1
|
Li L, Liu Y, Luo T, Tao Y, Zhao S, Liu P, Yang Z, Jiang Y, Zhang M, Duan X, Situ M, Huang Y. Grey matter volume differences in pediatric obsessive-compulsive disorder: a meta-analysis of voxel-based morphometry studies. BMC Psychiatry 2025; 25:267. [PMID: 40119402 PMCID: PMC11927120 DOI: 10.1186/s12888-025-06711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is one of the most commonly seen mental disorders onset from childhood. The neural mechanisms underlying OCD development and maintenance remain poorly understood. Various empirical evidence from structural magnetic resonance imaging (MRI) studies has reported structural differences in grey matter (GM) among pediatric OCD patients. However, some of the findings diverge from others, and the association between GM and individual differences in pediatric OCD remains inconclusive. To address this gap, we conducted a meta-analysis to synthesize findings quantitatively. METHODS The current research conducted a quantitative meta-analysis of voxel-based GM studies to elucidate existence of neural correlates in pediatric OCD. A whole brain-based d-mapping approach was utilized to explore GM changes and further analyze the relationship between GM and individual differences in pediatric OCD patients. RESULTS Thirteen studies were included with 288 patients and 273 controls. Compared with controls, pediatric OCD demonstrated significantly greater GM volume in the left insula (SDM value = 1.72, p < 0.005) and left superior frontal gyrus (SFG) (orbital part) (SDM value = 1.47, p < 0.005), whereas we showed lower GM volume in the right superior temporal gyrus (STG) (SDM value = -1.87, p < 0.005), left inferior parietal gyri (IPG) (SDM value = -1.60, p < 0.005), left middle occipital gyrus (MOG) (SDM value = -1.66, p < 0.005), and left inferior frontal gyrus (IFG) (SDM value = -1.69, p < 0.005). The increase in SFG (orbital part) and decrease IPG was commonly found in those without psychiatric comorbidities and treatment-naive subgroup. Meta-regression analysis revealed that longer OCD duration was associated with less GM volume in IPG (SDM value = -3.057, p < 0.005). Finally, the onset age and the OCD symptoms severity were positively associated with GM volume in the SFG (SDM z = 2.387, p < 0.005). CONCLUSIONS Our findings confirmed the most consistent GM differences in pediatric OCD, particularly in the MOG, IPG and SFG (orbital part), suggesting they are potential markers in pediatric OCD. Larger SFG (orbital part) and smaller IPG volumes are specific to those without comorbidities and untreated patients. The duration of OCD, symptom severity and onset age also influence GM structure. This research provides evidence of the underlying neuroanatomical characteristics of pediatric OCD. TRIAL REGISTRATION PROSPERO CRD42024601906.
Collapse
Affiliation(s)
- Lei Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yihao Liu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Social Psychiaty, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tingting Luo
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yujie Tao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shengnan Zhao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Liu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhaozhi Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuchu Jiang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Manxue Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoxia Duan
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mingjing Situ
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Huang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Laboratory of Child and Adolescent Psychiatry, Mental Health Center, Westchina Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Chen G, Zhao X, Xie M, Chen H, Shao C, Zhang X, Wu Y, Liu N, Zhang N. Serum metabolites and inflammation predict brain functional connectivity changes in Obsessive-Compulsive disorder. Brain Behav Immun 2025; 126:113-125. [PMID: 39952302 DOI: 10.1016/j.bbi.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025] Open
Abstract
Currently, our understanding of the metabolic and immune pathways involved in obsessive-compulsive disorder (OCD), as well as the precise mechanisms by which metabolism and immunity impact brain activity and function, is limited. This study aimed to examine the alterations in serum metabolites, inflammatory markers, brain activity, and brain functional connectivity (FC) among individuals with OCD and investigate the relationship between these factors. The study included 55 individuals with moderate-to-severe OCD (either drug-naïve or not taking medication for at least eight weeks) and 54 healthy controls (HCs). The High-Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS) technique was used to detect serum metabolites, whereas the enzyme-linked immunosorbent assay (ELISA) was utilized to identify inflammatory markers. The FC of the brain was investigated using resting-state functional magnetic resonance immaging(rs-fMRI). The findings demonstrated that individuals with OCD exhibited significant alterations in 11 metabolites compared to HCs. In particular, 10 of these metabolites exhibited an increase, while one metabolite displayed a decrease. Additionally, individuals with OCD experienced a marked elevation in the levels of five inflammatory factors (TNF-α, IL-1β, IL-2, IL-6, and IL-12). Rs-fMRI analysis revealed that individuals with OCD exhibited atypical FC in various brain regions, such as the postcentral gyrus, angular gyrus, and middle temporal gyrus. These specific brain areas are closely associated with sensory-motor processing, cognitive control, and emotion regulation. Further stepwise multiple regression analysis revealed that serum metabolite levels, particularly phosphatidylcholine, and inflammatory markers such as IL-1β could predict alterations in brain FC among individuals diagnosed with OCD. In summary, this study uncovered that individuals with OCD exhibit alterations in serum metabolites, inflammatory markers, brain activity, and FC. The findings suggest that these metabolites and inflammatory markers might play a role in the development and progression of OCD by affecting brain activity and the FC of neural networks.
Collapse
Affiliation(s)
- Guoqing Chen
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiao Zhao
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Minyao Xie
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Haocheng Chen
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chenchen Shao
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xuedi Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yu Wu
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Ning Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
3
|
Wen B, Fang K, Tao Q, Tian Y, Niu L, Shi W, Liu Z, Sun J, Liu L, Zhang X, Zheng R, Guo HR, Wei Y, Zhang Y, Cheng J, Han S. Individualized gray matter morphological abnormalities unveil two neuroanatomical obsessive-compulsive disorder subtypes. Transl Psychiatry 2025; 15:23. [PMID: 39856051 PMCID: PMC11760359 DOI: 10.1038/s41398-025-03226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Obsessive-compulsive disorder (OCD) is a highly heterogeneous disorder, with notable variations among cases in structural brain abnormalities. To address this heterogeneity, our study aimed to delineate OCD subtypes based on individualized gray matter morphological differences. We recruited 100 untreated, first-episode OCD patients and 106 healthy controls for structural imaging scans. Utilizing normative models of gray matter volume, we identified subtypes based on individual morphological abnormalities. Sensitivity analyses were conducted to validate the reproducibility of clustering outcomes. To gain deeper insights into the connectomic and molecular underpinnings of structural brain abnormalities in the identified subtypes, we investigated their associations with normal brain network architecture and the distribution of neurotransmitter receptors/transporters. Our findings revealed two distinct OCD subtypes exhibiting divergent patterns of structural brain abnormalities. Sensitivity analysis results confirmed the robustness of the identified subtypes. Subtype 1 displayed significantly increased gray matter volume in regions including the frontal gyrus, precuneus, insula, hippocampus, parahippocampal gyrus, amygdala, and temporal gyrus, while subtype 2 exhibited decreased gray matter volume in the frontal gyrus, precuneus, insula, superior parietal gyrus, temporal gyrus, and fusiform gyrus. When considering all patients collectively, structural brain abnormalities nullified. The identified subtypes were characterized by divergent disease epicenters. Specifically, subtype 1 showed disease epicenters in the middle frontal gyrus, while subtype 2 displayed disease epicenters in the striatum, thalamus and hippocampus. Furthermore, structural brain abnormalities in these subtypes displayed distinct associations with neurotransmitter receptors/transporters. The identified subtypes offer novel insights into nosology and the heterogeneous nature of OCD.
Collapse
Affiliation(s)
- Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Tian
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lianjie Niu
- Department of Breast Disease, Henan Breast Cancer Center, The affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenqing Shi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zijun Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaopan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui-Rong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Vicheva P, Osborne C, Krieg SM, Ahmadi R, Shotbolt P. Transcranial magnetic stimulation for obsessive-compulsive disorder and post-traumatic stress disorder: A comprehensive systematic review and analysis of therapeutic benefits, cortical targets, and psychopathophysiological mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111147. [PMID: 39293504 DOI: 10.1016/j.pnpbp.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Transcranial magnetic stimulation (TMS) is a safe non-invasive treatment technique. We systematically reviewed randomised controlled trials (RCTs) applying TMS in obsessive compulsive disorder (OCD) and post-traumatic stress disorder (PTSD) to analyse its therapeutic benefits and explore the relationship between cortical target and psychopathophysiology. We included 47 randomised controlled trials (35 for OCD) and found a 22.7 % symptom improvement for OCD and 29.4 % for PTSD. Eight cortical targets were investigated for OCD and four for PTSD, yielding similar results. Bilateral dlPFC-TMS exhibited the greatest symptom change (32.3 % for OCD, N = 4 studies; 35.7 % for PTSD, N = 1 studies), followed by right dlPFC-TMS (24.4 % for OCD, N = 8; 26.7 % for PTSD, N = 10), and left dlPFC-TMS (22.9 % for OCD, N = 6; 23.1 % for PTSD, N = 1). mPFC-TMS showed promising results, although evidence is limited (N = 2 studies each for OCD and PTSD) and findings for PTSD were conflicting. Despite clinical improvement, reviewed reports lacked a consistent and solid rationale for cortical target selection, revealing a gap in TMS research that complicates the interpretation of findings and hinders TMS development and optimisation. Future research should adopt a hypothesis-driven approach rather than relying solely on correlations from imaging studies, integrating neurobiological processes with affective, behavioural, and cognitive states, thereby doing justice to the complexity of human experience and mental illness.
Collapse
Affiliation(s)
- Petya Vicheva
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Faculty Heidelberg, Department of Neurosurgery, University Heidelberg, Heidelberg, Germany.
| | - Curtis Osborne
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sandro M Krieg
- Medical Faculty Heidelberg, Department of Neurosurgery, University Heidelberg, Heidelberg, Germany
| | - Rezvan Ahmadi
- Medical Faculty Heidelberg, Department of Neurosurgery, University Heidelberg, Heidelberg, Germany.
| | - Paul Shotbolt
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Santiago T, Simbre I, DelRosso LM. Sleep disorders in patients with obsessive-compulsive disorder: A systematic review of the literature. J Sleep Res 2024:e14446. [PMID: 39740046 DOI: 10.1111/jsr.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Patients with obsessive-compulsive disorder are presumed to be at higher risk of sleep disorders due to the potential interference that persistent thoughts and compulsions may exert on sleep. Although there are studies on sleep findings in patients with obsessive-compulsive disorder, there are few systematic reviews on the presence of sleep disorders in patients with obsessive-compulsive disorder for adults and children. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were followed to perform a comprehensive search of PubMed and Web of Science using the MeSH terms "obsessive-compulsive disorder" and "sleep wake disorders". The exclusion criteria included publications not in English, studies performed on non-humans, abstracts, reviews, and meta-analyses. After applying the exclusion criteria, 17 studies qualified for inclusion in this systematic review. Nine studies were written about children and eight on adults. In the adult studies, sleep questionnaires, actigraphy and dim light melatonin onset showed delayed circadian rhythm in those with obsessive-compulsive disorder. Several studies showed an increased prevalence of insomnia in adult patients with obsessive-compulsive disorder. Overall, these studies showed sleep-onset and maintenance insomnia, and poor sleep quality. In the paediatric studies, sleep questionnaires revealed that paediatric patients with obsessive-compulsive disorder have increased sleep-related problems, including poor sleep quality, difficulty initiating and maintaining sleep, nightmares and sleepwalking. Two studies using actigraphy demonstrated a decreased total sleep time, increased wake after sleep onset and increased duration of awakening. Studies also showed an improvement in sleep symptoms with cognitive behavioural therapy. The systematic review has shown increased sleep-related problems and poor sleep quality both in adult and paediatric patients with obsessive-compulsive disorder. All patients with obsessive-compulsive disorder should therefore be screened for sleep-related problems to help in the overall outcome of treatment plans.
