1
|
Vicente M, Addo-Osafo K, Vossel K. Latest advances in mechanisms of epileptic activity in Alzheimer's disease and dementia with Lewy Bodies. Front Neurol 2024; 15:1277613. [PMID: 38390593 PMCID: PMC10882721 DOI: 10.3389/fneur.2024.1277613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) stand as the prevailing sources of neurodegenerative dementia, impacting over 55 million individuals across the globe. Patients with AD and DLB exhibit a higher prevalence of epileptic activity compared to those with other forms of dementia. Seizures can accompany AD and DLB in early stages, and the associated epileptic activity can contribute to cognitive symptoms and exacerbate cognitive decline. Aberrant neuronal activity in AD and DLB may be caused by several mechanisms that are not yet understood. Hyperexcitability could be a biomarker for early detection of AD or DLB before the onset of dementia. In this review, we compare and contrast mechanisms of network hyperexcitability in AD and DLB. We examine the contributions of genetic risk factors, Ca2+ dysregulation, glutamate, AMPA and NMDA receptors, mTOR, pathological amyloid beta, tau and α-synuclein, altered microglial and astrocytic activity, and impaired inhibitory interneuron function. By gaining a deeper understanding of the molecular mechanisms that cause neuronal hyperexcitability, we might uncover therapeutic approaches to effectively ease symptoms and slow down the advancement of AD and DLB.
Collapse
Affiliation(s)
- Mariane Vicente
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Kwaku Addo-Osafo
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Rao GN, Jupudi S, Justin A. A Review on Neuroinflammatory Pathway Mediating Through Ang-II/AT1 Receptors and a Novel Approach for the Treatment of Cerebral Ischemia in Combination with ARB's and Ceftriaxone. Ann Neurosci 2024; 31:53-62. [PMID: 38584983 PMCID: PMC10996871 DOI: 10.1177/09727531231182554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/16/2023] [Indexed: 04/09/2024] Open
Abstract
Background Ischemic stroke is one of the prevalent neurodegenerative disorders; it is generally characterized by sudden abruption of blood flow due to thromboembolism and vascular abnormalities, eventually impairing the supply of oxygen and nutrients to the brain for its metabolic needs. Oxygen-glucose deprived conditions provoke the release of excessive glutamate, which causes excitotoxicity. Summary Recent studies suggest that circulatory angiotensin-II (Ang-II) has an imperative role in initiating detrimental events through binding central angiotensin 1 (AT1) receptors. Insufficient energy metabolites and essential ions often lead to oxidative stress during ischemic reperfusion, which leads to the release of proinflammatory mediators such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and cytokines like interleukin-18 (IL-18) and interleukin- 1beta (IL-1β). The transmembrane glutamate transporters, excitatory amino acid transporter-2 (EAAT-2), which express in astroglial cells, have a crucial role in the clearance of glutamate from its releasing site and convert glutamate into glutamine in normal circumstances of brain physiology. Key Message During cerebral ischemia, an impairment or dysfunction of EAAT-2 attributes the risk of delayed neuronal cell death. Earlier studies evidencing that angiotensin receptor blockers (ARB) attenuate neuroinflammation by inhibiting the Ang-II/AT1 receptor-mediated inflammatory pathway and that ceftriaxone ameliorates the excitotoxicity-induced neuronal deterioration by enhancing the transcription and expression of EAAT-2 via the nuclear transcriptional factor kappa-B (NF-kB) signaling pathway. The present review will briefly discuss the mechanisms involved in Ang-II/AT1-mediated neuroinflammation, ceftriaxone-induced EAAT-2 expression, and the repurposing hypothesis of the novel combination of ARBs and ceftriaxone for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Gaddam Narasimha Rao
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
3
|
Wang L, Ma T, Qiao D, Cui K, Bi X, Han C, Yang L, Sun M, Liu L. Polymorphism of rs12294045 in EAAT2 gene is potentially associated with schizophrenia in Chinese Han population. BMC Psychiatry 2022; 22:171. [PMID: 35260124 PMCID: PMC8903623 DOI: 10.1186/s12888-022-03799-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent studies have shown that the excitatory amino acid transporters (EAATs) are associated with schizophrenia. The aim of this study was to investigate the relationship between the polymorphism of EAAT1 and EAAT2 genes and schizophrenia in Chinese Han population. METHODS A total of 233 patients with schizophrenia and 342 healthy controls were enrolled. Two SNPs in EAAT1 gene (rs2269272, rs2731880) and four SNPs in EAAT2 gene (rs12360706, rs3088168, rs12294045, rs10836387) were genotyped by SNaPshot. Clinical features were collected using a self-made questionnaire. Psychotic symptoms of patients were measured by the Positive and Negative Syndrome Scale (PANSS), and patients' cognitive function was assessed by Matrics Consensus Cognitive Battery (MCCB). RESULTS Significant difference in allelic distributions between cases and controls was confirmed at locus rs12294045 (Ρ = 0.004) of EAAT2 gene. Different genotypes of rs12294045 were associated with family history (P = 0.046), in which patients with CT genotype had higher proportion of family history of psychosis. The polymorphism of rs12294045 was related to working operational memory (LNS: P = 0.016) and verbal learning function (HVLT-R: P = 0.042) in patients in which CT genotype had lower scores. However, these differences were no longer significant after Bonferroni correction. CONCLUSIONS Our study showed that the polymorphism of rs12294045 in EAAT2 gene may be associated with schizophrenia in Chinese Han population. CT genotype may be one of the risk factors for family history and cognitive deficits of patients.
Collapse
Affiliation(s)
- Lina Wang
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Tantan Ma
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Dongdong Qiao
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Kaiyan Cui
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Xiaojiao Bi
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Chao Han
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Limin Yang
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Mengmeng Sun
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Lanfen Liu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014, Shandong, China.
| |
Collapse
|
4
|
Jackson JG, Krizman E, Takano H, Lee M, Choi GH, Putt ME, Robinson MB. Activation of Glutamate Transport Increases Arteriole Diameter in v ivo: Implications for Neurovascular Coupling. Front Cell Neurosci 2022; 16:831061. [PMID: 35308116 PMCID: PMC8930833 DOI: 10.3389/fncel.2022.831061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
In order to meet the energetic demands of cell-to-cell signaling, increases in local neuronal signaling are matched by a coordinated increase in local blood flow, termed neurovascular coupling. Multiple different signals from neurons, astrocytes, and pericytes contribute to this control of blood flow. Previously, several groups demonstrated that inhibition/ablation of glutamate transporters attenuates the neurovascular response. However, it was not determined if glutamate transporter activation was sufficient to increase blood flow. Here, we used multiphoton imaging to monitor the diameter of fluorescently labeled cortical arterioles in anesthetized C57/B6J mice. We delivered vehicle, glutamate transporter substrates, or a combination of a glutamate transporter substrate with various pharmacologic agents via a glass micropipette while simultaneously visualizing changes in arteriole diameter. We developed a novel image analysis method to automate the measurement of arteriole diameter in these time-lapse analyses. Using this workflow, we first conducted pilot experiments in which we focally applied L-glutamate, D-aspartate, or L-threo-hydroxyaspartate (L-THA) and measured arteriole responses as proof of concept. We subsequently applied the selective glutamate transport substrate L-THA (applied at concentrations that do not activate glutamate receptors). We found that L-THA evoked a significantly larger dilation than that observed with focal saline application. This response was blocked by co-application of the potent glutamate transport inhibitor, L-(2S,3S)-3-[3-[4-(trifluoromethyl)-benzoylamino]benzyloxy]-aspartate (TFB-TBOA). Conversely, we were unable to demonstrate a reduction of this effect through co-application of a cocktail of glutamate and GABA receptor antagonists. These studies provide the first direct evidence that activation of glutamate transport is sufficient to increase arteriole diameter. We explored potential downstream mechanisms mediating this transporter-mediated dilation by using a Ca2+ chelator or inhibitors of reversed-mode Na+/Ca2+ exchange, nitric oxide synthetase, or cyclo-oxygenase. The estimated effects and confidence intervals suggested some form of inhibition for a number of these inhibitors. Limitations to our study design prevented definitive conclusions with respect to these downstream inhibitors; these limitations are discussed along with possible next steps. Understanding the mechanisms that control blood flow are important because changes in blood flow/energy supply are implicated in several neurodegenerative disorders and are used as a surrogate measure of neuronal activity in widely used techniques such as functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Joshua G. Jackson
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Elizabeth Krizman
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Hajime Takano
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Meredith Lee
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Grace H. Choi
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Mary E. Putt
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael B. Robinson
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Rapid Regulation of Glutamate Transport: Where Do We Go from Here? Neurochem Res 2022; 47:61-84. [PMID: 33893911 PMCID: PMC8542062 DOI: 10.1007/s11064-021-03329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.
