1
|
Tari AR, Walker TL, Huuha AM, Sando SB, Wisloff U. Neuroprotective mechanisms of exercise and the importance of fitness for healthy brain ageing. Lancet 2025; 405:1093-1118. [PMID: 40157803 DOI: 10.1016/s0140-6736(25)00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 04/01/2025]
Abstract
Ageing is a scientifically fascinating and complex biological occurrence characterised by morphological and functional changes due to accumulated molecular and cellular damage impairing tissue and organ function. Ageing is often accompanied by cognitive decline but is also the biggest known risk factor for Alzheimer's disease, the most common form of dementia. Emerging evidence suggests that sedentary and unhealthy lifestyles accelerate brain ageing, while regular physical activity, high cardiorespiratory fitness (CRF), or a combination of both, can mitigate cognitive impairment and reduce dementia risk. The purpose of this Review is to explore the neuroprotective mechanisms of endurance exercise and highlight the importance of CRF in promoting healthy brain ageing. Key findings show how CRF mediates the neuroprotective effects of exercise via mechanisms such as improved cerebral blood flow, reduced inflammation, and enhanced neuroplasticity. We summarise evidence supporting the integration of endurance exercise that enhances CRF into public health initiatives as a preventive measure against age-related cognitive decline. Additionally, we address important challenges such as lack of long-term studies with harmonised study designs across preclinical and clinical settings, employing carefully controlled and repeatable exercise protocols, and outline directions for future research.
Collapse
Affiliation(s)
- Atefe R Tari
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Tara L Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aleksi M Huuha
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Ulrik Wisloff
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
2
|
Vigne MM, Kweon J, Fukuda AM, Brown JC, Carpenter LL. The Role of Brain Derived Neurotrophic Factor Polymorphism in Transcranial Magnetic Stimulation Response for Major Depressive Disorder. J ECT 2025:00124509-990000000-00268. [PMID: 40036478 DOI: 10.1097/yct.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) is a safe and effective therapy for treatment-resistant depression (TRD). A crucial next step in improving rTMS therapy is to identify response predictors to inform patient selection criteria. Brain-derived neurotrophic factor (BDNF) exerts influence over TRD treatment modalities. BDNF polymorphism, Val66Met, has shown altered cortical plasticity after single-session rTMS in healthy subjects and clinical response in noninvasive brain stimulation methods in major depressive disorder, stroke, Alzheimer's, and cerebral palsy. We sought to evaluate the effect of this BDNF polymorphism on clinical response in a standard course of rTMS therapy for TRD. METHODS In this naturalistic study, 75 patients with TRD completed a standard course of rTMS with weekly clinical assessments via the Inventory of Depressive Symptomatology Self-Report (IDS-SR). BDNF polymorphisms were retrospectively compared in respect to treatment response and remission, baseline and final scores, percent change scores, and scores across the 6-week treatment course. RESULTS As expected, rTMS significantly decreased depressive symptoms as measured by IDS-SR scores. No difference was found in baseline, final, or percent change IDS-SR scores between polymorphism types. There was no difference between polymorphisms in IDS-SR scores across the treatment course. Response and remission rates did not differ between genotypes. CONCLUSIONS In contrast to previous research highlighting differential response between BDNF polymorphisms to motor plasticity and clinical rTMS outcomes, our data suggest that BDNF polymorphism status may not influence the response to a standard course of 10-Hz rTMS for major depressive disorder. Differences in TMS protocol, target, or BDNF serum levels may underlie our results.