Collapse
Affiliation(s)
- Therese Santiago
- Department of Psychiatry, Stanford University, Stanford, California, USA
| | - Isabel Simbre
- College of BIological Sciences, University of California, Davis, California, USA
| | - Lourdes M DelRosso
- Department of Clinical Medicine, University of California, San Francisco, Fresno, California, USA
| |
Collapse
|
6
|
Liu L, Jia D, He Z, Wen B, Zhang X, Han S. Individualized functional connectome abnormalities obtained using two normative model unveil neurophysiological subtypes of obsessive compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111122. [PMID: 39154932 DOI: 10.1016/j.pnpbp.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The high heterogeneity observed among patients with obsessive-compulsive disorder (OCD) underscores the need to identify neurophysiological OCD subtypes to facilitate personalized diagnosis and treatment. In this study, our aim was to identify potential OCD subtypes based on individualized functional connectome abnormalities. We recruited a total of 99 patients with OCD and 104 healthy controls (HCs) matched for demographic characteristics. Individualized functional connectome abnormalities were obtained using normative models of functional connectivity strength (FCS) and used as features to unveil OCD subtypes. Sensitivity analyses were conducted to assess the reproducibility and robustness of the clustering outcomes. Patients exhibited significant intersubject heterogeneity in individualized functional connectome abnormalities. Two subtypes with distinct patterns of FCS abnormalities relative to HCs were identified. Subtype 1 patients primarily exhibited significantly decreased FCS in regions including the frontal gyrus, insula, hippocampus, and precentral/postcentral gyrus, whereas subtype 2 patients demonstrated increased FCS in widespread brain regions. When all patients were combined, no significant differences were observed. Additionally, the identified subtypes showed significant differences in age of onset. Furthermore, sensitivity analyses confirmed the reproducibility of our subtyping results. In conclusion, the identified OCD subtypes shed new light on the taxonomy and neurophysiological heterogeneity of OCD.
Collapse
Affiliation(s)
- Liang Liu
- School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China
| | - Dongyao Jia
- School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China.
| | - Zihao He
- School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaopan Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Lai R, Pang X, Ming Y, He H, Xiong Y, You J, Chen L, Gong F. Anterior capsulotomy and accumbensotomy of obsessive-compulsive disorder with obsessional slowness: a case report. Front Psychiatry 2024; 15:1498046. [PMID: 39655208 PMCID: PMC11625788 DOI: 10.3389/fpsyt.2024.1498046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Obsessional slowness (OS) is characterized by a syndrome of extreme slowness in doing ordinary, day-to-day activities. Several scholars regarded OS as secondary to obsessive compulsive disorder (OCD). Therefore, it is commonly thought to be the consequence of extensive rituals and has been paid minimal attention in its own right. A combination of behavior therapy and aromatherapy are recommended for treatment of this condition. However, the outcome is often frustrating. Reports of surgical management for OS are limited. PATIENT CONCERNS She had symptoms characterized by repeated checking and progressive slowness in self-care behavior. DIAGNOSIS At the age of 19, the patient had the first presentation. The patient was diagnosed with a case of OCD with obsessional slowness according to the International Classification of Diseases and Related Health Problems (ICD-10). INTERVENTIONS Considering the lack of a response to pharmacotherapy and cognitive behavioral therapy (CBT), we treated this case with anterior capsulotomy and accumbensotomy. OUTCOMES Moderate somnolence, urticaria, juvenile behavior, mild short-term memory impairment and slight nonsense were noted during the first postoperative days. At 10 months, the patient's OCD symptoms recovered nearly to her preoperative level. The OS symptom also had an obvious rebound at 10 months. Through comprehensive judgment, we decided to choose accumbensotomy. At 9 months after the accumbensotomy, the OCD symptoms started to rebound. Soon after, the OS symptoms also recurred. At the last timepoint of 30 months, the patient's OCD and OS symptoms had completely rebounded. This time, the patient and parents refused any treatment. CONCLUSION This case suggests that OCD with OS, as a special category, might not be suitable for stereotactic neurosurgery. Furthermore, multiple surgeries in this kind of OCD patient should be considered with as much caution as much as possible.
Collapse
Affiliation(s)
- Rui Lai
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Xiao Pang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yang Ming
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Haiping He
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yu Xiong
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Jian You
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Feilong Gong
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Soto JS, Neupane C, Kaur M, Pandey V, Wohlschlegel JA, Khakh BS. Astrocyte Gi-GPCR signaling corrects compulsive-like grooming and anxiety-related behaviors in Sapap3 knockout mice. Neuron 2024; 112:3412-3423.e6. [PMID: 39163865 PMCID: PMC11512628 DOI: 10.1016/j.neuron.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/06/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Astrocytes are morphologically complex cells that serve essential roles. They are widely implicated in central nervous system (CNS) disorders, with changes in astrocyte morphology and gene expression accompanying disease. In the Sapap3 knockout (KO) mouse model of compulsive and anxiety-related behaviors related to obsessive-compulsive disorder (OCD), striatal astrocytes display reduced morphology and altered actin cytoskeleton and Gi-G-protein-coupled receptor (Gi-GPCR) signaling proteins. Here, we show that normalizing striatal astrocyte morphology, actin cytoskeleton, and essential homeostatic support functions by targeting the astrocyte Gi-GPCR pathway using chemogenetics corrected phenotypes in Sapap3 KO mice, including anxiety-related and compulsive behaviors. Our data portend an astrocytic pharmacological strategy for rescuing phenotypes in brain disorders that include compromised astrocyte morphology and tissue support.
Collapse
Affiliation(s)
- Joselyn S Soto
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| | - Chiranjivi Neupane
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Muskan Kaur
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
9
|
Akın A, Yorgancıgil E, Öztürk OC, Sütçübaşı B, Kırımlı C, Elgün Kırımlı E, Dumlu SN, Yükselen G, Erdoğan SB. Small world properties of schizophrenia and OCD patients derived from fNIRS based functional brain network connectivity metrics. Sci Rep 2024; 14:24314. [PMID: 39414848 PMCID: PMC11484758 DOI: 10.1038/s41598-024-72199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/04/2024] [Indexed: 10/18/2024] Open
Abstract
Individuals suffering from obsessive compulsive disorder (OCD) and schizophrenia (SCZ) frequently exhibit symptoms of cognitive disassociations, which are linked to poor functional integration among brain regions. The loss of functional integration can be assessed using graph metrics computed from functional connectivity matrices (FCMs) derived from neuroimaging data. A healthy brain at rest is known to exhibit small-world features with high clustering coefficients and shorter path lengths in contrast to random networks. The aim of this study was to compare the small-world properties of prefrontal cortical functional networks of healthy subjects with OCD and SCZ patient groups by use of hemodynamic data obtained with functional near infrared spectroscopy (fNIRS). 13 healthy subjects and 47 patients who were clinically diagnosed with either OCD (N = 21) or SCZ (N = 26) completed a Stroop test while their prefrontal cortex (PFC) hemodynamics were monitored with fNIRS. The Stroop test had a block design consisting of neutral, congruent and incongruent stimuli. For each subject and stimuli type, FCMs were derived separately which were then used to compute small world features that included (i) global efficiency (GE), (ii) clustering coefficient (CC), (iii) modularity (Q), and (iv) small-world parameter ( σ ). Small-world features of patients exhibited random networks which were indicated by higher GE and lower CC values when compared to healthy controls, implying a higher neuronal operational cost.
Collapse
Affiliation(s)
- Ata Akın
- Department of Biomedical Engineering, Acibadem University, Istanbul, Turkey.
| | - Emre Yorgancıgil
- Department of Biomedical Engineering, Acibadem University, Istanbul, Turkey
| | - Ozan Cem Öztürk
- Department of Biomedical Engineering, Acibadem University, Istanbul, Turkey
- School of Psychology, University of Kent, Canterbury, UK
| | | | - Ceyhun Kırımlı
- Department of Biomedical Engineering, Acibadem University, Istanbul, Turkey
| | | | - Seda Nilgün Dumlu
- Department of Computer Engineering, Acibadem University, Istanbul, Turkey
| | - Gülnaz Yükselen
- Department of Computer Engineering, Acibadem University, Istanbul, Turkey
| | - S Burcu Erdoğan
- Department of Biomedical Engineering, Acibadem University, Istanbul, Turkey
| |
Collapse
|
10
|
Yin L, Han F, Wang Q. A biophysical model for dopamine modulating working memory through reward system in obsessive-compulsive disorder. Cogn Neurodyn 2024; 18:1895-1911. [PMID: 39104680 PMCID: PMC11297891 DOI: 10.1007/s11571-023-09999-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/07/2024] Open
Abstract
Dopamine modulates working memory in the prefrontal cortex (PFC) and is crucial for obsessive-compulsive disorder (OCD). However, the mechanism is unclear. Here we establish a biophysical model of the effect of dopamine (DA) in PFC to explain the mechanism of how high dopamine concentrations induce persistent neuronal activities with the network plunging into a deep, stable attractor state. The state develops a defect in working memory and tends to obsession and compulsion. Weakening the reuptake of dopamine acts on synaptic plasticity according to Hebbian learning rules and reward learning, which in turn affects the strength of neuronal synaptic connections, resulting in the tendency of compulsion and learned obsession. In addition, we elucidate the potential mechanisms of dopamine antagonists in OCD, indicating that dopaminergic drugs might be available for treatment, even if the abnormality is a consequence of glutamate hypermetabolism rather than dopamine. The theory highlights the significance of early intervention and behavioural therapies for obsessive-compulsive disorder. It potentially offers new approaches to dopaminergic pharmacotherapy and psychotherapy for OCD patients.
Collapse
Affiliation(s)
- Lining Yin
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| |
Collapse
|
11
|
Borba JV, Canzian J, Resmim CM, Silva RM, Duarte MCF, Mohammed KA, Schoenau W, Adedara IA, Rosemberg DB. Towards zebrafish models to unravel translational insights of obsessive-compulsive disorder: A neurobehavioral perspective. Neurosci Biobehav Rev 2024; 162:105715. [PMID: 38734195 DOI: 10.1016/j.neubiorev.2024.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating illness that has been considered a polygenic and multifactorial disorder, challenging effective therapeutic interventions. Although invaluable advances have been obtained from human and rodent studies, several molecular and mechanistic aspects of OCD etiology are still obscure. Thus, the use of non-traditional animal models may foster innovative approaches in this field, aiming to elucidate the underlying mechanisms of disease from an evolutionary perspective. The zebrafish (Danio rerio) has been increasingly considered a powerful organism in translational neuroscience research, especially due to the intrinsic features of the species. Here, we outline target mechanisms of OCD for translational research, and discuss how zebrafish-based models can contribute to explore neurobehavioral aspects resembling those found in OCD. We also identify possible advantages and limitations of potential zebrafish-based models, as well as highlight future directions in both etiological and therapeutic research. Lastly, we reinforce the use of zebrafish as a promising tool to unravel the biological basis of OCD, as well as novel pharmacological therapies in the field.
Collapse
Affiliation(s)
- João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maria C F Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - William Schoenau
- Department of Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
12
|
Spiroiu FI, Minuzzi L, Duarte D, McCabe RE, Soreni N. Neurocognitive effects of transcranial direct current stimulation in obsessive-compulsive disorder: a systematic review. Int J Neurosci 2024:1-14. [PMID: 38913323 DOI: 10.1080/00207454.2024.2371303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Transcranial direct current stimulation (tDCS) has been used with increasing frequency as a therapeutic tool to alleviate clinical symptoms of obsessive compulsive-disorder (OCD). However, little is known about the effects of tDCS on neurocognitive functioning among OCD patients. The aim of this review was to provide a comprehensive overview of the literature examining the effects of tDCS on specific neurocognitive functions in OCD. A literature search following PRISMA guidelines was conducted on the following databases: PubMed, PsycINFO, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Web of Science. The search yielded 4 results: one randomized, sham-controlled study (20 patients), one randomized, controlled, partial crossover trial (12 patients), one open-label study (5 patients), and one randomized, double-blind, sham-controlled, parallel-group trial (37 patients). A total of 51 patients received active tDCS with some diversity in electrode montages targeting the dorsolateral prefrontal cortex, the pre-supplementary motor area, or the orbitofrontal cortex. tDCS was associated with improved decision-making in study 1, enhanced attentional monitoring and response inhibition in study 2, improved executive and inhibitory control in study 3, and reduced attentional bias and improved response inhibition and working memory in study 4. Limitations of this review include its small sample, the absence of a sham group in half of the studies, and the heterogeneity in tDCS parameters. These preliminary results highlight the need for future testing in randomized, sham-controlled trials to examine whether and how tDCS induces relevant cognitive benefits in OCD.
