
- Department of Cardiothoracic SurgeryThe 79th Group Military Hospital of the Chinese People's Liberation ArmyLiaoyangLiaoning ProvinceChina
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Lifang Yang
- Department of AnesthesiologyXi'an Children's HospitalXi'anShaanxiChina
| |
Collapse
|
38
|
Engin A. The Mechanism of Leptin Resistance in Obesity and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:463-487. [PMID: 39287862 DOI: 10.1007/978-3-031-63657-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
39
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
40
|
Almeida-Nunes DL, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Enhancing Immunotherapy in Ovarian Cancer: The Emerging Role of Metformin and Statins. Int J Mol Sci 2023; 25:323. [PMID: 38203494 PMCID: PMC10779012 DOI: 10.3390/ijms25010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer metastization is accompanied by the development of malignant ascites, which are associated with poor prognosis. The acellular fraction of this ascitic fluid contains tumor-promoting soluble factors, bioactive lipids, cytokines, and extracellular vesicles, all of which communicate with the tumor cells within this peritoneal fluid. Metabolomic profiling of ovarian cancer ascites has revealed significant differences in the pathways of fatty acids, cholesterol, glucose, and insulin. The proteins involved in these pathways promote tumor growth, resistance to chemotherapy, and immune evasion. Unveiling the key role of this liquid tumor microenvironment is crucial for discovering more efficient treatment options. This review focuses on the cholesterol and insulin pathways in ovarian cancer, identifying statins and metformin as viable treatment options when combined with standard chemotherapy. These findings are supported by clinical trials showing improved overall survival with these combinations. Additionally, statins and metformin are associated with the reversal of T-cell exhaustion, positioning these drugs as potential combinatory strategies to improve immunotherapy outcomes in ovarian cancer patients.
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4169-007 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4169-007 Porto, Portugal
- FOREN—Forensic Science Experts, 1400-136 Lisboa, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- Faculty of Medicine, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
41
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
42
|
Marco-Bonilla M, Fresnadillo M, Largo R, Herrero-Beaumont G, Mediero A. Energy Regulation in Inflammatory Sarcopenia by the Purinergic System. Int J Mol Sci 2023; 24:16904. [PMID: 38069224 PMCID: PMC10706580 DOI: 10.3390/ijms242316904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The purinergic system has a dual role: the maintenance of energy balance and signaling within cells. Adenosine and adenosine triphosphate (ATP) are essential for maintaining these functions. Sarcopenia is characterized by alterations in the control of energy and signaling in favor of catabolic pathways. This review details the association between the purinergic system and muscle and adipose tissue homeostasis, discussing recent findings in the involvement of purinergic receptors in muscle wasting and advances in the use of the purinergic system as a novel therapeutic target in the management of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain; (M.M.-B.); (M.F.); (R.L.); (G.H.-B.)
| |
Collapse
|
43
|
Zhou X, Zhang J, Shen J, Cheng B, Bi C, Ma Q. Branched-chain amino acid modulation of lipid metabolism, gluconeogenesis, and inflammation in a finishing pig model: targeting leucine and valine. Food Funct 2023; 14:10119-10134. [PMID: 37882496 DOI: 10.1039/d3fo03899h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Branched-chain amino acids (BCAAs) play a regulatory role in adipogenesis and energy balance. Therefore, this study aimed to investigate the impact of BCAA supplements, especially leucine (Leu) and valine (Val) supplementation, on lipid metabolism and related disorders in a finishing pig model. The results demonstrated that Leu (1%) and Val decreased serum as well as hepatic lipid accumulation. Moreover, metabolomics and lipidomics analyses revealed that Leu and Val markedly downregulated the level of various lipid species in the liver. This outcome may be explained by Leu and Val promoting cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathways. Leu and Val altered the fatty acid composition in distinct adipose tissues and decreased the levels of inflammatory factors. Additionally, they significantly decreased back fat thickness, and the results of the fatty acid profiles demonstrated that Leu and Val significantly increased the levels of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) while decreasing those of saturated fatty acids (SFAs), especially in back fat and abdominal fat. Besides, Leu and Val restored glucose homeostasis by suppressing gluconeogenesis through the serine/threonine protein kinase (AKT)/transcription factor forkhead box O1 (FOXO1) signaling pathway in the liver and back fat. In summary, these results suggest that Leu and Val may serve as key regulators for modulating lipid metabolism and steatosis.