Collapse
Affiliation(s)
- Megan M Vigne
- From the Neuromodulation Research Facility, Butler Hospital, Providence, RI
| | - Jamie Kweon
- Brain Stimulation Mechanisms Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA
| | | | | | | |
Collapse
|
3
|
Zanardo E, Quinto G, Battista F, Duregon F, Vecchiato M, Bergia C, Erickson K, Ermolao A, Neunhaeuserer D. Acute effects of physical exercise on cognitive function and neurotrophins in patients with type 1 diabetes: A systematic review. Heliyon 2025; 11:e42456. [PMID: 40028553 PMCID: PMC11868937 DOI: 10.1016/j.heliyon.2025.e42456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is associated with cognitive decline. In contrast, higher levels of neurotrophins, such as brain-derived neurotrophic factor (BDNF), may be associated with better brain health. Physical exercise has been associated with elevated levels of BDNF and consequently improved cognitive function, but whether this association is found in T1DM remains unresolved. The aim of this systematic review was to evaluate the acute effect of physical exercise on cognitive function and BDNF levels in patients affected by T1DM. Methods MEDLINE, Cochrane Library (CENTRAL database), EMBASE and SPORTDiscus were screened by 2 independent reviewers, who selected studies that analysed acute effects of physical exercise in patients with T1DM on BDNF levels or cognitive function tests before and after exercise. Studies in humans and English written were included. The quality of these studies was assessed using the respective Cochrane Risk of Bias tool. Results After identifying 507 articles, 4 studies including 78 participants were analysed. Two studies were non-randomized clinical trials, the others were crossover trials. Selected studies performed different exercise intervention protocols, evaluating both high and moderate intensity training. BDNF levels were found higher after exercise in all studies. Cognitive function tests resulted also improved after the training intervention. Conclusions In subjects with T1DM, preliminary evidence suggests that exercise training might increase plasma BDNF levels and ameliorate cognitive deficits. However, scientific evidence is still very limited and there is a significant need for further research to clarify the possible positive neurocognitive effects of exercise in T1DM.
Collapse
Affiliation(s)
- Emanuele Zanardo
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Giulia Quinto
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Francesca Battista
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Federica Duregon
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Marco Vecchiato
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Chiara Bergia
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Kirk Erickson
- Advent Health Research Institute, Neuroscience, Orlando, FL, USA
- University of Pittsburgh, Department of Psychology, Pittsburgh, PA, USA
| | - Andrea Ermolao
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Daniel Neunhaeuserer
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Choquet D, Opazo P, Zhang H. AMPA receptor diffusional trapping machinery as an early therapeutic target in neurodegenerative and neuropsychiatric disorders. Transl Neurodegener 2025; 14:8. [PMID: 39934896 DOI: 10.1186/s40035-025-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Over the past two decades, there has been a growing recognition of the physiological importance and pathological implications surrounding the surface diffusion of AMPA receptors (AMPARs) and their diffusional trapping at synapses. AMPAR surface diffusion entails the thermally powered random Brownian lateral movement of these receptors within the plasma membrane, facilitating dynamic exchanges between synaptic and extrasynaptic compartments. This process also enables the activity-dependent diffusional trapping and accumulation of AMPARs at synapses through transient binding to synaptic anchoring slots. Recent research highlights the critical role of synaptic recruitment of AMPARs via diffusional trapping in fundamental neural processes such as the development of the early phases of long-term potentiation (LTP), contextual fear memory, memory consolidation, and sensory input-induced cortical remapping. Furthermore, studies underscore that regulation of AMPAR diffusional trapping is altered across various neurological disease models, including Huntington's disease (HD), Alzheimer's disease (AD), and stress-related disorders like depression. Notably, pharmacological interventions aimed at correcting deficits in AMPAR diffusional trapping have demonstrated efficacy in restoring synapse numbers, LTP, and memory functions in these diverse disease models, despite their distinct pathogenic mechanisms. This review provides current insights into the molecular mechanisms underlying the dysregulation of AMPAR diffusional trapping, emphasizing its role as a converging point for multiple pathological signaling pathways. We propose that targeting AMPAR diffusional trapping represents a promising early therapeutic strategy to mitigate synaptic plasticity and memory deficits in a spectrum of brain disorders, encompassing but not limited to HD, AD, and stress-related conditions. This approach underscores an integrated therapeutic target amidst the complexity of these neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000, Bordeaux, France
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Hongyu Zhang
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
- Mohn Research Center for the Brain, University of Bergen, 5009, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
5
|
Chan JC, Lee CT, Say YH, Lin YF, Tsai MC. Exercise as a mediator between childhood adversity and psychological distress: Can BDNF moderate the mediating effect? J Psychiatr Res 2025; 182:277-283. [PMID: 39826378 DOI: 10.1016/j.jpsychires.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Adverse childhood events (ACEs) have been associated with an increased risk of psychiatric disorders in young adulthood. To identify at-risk individuals and potential strategies to combat the negative impacts of ACE, this study investigated the mediating role of exercise in the relationship between psychological distress and ACEs. Further, we examined the moderating effect of the BDNF polymorphism in the mediation relationship. METHODS Participants (N = 750, Mage = 20.1 years) completed questionnaires assessing ACEs divided into adverse environment (AE) and childhood maltreatment (CM), exercise, and psychological distress. Salivary genomic DNA was used for genotyping. The significance of the moderated mediation model was assessed using bootstrapping. RESULTS There was a significant association between ACEs and psychological distress mediated by exercise. After addition of BDNF polymorphism, we found that the effect of ACEs on psychological distress through exercise was moderated by the BDNF polymorphism (index of moderated mediation = -0.19, [-0.48, -0.04], p-value ≤0.05). Further dividing ACE into AE and CM, the moderated mediation relationship remains significant only with AE (index of moderated mediation = -0.41, [-0.99, -0.10], p-value ≤0.05). CONCLUSIONS The interaction between BDNF polymorphism and exercise may be a suitable target for interventions in ACEs-experienced individuals for the prevention or reduction of psychological distress.