Collapse
|
6
|
Czapski GA, Strosznajder JB. Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111677. [PMID: 34769106 PMCID: PMC8584169 DOI: 10.3390/ijms222111677] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
The physiological balance between excitation and inhibition in the brain is significantly affected in Alzheimer’s disease (AD). Several neuroactive compounds and their signaling pathways through various types of receptors are crucial in brain homeostasis, among them glutamate and γ-aminobutyric acid (GABA). Activation of microglial receptors regulates the immunological response of these cells, which in AD could be neuroprotective or neurotoxic. The novel research approaches revealed the complexity of microglial function, including the interplay with other cells during neuroinflammation and in the AD brain. The purpose of this review is to describe the role of several proteins and multiple receptors on microglia and neurons, and their involvement in a communication network between cells that could lead to different metabolic loops and cell death/survival. Our review is focused on the role of glutamatergic, GABAergic signaling in microglia–neuronal cross-talk in AD and neuroinflammation. Moreover, the significance of AD-related neurotoxic proteins in glutamate/GABA-mediated dialogue between microglia and neurons was analyzed in search of novel targets in neuroprotection, and advanced pharmacological approaches.
Collapse
|
7
|
Abstract
Schizophrenia is a severe and clinically heterogenous mental disorder
affecting approximately 1% of the population worldwide. Despite
tremendous achievements in the field of schizophrenia research, its
precise aetiology remains elusive. Besides dysfunctional neuronal
signalling, the pathophysiology of schizophrenia appears to involve
molecular and functional abnormalities in glial cells, including
astrocytes. This article provides a concise overview of the current
evidence supporting altered astrocyte activity in schizophrenia, which
ranges from findings obtained from post-mortem immunohistochemical
analyses, genetic association studies and transcriptomic
investigations, as well as from experimental investigations of
astrocyte functions in animal models. Integrating the existing data
from these research areas strongly suggests that astrocytes have the
capacity to critically affect key neurodevelopmental and homeostatic
processes pertaining to schizophrenia pathogenesis, including
glutamatergic signalling, synaptogenesis, synaptic pruning and
myelination. The further elucidation of astrocytes functions in health
and disease may, therefore, offer new insights into how these glial
cells contribute to abnormal brain development and functioning
underlying this debilitating mental disorder.
Collapse
Affiliation(s)
- Tina Notter
- Tina Notter, Institute of
Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich,
Switzerland. Emails: ;
| |
Collapse
|
8
|
El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther 2021; 24:31-48. [PMID: 31691195 DOI: 10.1007/s40291-019-00430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia.,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.,Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Eiman M Ibrahim
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
9
|
Sexually dimorphic and brain region-specific transporter adaptations in system x c- null mice. Neurochem Int 2020; 141:104888. [PMID: 33199267 DOI: 10.1016/j.neuint.2020.104888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
System xc- is a heterodimeric amino acid antiporter that, in the central nervous system, is best known for linking the import of L-cystine (CySS) with the export of L-glutamate for the production and maintenance of cellular glutathione (GSH) and extracellular glutamate levels, respectively. Yet, mice that are null for system xc- are healthy, fertile, and, morphologically, their brains are grossly normal. This suggests other glutamate and/or cyst(e)ine transport mechanisms may be upregulated in compensation. To test this, we measured the plasma membrane expression of Excitatory Amino Acid Transporters (EAATs) 1-3, the Alanine-Serine-Cysteine-Transporter (ASCT) 1, the sodium-coupled neutral amino acid transporter (SNAT) 3 and the L Amino Acid Transporter (LAT) 2 in striatum, hippocampus and cortex of male and female mice using Western Blot analysis. Present results demonstrate brain region and transporter-specific changes occurs in female system xc- null mice with increased expression of EAAT1 and ASCT1 occurring in the striatum and cortex, respectively, and decreased SNAT 3 expression in cortex. In male system xc- null brain, only SNAT3 was altered significantly - increasing in the cortex, but decreasing in the striatum. Total levels of GSH and CyS were similar to that found in age and sex-matched littermate control mice, however, reductions in the ratio of reduced to oxidized GSH (GSH/GSSG) - a hallmark of oxidative stress - were found in all three brain regions in female system xc- null mice, whereas this occurred exclusively in the striatum of males. Protein levels of Superoxide dismutase (SOD) 1 were reduced, whereas SOD2 was enhanced in the hippocampus of male xc- null mice only. Finally, striatal vulnerability to 3-nitropropionic acid (3-NP)-mediated oxidative stress in either sex showed no genotype difference, although 3-NP was more toxic to female mice of either genotype, as evidenced by an increase in moribundity as compared to males.
Collapse
|
10
|
Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants (Basel) 2020; 9:antiox9090830. [PMID: 32899889 PMCID: PMC7555323 DOI: 10.3390/antiox9090830] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Drug abuse is a major global health and economic problem. However, there are no pharmacological treatments to effectively reduce the compulsive use of most drugs of abuse. Despite exerting different mechanisms of action, all drugs of abuse promote the activation of the brain reward system, with lasting neurobiological consequences that potentiate subsequent consumption. Recent evidence shows that the brain displays marked oxidative stress and neuroinflammation following chronic drug consumption. Brain oxidative stress and neuroinflammation disrupt glutamate homeostasis by impairing synaptic and extra-synaptic glutamate transport, reducing GLT-1, and system Xc− activities respectively, which increases glutamatergic neurotransmission. This effect consolidates the relapse-promoting effect of drug-related cues, thus sustaining drug craving and subsequent drug consumption. Recently, promising results as experimental treatments to reduce drug consumption and relapse have been shown by (i) antioxidant and anti-inflammatory synthetic molecules whose effects reach the brain; (ii) natural biomolecules secreted by mesenchymal stem cells that excel in antioxidant and anti-inflammatory properties, delivered via non-invasive intranasal administration to animal models of drug abuse and (iii) potent anti-inflammatory microRNAs and anti-miRNAs which target the microglia and reduce neuroinflammation and drug craving. In this review, we address the neurobiological consequences of brain oxidative stress and neuroinflammation that follow the chronic consumption of most drugs of abuse, and the current and potential therapeutic effects of antioxidants and anti-inflammatory agents and biomolecules to reduce these drug-induced alterations and to prevent relapse.
Collapse
|
11
|
Schoonover KE, Dienel SJ, Lewis DA. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomark Neuropsychiatry 2020; 3. [PMID: 32656540 PMCID: PMC7351254 DOI: 10.1016/j.bionps.2020.100015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Certain cognitive deficits in schizophrenia, such as impaired working memory, are thought to reflect alterations in the neural circuitry of the dorsolateral prefrontal cortex (DLPFC). Gamma oscillations in the DLPFC appear to be a neural corollary of working memory function, and the power of these oscillations during working memory tasks is lower in individuals with schizophrenia. Thus, gamma oscillations represent a potentially useful biomarker to index dysfunction in the DLPFC circuitry responsible for working memory in schizophrenia. Postmortem studies, by identifying the cellular basis of DLPFC dysfunction, can help inform the utility of biomarker measures obtained in vivo. Given that gamma oscillations reflect network activity of excitatory pyramidal neurons and inhibitory GABA neurons, we review postmortem findings of alterations to both cell types in the DLPFC and discuss how these findings might inform future biomarker development and use.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| |
Collapse
|
12
|
Martinez-Lozada Z, Robinson MB. Reciprocal communication between astrocytes and endothelial cells is required for astrocytic glutamate transporter 1 (GLT-1) expression. Neurochem Int 2020; 139:104787. [PMID: 32650029 DOI: 10.1016/j.neuint.2020.104787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/15/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022]
Abstract
Astrocytes have diverse functions that are supported by their anatomic localization between neurons and blood vessels. One of these functions is the clearance of extracellular glutamate. Astrocytes clear glutamate using two Na+-dependent glutamate transporters, GLT-1 (also called EAAT2) and GLAST (also called EAAT1). GLT-1 expression increases during synaptogenesis and is a marker of astrocyte maturation. Over 20 years ago, several groups demonstrated that astrocytes in culture express little or no GLT-1 and that neurons induce expression. We recently demonstrated that co-culturing endothelia with mouse astrocytes also induced expression of GLT-1 and GLAST. These increases were blocked by an inhibitor of γ-secretase. This and other observations are consistent with the hypothesis that Notch signaling is required, but the ligands involved were not identified. In the present study, we used rat astrocyte cultures to further define the mechanisms by which endothelia induce expression of GLT-1 and GLAST. We found that co-cultures of astrocytes and endothelia express higher levels of GLT-1 and GLAST protein and mRNA. That endothelia activate Hes5, a transcription factor target of Notch, in astrocytes. Using recombinant Notch ligands, anti-Notch ligand neutralizing antibodies, and shRNAs, we provide evidence that both Dll1 and Dll4 contribute to endothelia-dependent regulation of GLT-1. We also provide evidence that astrocytes secrete a factor(s) that induces expression of Dll4 in endothelia and that this effect is required for Notch-dependent induction of GLT-1. Together these studies indicate that reciprocal communication between astrocytes and endothelia is required for appropriate astrocyte maturation and that endothelia likely deploy additional non-Notch signals to induce GLT-1.