Collapse
Affiliation(s)
- Flavia I Spiroiu
- Department of Psychiatry & Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Luciano Minuzzi
- Department of Psychiatry & Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Dante Duarte
- Department of Psychiatry & Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Randi E McCabe
- Department of Psychiatry & Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Noam Soreni
- Department of Psychiatry & Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Pediatric OCD Consultation Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Masjoodi S, Farrokhi M, Afkham BV, Koohsar JS. Advances in DTI studies for diagnoses and treatment of obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2024; 340:111794. [PMID: 38422871 DOI: 10.1016/j.pscychresns.2024.111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
This review summarizes the current state of neuroimaging research on obsessive-compulsive disorder (OCD) using diffusion tensor imaging (DTI), which allows for the examination of white matter abnormalities in the brain. DTI studies on individuals with obsessive-compulsive disorder (OCD) consistently demonstrate widespread reductions in white matter integrity in various regions of the brain, including the corpus callosum, anterior and posterior cingulate cortex, and prefrontal cortex, which are involved in emotion regulation, decision-making, and cognitive control. However, the reviewed studies often have small sample sizes, and findings vary between studies, highlighting the need for larger and more standardized studies. Furthermore, discerning between causal and consequential effects of OCD on white matter integrity poses a challenge. Addressing this issue may be facilitated through longitudinal studies, including those evaluating the impact of treatment interventions, to enhance the accuracy of DTI data acquisition and processing, thereby improving the validity and comparability of study outcomes. In summary, DTI studies provide valuable insights into the neural circuits and connectivity disruptions in OCD, and future studies may benefit from standardized data analysis and larger sample sizes to determine whether structural abnormalities could be potential biomarkers for early identification and treatment of OCD.
Collapse
Affiliation(s)
- Sadegh Masjoodi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, 7194815644, Iran.
| | - MajidReza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, 7194815644, Iran; Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 7194815644, Iran
| | - Behrouz Vejdani Afkham
- NeuroPoly, Inistitute of Biomedical Engineering, Polytechnical Montreal, Montreal, QC, H3T 1J4, Canada
| | - Javad Sheikhi Koohsar
- School of Advanced medical technology, Isfahan University of Medical Sciences, Isfahan, 8415683111, Iran
| |
Collapse
|
14
|
Fuentes-Verdugo E, Pellón R, Miguéns M. Repeated Δ-9-Tetrahydrocannabinol administration dose dependently increases stablished schedule-induced drinking. Psychopharmacology (Berl) 2024; 241:1277-1286. [PMID: 38413456 PMCID: PMC11106171 DOI: 10.1007/s00213-024-06563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
RATIONALE Schedule-induced drinking (SID) reproduces an excessive and repetitive behavioural pattern that has led to propose this procedure as an animal model to study compulsive behaviours. Although it is known that cannabis can cause several adverse effects, in recent years there has been great interest in the medical application of cannabis derivatives for obsessive-compulsive related disorders. OBJECTIVES The present study investigated the effects of repeated THC administration on rates of previously acquired SID, as well as the possible alteration of its temporal distribution along inter-food intervals. METHODS Male Wistar rats acquired SID under a 30 min fixed-time 30-sec food delivery schedule (from 30 to 43 sessions to reach a stable level). Thereafter, 5 or 10 mg/kg daily i.p. injections of THC or vehicle were repeatedly administered for 7 days to evaluate the effects on SID. RESULTS Repeated THC administration at a dose of 5 mg/kg resulted in an increase on licking. Surprisingly, no effects on SID were observed with the 10 mg/kg dose. However, magazine entries were reduced with both THC doses. THC also modified the temporal distributions of licking and magazine entries during inter-food intervals. CONCLUSIONS The present results show that repeated THC administration may (i) increase induced licking at moderate doses, (ii) reduce magazine entries, and (iii) affect the temporal pattern of SID. These findings suggest that THC does not appear to be beneficial to reduce compulsive behaviour in this animal model, while another collateral effect of THC -such as a greater habitual-like behaviour- needs to be considered.
Collapse
Affiliation(s)
- Esmeralda Fuentes-Verdugo
- Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Ciudad Universitaria, Madrid, 28040, Spain
| | - Ricardo Pellón
- Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Ciudad Universitaria, Madrid, 28040, Spain
| | - Miguel Miguéns
- Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Ciudad Universitaria, Madrid, 28040, Spain.
| |
Collapse
|
15
|
Piantadosi SC, Manning EE, Chamberlain BL, Hyde J, LaPalombara Z, Bannon NM, Pierson JL, K Namboodiri VM, Ahmari SE. Hyperactivity of indirect pathway-projecting spiny projection neurons promotes compulsive behavior. Nat Commun 2024; 15:4434. [PMID: 38789416 PMCID: PMC11126597 DOI: 10.1038/s41467-024-48331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Compulsive behaviors are a hallmark symptom of obsessive compulsive disorder (OCD). Striatal hyperactivity has been linked to compulsive behavior generation in correlative studies in humans and causal studies in rodents. However, the contribution of the two distinct striatal output populations to the generation and treatment of compulsive behavior is unknown. These populations of direct and indirect pathway-projecting spiny projection neurons (SPNs) have classically been thought to promote or suppress actions, respectively, leading to a long-held hypothesis that increased output of direct relative to indirect pathway promotes compulsive behavior. Contrary to this hypothesis, here we find that indirect pathway hyperactivity is associated with compulsive grooming in the Sapap3-knockout mouse model of OCD-relevant behavior. Furthermore, we show that suppression of indirect pathway activity using optogenetics or treatment with the first-line OCD pharmacotherapy fluoxetine is associated with reduced grooming in Sapap3-knockouts. Together, these findings highlight the striatal indirect pathway as a potential treatment target for compulsive behavior.
Collapse
Affiliation(s)
- Sean C Piantadosi
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth E Manning
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Brittany L Chamberlain
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Hyde
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biology, Southern Arkansas University, Magnolia, AK, USA
| | - Zoe LaPalombara
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas M Bannon
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jamie L Pierson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Susanne E Ahmari
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Branca C, Bortolato M. The role of neuroactive steroids in tic disorders. Neurosci Biobehav Rev 2024; 160:105637. [PMID: 38519023 PMCID: PMC11121756 DOI: 10.1016/j.neubiorev.2024.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Tics are sudden, repetitive movements or vocalizations. Tic disorders, such as Tourette syndrome (TS), are contributed by the interplay of genetic risk factors and environmental variables, leading to abnormalities in the functioning of the cortico-striatal-thalamo-cortical (CSTC) circuitry. Various neurotransmitter systems, such as gamma-aminobutyric acid (GABA) and dopamine, are implicated in the pathophysiology of these disorders. Building on the evidence that tic disorders are predominant in males and exacerbated by stress, emerging research is focusing on the involvement of neuroactive steroids, including dehydroepiandrosterone sulfate (DHEAS) and allopregnanolone, in the ontogeny of tics and other phenotypes associated with TS. Emerging evidence indicates that DHEAS levels are significantly elevated in the plasma of TS-affected boys, and the clinical onset of this disorder coincides with the period of adrenarche, the developmental stage characterized by a surge in DHEAS synthesis. On the other hand, allopregnanolone has garnered particular attention for its potential to mediate the adverse effects of acute stress on the exacerbation of tic severity and frequency. Notably, both neurosteroids act as key modulators of GABA-A receptors, suggesting a pivotal role of these targets in the pathophysiology of various clinical manifestations of tic disorders. This review explores the potential mechanisms by which these and other neuroactive steroids may influence tic disorders and discusses the emerging therapeutic strategies that target neuroactive steroids for the management of tic disorders.
Collapse
Affiliation(s)
- Caterina Branca
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Petrie DJ, Meeks KD, Fisher ZF, Geier CF. Associations between somatomotor-putamen resting state connectivity and obsessive-compulsive symptoms vary as a function of stress during early adolescence: Data from the ABCD study. Brain Res Bull 2024; 210:110934. [PMID: 38508468 DOI: 10.1016/j.brainresbull.2024.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Obsessive-compulsive symptoms (OCS) are relatively common during adolescence although most individuals do not meet diagnostic criteria for obsessive-compulsive disorder (OCD). Nonetheless, OCS during adolescence are associated with comorbid psychopathologies and behavioral problems. Heightened levels of environmental stress and greater functional connectivity between the somatomotor network and putamen have been previously associated with elevated OCS in OCD patients relative to healthy controls. However, the interaction of these factors within the same sample of individuals has been understudied. This study examined somatomotor-putamen resting state connectivity, stress, and their interaction on OCS in adolescents from 9-12 years of age. Participants (n = 6386) were drawn from the ABCD Study 4.0 release. Multilevel modeling was used to account for nesting in the data and to assess changes in OCS in this age range. Stress moderated the association between somatomotor-putamen connectivity and OCS (β = 0.35, S.E. = 0.13, p = 0.006). Participants who reported more stress than their average and had greater somatomotor-left putamen connectivity reported more OCS, whereas participants who reported less stress than their average and had greater somatomotor-left putamen connectivity reported less OCS. These data suggest that stress differentially affects the direction of association between somatomotor-putamen connectivity and OCS. Individual differences in the experience or perception of stress may contribute to more OCS in adolescents with greater somatomotor-putamen connectivity.
Collapse
Affiliation(s)
- Daniel J Petrie
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States.
| | - Kathleen D Meeks
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
| | - Zachary F Fisher
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
| | - Charles F Geier
- Department of Human Development and Family Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
18
|
Akkuş Eİ, Bayoğlu B, Kocabaşoğlu N, Yıldız JB, Cengiz M. Association of rs11081062 polymorphism of DLGAP1 gene and levels of SLC1A1 protein with obsessive-compulsive disorder. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-15. [PMID: 38593060 DOI: 10.1080/15257770.2024.2336213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Glutamate is an important neurotransmitter known to be effective in obsessive-compulsive disorder (OCD). The aim of this study is to investigate the relationship between the DLGAP1 gene encoding the scaffold protein of ionotropic glutamate receptors and the SLC1A1 gene encoding the glutamate transporter protein with OCD. Study groups consisted of 95 patients with OCD and 100 healthy controls. The severity of OCD in the patient group was determined by using the Y-BOCS. Single nucleotide polymorphisms of rs11081062 (C/T) in DLGAP1 and rs587777696 (C/T) in SLC1A1 were analyzed by real-time PCR. Levels of SLC1A1 protein were determined by ELISA. A significant difference was found between genotype distributions of rs11081062 in DLGAP1 in study groups (p < 0.001). No significant association was found rs587777696 in SLC1A1 in OCD patients and controls. SLC1A1 protein levels were found to be lower in OCD patients compared to controls (p = 0.005). According to OCD risk estimates for genotypes distributions of rs11081062 in DLGAP1, having CT + TT genotypes was associated with the occurrence of sexual and religious obsessions and counting compulsions (p = 0.038, OR = 2.98; p = 0.033, OR = 3.43; p = 0.035, OR = 2.66, respectively). CT genotype in DLGAP1 rs11081062 polymorphism was found to increase the risk of OCD in the female gender (p = 0.042, OR = 3.01). This study suggests that rs11081062 in DLGAP1 may be associated with OCD and that SLC1A1 protein levels may be involved in the occurrence of OCD. We believe that our research can contribute to the understanding of the importance of glutamate in OCD.