Collapse
Affiliation(s)
- Jia Chi Chan
- Education Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Ting Lee
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-How Say
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Yu-Fang Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Che Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Humanities and Social Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Andero R. Stress-induced changes in the molecular processes underlying fear memories: implications for PTSD and relevant animal models. Mol Psychiatry 2025:10.1038/s41380-025-02910-8. [PMID: 39890919 DOI: 10.1038/s41380-025-02910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Most of the fear literature on humans and animals tests healthy individuals. However, fear memories can differ between healthy individuals and those previously exposed to traumatic stress, such as a car accident, sexual abuse, military combat and personal assault. Traumatic stress can lead to post-traumatic stress disorder (PTSD) which presents alterations in fear memories, such as an impairment of fear extinction and extinction recall. PTSD-like animal models are exposed to a single highly stressful experience in the laboratory, such as stress immobilization or single-prolonged stress. Some days later, animals exposed to a PTSD-like model can be tested in fear procedures that help uncover molecular mechanisms of fear memories. In this review, there are discussed the molecular mechanisms in stress-induced fear memories of patients with PTSD and PTSD-like animal models. The focus is on the effects of estradiol and cortisol/corticosterone hormones and of different genes, such as FKBP prolyl isomerase 5 gene (FKBP5) - FK506 binding protein 51 (FKBP51), pituitary adenylate cyclase-activating peptide (PACAP) - pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1R), endocannabinoid (eCB) system and the tropomyosin receptor kinase B (TrkB) - brain-derived neurotrophic factor (BDNF). The conclusion is that greater emphasis should be placed on investigating the molecular mechanisms of fear memories in PTSD, through direct testing of patients with PTSD or the use of relevant PTSD-like models.
Collapse
Affiliation(s)
- Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
7
|
Romero Garavito A, Díaz Martínez V, Juárez Cortés E, Negrete Díaz JV, Montilla Rodríguez LM. Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Front Neurol 2025; 15:1505879. [PMID: 39935805 PMCID: PMC11810746 DOI: 10.3389/fneur.2024.1505879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
This review explores the impact of physical exercise on brain-derived neurotrophic factor (BDNF) and its relationship with neurodegenerative diseases. The key role of BDNF in maintaining brain health is highlighted, and recent studies are analyzed that indicate an increase in BDNF levels following physical activity, particularly in young adults. Additionally, the interaction between the BDNF Val66Met genetic polymorphism and exercise on cognitive function is examined. The review emphasizes the possibility of exercise as a complementary therapy for neurodegenerative diseases, although further research is required to fully understand its effects.