Collapse
Affiliation(s)
- Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318; Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
| |
Collapse
|
13
|
Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB. The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer's Disease and Other Neurodegenerative Disorders. Neurochem Res 2020; 45:972-988. [PMID: 32170673 PMCID: PMC7162839 DOI: 10.1007/s11064-020-02993-5] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator activated receptor alpha (PPAR-α) belongs to the family of ligand-regulated nuclear receptors (PPARs). These receptors after heterodimerization with retinoid X receptor (RXR) bind in promotor of target genes to PPAR response elements (PPREs) and act as a potent transcription factors. PPAR-α and other receptors from this family, such as PPAR-β/δ and PPAR-γ are expressed in the brain and other organs and play a significant role in oxidative stress, energy homeostasis, mitochondrial fatty acids metabolism and inflammation. PPAR-α takes part in regulation of genes coding proteins that are involved in glutamate homeostasis and cholinergic/dopaminergic signaling in the brain. Moreover, PPAR-α regulates expression of genes coding enzymes engaged in amyloid precursor protein (APP) metabolism. It activates gene coding of α secretase, which is responsible for non-amyloidogenic pathway of APP degradation. It also down regulates β secretase (BACE-1), the main enzyme responsible for amyloid beta (Aβ) peptide release in Alzheimer Diseases (AD). In AD brain expression of genes of PPAR-α and PPAR-γ coactivator-1 alpha (PGC-1α) is significantly decreased. PPARs are altered not only in AD but in other neurodegenerative/neurodevelopmental and psychiatric disorder. PPAR-α downregulation may decrease anti-oxidative and anti-inflammatory processes and could be responsible for the alteration of fatty acid transport, lipid metabolism and disturbances of mitochondria function in the brain of AD patients. Specific activators of PPAR-α may be important for improvement of brain cells metabolism and cognitive function in neurodegenerative and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sylwia Wójtowicz
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego st., 02-106, Warsaw, Poland.
| | - Anna K Strosznajder
- Faculty of Medicine, Medical University of Bialystok, 1 Kilinskiego st., 15-089, Białystok, Poland
| | - Mieszko Jeżyna
- Faculty of Medicine, Medical University of Bialystok, 1 Kilinskiego st., 15-089, Białystok, Poland
| | - Joanna B Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego st., 02-106, Warsaw, Poland.
| |
Collapse
|
14
|
Adenosine Receptor A1-A2a Heteromers Regulate EAAT2 Expression and Glutamate Uptake via YY1-Induced Repression of PPAR γ Transcription. PPAR Res 2020; 2020:2410264. [PMID: 32206061 PMCID: PMC7079221 DOI: 10.1155/2020/2410264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022] Open
Abstract
Adenosine receptors A1 (A1AR) and A2a (A2aAR) play an important role in regulating glutamate uptake to avoid glutamate accumulation that causes excitotoxicity in the brain; however, the precise mechanism of the effects of A1AR and A2aAR is unclear. Herein, we report that expression of the A1AR protein in the astrocyte membrane and the level of intracellular glutamate were decreased, while expression of the A2aR protein was elevated in cells exposed to oxygen-glucose deprivation (OGD) conditions. Coimmunoprecipitation (Co-IP) experiments showed that A1AR interacts with A2aAR under OGD conditions. The activation of A1AR and inactivation of A2aAR by 2-chloro-N6-cyclopentyladenosine (CCPA) and SCH58251, respectively, partly reversed OGD-mediated glutamate uptake dysfunction, elevated EAAT2, and PPARγ protein levels, and suppressed the expression of Ying Yang 1 (YY1). Both the silencing of YY1 and the activation of PPARγ upregulated EAAT2 expression. Moreover, YY1 silencing elevated the PPARγ level under both normal and OGD conditions. Histone deacetylase (HDAC)1 was found to interact with YY1, and HDAC1 silencing improved PPARγ promoter activity. Taken together, our findings suggest that A1AR-A2aAR heteromers regulate EAAT2 expression and glutamate uptake through the YY1-mediated recruitment of HDAC1 to the PPARγ promoter region.
Collapse
|
15
|
Robinson MB, Lee ML, DaSilva S. Glutamate Transporters and Mitochondria: Signaling, Co-compartmentalization, Functional Coupling, and Future Directions. Neurochem Res 2020; 45:526-540. [PMID: 32002773 DOI: 10.1007/s11064-020-02974-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
In addition to being an amino acid that is incorporated into proteins, glutamate is the most abundant neurotransmitter in the mammalian CNS, the precursor for the inhibitory neurotransmitter γ-aminobutyric acid, and one metabolic step from the tricarboxylic acid cycle intermediate α-ketoglutarate. Extracellular glutamate is cleared by a family of Na+-dependent transporters. These transporters are variably expressed by all cell types in the nervous system, but the bulk of clearance is into astrocytes. GLT-1 and GLAST (also called EAAT2 and EAAT1) mediate this activity and are extremely abundant proteins with their expression enriched in fine astrocyte processes. In this review, we will focus on three topics related to these astrocytic glutamate transporters. First, these transporters co-transport three Na+ ions and a H+ with each molecule of glutamate and counter-transport one K+; they are also coupled to a Cl- conductance. The movement of Na+ is sufficient to cause profound astrocytic depolarization, and the movement of H+ is linked to astrocytic acidification. In addition, the movement of Na+ can trigger the activation of Na+ co-transporters (e.g. Na+-Ca2+ exchangers). We will describe the ways in which these ionic movements have been linked as signals to brain function and/or metabolism. Second, these transporters co-compartmentalize with mitochondria, potentially providing a mechanism to supply glutamate to mitochondria as a source of fuel for the brain. We will provide an overview of the proteins involved, discuss the evidence that glutamate is oxidized, and then highlight some of the un-resolved issues related to glutamate oxidation. Finally, we will review evidence that ischemic insults (stroke or oxygen/glucose deprivation) cause changes in these astrocytic mitochondria and discuss the ways in which these changes have been linked to glutamate transport, glutamate transport-dependent signaling, and altered glutamate metabolism. We conclude with a broader summary of some of the unresolved issues.
Collapse
Affiliation(s)
- Michael B Robinson
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, 502N, Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA.
| | - Meredith L Lee
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, 502N, Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA
| | - Sabrina DaSilva
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, 502N, Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA
| |
Collapse
|
16
|
Schizophrenia and Parkinson’s disease: Selected therapeutic advances beyond the dopaminergic etiologies. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2013.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
17
|
Zhang LN, Hao L, Guo YS, Wang HY, Li LL, Liu LZ, Li WB. Are glutamate transporters neuroprotective or neurodegenerative during cerebral ischemia? J Mol Med (Berl) 2019; 97:281-289. [PMID: 30675649 DOI: 10.1007/s00109-019-01745-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
The accumulation of glutamate (Glu) in the synaptic cleft during cerebral ischemia triggers the death of neurons, causing mental or physical handicap. However, the mechanisms of the alteration in Glu homeostasis and the imbalance between the release and clearance of Glu in ischemia are not yet completely understood. Additionally, the role of Glu transporters in regulating Glu concentration in the synaptic cleft is controversial. This review aims to provide readers with an in-depth understanding of Glu transporters in the early or later stages of ischemic events, or in mild or severe cerebral ischemia via alteration of Glu transporter expression, reversal of Glu transporters function, and trafficking between membrane and cytoplasm, to further clarify whether the Glu transporters are neuroprotective or neurodegenerative during cerebral ischemia. We provide the insights for deeper understanding of the mechanism of Glu transporters regulation after different periods and severities of cerebral ischemia.
Collapse
Affiliation(s)
- Li-Nan Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China
| | - Liang Hao
- Department of Neurosurgery, Third Hospital of Shijiazhuang, Beijing, 050011, Hebei, China
| | - Yu-Song Guo
- Department of Traumatology, Third Hospital of Shijiazhuang, Beijing, 050011, Hebei, China
| | - Hai-Yan Wang
- Pharmaceutical Preparation Section, Third Hospital of Shijiazhuang, Beijing, 050011, Hebei, China
| | - Lin-Lin Li
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Beijing, 050017, Hebei, China
| | - Li-Zhe Liu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
18
|
Blakely RD, El Mestikawy S, Robinson MB. The brain in flux: Genetic, physiologic, and therapeutic perspectives on transporters in the CNS. Neurochem Int 2018; 123:1-6. [PMID: 30571999 DOI: 10.1016/j.neuint.2018.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The brain has specific properties that make it uniquely dependent upon transporters. This is the 3rd edition of a biennial special issue that originates from a scientific meeting devoted to studies of transporters and their relationship to brain function and to neurodevelopmental, neurologic, and psychiatric disorders. The field continues to rapidly evolve with advances in studies of structure that inform mechanism, with genetic analyses in humans revealing surprising aspects of biology, and with integrated cellular to whole animal analyses of the role of transporters in their control of physiology and pathophysiology. This special issue includes a sampling of review articles that address timely questions of the field followed by several primary research articles.