Collapse
Affiliation(s)
- Xinbo Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Junjie Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Jian Shen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Baojing Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Chongpeng Bi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Qingquan Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
44
|
Feng Y, Xu D. Short-chain fatty acids are potential goalkeepers of atherosclerosis. Front Pharmacol 2023; 14:1271001. [PMID: 38027009 PMCID: PMC10679725 DOI: 10.3389/fphar.2023.1271001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced by gut bacteria and play a crucial role in various inflammatory diseases. Increasing evidence suggests that SCFAs can improve the occurrence and progression of atherosclerosis. However, the molecular mechanisms through which SCFAs regulate the development of atherosclerosis have not been fully elucidated. This review provides an overview of the research progress on SCFAs regarding their impact on the risk factors and pathogenesis associated with atherosclerosis, with a specific focus on their interactions with the endothelium and immune cells. These interactions encompass the inflammation and oxidative stress of endothelial cells, the migration of monocytes/macrophages, the lipid metabolism of macrophages, the proliferation and migration of smooth muscle cells, and the proliferation and differentiation of Treg cells. Nevertheless, the current body of research is insufficient to comprehensively understand the full spectrum of SCFAs' mechanisms of action. Therefore, further in-depth investigations are imperative to establish a solid theoretical foundation for the development of clinical therapeutics in this context.
Collapse
Affiliation(s)
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
Asahara N, Okada-Iwabu M, Iwabu M, Wada K, Oka K, Yamauchi T, Kadowaki T. A monoclonal antibody activating AdipoR for type 2 diabetes and nonalcoholic steatohepatitis. SCIENCE ADVANCES 2023; 9:eadg4216. [PMID: 37948516 PMCID: PMC10637737 DOI: 10.1126/sciadv.adg4216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Adiponectin receptors, AdipoR1 and AdipoR2 are promising targets for the prevention and treatment of metabolic diseases. In this study, we aimed to establish agonistic antibodies against AdipoR1 and AdipoR2 with a long enough half-life to provide a means of improving poor medication adherence associated with preclinical small-molecule AdipoR agonists or existing antidiabetic drugs. Monoclonal antibodies were obtained by immunizing AdipoR knockout mice with human AdipoR-expressing cells. Of the antibodies shown to bind to both, an agonist antibody was obtained, which exhibited adenosine 5'-monophosphate-activated protein kinase-activating properties such as adiponectin and was named AdipoR-activating monoclonal antibody (AdipoRaMab). AdipoRaMab ameliorated glucose intolerance in high-fat diet-fed mice, which was not observed in AdipoR1·AdipoR2 double knockout mice. AdipoRaMab exhibited anti-inflammatory and antifibrotic effects in the nonalcoholic steatohepatitis (NASH) model, indicating its therapeutic potential in diabetes and in NASH. In addition, the results of this study indicated that AdipoRaMab may exert therapeutic effects even in a once-monthly dosing regimen through its humanization.
Collapse
Affiliation(s)
- Naomi Asahara
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Kouichi Wada
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kozo Oka
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| |
Collapse
|
46
|
Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17:1294420. [PMID: 38026693 PMCID: PMC10665538 DOI: 10.3389/fncel.2023.1294420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a global epidemic, affecting roughly 30% of the world's population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer's (AD), and Parkinson's (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
Collapse
Affiliation(s)
- Alexandre Neto
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
47
|
Liu Z, Xiao T, Liu H. Leptin signaling and its central role in energy homeostasis. Front Neurosci 2023; 17:1238528. [PMID: 38027481 PMCID: PMC10644276 DOI: 10.3389/fnins.2023.1238528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Leptin plays a critical role in regulating appetite, energy expenditure and body weight, making it a key factor in maintaining a healthy balance. Despite numerous efforts to develop therapeutic interventions targeting leptin signaling, their effectiveness has been limited, underscoring the importance of gaining a better understanding of the mechanisms through which leptin exerts its functions. While the hypothalamus is widely recognized as the primary site responsible for the appetite-suppressing and weight-reducing effects of leptin, other brain regions have also been increasingly investigated for their involvement in mediating leptin's action. In this review, we summarize leptin signaling pathways and the neural networks that mediate the effects of leptin, with a specific emphasis on energy homeostasis.