Collapse
Affiliation(s)
- Ana Romero Garavito
- Facultad de medicina, Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | - Valery Díaz Martínez
- Facultad de medicina, Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | | | - José Vicente Negrete Díaz
- Programa de Fisioterapia, Universidad de Guanajuato, Guanajuato, Mexico
- Programa de Psicologia Clinica, Universidad de Guanajuato, Guanajuato, Mexico
| | | |
Collapse
|
8
|
Miksza U, Bauer W, Roszkowska J, Moroz M, Buczynska A, Wiatr A, Gorska M, Adamska-Patruno E, Kretowski A. The BDNF Protein is Associated With Glucose Homeostasis and Food Intake in Carriers of Common BDNF Gene Variants. J Clin Endocrinol Metab 2025; 110:e487-e496. [PMID: 38478378 DOI: 10.1210/clinem/dgae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 01/22/2025]
Abstract
CONTEXT Brain-derived neurotrophic factor (BDNF) concentrations may differ between BDNF genotype carriers. These changes occur in individuals with metabolic and mental disorders. OBJECTIVE The aim of this study was to assess the associations of glucose homeostasis parameters and the frequency of food consumption with BDNF protein concentrations based on BDNF single nucleotide polymorphisms (SNPs). METHODS Among the 439 participants, some common rs10835211 BDNF gene variants were analyzed. We evaluated BDNF concentrations, and measured glucose and insulin after fasting and during oral glucose tolerance tests. Anthropometric measurements, body composition, and body fat distribution were assessed, and a 3-day food intake diary and food frequency questionnaire were completed. RESULTS We observed significant differences in BDNF concentration between AA and AG genotype rs10835211 carriers (P = .018). The group of AA genotype holders were older, and positive correlation was found between age and BDNF in the whole study population (P = .012) and in the GG genotype carriers (P = .023). Moreover, BDNF protein correlated with fasting insulin (P = .015), HOMA-IR (P = .031), HOMA-B (P = .010), and the visceral/subcutaneous adipose tissue (VAT/SAT) ratio (P = .026) in the GG genotype individuals. Presence of the GG genotype was negatively correlated with nut and seed (P = .047) and lean pork consumption (P = .015), and the BDNF protein. Moreover, we observed correlations between the frequency of chicken (P = .028), pasta (P = .033), and sweet food intake (P = .040) with BDNF concentration in the general population. Among carriers of the AA genotype, we observed a positive correlation between the consumption of rice (P = .048) and sweet food (P = .028) and the BDNF protein level. CONCLUSION Peripheral BDNF may be associated with VAT content and insulin concentrations in GG genotype carriers and may vary with particular food intake, which warrants further investigation.
Collapse
Affiliation(s)
- Urszula Miksza
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Support Centre, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Witold Bauer
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Joanna Roszkowska
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Moroz
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Angelika Buczynska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Wiatr
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Edyta Adamska-Patruno
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Support Centre, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Adam Kretowski
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Support Centre, Medical University of Bialystok, 15-274 Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
9
|
Maiworm M, Koerbel K, Anschütz V, Jakob J, Schaller-Paule MA, Schäfer JH, Friedauer L, Wenger KJ, Hoelter MC, Steffen F, Bittner S, Foerch C, Yalachkov Y. BDNF levels in serum and CSF are associated with clinicoradiological characteristics of aggressive disease in MS patients. J Neurol 2025; 272:147. [PMID: 39812717 PMCID: PMC11735549 DOI: 10.1007/s00415-024-12875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND BDNF has increasingly gained attention as a key molecule controlling remyelination with a prominent role in neuroplasticity and neuroprotection. Still, it remains unclear how BDNF relates to clinicoradiological characteristics particularly at the early stage of the disease where precise prognosis for the further MS course is crucial. METHODS BDNF, NfL and GFAP concentrations in serum and CSF were assessed in 106 treatment naïve patients with MS (pwMS) as well as 73 patients with other inflammatory/non-inflammatory neurological or somatoform disorders using a single molecule array HD-1 analyser. PwMS were evaluated for highly active profiles by applying the aggressive disease course criteria proposed by ECTRIMS. Serum/CSF values were logarithmically transformed and compared across groups using one-way ANOVA, while correlations were calculated using Pearson's correlations. ROC analysis and AUC comparisons for diagnostic performance of the three biomarkers were computed in an explorative analysis. RESULTS Serum BDNF (sBDNF) concentrations were higher in treatment naïve pwMS with disease onset after the age of 40 years (p = 0.029), in pwMS with ≥2 gadolinium-enhancing lesions (p = 0.009) and with motor, cerebellar, cognitive or sphincter symptoms at onset (p = 0.036). BDNF correlated positively with NfL (r = 0.198, p = 0.014) and GFAP (r = 0.253, p = 0.002) in serum, but not in CSF. Neurological patients with an acute inflammatory relapse showed significantly higher sBDNF levels (p = 0.03) compared to somatoform controls, while patients without acute relapse did not differ from somatoform controls (p = 0.4). Better diagnostic performance was found for sBDNF than sNfL and sGFAP in differentiating between patients with vs. without 2 or more gadolinium-enhancing lesions (p < 0.05) and for sBDNF as compared to sNfL for separating patients with disease onset after vs. before age of 40 years. CONCLUSION In pwMS, BDNF serum levels differ depending on disease-related characteristics, suggesting that not only inflammatory activity but also remyelination capacities may vary with disease severity. BDNF is increased when other biomarkers of neuroaxonal damage and neurodegeneration, such as NfL and GFAP, are elevated, possibly as a compensatory mechanism, and reflect possibly further pathophysiological aspects in MS beyond NfL and GFAP, probably including an apoptotic role for BDNF in neuroinflammation.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany.