Collapse
Affiliation(s)
- Randy D Blakely
- Florida Atlantic University Brain Institute, Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, United States
| | - Salah El Mestikawy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada; Sorbonne Universités, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Michael B Robinson
- Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia/University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
19
|
Parkin GM, Udawela M, Gibbons A, Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 2018; 8:51-63. [PMID: 29988908 PMCID: PMC6033743 DOI: 10.5498/wjp.v8.i2.51] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 02/05/2023] Open
Abstract
Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the pre-synaptic neuron and synaptic transmission, glutamate is either taken up into the pre-synaptic neuron or neighbouring glia by transmembrane glutamate transporters. Excitatory amino acid transporter (EAAT) 1 and EAAT2 are Na+-dependant glutamate transporters expressed predominantly in glia cells of the central nervous system. As the most abundant glutamate transporters, their primary role is to modulate levels of glutamatergic excitability and prevent spill over of glutamate beyond the synapse. This role is facilitated through the binding and transportation of glutamate into astrocytes and microglia. The function of EAAT1 and EAAT2 is heavily regulated at the levels of gene expression, post-transcriptional splicing, glycosylation states and cell-surface trafficking of the protein. Both glutamatergic dysfunction and glial dysfunction have been proposed to be involved in psychiatric disorder. This review will present an overview of the roles that EAAT1 and EAAT2 play in modulating glutamatergic activity in the human brain, and mount an argument that these two transporters could be involved in the aetiologies of schizophrenia and affective disorders as well as represent potential drug targets for novel therapies for those disorders.
Collapse
Affiliation(s)
- Georgia M Parkin
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
| | - Andrew Gibbons
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Brian Dean
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
- Research Centre for Mental Health, the Faculty of Health, Arts and Design, Swinburne University, Hawthorne VIC 3122, Australia
| |
Collapse
|
20
|
Novel interaction between Alzheimer's disease-related protein presenilin 1 and glutamate transporter 1. Sci Rep 2018; 8:8718. [PMID: 29880815 PMCID: PMC5992168 DOI: 10.1038/s41598-018-26888-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neuronal hyperactivity is one of the earliest events observed in Alzheimer’s disease (AD). Moreover, alterations in the expression of glutamate transporters have been reported to exacerbate amyloid pathology and cognitive deficits in transgenic AD mouse models. However, the molecular links between these pathophysiological changes remain largely unknown. Here, we report novel interaction between presenilin 1 (PS1), the catalytic component of the amyloid precursor protein-processing enzyme, γ-secretase, and a major glutamate transporter-1 (GLT-1). Our data demonstrate that the interaction occurs between PS1 and GLT-1 expressed at their endogenous levels in vivo and in vitro, takes place in both neurons and astrocytes, and is independent of the PS1 autoproteolysis and γ-secretase activity. This intriguing discovery may shed light on the molecular crosstalk between the proteins linked to the maintenance of glutamate homeostasis and Aβ pathology.
Collapse
|
21
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
22
|
Lee ML, Martinez-Lozada Z, Krizman EN, Robinson MB. Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. J Neurochem 2017; 143:489-506. [PMID: 28771710 DOI: 10.1111/jnc.14135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023]
Abstract
Neuron-secreted factors induce astrocytic expression of the glutamate transporter, GLT-1 (excitatory amino acid transporter 2). In addition to their elaborate anatomic relationships with neurons, astrocytes also have processes that extend to and envelop the vasculature. Although previous studies have demonstrated that brain endothelia contribute to astrocyte differentiation and maturation, the effects of brain endothelia on astrocytic expression of GLT-1 have not been examined. In this study, we tested the hypothesis that endothelia induce expression of GLT-1 by co-culturing astrocytes from mice that utilize non-coding elements of the GLT-1 gene to control expression of reporter proteins with the mouse endothelial cell line, bEND.3. We found that endothelia increased steady state levels of reporter and GLT-1 mRNA/protein. Co-culturing with primary rat brain endothelia also increases reporter protein, GLT-1 protein, and GLT-1-mediated glutamate uptake. The Janus kinase/signal transducer and activator of transcription 3, bone morphogenic protein/transforming growth factor β, and nitric oxide pathways have been implicated in endothelia-to-astrocyte signaling; we provide multiple lines of evidence that none of these pathways mediate the effects of endothelia on astrocytic GLT-1 expression. Using transwells with a semi-permeable membrane, we demonstrate that the effects of the bEND.3 cell line are dependent upon contact. Notch has also been implicated in endothelia-astrocyte signaling in vitro and in vivo. The first step of Notch signaling requires cleavage of Notch intracellular domain by γ-secretase. We demonstrate that the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester blocks endothelia-induced increases in GLT-1. We show that the levels of Notch intracellular domain are higher in nuclei of astrocytes co-cultured with endothelia, an effect also blocked by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. Finally, infection of co-cultures with shRNA directed against recombination signal binding protein for immunoglobulin kappa J, a Notch effector, also reduces endothelia-dependent increases in enhanced green fluorescent protein and GLT-1. Together, these studies support a novel role for Notch in endothelia-dependent induction of GLT-1 expression. Cover Image for this issue: doi. 10.1111/jnc.13825.
Collapse
Affiliation(s)
- Meredith L Lee
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth N Krizman
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Lee ML, Martinez-Lozada Z, Krizman EN, Robinson MB. Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. J Neurochem 2017. [PMID: 28771710 DOI: 10.1111/jnc.13825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuron-secreted factors induce astrocytic expression of the glutamate transporter, GLT-1 (excitatory amino acid transporter 2). In addition to their elaborate anatomic relationships with neurons, astrocytes also have processes that extend to and envelop the vasculature. Although previous studies have demonstrated that brain endothelia contribute to astrocyte differentiation and maturation, the effects of brain endothelia on astrocytic expression of GLT-1 have not been examined. In this study, we tested the hypothesis that endothelia induce expression of GLT-1 by co-culturing astrocytes from mice that utilize non-coding elements of the GLT-1 gene to control expression of reporter proteins with the mouse endothelial cell line, bEND.3. We found that endothelia increased steady state levels of reporter and GLT-1 mRNA/protein. Co-culturing with primary rat brain endothelia also increases reporter protein, GLT-1 protein, and GLT-1-mediated glutamate uptake. The Janus kinase/signal transducer and activator of transcription 3, bone morphogenic protein/transforming growth factor β, and nitric oxide pathways have been implicated in endothelia-to-astrocyte signaling; we provide multiple lines of evidence that none of these pathways mediate the effects of endothelia on astrocytic GLT-1 expression. Using transwells with a semi-permeable membrane, we demonstrate that the effects of the bEND.3 cell line are dependent upon contact. Notch has also been implicated in endothelia-astrocyte signaling in vitro and in vivo. The first step of Notch signaling requires cleavage of Notch intracellular domain by γ-secretase. We demonstrate that the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester blocks endothelia-induced increases in GLT-1. We show that the levels of Notch intracellular domain are higher in nuclei of astrocytes co-cultured with endothelia, an effect also blocked by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. Finally, infection of co-cultures with shRNA directed against recombination signal binding protein for immunoglobulin kappa J, a Notch effector, also reduces endothelia-dependent increases in enhanced green fluorescent protein and GLT-1. Together, these studies support a novel role for Notch in endothelia-dependent induction of GLT-1 expression. Cover Image for this issue: doi. 10.1111/jnc.13825.