Collapse
Affiliation(s)
- Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xiao
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
48
|
Almond M, Farne HA, Jackson MM, Jha A, Katsoulis O, Pitts O, Tunstall T, Regis E, Dunning J, Byrne AJ, Mallia P, Kon OM, Saunders KA, Simpson KD, Snelgrove RJ, Openshaw PJM, Edwards MR, Barclay WS, Heaney LM, Johnston SL, Singanayagam A. Obesity dysregulates the pulmonary antiviral immune response. Nat Commun 2023; 14:6607. [PMID: 37857661 PMCID: PMC10587167 DOI: 10.1038/s41467-023-42432-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a well-recognized risk factor for severe influenza infections but the mechanisms underlying susceptibility are poorly understood. Here, we identify that obese individuals have deficient pulmonary antiviral immune responses in bronchoalveolar lavage cells but not in bronchial epithelial cells or peripheral blood dendritic cells. We show that the obese human airway metabolome is perturbed with associated increases in the airway concentrations of the adipokine leptin which correlated negatively with the magnitude of ex vivo antiviral responses. Exogenous pulmonary leptin administration in mice directly impaired antiviral type I interferon responses in vivo and ex vivo in cultured airway macrophages. Obese individuals hospitalised with influenza showed dysregulated upper airway immune responses. These studies provide insight into mechanisms driving propensity to severe influenza infections in obesity and raise the potential for development of leptin manipulation or interferon administration as novel strategies for conferring protection from severe infections in obese higher risk individuals.
Collapse
Affiliation(s)
- Mark Almond
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hugo A Farne
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Millie M Jackson
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | - Akhilesh Jha
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Orestis Katsoulis
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | - Oliver Pitts
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | | | - Eteri Regis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jake Dunning
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, UK
- School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, 4, Ireland
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Wendy S Barclay
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | - Aran Singanayagam
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
49
|
Huang SM, Lin CH, Chang WF, Shih CC. Antidiabetic and antihyperlipidemic activities of Phyllanthus emblica L. extract in vitro and the regulation of Akt phosphorylation, gluconeogenesis, and peroxisome proliferator-activated receptor α in streptozotocin-induced diabetic mice. Food Nutr Res 2023; 67:9854. [PMID: 37850072 PMCID: PMC10578056 DOI: 10.29219/fnr.v67.9854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Background The fruits of Phyllanthus emblica L. are high in nutrients and have excellent health care function and developmental value. There are many management strategies available for diabetes and hyperlipidemia. Nevertheless, there is a lack of an effective and nontoxic drug. Objective The present study was designed to first screen four extracts of P. emblica L. on insulin signaling target gene expression levels, including glucose transporter 4 (GLUT4) and p-Akt/t-Akt. The ethyl acetate extract of P. emblica L. (EPE) exhibited the most efficient activity among the four extracts and was thus chosen to explore the antidiabetic and antihyperlipidemic activities in streptozotocin (STZ)-induced type 1 diabetic mice. Design All mice (in addition to one control (CON) group) were administered STZ injections (intraperitoneal) for 5 consecutive days, and then STZ-induced mice were administered EPE (at 100, 200, or 400 mg/kg body weight), fenofibrate (Feno) (at 250 mg/kg body weight), glibenclamide (Glib) (at 10 mg/kg body weight), or vehicle by oral gavage once daily for 4 weeks. Finally, histological examination, blood biochemical parameters, and target gene mRNA expression levels were measured, and liver tissue was analyzed for the levels of malondialdehyde (MDA), a maker of lipid peroxidation. Results EPE treatment resulted in decreased levels of blood glucose, HbA1C, triglycerides (TGs), and total cholesterol and increased levels of insulin compared with the vehicle-treated STZ group. EPE treatment decreased blood levels of HbA1C and MDA but increased glutathione levels in liver tissue, implying that EPE exerts antioxidant activity and could prevent oxidative stress and diabetes. The EPE-treated STZ mice displayed an improvement in the sizes and numbers of insulin-expressing β cells. EPE