| | - Kimberly Koerbel
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Victoria Anschütz
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Jasmin Jakob
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin A Schaller-Paule
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
- Practice for Neurology and Psychiatry Eltville, Eltville Am Rhein, Germany
| | - Jan Hendrik Schäfer
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Lucie Friedauer
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Katharina J Wenger
- Institute of Neuroradiology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Maya C Hoelter
- Department of Radiology, Sankt Katharinen Hospital, Frankfurt Am Main, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Foerch
- Department of Neurology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Yavor Yalachkov
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| |
Collapse
|
10
|
Tan Z, Ping J, Zhang Y, Kong C, Luo J, Liu X. The impact of the interaction between BDNF rs7103411 gene polymorphism and social activities on mild cognitive impairment in community-dwelling elderly adults. Front Psychiatry 2025; 15:1469671. [PMID: 39876995 PMCID: PMC11772356 DOI: 10.3389/fpsyt.2024.1469671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025] Open
Abstract
Objective To investigate the correlation between BDNF gene polymorphism, BDNF levels, and susceptibility to mild cognitive impairment (MCI). Methods In this study, we investigated 107 elderly adults individuals from a community in Zhongshan, Guangdong Province, with an average age of 73.17 ± 7.081 years. The participants included 52 patients with Mild Cognitive Impairment due to Alzheimer's Disease and 55 cognitively normal elderly adults control subjects. The two groups were matched based on gender, age, and education level. We assessed their cognitive functions and analyzed their genotypes and serum BDNF levels. Analysis of covariance (ANCOVA) was used to evaluate the differences in serum BDNF levels between the MCI group and the control group. Multivariate linear regression was utilized to analyze the association between BDNF levels and susceptibility to MCI, as well as cognitive functions. Multivariate logistic regression was employed to investigate the association between BDNF gene polymorphisms and the risk of developing MCI, along with their interactions. Results The ANCOVA analysis indicated that there was no significant difference in serum BDNF levels between the MCI group and the control group (P > 0.05). Correlation analysis revealed a negative correlation between Mini-Mental Status Examination (MMSE) total scores and MCI (r = -0.461, P = 0.001), with significant correlations observed in orientation (r = -0.420, P = 0.002). Multiple linear regression analysis showed that specific polymorphisms, including rs7103411 (CT+TT vs. CC), rs6265 (CT and CT+TT vs. CC), rs11030104 (AG and AG+GG vs. AA), and rs988748 (CG+CC vs. GG), were significantly associated with decreased serum BDNF levels (P < 0.05). Multivariate logistic regression showed that rs7103411 polymorphism was associated with susceptibility to MCI; individuals with the CT or CC genotype had a 0.370 times lower risk of developing MCI compared to those with the TT genotype (OR = 0.370, 95% CI: 0.141-0.970, P = 0.043). A significant interaction was found between rs7103411 and social activity, which influenced the risk of developing MCI. Specifically, individuals with the CT or TT genotype of rs7103411 who engaged in social activities had a significantly lower risk of developing MCI (OR = 0.32, 95% CI: 0.117-0.878, P = 0.027). Conclusion This study indicates that BDNF rs7103411、rs6265、rs11030104 and rs988748 are associated with decreased serum BDNF levels in MCI patients. Individuals carrying the TT genotype in the BDNF rs7103411 gene are associated with an increased susceptibility to MCI. Individuals with the rs7103411 CT or TT genotype who participated in social activities showed a significantly reduced risk of developing MCI, suggesting that the interaction between the BDNF rs7103411 genotype and social activity can help reduce the risk of MCI.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinxia Liu
- Department of Psychiatry, Third People’s Hospital of Zhongshan City, Zhongshan, China
| |
Collapse
|
11
|