Collapse
Affiliation(s)
- Meredith L Lee
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth N Krizman
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Wang H, Wang S, Zhang K, Wang H, Lan L, Ma X, Liu X, Zhang S, Zheng J, Wei X, Yan H. Aquaporin 4 Forms a Macromolecular Complex with Glutamate Transporter 1 and Mu Opioid Receptor in Astrocytes and Participates in Morphine Dependence. J Mol Neurosci 2017; 62:17-27. [PMID: 28341892 DOI: 10.1007/s12031-017-0905-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/24/2017] [Indexed: 10/19/2022]
Abstract
The water channel aquaporin 4 (AQP4) is abundantly expressed in astrocytes and provides a mechanism by which water permeability of the plasma membrane can be regulated. Evidence suggests that AQP4 is associated with glutamate transporter-1 (GLT-1) for glutamate clearance and contributes to morphine dependence. Previous studies show that AQP4 deficiency changed the mu opioid receptor expression and opioid receptors' characteristics as well. In this study, we focused on whether AQP4 could form macromolecular complex with GLT-1 and mu opioid receptor (MOR) and participates in morphine dependence. By using immunofluorescence staining, fluorescence resonance energy transfer, and co-immunoprecipitation, we demonstrated that AQP4 forms protein complexes with GLT-1 and MOR in both brain tissue and primary cultured astrocytes. We then showed that the C-terminus of AQP4 containing the amino acid residues 252 to 323 is the site of interaction with GLT-1. Protein kinase C, activated by morphine, played an important role in regulating the expression of these proteins. These findings may help to reveal the mechanism that AQP4, GLT-1, and MOR form protein complex and participate in morphine dependence, and deeply understand the reason that AQP4 deficiency maintains extracellular glutamate homeostasis and attenuates morphine dependence, moreover emphasizes the function of astrocyte in morphine dependence.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Shiqi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Kang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Hua Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Liting Lan
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoyun Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Shuzhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Jianquan Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoli Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
25
|
Huang HT, Liao CK, Chiu WT, Tzeng SF. Ligands of peroxisome proliferator-activated receptor-alpha promote glutamate transporter-1 endocytosis in astrocytes. Int J Biochem Cell Biol 2017; 86:42-53. [PMID: 28323206 DOI: 10.1016/j.biocel.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 02/14/2017] [Accepted: 03/14/2017] [Indexed: 02/05/2023]
Abstract
Astrocytes, a stellate-shape glial population in the central nervous system (CNS), maintain glutamate homeostasis in adult CNS by undergoing glutamate uptake at the synapse through their glutamate transporter-1 (GLT-1). Peroxisome proliferator-activated receptor-α (PPARα) can be activated by endogenous saturated fatty acids to regulate astrocytic lipid metabolism and functions. However, it is unclear if PPARα can exert the regulatory action on GLT-1 expression in astrocytes. This study showed that treatment with palmitic acid (PA) and the other two PPARα agonists (GW 7647 and WY 14,643) caused no change in the morphology of astrocytes, whereas membranous GLT-1 protein levels in astrocytes were significantly decreased by PA and PPARα agonists. Through lentivirus-mediated overexpression of GLT-1 tagged with red fluorescent protein (GLT-1-RFP), we also observed that GLT-1-RFP puncta in the processes of astrocytes were inhibited by the PPARα agonists. This reduction was prevented by the addition of the PPARα antagonist, GW6471. GLT-1-RFP was co-localized to the early endosome marker-EEA1 in astrocytes treated with the PPARα agonists. Moreover, PPARα-induced inhibition in membranous GLT-1 expression was abolished by the addition of dynamin inhibitor (dynasore). Furthermore, the co-treatment of astrocytes with PPARα agonists and dynasore, or with PPARα agonists and protein kinase C (PKC) inhibitor bis-indolylmaleimide 1 (BIS1), prevented the endocytosis of GLT-1-RFP. Based on the results, we conclude that the PPARα agonists increased GLT-1 endocytosis in astrocytes possibly through the PKC signaling pathway. In addition, our findings provide important information of PPARα involvement in the downregulation of astrocytic glutamate uptake via the promoted GLT-1 endocytosis.
Collapse
Affiliation(s)
- Hui-Ting Huang
- Institute of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Kai Liao
- Institute of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Institute of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
26
|
Gabapentin loses efficacy over time after nerve injury in rats: role of glutamate transporter-1 in the locus coeruleus. Pain 2017; 157:2024-2032. [PMID: 27315512 DOI: 10.1097/j.pain.0000000000000608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite being one of the first-choice analgesics for chronic neuropathic pain, gabapentin sometimes fails to provide analgesia, but the mechanisms for this lack of efficacy is unclear. Rats with nerve injury including L5-L6 spinal nerve ligation (SNL) respond uniformly and well to gabapentin, but many of these studies are performed within just a few weeks of injury, questioning their relevance to chronic neuropathic pain. In this study, intraperitoneal gabapentin showed a time-dependently reduction in antihypersensitivity after SNL, associated with downregulation of astroglial glutamate transporter-1 (GLT-1) in the locus coeruleus (LC). Consistently, SNL also time-dependently increased basal but masked gabapentin-induced noradrenergic neuronal activity in the LC. In rats 2 weeks after SNL, knock-down of GLT-1 in the LC reduced the antihypersensitivity effect of gabapentin. In rats 8 weeks after SNL, increasing GLT-1 expression by histone deacetylase inhibitor valproate restored the antihypersensitivity effect of gabapentin, associated with restored gabapentin-induced noradrenergic neuronal activity in the LC and subsequent spinal noradrenaline release. Knock-down of GLT-1 in the LC reversed the effect of valproate to restore gabapentin-induced antihypersensitivity. In addition, the antihypersensitivity effect of the intrathecal α2-adrenoceptor agonist clonidine also decreased with time after SNL injury. These results suggest that downregulation of GLT-1 in the LC and reduced spinal noradrenergic inhibition contribute to impaired analgesic efficacy from gabapentin in chronic neuropathic pain and that valproate can rescue this impaired efficacy.
Collapse
|
27
|
Gui L, Lei X, Zuo Z. Decrease of glial cell-derived neurotrophic factor contributes to anesthesia- and surgery-induced learning and memory dysfunction in neonatal rats. J Mol Med (Berl) 2017; 95:369-379. [DOI: 10.1007/s00109-017-1521-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/24/2017] [Accepted: 02/07/2017] [Indexed: 12/22/2022]
|
28
|
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. The "amyloid hypothesis" is one of the predominant hypotheses for the pathogenesis of AD. Besides, tau protein accumulation, calcium homeostasis disruption, and glial cell activation are also remarkable features in AD. Recently, there are some reports showing that TRPC channels may function in AD development, especially TRPC6. In this chapter, we will discuss the evidence for the involvement of TRPC channels in Alzheimer's disease and the potential of therapeutics for AD based on TRPC channels.
Collapse
|
29
|
Miyazaki I, Asanuma M. Serotonin 1A Receptors on Astrocytes as a Potential Target for the Treatment of Parkinson's Disease. Curr Med Chem 2016; 23:686-700. [PMID: 26795196 PMCID: PMC4997990 DOI: 10.2174/0929867323666160122115057] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/12/2015] [Accepted: 01/22/2016] [Indexed: 12/30/2022]
Abstract
Astrocytes are the most abundant neuron-supporting glial cells in the central nervous system. The neuroprotective role of astrocytes has been demonstrated in various neurological disorders such as amyotrophic lateral sclerosis, spinal cord injury, stroke and Parkinson’s disease (PD). Astrocyte dysfunction or loss-of-astrocytes increases the susceptibility of neurons to cell death, while astrocyte transplantation in animal studies has therapeutic advantage. We reported recently that stimulation of serotonin 1A (5-HT1A) receptors on astrocytes promoted astrocyte proliferation and upregulated antioxidative molecules to act as a neuroprotectant in parkinsonian mice. PD is a progressive neurodegenerative disease with motor symptoms such as tremor, bradykinesia, rigidity and postural instability, that are based on selective loss of nigrostriatal dopaminergic neurons, and with non-motor symptoms such as orthostatic hypotension and constipation based on peripheral neurodegeneration. Although dopaminergic therapy for managing the motor disability associated with PD is being assessed at present, the main challenge remains the development of neuroprotective or disease-modifying treatments. Therefore, it is desirable to find treatments that can reduce the progression of dopaminergic cell death. In this article, we summarize first the neuroprotective properties of astrocytes targeting certain molecules related to PD. Next, we review neuroprotective effects induced by stimulation of 5-HT1A receptors on astrocytes. The review discusses new promising therapeutic strategies based on neuroprotection against oxidative stress and prevention of dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | | |
Collapse
|
30
|
Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nat Commun 2016; 7:11251. [PMID: 27052848 PMCID: PMC4829692 DOI: 10.1038/ncomms11251] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/07/2016] [Indexed: 12/17/2022] Open
Abstract
It has become well accepted that Huntington disease (HD) is associated with impaired glutamate uptake, resulting in a prolonged time-course of extracellular glutamate that contributes to excitotoxicity. However, the data supporting this view come largely from work in synaptosomes, which may overrepresent nerve-terminal uptake over astrocytic uptake. Here, we quantify real-time glutamate dynamics in HD mouse models by high-speed imaging of an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) and electrophysiological recordings of synaptically activated transporter currents in astrocytes. These techniques reveal a disconnect between the results obtained in synaptosomes and those in situ. Exogenous glutamate uptake is impaired in synaptosomes, whereas real-time measures of glutamate clearance in the HD striatum are normal or even accelerated, particularly in the aggressive R6/2 model. Our results highlight the importance of quantifying glutamate dynamics under endogenous release conditions, and suggest that the widely cited uptake impairment in HD does not contribute to pathogenesis. Huntington disease (HD) has been linked via biochemical uptake assays to impaired glutamate clearance and resultant excitotoxicity. Here, utilizing a fluorescent reporter, the authors measure real-time glutamate dynamics in mouse model HD brain slices and find normal or even accelerated glutamate clearance.