treatment increased the membrane expression levels of skeletal muscular GLUT4, and also reduced hepatic mRNA levels of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase thereby inhibiting hepatic gluconeogenesis. This resulted in a net glucose lowering effect in EPE-treated STZ mice. Furthermore, EPE increased the expression levels of p-AMPK/t-AMPK in both the skeletal muscle and liver tissue compared with vehicle-treated STZ mice. EPE-treated STZ mice showed enhanced expression levels of fatty acid oxidation enzymes, including peroxisome proliferator-activated receptor α (PPARα), but reduced expression levels of lipogenic genes including fatty acid synthase, as well as decreased mRNA levels of sterol regulatory element binding protein 1c (SREBP1c), apolipoprotein-CIII (apo-CIII), and diacylglycerol acyltransferase-2 (DGAT2). This resulted in a reduction in plasma TG levels. EPE-treated STZ mice also showed reduced expression levels of PPAR γ. This resulted in decreased adipogenesis, fatty acid synthesis, and lipid accumulation within liver tissue, and consequently, lower TG levels in liver tissue and blood. Furthermore, EPE treatment not only displayed an increase in the Akt activation in liver tissue, but also in C2C12 myotube in the absence of insulin. These results implied that EPE acts as an activator of AMPK and /or as a regulator of the insulin (Akt) pathway. Conclusions Taken together, EPE treatment exhibited amelioration of the diabetic and hyperlipidemic state in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Shin-Ming Huang
- Department of Gastroenterology, Jen-Ai Hospital, Dali Branch, Taichung City, Taiwan
| | - Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Taichung City, Taiwan
| | - Wen-Fang Chang
- Department of Cardiology, Jen-Ai Hospital, Taichung City, Taiwan
| | - Chun-Ching Shih
- Department of Nursing, College of Nursing, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| |
Collapse
|
50
|
Hu K, Deya Edelen E, Zhuo W, Khan A, Orbegoso J, Greenfield L, Rahi B, Griffin M, Ilich JZ, Kelly OJ. Understanding the Consequences of Fatty Bone and Fatty Muscle: How the Osteosarcopenic Adiposity Phenotype Uncovers the Deterioration of Body Composition. Metabolites 2023; 13:1056. [PMID: 37887382 PMCID: PMC10608812 DOI: 10.3390/metabo13101056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Adiposity is central to aging and several chronic diseases. Adiposity encompasses not just the excess adipose tissue but also body fat redistribution, fat infiltration, hypertrophy of adipocytes, and the shifting of mesenchymal stem cell commitment to adipogenesis. Bone marrow adipose tissue expansion, inflammatory adipokines, and adipocyte-derived extracellular vesicles are central to the development of osteopenic adiposity. Adipose tissue infiltration and local adipogenesis within the muscle are critical in developing sarcopenic adiposity and subsequent poorer functional outcomes. Ultimately, osteosarcopenic adiposity syndrome is the result of all the processes noted above: fat infiltration and adipocyte expansion and redistribution within the bone, muscle, and adipose tissues, resulting in bone loss, muscle mass/strength loss, deteriorated adipose tissue, and subsequent functional decline. Increased fat tissue, typically referred to as obesity and expressed by body mass index (the latter often used inadequately), is now occurring in younger age groups, suggesting people will live longer with the negative effects of adiposity. This review discusses the role of adiposity in the deterioration of bone and muscle, as well as adipose tissue itself. It reveals how considering and including adiposity in the definition and diagnosis of osteopenic adiposity, sarcopenic adiposity, and osteosarcopenic adiposity will help in better understanding the pathophysiology of each and accelerate possible therapies and prevention approaches for both relatively healthy individuals or those with chronic disease.
Collapse
Affiliation(s)
- Kelsey Hu
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Elizabeth Deya Edelen
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Wenqing Zhuo
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Aliya Khan
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Josselyne Orbegoso
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Lindsey Greenfield
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Berna Rahi
- Department of Human Sciences, Sam Houston State University College of Health Sciences, Huntsville, TX 77341, USA;
| | - Michael Griffin
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Jasminka Z. Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA;
| | - Owen J. Kelly
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| |
Collapse
|