Collapse
Affiliation(s)
- Efruz İrem Akkuş
- Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Burcu Bayoğlu
- Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Neşe Kocabaşoğlu
- Cerrahpaşa Faculty of Medicine, Department of Psychiatry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Jansed Berfin Yıldız
- Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Müjgan Cengiz
- Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
19
|
Burton CL, Longaretti A, Zlatanovic A, Gomes GM, Tonini R. Striatal insights: a cellular and molecular perspective on repetitive behaviors in pathology. Front Cell Neurosci 2024; 18:1386715. [PMID: 38601025 PMCID: PMC11004256 DOI: 10.3389/fncel.2024.1386715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Animals often behave repetitively and predictably. These repetitive behaviors can have a component that is learned and ingrained as habits, which can be evolutionarily advantageous as they reduce cognitive load and the expenditure of attentional resources. Repetitive behaviors can also be conscious and deliberate, and may occur in the absence of habit formation, typically when they are a feature of normal development in children, or neuropsychiatric disorders. They can be considered pathological when they interfere with social relationships and daily activities. For instance, people affected by obsessive-compulsive disorder, autism spectrum disorder, Huntington's disease and Gilles de la Tourette syndrome can display a wide range of symptoms like compulsive, stereotyped and ritualistic behaviors. The striatum nucleus of the basal ganglia is proposed to act as a master regulator of these repetitive behaviors through its circuit connections with sensorimotor, associative, and limbic areas of the cortex. However, the precise mechanisms within the striatum, detailing its compartmental organization, cellular specificity, and the intricacies of its downstream connections, remain an area of active research. In this review, we summarize evidence across multiple scales, including circuit-level, cellular, and molecular dimensions, to elucidate the striatal mechanisms underpinning repetitive behaviors and offer perspectives on the implicated disorders. We consider the close relationship between behavioral output and transcriptional changes, and thereby structural and circuit alterations, including those occurring through epigenetic processes.
Collapse
Affiliation(s)
| | | | | | | | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
20
|
Wang L, Li S, Gong L, Zheng Z, Chen Y, Chen G, Yan T. Right parietal repetitive transcranial magnetic stimulation in obsessive compulsive disorder: A pilot study. Asian J Psychiatr 2024; 93:103902. [PMID: 38280243 DOI: 10.1016/j.ajp.2023.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/29/2024]
Affiliation(s)
- Li Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Shoucheng Li
- Department of Clinical Psychology, Huai'an Third People's Hospital, Beijing, China
| | - Li Gong
- Department of Clinical Psychology, Huai'an Third People's Hospital, Beijing, China
| | - Zhi Zheng
- Department of Clinical Psychology, Huai'an Third People's Hospital, Beijing, China
| | - Yinghong Chen
- Department of Clinical Psychology, Huai'an Third People's Hospital, Beijing, China
| | - Gang Chen
- Department of Clinical Psychology, Huai'an Third People's Hospital, Beijing, China.
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
21
|
Karch S, Maywald M, Schwartz C, Heil C, Neumüller J, Keeser D, Garcia S, Tschentscher N, Pogarell O, Paolini M, Voderholzer U. Neuronal correlates of intensification and acceptance of symptoms during exposure therapy in patients with obsessive-compulsive disorder. Front Psychol 2024; 15:1256046. [PMID: 38375106 PMCID: PMC10875107 DOI: 10.3389/fpsyg.2024.1256046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Cognitive behaviour therapy with exposure and response prevention is efficient in treating patients with obsessive-compulsive disorder (OCD). Nevertheless, it would be helpful for many patients to complement the therapeutic treatment with acceptance strategies to further increase the therapeutic benefit. The aim of the present study was to examine neurobiological responses to acceptance and intensification strategies during symptom provocation alongside the psychotherapeutic process. Method A total of 23 patients diagnosed with OCD (subtype: washing/contamination fear) was instructed to utilise either an acceptance strategy (ACS) or an intensification strategy (INS) to cope with their emotional and cognitive reactions to personalised symptom-triggering and neutral pictures. Fourteen patients participated twice: at the beginning [T1] and at the end [T2] of an inpatient multimodal treatment including cognitive behaviour therapy with response prevention to assess functional variations. Results For the contrast of T1 and T2, ACS showed increased brain activity in the left inferior frontal gyrus (IFG), left caudate body, and posterior cingulate gyrus (PCC). They also showed decreased activity in the left anterior insula. INS showed decreased activation in right lingual gyrus and right caudate body. At T2, ACS showed increased activation compared to INS in the left cerebrum: IFG, caudate nucleus, middle and superior temporal gyrus, and PCC/cuneus. For the comparison of T1 and T2, the ACS revealed increased brain activity in the left IFG, left caudate body, and right inferior parietal lobe. It showed decreased activity in the left anterior insula. The INS revealed decreased activity in right lingual gyrus and right caudate body.The psychometric questionnaires suggested that patients were able to reduce obsession, compulsion, and depression symptoms. Furthermore, patients rated the ACS as more useful for themselves compared with the INS. Conclusion The increased left IFG activity using ACS (T1 vs. T2) could be interpreted as a better inhibitory top-down process, while the increased PCC response might be due to a better reappraisal strategy after therapy. ACS seems to mobilise neuronal activations under therapy, especially in the left hemisphere. Both strategies showed reductions in emotional networks as a neuronal correlate of therapy success. Overall, ACS may be more efficient than INS, as rated by the patients and as in accordance with neurobiological findings.
Collapse
Affiliation(s)
- Susanne Karch
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Maximilian Maywald
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | | | - Clara Heil
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | | | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Radiology, University Hospital LMU, Munich, Germany
| | - Sarah Garcia
- Schoen Clinic Roseneck, Prien am Chiemsee, Germany
| | - Nadja Tschentscher
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Marco Paolini
- Department of Radiology, University Hospital LMU, Munich, Germany
| | - Ulrich Voderholzer
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Schoen Clinic Roseneck, Prien am Chiemsee, Germany
| |
Collapse
|
22
|
Bracco L, Dusi N, Moltrasio C, Brambilla P, Delvecchio G. Structural and functional brain imaging after treatment with selective-serotonin reuptake-inhibitors in obsessive-compulsive disorder: A mini review. J Affect Disord 2024; 345:141-148. [PMID: 37820957 DOI: 10.1016/j.jad.2023.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a psychiatric disorder whose etiopathogenesis, according to various neuroimaging studies, seems to be linked to selective dysfunctions in regions within the cortico-striatal-thalamo-cortical circuit. Selective Serotonin Reuptake Inhibitors (SSRIs) are the first-line therapy for OCD but their neurobiological effects on the brain is only partially understood. Therefore, the aim of this review is to highlight structural and functional brain imaging modifications induced by SSRIs treatment. METHODS A literature search on PubMed, Psych-Info and Embase database was performed. Studies including patients with OCD that analyzed the effect of SSRIs through structural and functional Magnetic Resonance Imaging were selected. Seven relevant studies were considered eligible for the present review. RESULTS Overall, the results of the reviewed studies showed that SSRIs treatment seems to normalize structural, in terms of the white matter and gray matter volumes, and functional activity alterations observed in OCD patients, especially in regions within the prefrontal cortex and striatum. LIMITATIONS The poor design of the studies, the small and heterogeneous samples, differences in age, gender, illness course, comorbidities, treatment protocols and the different magnetic fields used make it difficult to generalize the results. CONCLUSIONS From the available evidence it emerged that SSRIs treatment has proven to be effective in normalizing brain structural and functional alterations observed in OCD patients. However, future neuroimaging investigations should focus on long-term effects of drugs on brain structure and function in OCD patients through longitudinal approaches in order to identify more effective treatments for these patients.
Collapse
Affiliation(s)
- L Bracco
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - N Dusi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - C Moltrasio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Niu L, Fang K, Han S, Xu C, Sun X. Resolving heterogeneity in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder through individualized structural covariance network analysis. Cereb Cortex 2024; 34:bhad391. [PMID: 38142281 DOI: 10.1093/cercor/bhad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 12/25/2023] Open
Abstract
Disruptions in large-scale brain connectivity are hypothesized to contribute to psychiatric disorders, including schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. However, high inter-individual variation among patients with psychiatric disorders hinders achievement of unified findings. To this end, we adopted a newly proposed method to resolve heterogeneity of differential structural covariance network in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. This method could infer individualized structural covariance aberrance by assessing the deviation from healthy controls. T1-weighted anatomical images of 114 patients with psychiatric disorders (schizophrenia: n = 37; bipolar I disorder: n = 37; attention-deficit/hyperactivity disorder: n = 37) and 110 healthy controls were analyzed to obtain individualized differential structural covariance network. Patients exhibited tremendous heterogeneity in profiles of individualized differential structural covariance network. Despite notable heterogeneity, patients with the same disorder shared altered edges at network level. Moreover, individualized differential structural covariance network uncovered two distinct psychiatric subtypes with opposite differences in structural covariance edges, that were otherwise obscured when patients were merged, compared with healthy controls. These results provide new insights into heterogeneity and have implications for the nosology in psychiatric disorders.
Collapse
Affiliation(s)
- Lianjie Niu
- Department of Breast Disease, Henan Breast Cancer Center. The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Keke Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Chunmiao Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xianfu Sun
- Department of Breast Disease, Henan Breast Cancer Center. The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
24
|
Lazarov A, Liberman N, Dar R. The Seeking Proxies for Internal States (SPIS) Model of OCD - A Comprehensive Review of Current Findings and Implications for Future Directions. Curr Neuropharmacol 2024; 22:1807-1825. [PMID: 37881091 PMCID: PMC11284725 DOI: 10.2174/1570159x21666230920165403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 10/27/2023] Open
Abstract
The Seeking Proxies for Internal States (SPIS) model of obsessive-compulsive disorder (OCD) explains symptoms of OCD as stemming from attenuated access to internal states, which is compensated for by using proxies, which are indices of these states that are more discernible or less ambiguous. Internal states in the SPIS model are subjective states that are not accessible to others, encompassing physiological states, motivations, preferences, memories, and emotions. Compensatory proxies in OCD include fixed rules and rituals as well as seeking and relying on external information. In the present review, we outline the SPIS model and describe its basic tenets. We then use the SPIS conceptualization to explain two pivotal OCD-related phenomena - obsessive doubt and compulsive rituals. Next, we provide a detailed overview of current empirical evidence supporting the SPIS in several domains, including physiological states, emotions, sense of understanding, decision-making, and sense of agency. We conclude by discussing possible neural correlates of the difficulty in accessing internal states, focusing on the anterior insular cortex (AIC) and highlighting potential clinical implications of the model to the treatment of OCD.
Collapse
Affiliation(s)
- Amit Lazarov
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nira Liberman
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reuven Dar
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
25
|
Gargano SP, Santos MG, Taylor SM, Pastis I. A closer look to neural pathways and psychopharmacology of obsessive compulsive disorder. Front Behav Neurosci 2023; 17:1282246. [PMID: 38033477 PMCID: PMC10687174 DOI: 10.3389/fnbeh.2023.1282246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
The intricate neural pathways involved in obsessive-compulsive disorder (OCD) affect areas of our brain that control executive functioning, organization, and planning. OCD is a chronic condition that can be debilitating, afflicting millions of people worldwide. The lifetime prevalence of OCD in the US is 2.3%. OCD is predominantly characterized by obsessions consisting of intrusive and unwanted thoughts, often with impulses that are strongly associated with anxiety. Compulsions with OCD encompass repetitive behaviors or mental acts to satisfy their afflicted obsessions or impulses. While these factors can be unique to each individual, it has been widely established that the etiology of OCD is complex as it relates to neuronal pathways, psychopharmacology, and brain chemistry involved and warrants further exploration.
Collapse
Affiliation(s)
- Steven P. Gargano
- East Carolina University Brody School of Medicine, Greenville, NC, United States
| | - Melody G. Santos
- Internal Medicine and Psychiatry Combined Program, Department of Psychiatry and Behavioral Medicine, East Carolina University, Greenville, NC, United States
| | - Sydney M. Taylor
- East Carolina University Brody School of Medicine, Greenville, NC, United States
| | - Irene Pastis
- Department of Psychiatry and Behavioral Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
26
|
Huang Y, Weng Y, Lan L, Zhu C, Shen T, Tang W, Lai HY. Insight in obsessive-compulsive disorder: conception, clinical characteristics, neuroimaging, and treatment. PSYCHORADIOLOGY 2023; 3:kkad025. [PMID: 38666121 PMCID: PMC10917385 DOI: 10.1093/psyrad/kkad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 04/28/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic disabling disease with often unsatisfactory therapeutic outcomes. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) has broadened the diagnostic criteria for OCD, acknowledging that some OCD patients may lack insight into their symptoms. Previous studies have demonstrated that insight can impact therapeutic efficacy and prognosis, underscoring its importance in the treatment of mental disorders, including OCD. In recent years, there has been a growing interest in understanding the influence of insight on mental disorders, leading to advancements in related research. However, to the best of our knowledge, there is dearth of comprehensive reviews on the topic of insight in OCD. In this review article, we aim to fill this gap by providing a concise overview of the concept of insight and its multifaceted role in clinical characteristics, neuroimaging mechanisms, and treatment for OCD.