Collapse
|
31
|
Modulation of NMDA Receptor Subunits Expression by Concanavalin A. Neurochem Res 2016; 41:1887-98. [DOI: 10.1007/s11064-016-1900-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
|
32
|
Martinez-Lozada Z, Guillem AM, Robinson MB. Transcriptional Regulation of Glutamate Transporters: From Extracellular Signals to Transcription Factors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:103-45. [PMID: 27288076 DOI: 10.1016/bs.apha.2016.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian CNS. It mediates essentially all rapid excitatory signaling. Dysfunction of glutamatergic signaling contributes to developmental, neurologic, and psychiatric diseases. Extracellular glutamate is cleared by a family of five Na(+)-dependent glutamate transporters. Two of these transporters (GLAST and GLT-1) are relatively selectively expressed in astrocytes. Other of these transporters (EAAC1) is expressed by neurons throughout the nervous system. Expression of the last two members of this family (EAAT4 and EAAT5) is almost exclusively restricted to specific populations of neurons in cerebellum and retina, respectively. In this review, we will discuss our current understanding of the mechanisms that control transcriptional regulation of the different members of this family. Over the last two decades, our understanding of the mechanisms that regulate expression of GLT-1 and GLAST has advanced considerably; several specific transcription factors, cis-elements, and epigenetic mechanisms have been identified. For the other members of the family, little or nothing is known about the mechanisms that control their transcription. It is assumed that by defining the mechanisms involved, we will advance our understanding of the events that result in cell-specific expression of these transporters and perhaps begin to define the mechanisms by which neurologic diseases are changing the biology of the cells that express these transporters. This approach might provide a pathway for developing new therapies for a wide range of essentially untreatable and devastating diseases that kill neurons by an excitotoxic mechanism.
Collapse
Affiliation(s)
- Z Martinez-Lozada
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - A M Guillem
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - M B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
33
|
Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem Int 2016; 98:56-71. [PMID: 27013346 DOI: 10.1016/j.neuint.2016.03.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022]
Abstract
In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or pharmacologic inhibition of glutamate transport impairs neurovascular coupling. Together these studies strongly suggest that glutamate transport not only coordinates excitatory signaling, but also plays a pivotal role in regulating brain energetics.
Collapse
|
34
|
Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer's disease. J Neurochem 2016; 136:475-91. [PMID: 26546579 PMCID: PMC4720533 DOI: 10.1111/jnc.13424] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Astrocytes are the most abundant cells in the central nervous system. They play critical roles in neuronal homeostasis through their physical properties and neuron-glia signaling pathways. Astrocytes become reactive in response to neuronal injury and this process, referred to as reactive astrogliosis, is a common feature accompanying neurodegenerative conditions, particularly Alzheimer's disease. Reactive astrogliosis represents a continuum of pathobiological processes and is associated with morphological, functional, and gene expression changes of varying degrees. There has been a substantial growth of knowledge regarding the signaling pathways regulating glial biology and pathophysiology in recent years. Here, we attempt to provide an unbiased review of some of the well-known players, namely calcium, proteoglycan, transforming growth factor β, NFκB, and complement, in mediating neuron-glia interaction under physiological conditions as well as in Alzheimer's disease. This review discusses the role of astrocytic NFκB and calcium as well as astroglial secreted factors, including proteoglycans, TGFβ, and complement in mediating neuronal function and AD pathogenesis through direct interaction with neurons and through cooperation with microglia.
Collapse
Affiliation(s)
- Hong Lian
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Neuroscience, Xiamen University College of Medicine, Xiamen, Fujian 361102, China
| |
Collapse
|
35
|
Hernández-Jiménez M, Martínez-López D, Gabandé-Rodríguez E, Martín-Segura A, Lizasoain I, Ledesma MD, Dotti CG, Moro MA. Seladin-1/DHCR24 Is Neuroprotective by Associating EAAT2 Glutamate Transporter to Lipid Rafts in Experimental Stroke. Stroke 2016; 47:206-13. [DOI: 10.1161/strokeaha.115.010810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/20/2015] [Indexed: 01/10/2023]
Abstract
Background and Purpose—
3β-Hydroxysteroid-Δ24 reductase (DHCR24) or selective alzheimer disease indicator 1 (seladin-1), an enzyme of cholesterol biosynthetic pathway, has been implicated in neuroprotection, oxidative stress, and inflammation. However, its role in ischemic stroke remains unexplored. The aim of this study was to characterize the effect of seladin-1/DHCR24 using an experimental stroke model in mice.
Methods—
Dhcr24
+/−
and wild-type (WT) mice were subjected to permanent middle cerebral artery occlusion. In another set of experiments, WT mice were treated intraperitoneally either with vehicle or U18666A (seladin-1/DHCR24 inhibitor, 10 mg/kg) 30 minutes after middle cerebral artery occlusion. Brains were removed 48 h after middle cerebral artery occlusion for infarct volume determination. For protein expression determination, peri-infarct region was obtained 24 h after ischemia, and Western blot or cytometric bead array was performed.
Results—
Dhcr24
+/
−
mice displayed larger infarct volumes after middle cerebral artery occlusion than their WT littermates. Treatment of WT mice with the seladin-1/DHCR24 inhibitor U18666A also increased ischemic lesion. Inflammation-related mediators were increased after ischemia in
Dhcr24
+/
−
mice compared with WT counterparts. Consistent with a role of cholesterol in proper function of glutamate transporter EAAT2 in membrane lipid rafts, we found a decreased association of EAAT2 with lipid rafts after ischemia when DHCR24 is genetically deleted or pharmacologically inhibited. Accordingly, treatment with U18666A decreases [
3
H]-glutamate uptake in cultured astrocytes.
Conclusions—
These results support the idea that lipid raft integrity, ensured by seladin-1/DHCR24, plays a crucial protective role in the ischemic brain by guaranteeing EAAT2-mediated uptake of glutamate excess.
Collapse
Affiliation(s)
- Macarena Hernández-Jiménez
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - Diego Martínez-López
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - Enrique Gabandé-Rodríguez
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - Adrian Martín-Segura
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - Ignacio Lizasoain
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - María D. Ledesma
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - Carlos G. Dotti
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - María A. Moro
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| |
Collapse
|
36
|
Miyazaki I, Murakami S, Torigoe N, Kitamura Y, Asanuma M. Neuroprotective effects of levetiracetam target xCT in astrocytes in parkinsonian mice. J Neurochem 2015; 136:194-204. [DOI: 10.1111/jnc.13405] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Ikuko Miyazaki
- Department of Brain Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
- Department of Medical Neurobiology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Shinki Murakami
- Department of Brain Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
- Department of Medical Neurobiology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
- SAIDO Co.; Fukuoka Japan
| | - Nao Torigoe
- Department of Clinical Pharmacy; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Masato Asanuma
- Department of Brain Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
- Department of Medical Neurobiology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| |
Collapse
|
37
|
Down-regulation of astroglial glutamate transporter-1 in the locus coeruleus impairs pain-evoked endogenous analgesia in rats. Neurosci Lett 2015; 608:18-22. [PMID: 26450532 DOI: 10.1016/j.neulet.2015.09.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/21/2022]
Abstract
Descending noradrenergic inhibition to the spinal cord from the locus coeruleus (LC) is an important endogenous pain-relief mechanism which can be activated by local glutamate signaling. Here we tested whether dysregulation of extracellular glutamate level in the LC induced by down-regulating astroglial glutamate transporter-1(GLT-1) impairs endogenous analgesia. In rats treated with repeated LC injections of GLT-1 selective or non-targeting small interfering RNA (siRNA), a subdermal injection of capsaicin was used to examine noxious stimulation-induced analgesia (NSIA), evoked LC glutamate and spinal noradrenaline release, and evoked LC neuronal activity. LC-injected GLT-1 siRNA reduced expression of GLT-1 in the LC (P=0.02), increased basal activity of LC neurons (P<0.01), and increased basal extracellular concentrations of LC glutamate (P<0.01) and spinal noradrenaline (P<0.01), but did not affect mechanical withdrawal thresholds in the hindpaw (P=0.83), compared to non-targeting siRNA. LC-injected GLT-1 siRNA impaired capsaicin-evoked release of LC glutamate and spinal noradrenaline, capsaicin-evoked LC neuronal activation, and NSIA. These results suggest that astroglial GLT-1 is essential to normal LC function and that increased extracellular glutamate by down-regulating GLT-1 impairs evoked LC activity and NSIA, essentially taking the LC "off-line".
Collapse
|
38
|
Impaired Pain-evoked Analgesia after Nerve Injury in Rats Reflects Altered Glutamate Regulation in the Locus Coeruleus. Anesthesiology 2015; 123:899-908. [DOI: 10.1097/aln.0000000000000796] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background:
Patients with neuropathic pain show reduced endogenous analgesia induced by a conditioned noxious stimulus. Here, the authors tested whether peripheral nerve injury impairs descending noradrenergic inhibition from the locus coeruleus (LC) after L5–L6 spinal nerve ligation (SNL) in rats.
Methods:
A subdermal injection of capsaicin was used to examine noxious stimulation–induced analgesia (NSIA), evoked LC glutamate and spinal noradrenaline release, and evoked LC neuronal activity in normal and SNL rats. The authors also examined the role of presynaptic metabotropic glutamate receptors or the astroglial glutamate transporter-1 (GLT-1).
Results:
SNL increased basal extracellular glutamate concentration in the LC (170.1%; 95% CI, 44.7 to 295.5; n = 15) and basal spinal cord noradrenaline release (252.1%; 95% CI, 113.6 to 391.3; n = 15), which was associated with an increased tonic LC neuronal activity and a down-regulation of GLT-1 in the LC. SNL reduced NSIA (−77.6%; 95% CI, −116.4 to −38.8; n = 14) and capsaicin evoked release of glutamate in the LC (−36.2%; 95% CI, −49.3 to −23.2; n = 8) and noradrenaline in the spinal cord (−38.8%; 95% CI, −45.1 to −32.5; n = 8). Capsaicin-evoked LC neuronal activation was masked in SNL rats. Removing autoinhibition of glutamatergic terminals by metabotropic glutamate receptor blockade or increasing GLT-1 expression by histone deacetylase inhibition restored NSIA in SNL rats. SNL-induced impairment of NSIA was mimicked in normal rats by knockdown of GLT-1 in the LC.
Conclusions:
These results suggest that increased extracellular glutamate in the LC consequent to down-regulation of GLT-1 contributes to LC dysfunction and impaired pain-evoked endogenous analgesia after nerve injury.
Collapse
|
39
|
Gil YS, Kim JH, Kim CH, Han JI, Zuo Z, Baik HJ. Gabapentin inhibits the activity of the rat excitatory glutamate transporter 3 expressed in Xenopus oocytes. Eur J Pharmacol 2015; 762:112-7. [DOI: 10.1016/j.ejphar.2015.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/17/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
|
40
|
Adrover E, Pallarés ME, Baier CJ, Monteleone MC, Giuliani FA, Waagepetersen HS, Brocco MA, Cabrera R, Sonnewald U, Schousboe A, Antonelli MC. Glutamate neurotransmission is affected in prenatally stressed offspring. Neurochem Int 2015; 88:73-87. [DOI: 10.1016/j.neuint.2015.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 11/16/2022]
|
41
|
Wu L, Liao P, He L, Ren W, Yin J, Duan J, Li T. Growth performance, serum biochemical profile, jejunal morphology, and the expression of nutrients transporter genes in deoxynivalenol (DON)- challenged growing pigs. BMC Vet Res 2015; 11:144. [PMID: 26138080 PMCID: PMC4490653 DOI: 10.1186/s12917-015-0449-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fusarium infection with concurrent production of deoxynivalenol (DON) causes an increasing safety concern with feed worldwide. This study was conducted to determine the effects of varying levels of DON in diets on growth performance, serum biochemical profile, jejunal morphology, and the differential expression of nutrients transporter genes in growing pigs. RESULTS A total of twenty-four 60-day-old healthy growing pigs (initial body weight = 16.3 ± 1.5 kg SE) were individually housed and randomly assigned to receive one of four diets containing 0, 3, 6 or 12 mg DON/kg feed for 21 days. Differences were observed between control and the 12 mg/kg DON treatment group with regards to average daily gain (ADG), although the value for average daily feed intake (ADFI) in the 3 mg/kg DON treatment group was slightly higher than that in control (P<0.01). The relative liver weight in the 12 mg/kg DON treatment group was significantly greater than that in the control (P<0.01), but there were no significant differences in other organs. With regard to serum biochemistry, the values of blood urea nitrogen (BUN), alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate amino transferase (AST) in the 3 treatment groups were higher than those in the control, and the serum concentrations of L-valine, glycine, L-serine, and L-glutamine were significantly reduced in the 3 treatment groups, especially in the 12 mg/kg DON group (P<0.01). Serum total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) were markedly decreased after exposure to DON contaminated feeds (P<0.01). The villi height was markedly decreased and the lymphocyte cell numbers markedly increased in the 3 DON contaminated feeds (P<0.01). The mRNA expression levels of excitatory amino acid transporter-3 (EAAC-3), sodium-glucose transporter-1 (SGLT-1), dipeptide transporter-1 (PepT-1), cationic amino acid transporter-1 (CAT-1) and y(+)L-type amino acid transporter-1 (LAT-1) in control were slightly or markedly higher than those in the 3 DON treatment groups. CONCLUSIONS These results showed that feeds containing DON cause a wide range of effects in a dose-dependent manner. Such effects includes weight loss, live injury and oxidation stress, and malabsorption of nutrients as a result of selective regulation of nutrient transporter genes such as EAAC-3, SGLT-1, PepT-1, CAT-1 and LAT-1.
Collapse
Affiliation(s)
- Li Wu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125, China.
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125, China.
| | - Liuqin He
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125, China.
| | - Wenkai Ren
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125, China.
| | - Jie Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125, China.
| | - Jielin Duan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125, China.
| | - Tiejun Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125, China.
| |
Collapse
|
42
|
Ding W, Yu P, Liu W, Zhou L, Guan LI, Lin R. Buyang Huanwu decoction increases the expression of glutamate transporter-1 and glutamate synthetase in association with PACAP-38 following focal ischemia. Biomed Rep 2015; 3:651-656. [PMID: 26405540 DOI: 10.3892/br.2015.478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/05/2015] [Indexed: 11/06/2022] Open
Abstract
The neuroprotective role of Buyang Huanwu decoction (BYHWD) in focal ischemia is associated with decreasing glutamate concentration. However, the mechanisms are not fully understood. The present study aimed to explore whether glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) participated in the decreased level of glutamate and whether pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) was involved in this process. BYHWD was found to significantly upregulate the expression of GLT-1 and GS in the hippocampal CA1 area compared to the ischemia group, with the difference on day 3 being most significant. BYHWD increased the level of PACAP-38, and PACAP-(6-38) (PACAP receptor antagonist) significantly attenuated the effect of BYHWD on GLT-1 and GS, suggesting that PACAP-38 was involved in the upregulation of GLT-1 and GS induced by BYHWD. In addition, as GLT-1 and GS are mainly located in astrocytes, the changes of astrocytes were detected by glial fibrillary acidic protein (GFAP; an astrocytic marker) immunostaining. The results showed that BYHWD inhibited the expression of GFAP compared with the ischemia group, however, co-administration with PACAP-(6-38), which inhibited the effect of BYHWD on GLT-1 and GS in astrocytes, attenuated this effect, indicating that astrocytes participated in the protective role of BYHWD following focal ischemia. These results provided the evidence for the first time that not only neurons but also astrocytes contribute to the protective role of BYHWD, which opposes previous studies and may be a starting point for traditional medicine.
Collapse
Affiliation(s)
- Wenting Ding
- Department of Physiology, College of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Peng Yu
- Department of Physiology, College of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wei Liu
- Department of Physiology, College of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Lequan Zhou
- Department of Physiology, College of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - L I Guan
- Department of Physiology, College of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ruishan Lin
- Department of Physiology, College of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
43
|
Mortensen OV, Liberato JL, Coutinho-Netto J, dos Santos WF, Fontana ACK. Molecular determinants of transport stimulation of EAAT2 are located at interface between the trimerization and substrate transport domains. J Neurochem 2015; 133:199-210. [DOI: 10.1111/jnc.13047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Ole V. Mortensen
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| | - José L. Liberato
- Neurobiology and Venoms Laboratory; Department of Biology; College of Philosophy; Sciences and Literature of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Joaquim Coutinho-Netto
- Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; SP Brazil
| | - Wagner F. dos Santos
- Neurobiology and Venoms Laboratory; Department of Biology; College of Philosophy; Sciences and Literature of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Andréia C. K. Fontana
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| |
Collapse
|
44
|
Zhang LN, Sun YJ, Wang LX, Gao ZB. Glutamate Transporters/Na(+), K(+)-ATPase Involving in the Neuroprotective Effect as a Potential Regulatory Target of Glutamate Uptake. Mol Neurobiol 2015; 53:1124-1131. [PMID: 25586061 DOI: 10.1007/s12035-014-9071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 12/29/2014] [Indexed: 02/05/2023]
Abstract
The glutamate (Glu) transporters GLAST and GLT-1, as the two most important transporters in brain tissue, transport Glu from the extracellular space into the cell protecting against Glu toxicity. Furthermore, GLAST and GLT-1 are sodium-dependent Glu transporters (GluTs) that rely on sodium and potassium gradients generated principally by Na(+), K(+)-ATPase to generate ion gradients that drive Glu uptake. There is an interaction between Na(+), K(+)-ATPase and GluTs to modulate Glu uptake, and Na(+), K(+)-ATPase α, β or γ subunit can be directly coupled to GluTs, co-localizing with GLAST or GLT-1 in vivo to form a macromolecular complex and operate as a functional unit to regulate glutamatergic neurotransmission. Therefore, GluTs/Na(+), K(+)-ATPase may be involved in the neuroprotective effect as a potential regulatory target of Glu uptake in neurodegenerative diseases induced by Glu-mediated neurotoxicity as the final common pathway.