Collapse
Affiliation(s)
- Yueqi Huang
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
| | - Yazhu Weng
- Fourth Clinical School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lan Lan
- Department of Psychology and Behavior Science, Zhejiang University, Hangzhou 310058, China
| | - Cheng Zhu
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
| | - Ting Shen
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, PA, USA
| | - Wenxin Tang
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
| | - Hsin-Yi Lai
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310029, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 311121, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
27
|
Zhang X, Zhou J, Chen Y, Guo L, Yang Z, Robbins TW, Fan Q. Pathological Networking of Gray Matter Dendritic Density With Classic Brain Morphometries in OCD. JAMA Netw Open 2023; 6:e2343208. [PMID: 37955895 PMCID: PMC10644219 DOI: 10.1001/jamanetworkopen.2023.43208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
Importance The pathogenesis of obsessive-compulsive disorder (OCD) may involve altered dendritic morphology, but in vivo imaging of neurite morphology in OCD remains limited. Such changes must be interpreted functionally within the context of the multimodal neuroimaging approach to OCD. Objective To examine whether dendritic morphology is altered in patients with OCD compared with healthy controls (HCs) and whether such alterations are associated with other brain structural metrics in pathological networks. Design, Setting, and Participants This case-control study used cross-sectional data, including multimodal brain images and clinical symptom assessments, from 108 patients with OCD and 108 HCs from 2014 to 2017. Patients with OCD were recruited from Shanghai Mental Health Center, Shanghai, China, and HCs were recruited via advertisements. The OCD group comprised unmedicated adults with a Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV) diagnosis of OCD, while the HCs were adults without any DSM-IV diagnosis, matched for age, sex, and education level. Data were analyzed from September 2019 to April 2023. Exposure DSM-IV diagnosis of OCD. Main Outcomes and Measures Multimodal brain imaging was used to compare neurite microstructure and classic morphometries between patients with OCD and HCs. The whole brain was searched to identify regions exhibiting altered morphology in patients with OCD and explore the interplay between the brain metrics representing these alterations. Brain-symptom correlations were analyzed, and the performance of different brain metric configurations were evaluated in distinguishing patients with OCD from HCs. Results Among 108 HCs (median [IQR] age, 26 [23-31] years; 50 [46%] female) and 108 patients with OCD (median [IQR] age, 26 [24-31] years; 46 [43%] female), patients with OCD exhibited deficient neurite density in the right lateral occipitoparietal regions (peak t = 3.821; P ≤ .04). Classic morphometries also revealed widely-distributed alterations in the brain (peak t = 4.852; maximum P = .04), including the prefrontal, medial parietal, cingulate, and fusiform cortices. These brain metrics were interconnected into a pathological brain network associated with OCD symptoms (global strength: HCs, 0.253; patients with OCD, 0.941; P = .046; structural difference, 0.572; P < .001). Additionally, the neurite density index exhibited high discriminatory power in distinguishing patients with OCD from HCs (accuracy, ≤76.85%), and the entire pathological brain network also exhibited excellent discriminative classification properties (accuracy, ≤82.87%). Conclusions and Relevance The findings of this case-control study underscore the utility of in vivo imaging of gray matter dendritic density in future OCD research and the development of neuroimaging-based biomarkers. They also endorse the concept of connectopathy, providing a potential framework for interpreting the associations among various OCD symptom-related morphological anomalies.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Now with Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lei Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Now with Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Lee I, Kim KM, Lim MH. Theta and Gamma Activity Differences in Obsessive-Compulsive Disorder and Panic Disorder: Insights from Resting-State EEG with eLORETA. Brain Sci 2023; 13:1440. [PMID: 37891808 PMCID: PMC10605761 DOI: 10.3390/brainsci13101440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Obsessive-compulsive disorder (OCD) and panic disorder (PD) are debilitating psychiatric conditions, yet their underlying neurobiological differences remain underexplored. This study aimed to directly compare resting-state EEGs in patients with OCD and PD, without a healthy control group, using the eLORETA method. Methods: We collected retrospective EEG data from 24 OCD patients and 22 PD patients who were hospitalized due to significant impairment in daily life functions. eLORETA was used to analyze the EEG data. Results: Heightened theta activity was observed in the anterior cingulate cortex (ACC) of OCD patients compared to PD patients (PD vs. OCD, t = -2.168, p < 0.05). Conversely, higher gamma activity was found in the medial frontal gyrus (MFG) and paracentral lobule (PCL) in PD patients (PD vs. OCD, t = 2.173, p < 0.05). Conclusions: Our findings highlight neurobiological differences between OCD and PD patients. Specifically, the increased theta activity in the ACC for OCD patients and elevated gamma activity in the MFG and PCL for PD patients offer preliminary insights into the neural mechanisms of these disorders. Further studies are essential to validate these results and delve deeper into the neural underpinnings.
Collapse
Affiliation(s)
- Ilju Lee
- Department of Psychology, Dankook University, 119 Dandar-ro, Dongnam-gu, Cheonan 31116, Republic of Korea;
- Department of Psychiatry, Dankook University Hospital, Cheonan 31116, Republic of Korea;
| | - Kyoung Min Kim
- Department of Psychiatry, Dankook University Hospital, Cheonan 31116, Republic of Korea;
- Department of Psychiatry, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Myung Ho Lim
- Department of Psychology, Dankook University, 119 Dandar-ro, Dongnam-gu, Cheonan 31116, Republic of Korea;
- Department of Psychiatry, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
29
|
Han S, Xue K, Chen Y, Xu Y, Li S, Song X, Guo HR, Fang K, Zheng R, Zhou B, Chen J, Wei Y, Zhang Y, Cheng J. Identification of shared and distinct patterns of brain network abnormality across mental disorders through individualized structural covariance network analysis. Psychol Med 2023; 53:6780-6791. [PMID: 36876493 DOI: 10.1017/s0033291723000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Mental disorders, including depression, obsessive compulsive disorder (OCD), and schizophrenia, share a common neuropathy of disturbed large-scale coordinated brain maturation. However, high-interindividual heterogeneity hinders the identification of shared and distinct patterns of brain network abnormalities across mental disorders. This study aimed to identify shared and distinct patterns of altered structural covariance across mental disorders. METHODS Subject-level structural covariance aberrance in patients with mental disorders was investigated using individualized differential structural covariance network. This method inferred structural covariance aberrance at the individual level by measuring the degree of structural covariance in patients deviating from matched healthy controls (HCs). T1-weighted anatomical images of 513 participants (105, 98, 190 participants with depression, OCD and schizophrenia, respectively, and 130 age- and sex-matched HCs) were acquired and analyzed. RESULTS Patients with mental disorders exhibited notable heterogeneity in terms of altered edges, which were otherwise obscured by group-level analysis. The three disorders shared high difference variability in edges attached to the frontal network and the subcortical-cerebellum network, and they also exhibited disease-specific variability distributions. Despite notable variability, patients with the same disorder shared disease-specific groups of altered edges. Specifically, depression was characterized by altered edges attached to the subcortical-cerebellum network; OCD, by altered edges linking the subcortical-cerebellum and motor networks; and schizophrenia, by altered edges related to the frontal network. CONCLUSIONS These results have potential implications for understanding heterogeneity and facilitating personalized diagnosis and interventions for mental disorders.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yinhuan Xu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui-Rong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| |
Collapse
|
30
|
Kosová E, Pajuelo D, Greguš D, Brunovský M, Stopková P, Fajnerová I, Horáček J. Glutamatergic abnormalities in the pregenual anterior cingulate cortex in obsessive-compulsive disorder using magnetic resonance spectroscopy: A controlled study. Psychiatry Res Neuroimaging 2023; 335:111721. [PMID: 37832259 DOI: 10.1016/j.pscychresns.2023.111721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
In this study, we utilized proton magnetic resonance spectroscopy (MRS) to understand the role of glutamate (Glu), glutamine (Gln), and gamma-aminobutyric acid (GABA) of OCD patients in the pregenual anterior cingulate cortex (pgACC). In total, 54 patients with OCD and 54 healthy controls (HC) matched for age and sex were included in the study. They underwent MRS in the pgACC region to calculate the concentrations of Glu, Gln, GABA, and Glu + Gln (Glx). After quality control of the MRS data, 21 OCD and 21 HC were statistically analyzed. The severity of symptoms were evaluated using the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the statistical analysis, we compared differences between groups for the metabolites; in the OCD we analyzed the correlations with symptom severity, medication status, age, and duration of illness. A significant decrease in Glx, in Glu, and in Gln in the pgACC were observed in the OCD compared to HC. The correlation statistics showed a significant positive correlation between Glu levels and the YBOCS compulsions subscale. The results indicate that patients with OCD present a disturbance in glutamatergic metabolism in the pgACC. The results also demonstrate that these changes correlate with the severity of compulsions.
Collapse
Affiliation(s)
- Eliška Kosová
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Dita Pajuelo
- National Institute of Mental Health, Klecany, Czech Republic; MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - David Greguš
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Brunovský
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavla Stopková
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iveta Fajnerová
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Horáček
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
31
|
Grassi G, Moradei C, Cecchelli C. Will Transcranial Magnetic Stimulation Improve the Treatment of Obsessive-Compulsive Disorder? A Systematic Review and Meta-Analysis of Current Targets and Clinical Evidence. Life (Basel) 2023; 13:1494. [PMID: 37511869 PMCID: PMC10381766 DOI: 10.3390/life13071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Although in 2017 a repetitive transcranial magnetic stimulation (rTMS) protocol received Food and Drug Administration approval for the first time for the treatment of obsessive-compulsive disorder (OCD), which neural target and which protocol should be used for OCD are still debated. The aim of the present study was to perform a systematic review and meta-analysis of the available open and sham-controlled trials. METHODS The primary analysis included a pairwise meta-analysis (over 31 trials), and then subgroup analyses were performed for each targeted brain area. Meta-regression analyses explored the possible moderators of effect size. RESULTS The pairwise meta-analysis showed a significant reduction in OCD symptoms following active rTMS (g = -0.45 [95%CI: -0.62, -0.29]) with moderate heterogeneity (I2 = 34.9%). Subgroup analyses showed a significant effect of rTMS over the bilateral pre-SMA (supplementary motor area), the DLPFC (dorsolateral prefrontal cortex), the ACC/mPFC (anterior cingulate cortex and medial prefrontal cortex), and the OFC (orbitofrontal cortex). No moderators of the effect size emerged. CONCLUSIONS TMS of several brain targets represents a safe and effective treatment option for OCD patients. Further studies are needed to help clinicians to individualize TMS protocols and targets for each patient.