Collapse
Affiliation(s)
- Li-Nan Zhang
- Department of Pharmacy, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei, 050018, People's Republic of China
| | - Yong-Jun Sun
- Department of Pharmacy, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei, 050018, People's Republic of China
| | - Li-Xue Wang
- Cadre Ward, Capital Medical University Electric Power Teaching Hospital, Compound A1, Taiping Bridge Xili, Beijing, 100073, People's Republic of China
| | - Zi-Bin Gao
- Department of Pharmacy, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei, 050018, People's Republic of China. .,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, 70 Yuhua East Road, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
45
|
Odeon MM, Andreu M, Yamauchi L, Grosman M, Acosta GB. Chronic postnatal stress induces voluntary alcohol intake and modifies glutamate transporters in adolescent rats. Stress 2015; 18:427-34. [PMID: 26037264 DOI: 10.3109/10253890.2015.1041909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Postnatal stress alters stress responses for life, with serious consequences on the central nervous system (CNS), involving glutamatergic neurotransmission and development of voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 °C) for 1 h daily for 20 days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7 days (5-7 rats per group), then killed. CPS: (1) increased voluntary ethanol intake, (2) did not affect body weight gain or produce signs of toxicity with alcohol exposure, (3) increased glutamate uptake by hippocampal synaptosomes in vitro and (4) reduced protein levels (Western measurements) in hippocampus and frontal cortex of glial glutamate transporter-1 (GLT-1) and excitatory amino-acid transporter-3 (EAAT-3) but increased glutamate aspartate transporter (GLAST) levels. We propose that CPS-induced decrements in GLT-1 and EAAT-3 expression levels are opposed by activation of a compensatory mechanism to prevent excitotoxicity. A greater role for GLAST in total glutamate uptake to prevent enlarged extracellular glutamate levels is inferred. Although CPS strongly increased intake of ethanol, this had little impact on effects of CPS on brain glutamate uptake or transporters. However, the impact of early life adverse events on glutamatergic neurotransmission may underlie increased alcohol consumption in adulthood.
Collapse
Affiliation(s)
- María Mercedes Odeon
- a Institute of Pharmacological Research (ININFA), National Scientific and Technologic Research Council (CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires , Argentina and
| | - Marcela Andreu
- b Laboratorio Bioquímica Médica SRL , Buenos Aires , Argentina
| | - Laura Yamauchi
- b Laboratorio Bioquímica Médica SRL , Buenos Aires , Argentina
| | | | - Gabriela Beatriz Acosta
- a Institute of Pharmacological Research (ININFA), National Scientific and Technologic Research Council (CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires , Argentina and
| |
Collapse
|
46
|
Jackson JG, O'Donnell JC, Krizman E, Robinson MB. Displacing hexokinase from mitochondrial voltage-dependent anion channel impairs GLT-1-mediated glutamate uptake but does not disrupt interactions between GLT-1 and mitochondrial proteins. J Neurosci Res 2014; 93:999-1008. [PMID: 25546576 DOI: 10.1002/jnr.23533] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/11/2014] [Accepted: 11/30/2014] [Indexed: 02/03/2023]
Abstract
The glutamate transporter GLT-1 is the major route for the clearance of extracellular glutamate in the forebrain, and most GLT-1 protein is found in astrocytes. This protein is coupled to the Na(+) electrochemical gradient, supporting the active intracellular accumulation of glutamate. We recently used a proteomic approach to identify proteins that may interact with GLT-1 in rat cortex, including the Na(+)/K(+) -ATPase, most glycolytic enzymes, and several mitochondrial proteins. We also showed that most GLT-1 puncta (∼ 70%) are overlapped by mitochondria in astroglial processes in organotypic slices. From this analysis, we proposed that the glycolytic enzyme hexokinase (HK)-1 might physically form a scaffold to link GLT-1 and mitochondria because HK1 is known to interact with the outer mitochondrial membrane protein voltage-dependent anion channel (VDAC). The current study validates the interactions among HK-1, VDAC, and GLT-1 by using forward and reverse immunoprecipitations and provides evidence that a subfraction of HK1 colocalizes with GLT-1 in vivo. A peptide known to disrupt the interaction between HK and VDAC did not disrupt interactions between GLT-1 and several mitochondrial proteins. In parallel experiments, displacement of HK from VDAC reduced GLT-1-mediated glutamate uptake. These results suggest that, although HK1 forms coimmunoprecipitatable complexes with both VDAC and GLT-1, it does not physically link GLT-1 to mitochondrial proteins. However, the interaction of HK1 with VDAC supports GLT-1-mediated transport activity.
Collapse
Affiliation(s)
- Joshua G Jackson
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John C O'Donnell
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth Krizman
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 2014; 1338:38-57. [PMID: 25315318 DOI: 10.1111/nyas.12547] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A number of studies have indicated that antagonists of the N-methyl-d-aspartate subtypes of glutamate receptors can cause schizophrenia-like symptoms in healthy individuals and exacerbate symptoms in individuals with schizophrenia. These findings have led to the glutamate hypothesis of schizophrenia. Here we review the evidence for this hypothesis in postmortem studies of brain tissue from individuals affected by schizophrenia, summarizing studies of glutamate neuron morphology, of expression of glutamate receptors and transporters, and of the synthesizing and metabolizing enzymes for glutamate and its co-agonists. We found consistent evidence of morphological alterations of dendrites of glutamatergic neurons in the cerebral cortex of subjects with schizophrenia and of reduced levels of the axon bouton marker synaptophysin. There were no consistent alterations of mRNA expression of glutamate receptors, although there has been limited study of the corresponding proteins. Studies of the glutamate metabolic pathway have been limited, although there is some evidence that excitatory amino acid transporter-2, glutamine synthetase, and glutaminase have altered expression in schizophrenia. Future studies would benefit from additional direct examination of glutamatergic proteins. Further advances, such as selective testing of synaptic microdomains, cortical layers, and neuronal subtypes, may also be required to elucidate the nature of glutamate signaling impairments in schizophrenia.
Collapse
Affiliation(s)
- Wei Hu
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | | | | | | |
Collapse
|
48
|
GLT-1 transporter: an effective pharmacological target for various neurological disorders. Pharmacol Biochem Behav 2014; 127:70-81. [PMID: 25312503 DOI: 10.1016/j.pbb.2014.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/01/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022]
Abstract
L-Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS) and is directly and indirectly involved in a variety of brain functions. Glutamate is released in the synaptic cleft at a particular concentration that further activates the various glutaminergic receptors. This concentration of glutamate in the synapse is maintained by either glutamine synthetase or excitatory amino acid proteins which reuptake the excessive glutamate from the synapse and named as excitatory amino acid transporters (EAATs). Out of all the subtypes GLT-1 (glutamate transporter 1) is abundantly distributed in the CNS. Down-regulation of GLT-1 is reported in various neurological diseases such as, epilepsy, stroke, Alzheimer's disease and movement disorders. Therefore, positive modulators of GLT-1 which up-regulate the GLT-1 expression can serve as a potential target for the treatment of neurological disorders. GLT-1 translational activators such as ceftriaxone are found to have significant protective effects in ALS and epilepsy animal models, suggesting that this translational activation approach works well in rodents and that these compounds are worth further pursuit for various neurological disorders. This drug is currently in human clinical trials for ALS. In addition, a thorough understanding of the mechanisms underlying translational regulation of GLT-1, such as identifying the molecular targets of the compounds, signaling pathways involved in the regulation, and translational activation processes, is very important for this novel drug-development effort. This review mainly emphasizes the role of glutamate and its transporter, GLT-1 subtype in excitotoxicity. Further, recent reports on GLT-1 transporters for the treatment of various neurological diseases, including a summary of the presumed physiologic mechanisms behind the pharmacology of these disorders are also explained.
Collapse
|
49
|
Sari Y. Role of glutamate transporter 1 in the attenuation of alcohol intake. Front Neurosci 2014; 8:200. [PMID: 25100932 PMCID: PMC4101336 DOI: 10.3389/fnins.2014.00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/26/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Youssef Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| |
Collapse
|
50
|
Krzyżanowska W, Pomierny B, Filip M, Pera J. Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol Sin 2014; 35:444-62. [PMID: 24681894 DOI: 10.1038/aps.2014.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/03/2014] [Indexed: 01/18/2023]
Abstract
In this review, we briefly describe glutamate (Glu) metabolism and its specific transports and receptors in the central nervous system (CNS). Thereafter, we focus on excitatory amino acid transporters, cystine/glutamate antiporters (system xc-) and vesicular glutamate transporters, specifically addressing their location and roles in CNS and the molecular mechanisms underlying the regulation of Glu transporters. We provide evidence from in vitro or in vivo studies concerning alterations in Glu transporter expression in response to hypoxia or ischemia, including limited human data that supports the role of Glu transporters in stroke patients. Moreover, the potential to induce brain tolerance to ischemia through modulation of the expression and/or activities of Glu transporters is also discussed. Finally we present strategies involving the application of ischemic preconditioning and pharmacological agents, eg β-lactam antibiotics, amitriptyline, riluzole and N-acetylcysteine, which result in the significant protection of nervous tissues against ischemia.
Collapse
|