Collapse
|
32
|
Biria M, Banca P, Healy MP, Keser E, Sawiak SJ, Rodgers CT, Rua C, de Souza AMFLP, Marzuki AA, Sule A, Ersche KD, Robbins TW. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat Commun 2023; 14:3324. [PMID: 37369695 DOI: 10.1038/s41467-023-38695-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
There has been little analysis of neurochemical correlates of compulsive behaviour to illuminate its underlying neural mechanisms. We use 7-Tesla proton magnetic resonance spectroscopy (1H-MRS) to assess the balance of excitatory and inhibitory neurotransmission by measuring glutamate and GABA levels in anterior cingulate cortex (ACC) and supplementary motor area (SMA) of healthy volunteers and participants with Obsessive-Compulsive Disorder (OCD). Within the SMA, trait and clinical measures of compulsive behaviour are related to glutamate levels, whereas a behavioural index of habitual control correlates with the glutamate:GABA ratio. Participants with OCD also show the latter relationship in the ACC while exhibiting elevated glutamate and lower GABA levels in that region. This study highlights SMA mechanisms of habitual control relevant to compulsive behaviour, common to the healthy sub-clinical and OCD populations. The results also demonstrate additional involvement of anterior cingulate in the balance between goal-directed and habitual responding in OCD.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Máiréad P Healy
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Engin Keser
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Christopher T Rodgers
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Catarina Rua
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Ana Maria Frota Lisbôa Pereira de Souza
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Aleya A Marzuki
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Akeem Sule
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| |
Collapse
|
33
|
Maraone A, Trebbastoni A, Di Vita A, D'Antonio F, De Lena C, Pasquini M. Memantine for Refractory Obsessive-Compulsive Disorder: Protocol for a Pragmatic, Double-blind, Randomized, Parallel-Group, Placebo-Controlled, Monocenter Trial. JMIR Res Protoc 2023; 12:e39223. [PMID: 37166948 DOI: 10.2196/39223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a psychiatric syndrome characterized by unwanted and repetitive thoughts and repeated ritualistic compulsions for decreasing distress. Symptoms can cause severe distress and functional impairment. OCD affects 2% to 3% of the population and is ranked within the 10 leading neuropsychiatric causes of disability. Cortico-striatal-thalamo-cortical circuitry dysfunction has been implicated in OCD, including altered brain activation and connectivity. Complex glutamatergic signaling dysregulation within cortico-striatal circuitry has been proposed in OCD. Data obtained by several studies indicate reduced glutamatergic concentrations in the anterior cingulate cortex, combined with overactive glutamatergic signaling in the striatum and orbitofrontal cortex. A growing number of randomized controlled trials have assessed the utility of different glutamate-modulating drugs as augmentation medications or monotherapies for OCD, including refractory OCD. However, there are relevant variations among studies in terms of patients' treatment resistance, comorbidity, age, and gender. At present, 4 randomized controlled trials are available on the efficacy of memantine as an augmentation medication for refractory OCD. OBJECTIVE Our study's main purpose is to conduct a double-blind, randomized, parallel-group, placebo-controlled, monocenter trial to assess the efficacy and safety of memantine as an augmentative agent to a selective serotonin reuptake inhibitor in the treatment of moderate to severe OCD. The study's second aim is to evaluate the effect of memantine on cognitive functions in patients with OCD. The third aim is to investigate if responses to memantine are modulated by variables such as gender, symptom subtypes, and the duration of untreated illness. METHODS Investigators intend to conduct a double-blind, randomized, parallel-group, placebo-controlled, monocenter trial to assess the efficacy and safety of memantine as an augmentative agent to a selective serotonin reuptake inhibitor in the treatment of patients affected by severe refractory OCD. Participants will be rated via the Yale-Brown Obsessive Compulsive Scale at baseline and at 2, 4, 6, 8, 10, and 12 months. During the screening period and T4 and T6 follow-up visits, all participants will undergo an extensive neuropsychological evaluation. The 52-week study duration will consist of 4 distinct periods, including memantine titration and follow-up periods. RESULTS Recruitment has not yet started. The study will be conducted from June 2023 to December 2024. Results are expected to be available in January 2025. Throughout the slow-titration period, we will observe the minimum effective dose of memantine, and the follow-up procedure will detail its residual efficacy after drug withdrawal. CONCLUSIONS The innovation of this research proposal is not limited to the evaluation of the efficacy and safety of memantine as an augmentation medication for OCD. We will also test if memantine acts as a pure antiobsessive medication or if memantine's ability to improve concentration and attention mimics an antiobsessive effect. TRIAL REGISTRATION ClinicalTrials.gov NCT05015595; https://clinicaltrials.gov/ct2/show/NCT05015595. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/39223.
Collapse
Affiliation(s)
| | | | | | | | - Carlo De Lena
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Rome, Italy
| | | |
Collapse
|
34
|
Saaiman D, Brand L, de Brouwe G, Janse van Rensburg H, Terre'Blanche G, Legoabe L, Krahe T, Wolmarans D. Striatal adenosine A 2A receptor involvement in normal and large nest building deer mice: perspectives on compulsivity and anxiety. Behav Brain Res 2023; 449:114492. [PMID: 37172739 DOI: 10.1016/j.bbr.2023.114492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by recurring obsessive thoughts and repetitive behaviors that are often associated with anxiety and perturbations in cortico-striatal signaling. Given the suboptimal response of OCD to current serotonergic interventions, there is a need to better understand the psychobiological mechanisms that may underlie the disorder. In this regard, investigations into adenosinergic processes might be fruitful. Indeed, adenosine modulates both anxiety- and motor behavioral output. Thus, we aimed to explore the potential associations between compulsive-like large nest building (LNB) behavior in deer mice, anxiety and adenosinergic processes. From an initial pool of 120 adult deer mice, 34 normal nest building (NNB)- and 32 LNB-expressing mice of both sexes were selected and exposed to either a normal water (wCTRL) or vehicle control (vCTRL), lorazepam (LOR) or istradefylline (ISTRA) for 7- (LOR) or 28 days after which nesting assessment was repeated and animals screened for anxiety-like behavior in an anxiogenic open field. Mice were then euthanized, the striatal tissue removed on ice and the adenosine A2A receptor expression quantified. Our findings indicate that NNB and LNB behavior are not distinctly associated with measures of generalized anxiety and that ISTRA-induced changes in nesting expression are dissociated from changes in anxiety scores. Further, data from this investigation show that nesting in deer mice is directly related to striatal adenosine signaling, and that LNB is founded upon a lower degree of adenosinergic A2A stimulation.
Collapse
Affiliation(s)
- D Saaiman
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - L Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - G de Brouwe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - H Janse van Rensburg
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - G Terre'Blanche
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - L Legoabe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - T Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - D Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
35
|
Han S, Xu Y, Fang K, Guo HR, Wei Y, Liu L, Wen B, Liu H, Zhang Y, Cheng J. Mapping the neuroanatomical heterogeneity of OCD using a framework integrating normative model and non-negative matrix factorization. Cereb Cortex 2023:7153879. [PMID: 37150510 DOI: 10.1093/cercor/bhad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a spectrum disorder with high interindividual heterogeneity. We propose a comprehensible framework integrating normative model and non-negative matrix factorization (NMF) to quantitatively estimate the neuroanatomical heterogeneity of OCD from a dimensional perspective. T1-weighted magnetic resonance images of 98 first-episode untreated patients with OCD and matched healthy controls (HCs, n = 130) were acquired. We derived individualized differences in gray matter morphometry using normative model and parsed them into latent disease factors using NMF. Four robust disease factors were identified. Each patient expressed multiple factors and exhibited a unique factor composition. Factor compositions of patients were significantly correlated with severity of symptom, age of onset, illness duration, and exhibited sex differences, capturing sources of clinical heterogeneity. In addition, the group-level morphological differences obtained with two-sample t test could be quantitatively derived from the identified disease factors, reconciling the group-level and subject-level findings in neuroimaging studies. Finally, we uncovered two distinct subtypes with opposite morphological differences compared with HCs from factor compositions. Our findings suggest that morphological differences of individuals with OCD are the unique combination of distinct neuroanatomical patterns. The proposed framework quantitatively estimating neuroanatomical heterogeneity paves the way for precision medicine in OCD.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Yinhuan Xu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Keke Fang
- Department of Pharmacy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University
| | - Hui-Rong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Hao Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| |
Collapse
|
36
|
Transcranial Magnetic Stimulation in Obsessive-Compulsive Disorder. Psychiatr Clin North Am 2023; 46:133-166. [PMID: 36740349 DOI: 10.1016/j.psc.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obsessive-compulsive disorder (OCD) patients need novel therapeutic interventions since most experience residual symptoms despite treatment. Converging evidence suggest that OCD involves dysfunction of limbic cortico-striato-thalamo-cortical loops, including the medial prefrontal cortex (mPFC) and dorsal anterior cingulate cortex (dACC), that tends to normalize with successful treatment. Recently, three repetitive transcranial magnetic stimulation (rTMS) coils were FDA-cleared for treatment-refractory OCD. This review presents on-label and off-label clinical evidence and relevant physical characteristics of the three coils. The Deep TMS™ H7 Coil studies' point to efficacy of mPFC-dACC stimulation, while no clear target stems from the small heterogenous D-B80 and figure-8 coils studies.
Collapse
|
37
|
Suzuki S, Zhang X, Dezfouli A, Braganza L, Fulcher BD, Parkes L, Fontenelle LF, Harrison BJ, Murawski C, Yücel M, Suo C. Individuals with problem gambling and obsessive-compulsive disorder learn through distinct reinforcement mechanisms. PLoS Biol 2023; 21:e3002031. [PMID: 36917567 PMCID: PMC10013903 DOI: 10.1371/journal.pbio.3002031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) and pathological gambling (PG) are accompanied by deficits in behavioural flexibility. In reinforcement learning, this inflexibility can reflect asymmetric learning from outcomes above and below expectations. In alternative frameworks, it reflects perseveration independent of learning. Here, we examine evidence for asymmetric reward-learning in OCD and PG by leveraging model-based functional magnetic resonance imaging (fMRI). Compared with healthy controls (HC), OCD patients exhibited a lower learning rate for worse-than-expected outcomes, which was associated with the attenuated encoding of negative reward prediction errors in the dorsomedial prefrontal cortex and the dorsal striatum. PG patients showed higher and lower learning rates for better- and worse-than-expected outcomes, respectively, accompanied by higher encoding of positive reward prediction errors in the anterior insula than HC. Perseveration did not differ considerably between the patient groups and HC. These findings elucidate the neural computations of reward-learning that are altered in OCD and PG, providing a potential account of behavioural inflexibility in those mental disorders.
Collapse
Affiliation(s)
- Shinsuke Suzuki
- Centre for Brain, Mind and Markets, The University of Melbourne, Carlton, Australia
- Center for the Promotion of Social Data Science Education and Research, Hitotsubashi University, Tokyo, Japan
- * E-mail:
| | - Xiaoliu Zhang
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Amir Dezfouli
- Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia
| | - Leah Braganza
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Sydney, Australia
| | - Linden Parkes
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Leonardo F. Fontenelle
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Ben J. Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton, Australia
| | - Carsten Murawski
- Centre for Brain, Mind and Markets, The University of Melbourne, Carlton, Australia
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| |
Collapse
|
38
|
Becker HC, Norman LJ, Yang H, Monk CS, Phan KL, Taylor SF, Liu Y, Mannella K, Fitzgerald KD. Disorder-specific cingulo-opercular network hyperconnectivity in pediatric OCD relative to pediatric anxiety. Psychol Med 2023; 53:1468-1478. [PMID: 37010220 PMCID: PMC10009399 DOI: 10.1017/s0033291721003044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prior investigation of adult patients with obsessive compulsive disorder (OCD) has found greater functional connectivity within orbitofrontal-striatal-thalamic (OST) circuitry, as well as altered connectivity within and between large-scale brain networks such as the cingulo-opercular network (CON) and default mode network (DMN), relative to controls. However, as adult OCD patients often have high rates of co-morbid anxiety and long durations of illness, little is known about the functional connectivity of these networks in relation to OCD specifically, or in young patients near illness onset. METHODS In this study, unmedicated female patients with OCD (ages 8-21 years, n = 23) were compared to age-matched female patients with anxiety disorders (n = 26), and healthy female youth (n = 44). Resting-state functional connectivity was used to determine the strength of functional connectivity within and between OST, CON, and DMN. RESULTS Functional connectivity within the CON was significantly greater in the OCD group as compared to the anxiety and healthy control groups. Additionally, the OCD group displayed greater functional connectivity between OST and CON compared to the other two groups, which did not differ significantly from each other. CONCLUSIONS Our findings indicate that previously noted network connectivity differences in pediatric patients with OCD were likely not attributable to co-morbid anxiety disorders. Moreover, these results suggest that specific patterns of hyperconnectivity within CON and between CON and OST circuitry may characterize OCD relative to non-OCD anxiety disorders in youth. This study improves understanding of network dysfunction underlying pediatric OCD as compared to pediatric anxiety.
Collapse
Affiliation(s)
- Hannah C. Becker
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Luke J. Norman
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Huan Yang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Christopher S. Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - K. Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Stephan F. Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Yanni Liu
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Kristin Mannella
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Kate D. Fitzgerald
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Fornaro S, Vallesi A. Functional connectivity abnormalities of brain networks in obsessive–compulsive disorder: a systematic review. CURRENT PSYCHOLOGY 2023. [DOI: 10.1007/s12144-023-04312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Abstract
Obsessive-compulsive disorder (OCD) is characterized by cognitive abnormalities encompassing several executive processes. Neuroimaging studies highlight functional abnormalities of executive fronto-parietal network (FPN) and default-mode network (DMN) in OCD patients, as well as of the prefrontal cortex (PFC) more specifically. We aim at assessing the presence of functional connectivity (FC) abnormalities of intrinsic brain networks and PFC in OCD, possibly underlying specific computational impairments and clinical manifestations. A systematic review of resting-state fMRI studies investigating FC was conducted in unmedicated OCD patients by querying three scientific databases (PubMed, Scopus, PsycInfo) up to July 2022 (search terms: “obsessive–compulsive disorder” AND “resting state” AND “fMRI” AND “function* *connect*” AND “task-positive” OR “executive” OR “central executive” OR “executive control” OR “executive-control” OR “cognitive control” OR “attenti*” OR “dorsal attention” OR “ventral attention” OR “frontoparietal” OR “fronto-parietal” OR “default mode” AND “network*” OR “system*”). Collectively, 20 studies were included. A predominantly reduced FC of DMN – often related to increased symptom severity – emerged. Additionally, intra-network FC of FPN was predominantly increased and often positively related to clinical scores. Concerning PFC, a predominant hyper-connectivity of right-sided prefrontal links emerged. Finally, FC of lateral prefrontal areas correlated with specific symptom dimensions. Several sources of heterogeneity in methodology might have affected results in unpredictable ways and were discussed. Such findings might represent endophenotypes of OCD manifestations, possibly reflecting computational impairments and difficulties in engaging in self-referential processes or in disengaging from cognitive control and monitoring processes.
Collapse
|
40
|
Ghanbarzehi A, Sepehrinezhad A, Hashemi N, Karimi M, Shahbazi A. Disclosing common biological signatures and predicting new therapeutic targets in schizophrenia and obsessive-compulsive disorder by integrated bioinformatics analysis. BMC Psychiatry 2023; 23:40. [PMID: 36641432 PMCID: PMC9840830 DOI: 10.1186/s12888-023-04543-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Schizophrenia (SCZ) is a severe mental illness mainly characterized by a number of psychiatric symptoms. Obsessive-compulsive disorder (OCD) is a long-lasting and devastating mental disorder. SCZ has high co-occurrence with OCD resulting in the emergence of a concept entitled "schizo-obsessive disorder" as a new specific clinical entity with more severe psychiatric symptoms. Many studies have been done on SCZ and OCD, but the common pathogenesis between them is not clear yet. Therefore, this study aimed to identify shared genetic basis, potential biomarkers and therapeutic targets between these two disorders. Gene sets were extracted from the Geneweaver and Harmonizome databases for each disorder. Interestingly, the combination of both sets revealed 89 common genes between SCZ and OCD, the most important of which were BDNF, SLC6A4, GAD1, HTR2A, GRIN2B, DRD2, SLC6A3, COMT, TH and DLG4. Then, we conducted a comprehensive bioinformatics analysis of the common genes. Receptor activity as the molecular functions, neuron projection and synapse as the cellular components as well as serotonergic synapse, dopaminergic synapse and alcoholism as the pathways were the most significant commonalities in enrichment analyses. In addition, transcription factor (TFs) analysis predicted significant TFs such as HMGA1, MAPK14, HINFP and TEAD2. Hsa-miR-3121-3p and hsa-miR-495-3p were the most important microRNAs (miRNAs) associated with both disorders. Finally, our study predicted 19 existing drugs (importantly, Haloperidol, Fluoxetine and Melatonin) that may have a potential influence on this co-occurrence. To summarize, this study may help us to better understand and handle the co-occurrence of SCZ and OCD by identifying potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Abdolhakim Ghanbarzehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Hashemi
- Department of Biotechnology, Bangalore University, Bangalore, Karnataka, India
| | - Minoo Karimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Poli A, Pozza A, Orrù G, Conversano C, Ciacchini R, Pugi D, Angelo NL, Angeletti LL, Miccoli M, Gemignani A. Neurobiological outcomes of cognitive behavioral therapy for obsessive-compulsive disorder: A systematic review. Front Psychiatry 2022; 13:1063116. [PMID: 36569616 PMCID: PMC9780289 DOI: 10.3389/fpsyt.2022.1063116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Obsessive-compulsive disorder (OCD) is characterized by recurrent distressing thoughts and repetitive behaviors, or mental rituals performed to reduce anxiety. Recent neurobiological techniques have been particularly convincing in suggesting that cortico-striatal-thalamic-cortico (CSTC) circuits, including orbitofrontal cortex (OFC) and striatum regions (caudate nucleus and putamen), are responsible for mediation of OCD symptoms. However, it is still unclear how these regions are affected by OCD treatments in adult patients. To address this yet open question, we conducted a systematic review of all studies examining neurobiological changes before and after first-line psychological OCD treatment, i.e., cognitive-behavioral therapy (CBT). Methods Studies were included if they were conducted in adults with OCD and they assessed the neurobiological effects of CBT before and after treatment. Two databases were searched: PsycINFO and PubMed for the time frame up to May 2022. Results We obtained 26 pre-post CBT treatment studies performed using different neurobiological techniques, namely functional magnetic resonance imaging (fMRI), Positron emission tomography (PET), regional cerebral blood flow (rCBF), 5-HT concentration, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), Electroencephalography (EEG). Neurobiological data show the following after CBT intervention: (i) reduced activations in OFC across fMRI, EEG, and rCBF; (ii) decreased activity in striatum regions across fMRI, rCBF, PET, and MRI; (iii) increased activations in cerebellum (CER) across fMRI and MRI; (iv) enhanced neurochemical concentrations in MRS studies in OFC, anterior cingulate cortex (ACC) and striatum regions. Most of these neurobiological changes are also accompanied by an improvement in symptom severity as assessed by a reduction in the Y-BOCS scores. Conclusion Cognitive-behavioral therapy seems to be able to restructure, modify, and transform the neurobiological component of OCD, in addition to the clinical symptoms. Nevertheless, further studies are necessary to frame the OCD spectrum in a dimensional way.
Collapse
Affiliation(s)
- Andrea Poli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Pozza
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Graziella Orrù
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ciro Conversano
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Rebecca Ciacchini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Daniele Pugi
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Nicole Loren Angelo
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | | | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
42
|
Gupta R, Mehan S, Chhabra S, Giri A, Sherawat K. Role of Sonic Hedgehog Signaling Activation in the Prevention of Neurological Abnormalities Associated with Obsessive-Compulsive Disorder. Neurotox Res 2022; 40:1718-1738. [PMID: 36272053 DOI: 10.1007/s12640-022-00586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
The smoothened sonic hedgehog (Smo-Shh) pathway is one mechanism that influences neurogenesis, including brain cell differentiation and development during childhood. Shh signaling dysregulation leads to decreased target gene transcription, which contributes to increased neuronal excitation, apoptosis, and neurodegeneration, eventually leading to neurological deficits. Neuropsychiatric disorders such as OCD and related neurological dysfunctions are characterized by neurotransmitter imbalance, neuroinflammation, oxidative stress, and impaired neurogenesis, disturbing the cortico-striato-thalamo-cortical (CSTC) link neuronal network. Despite the availability of several treatments, such as selective serotonin reuptake inhibitors, some individuals may not benefit much from them. Several trials on the use of antipsychotics in the treatment of OCD have also produced inadequate findings. This evidence-based review focuses on a potential pharmacological approach to alleviating OCD and associated neuronal deficits by preventing neurochemical alterations, in which sonic hedgehog activators are neuroprotective, lowering neuronal damage while increasing neuronal maintenance and survival. As a result, stimulating SMO-Shh via its potential activators may have neuroprotective effects on neurological impairment associated with OCD. This review investigates the link between SMO-Shh signaling and the neurochemical abnormalities associated with the progression of OCD and associated neurological dysfunctions. Role of Smo-Shh signaling in serotonergic neurogenesis and in maintaining their neuronal identity. The Shh ligand activates two main transcriptional factors known as Foxa2 and Nkx2.2, which again activates another transcriptional factor, GATA (GATA2 and GATA3), in post mitotic precursor cells of serotonergic neurons-following increased expression of Pet-1 and Lmx1b after GATA regulates the expression of many serotonergic enzymes such as TPH2, SERT, VMAT, slc6a4, Htr1a, Htr1b (Serotonin receptor enzymes), and MAO that regulate and control the release of serotonin and maintain their neuronal identity after their maturation. Abbreviation: Foxa2: Forkhead box; GATA: Globin transcription factor; Lmx1b: LIM homeobox transcription factor 1 beta; TPH2: Tryptophan hydroxylase 2; Htr1a: Serotonin receptor 1a; Htr1b: Serotonin receptor 1b; SERT: Serotonin transporter; VMAT: Vesicular monoamine transporter; MAO: Monoamine oxidase.
Collapse
Affiliation(s)
- Ria Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
43
|
Raposo-Lima C, Moreira P, Magalhães R, Ferreira S, Sousa N, Picó-Pérez M, Morgado P. Differential patterns of association between resting-state functional connectivity networks and stress in OCD patients. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110563. [PMID: 35569618 DOI: 10.1016/j.pnpbp.2022.110563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a highly prevalent psychiatric disorder that is characterized by its complex pathophysiology and heterogenous presentation. Multiple studies to date have identified a variety of factors that are involved in the development of symptoms, but little is known about how these affect brain function. In this study, we have tried to understand how stress, one of the most studied risk factors for OCD, may influence resting-state functional connectivity (rsFC) by comparing resting brain activity of OCD patients with healthy control subjects, while assessing self-reported levels of perceived stress using the Perceived Stress Scale-10 (PSS-10). Seventy-five OCD patients and seventy-one healthy matched control subjects were enrolled in this study, where we used a data-driven, independent component analysis approach. Our results show differences in connectivity between patients and healthy controls involving the dorsal attention (DAN) and lateral visual networks, with patients presenting increased rsFC within the DAN and decreased rsFC within the lateral visual network. Moreover, connectivity in the anterior default mode (aDMN), dorsal attention and basal ganglia networks was associated with PSS scores in OCD patients. Specifically, rsFC within the DAN and aDMN was positively correlated with PSS scores, while the opposite was observed for the basal ganglia network. This study is the first to report such association between rsFC alterations and self-reported stress levels. Our findings are relevant in the context of OCD pathophysiology given evidence of functional dysconnectivity involving the same networks in previous OCD studies and the possible involvement of these changes in the generation of obsessions.
Collapse
Affiliation(s)
- Catarina Raposo-Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Pedro Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal; Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal; Hospital de Braga, Braga, Portugal.
| |
Collapse
|
44
|
Analysis of lateral orbitofrontal cortex activation on acquisition of fear extinction and neuronal activities in fear circuit. Brain Struct Funct 2022; 227:2529-2541. [PMID: 35918458 DOI: 10.1007/s00429-022-02545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Inappropriate fear expression and failure of fear extinction are commonly seen in patients with post-traumatic stress disorder (PTSD) and obsessive-compulsive disorder (OCD). Among the patients, aberrant and asymmetric activation of the lateral orbitofrontal cortex (lOFC) is reported in some clinical cases. In this study, we aimed to examine the role of lOFC activation in extinction acquisition and explore the potential functional lateralization of lOFC on extinction. We bilaterally or unilaterally activated the lOFC with N-methyl-D-aspartate (NMDA) before fear extinction acquisition in rats. Our data suggested that both left and bilateral lOFC activation interfered with the in-session expression of conditioned fear, whereas activation of the right lOFC did not. In addition, pre-extinction unilateral or bilateral activation of the lOFC, regardless of the side, impaired the acquisition of fear extinction. We also quantified the neuronal activities during the late phase of extinction with immunohistochemical approach. Our data showed that activation of the lOFC increased the neuronal activities on the injection side(s) in the medial prefrontal cortex (mPFC), the lateral amygdala (LA), the basolateral amygdala (BLA; preferentially the non-GABAergic neurons), and the medial intercalated cells (mITC; preferentially the right side). To conclude, aberrant activation of the lOFC during extinction disturbed the excitatory/inhibitory balance of neuronal activities in fear-related brain regions, which interfered with the expression of conditioned fear and impaired the acquisition of fear extinction.
Collapse
|
45
|
Lee SW, Song H, Jang TY, Cha H, Kim E, Chang Y, Lee SJ. Aberrant functional connectivity of neural circuits associated with thought-action fusion in patients with obsessive-compulsive disorder. Psychol Med 2022; 52:2106-2115. [PMID: 33138873 DOI: 10.1017/s0033291720003980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cognitive theories of obsessive-compulsive disorder (OCD) stress the importance of dysfunctional beliefs in the development and maintenance of the disorder. However, a neurobiological understanding of these cognitive models, including thought-action fusion (TAF), is surprisingly lacking. Thus, this functional magnetic resonance imaging study aimed to investigate whether altered functional connectivity (FC) is associated with the TAF paradigm in OCD patients. METHODS Forty-one OCD patients and 47 healthy controls (HCs) participated in a functional magnetic resonance imaging study using a TAF task, in which they were asked to read the name of a close or a neutral person in association with positive and negative statements. RESULTS The conventional TAF condition (negative statements/close person) induced significant FC between the regions of interest (ROIs) identified using multivoxel pattern analysis and the visual association areas, default mode network subregions, affective processing, and several subcortical regions in both groups. Notably, sparser FC was observed in OCD patients. Further analysis confined to the cortico-striato-thalamo-cortical (CSTC) and affective networks demonstrated that OCD patients exhibited reduced ROI FC with affective regions and greater ROI FC with CSTC components in the TAF condition compared to HCs. Within the OCD patients, middle cingulate cortex-insula FC was correlated with TAF and responsibility scores. CONCLUSIONS Our TAF paradigm revealed altered context-dependent engagement of the CSTC and affective networks in OCD patients. These findings suggest that the neurobiology of cognitive models corresponds to current neuroanatomical models of OCD. Further, they elucidate the underlying neurobiological mechanisms of OCD at the circuit-based level.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Psychiatry, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Huijin Song
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Tae Yang Jang
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Psychiatry, Kyungpook National University Hospital, Daegu, Korea
| | - Hyunsil Cha
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Eunji Kim
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu, Korea
| | - Seung Jae Lee
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Psychiatry, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
46
|
Aberrant cortico-striatal white matter connectivity and associated subregional microstructure of the striatum in obsessive-compulsive disorder. Mol Psychiatry 2022; 27:3460-3467. [PMID: 35618882 DOI: 10.1038/s41380-022-01588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The striatum and its cortical circuits play central roles in the pathophysiology of obsessive-compulsive disorder (OCD). The striatum is subdivided by cortical connections and functions; however, the anatomical aberrations in different cortico-striatal connections and coexisting microstructural anomalies in striatal subregions of OCD patients are poorly understood. Thus, we aimed to elucidate the aberrations in cortico-striatal white matter (WM) connectivity and the associated subregional microstructure of the striatum in patients with OCD. From diffusion tensor/kurtosis imaging of 107 unmedicated OCD patients and 110 matched healthy controls (HCs), we calculated the cortico-striatal WM connectivity and segmented the striatum using probabilistic tractography. For the segmented striatal subregions, we measured average diffusion kurtosis values, which represent microstructural complexity. Connectivity and mean kurtosis values in each cortical target and associated striatal subregions were compared between groups. We identified significantly reduced orbitofrontal WM connectivity with its associated striatal subregion in patients with OCD compared to that in HCs. However, OCD patients exhibited significantly increased caudal-motor and parietal connectivity with the associated striatal subregions. The mean kurtosis values of the striatal subregions connected to the caudal-motor and parietal cortex were significantly decreased in OCD patients. Our results highlighted contrasting patterns of striatal WM connections with the orbitofrontal and caudal-motor/parietal cortices, thus supporting the cortico-striatal circuitry imbalance model of OCD. We suggest that aberrations in WM connections and the microstructure of their downstream regions in the caudal-motor-/parietal-striatal circuits may underlie OCD pathophysiology and further provide potential neuromodulation targets for the treatment of OCD.
Collapse
|
47
|
Price RB, Ferrarelli F, Hanlon C, Gillan CM, Kim T, Siegle GJ, Wallace ML, Renard M, Kaskie R, Degutis M, Wears A, Brown V, Rengasamy M, Ahmari SE. Resting-State Functional Connectivity Differences Following Experimental Manipulation of the Orbitofrontal Cortex in Two Directions via Theta-Burst Stimulation. Clin Psychol Sci 2022; 11:77-89. [PMID: 37041763 PMCID: PMC10085574 DOI: 10.1177/21677026221103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Compulsive behaviors (CBs) have been linked to orbitofrontal cortex (OFC) function in animal and human studies. However, brain regions function not in isolation but as components of widely distributed brain networks—such as those indexed via resting-state functional connectivity (RSFC). Sixty-nine individuals with CB disorders were randomized to receive a single session of neuromodulation targeting the left OFC—intermittent theta-burst stimulation (iTBS) or continuous TBS (cTBS)—followed immediately by computer-based behavioral “habit override” training. OFC seeds were used to quantify RSFC following iTBS and following cTBS. Relative to cTBS, iTBS showed increased RSFC between right OFC (Brodmann’s area 47) and other areas, including dorsomedial prefrontal cortex (dmPFC), occipital cortex, and a priori dorsal and ventral striatal regions. RSFC connectivity effects were correlated with OFC/frontopolar target engagement and with subjective difficulty during habit-override training. Findings help reveal neural network-level impacts of neuromodulation paired with a specific behavioral context, informing mechanistic intervention development.
Collapse
Affiliation(s)
- Rebecca B. Price
- Department of Psychiatry, University of Pittsburgh
- Department of Psychology, University of Pittsburgh
| | | | | | | | - Tae Kim
- Department of Radiology, University of Pittsburgh
| | | | | | | | | | | | - Anna Wears
- Department of Psychiatry, University of Pittsburgh
| | | | | | | |
Collapse
|
48
|
Liu Y, Zhang L, Mei R, Ai M, Pang R, Xia D, Chen L, Zhong L. The Role of SliTrk5 in Central Nervous System. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4678026. [PMID: 35872846 PMCID: PMC9303146 DOI: 10.1155/2022/4678026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
SLIT and NTRK-like protein-5 (SliTrk5) is one of the six members of SliTrk protein family, which is widely expressed in the central nervous system (CNS), regulating and participating in many essential steps of central nervous system development, including axon and dendritic growth, neuron differentiation, and synaptogenesis. SliTrk5, as a neuron transmembrane protein, contains two important conservative domains consisting of leucine repeats (LRRs) located at the amino terminal in the extracellular region and tyrosine residues (Tyr) located at the carboxyl terminal in the intracellular domains. These special structures make SliTrk5 play an important role in the pathological process of the CNS. A large number of studies have shown that SliTrk5 may be involved in the pathogenesis of CNS diseases, such as obsessive-compulsive-disorder (OCD), attention deficit/hyperactivity disorder (ADHD), glioma, autism spectrum disorders (ASDs), and Parkinson's disease (PD). Targeting SliTrk5 is expected to become a new target for the treatment of CNS diseases, promoting the functional recovery of CNS. The purpose of this article is to review the current research progression of the role of SliTrk5 in CNS and its potential mechanisms in CNS diseases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan 650032, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China
| | - Mingda Ai
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ruijing Pang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Di Xia
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan 650032, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China
| |
Collapse
|
49
|
Luo Y, Chen X, Wei C, Zhang H, Zhang L, Han L, Sun K, Li B, Wen S. BDNF Alleviates Microglial Inhibition and Stereotypic Behaviors in a Mouse Model of Obsessive-Compulsive Disorder. Front Mol Neurosci 2022; 15:926572. [PMID: 35909449 PMCID: PMC9325681 DOI: 10.3389/fnmol.2022.926572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a severe mental illness characterized by obsessions and compulsions. However, its underlying mechanisms remain to be elucidated. Recent studies have suggested that neuroimmune dysregulation is involved in the pathogenesis of OCD. To investigate the role of microglia in this disorder, we established a pharmacological mouse model by using the serotonin (5-HT) 1A/1B receptor agonist RU24969 to mimic monoamine dysregulation in OCD, and we examined the morphological and functional alterations of microglia in this model. We found that RU24969 treatment led to compulsive circling behavior in mice. Strikingly, we found that the density and mobility of microglia in the prelimbic cortex were much lower in RU24969-treated mice than in control mice. Moreover, the expression of cytokines and chemokines, including BDNF, IL-1β, IL-6, TNFα, CD80, CD86, MHC-I, and MHC-II, also decreased in RU24969-treated mice. Importantly, we found that injection of BDNF or induction of BDNF expression by trehalose completely reversed microglial dysfunction and reduced stereotypic behavior. These results indicate that microglial dysfunction is closely related to stereotypic behaviors in our mouse model of OCD and that BDNF could be an effective treatment for stereotypic behaviors.
Collapse
Affiliation(s)
- Yuchong Luo
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiao Chen
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Chunren Wei
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongyang Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingyi Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Han
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Sun
- Department of Burn and Plastic Surgery, People's Liberation Army of China Rocket Force Characteristic Medical Center, Beijing, China
- *Correspondence: Ke Sun
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Boxing Li
| | - Shenglin Wen
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Shenglin Wen
| |
Collapse
|
50
|
Han S, Xu Y, Guo HR, Fang K, Wei Y, Liu L, Cheng J, Zhang Y, Cheng J. Two distinct subtypes of obsessive compulsive disorder revealed by a framework integrating multimodal neuroimaging information. Hum Brain Mapp 2022; 43:4254-4265. [PMID: 35726798 PMCID: PMC9435007 DOI: 10.1002/hbm.25951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 12/03/2022] Open
Abstract
Patients with obsessive compulsive disorder (OCD) exhibit tremendous heterogeneity in structural and functional neuroimaging aberrance. However, most previous studies just focus on group‐level aberrance of a single modality ignoring heterogeneity and multimodal features. On that account, we aimed to uncover OCD subtypes integrating structural and functional neuroimaging features with the help of a multiview learning method and examined multimodal aberrance for each subtype. Ninety‐nine first‐episode untreated patients with OCD and 104 matched healthy controls (HCs) undergoing structural and functional MRI were included in this study. Voxel‐based morphometric and amplitude of low‐frequency fluctuation (ALFF) were adopted to assess gray matter volumes (GMVs) and the spontaneous neuronal fluctuations respectively. Structural/functional distance network was obtained by calculating Euclidean distance between pairs of regional GMVs/ALFF values across patients. Similarity network fusion, one of multiview learning methods capturing shared and complementary information from multimodal data sources, was used to fuse multimodal distance networks into one fused network. Then spectral clustering was adopted to categorize patients into subtypes. As a result, two robust subtypes were identified. These two subtypes presented opposite GMV aberrance and distinct ALFF aberrance compared with HCs while shared indistinguishable clinical and demographic features. In addition, these two subtypes exhibited opposite structure–function difference correlation reflecting distinct adaptive modifications between multimodal aberrance. Altogether, these results uncover two objective subtypes with distinct multimodal aberrance and provide a new insight into taxonomy of OCD.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China.,Henan Engineering Research Center of Brain Function Development and Application, China
| | - Yinhuan Xu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China.,Henan Engineering Research Center of Brain Function Development and Application, China
| | - Hui-Rong Guo
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China.,Henan Engineering Research Center of Brain Function Development and Application, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China.,Henan Engineering Research Center of Brain Function Development and Application, China
| | - Junying Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China.,Henan Engineering Research Center of Brain Function Development and Application, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China.,Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China.,Henan Engineering Research Center of Brain Function Development and Application, China
| |
Collapse
|