Gunasekaran S, Moffat JJ, Epstein JD, Phamluong K, Ehinger Y, Ron D. BDNF in Ventrolateral Orbitofrontal Cortex to Dorsolateral Striatum Circuit Moderates Alcohol Consumption and Gates Alcohol Habit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632255. [PMID: 39868120 PMCID: PMC11761066 DOI: 10.1101/2025.01.09.632255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BDNF plays a crucial role in shaping the structure and function of neurons. BDNF signaling in the dorsolateral striatum (DLS) is part of an endogenous pathway that protects against the development of alcohol use disorder (AUD). Dysregulation of BDNF levels in the cortex or dysfunction of BDNF/TrkB signaling in the DLS results in the escalation of alcohol drinking and compulsive alcohol use. The major source of BDNF in the striatum is the prefrontal cortex. We identified a small ensemble of BDNF-positive neurons in the ventrolateral orbitofrontal cortex (vlOFC), a region involved in AUD, that extend axonal projections to the DLS. We speculated that BDNF in vlOFC-to-DLS circuit may play a role in limiting alcohol drinking and that heavy alcohol use disrupts this protective pathway. We found that BDNF expression is reduced in the vlOFC of male but not female mice after long-term cycles of binge alcohol drinking and withdrawal. We discovered that overexpression of BDNF in vlOFC-to-DLS but not in vlOFC-to-dorsomedial striatum (DMS) or M2 motor cortex-to-DLS circuit reduces alcohol but not sucrose intake and preference. The DLS plays a major role in habitual behaviors. We hypothesized that BDNF in vlOFC-to-DLS circuitry controls alcohol intake by gating habitual alcohol seeking. We found that BDNF over-expression in vlOFC-to-DLS circuit and systemic administration of BDNF receptor TrkB agonist, LM22A-4, biases habitually trained mice towards goal-directed alcohol seeking. Together, our data suggest that BDNF in a small ensemble of vlOFC-to-DLS neurons gates alcohol intake by attenuating habitual alcohol seeking.
Collapse
|
12
|
Sahin F, Gunel A, Atasoy BT, Guler U, Salih B, Kuzu I, Taspinar M, Cinar O, Kahveci S. Enhancing proteasome activity by NMDAR antagonists explains their therapeutic effect in neurodegenerative and mental diseases. Sci Rep 2025; 15:1165. [PMID: 39805913 PMCID: PMC11729902 DOI: 10.1038/s41598-024-84479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
NMDAR antagonists, such as memantine and ketamine, have shown efficacy in treating neurodegenerative diseases and major depression. The mechanism by which these drugs correct the aforementioned diseases is still unknown. Our study reveals that these antagonists significantly enhance 20S proteasome activity, crucial for degrading intrinsically disordered, oxidatively damaged, or misfolded proteins, factors pivotal in neurodegenerative diseases like Alzheimer's and Parkinson's. In our mouse model experiment, ketamine administration notably altered brain synaptic protein profiles within two hours, significantly downregulating proteins strongly associated with Alzheimer's and Parkinson's diseases. Furthermore, the altered proteins exhibited enrichment in terms related to plasticity and potentiation, including retrograde endocannabinoid signaling-a pivotal pathway in both short- and long-term plasticity that may elucidate the long-lasting effects of ketamine in major depression. Via the ubiquitin-independent 20S proteasome pathway (UIPS), these drugs maintain cellular protein homeostasis, which is crucial as proteasome activity declines with age, leading to protein aggregation and disease symptoms. Therefore, these findings hold promise for new treatment options not only for brain diseases but also for other systemic conditions associated with unfolded or misfolded proteins.
Collapse
Affiliation(s)
- Fikret Sahin
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey.
| | - Aslihan Gunel
- Faculty of Arts and Science Department of Chemistry-Biochemistry, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Buse Turegun Atasoy
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - Ulku Guler
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Isinsu Kuzu
- Department of Medical Pathology, Ankara University School of Medicine, Ankara, Turkey
| | - Mehmet Taspinar
- Department of Medical Biology, Aksaray University School of Medicine, Aksaray, Turkey
| | - Ozgur Cinar
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Selda Kahveci
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
- Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
13
|
Selman A, Dai J, Driskill J, Reddy AP, Reddy PH. Depression and obesity: Focus on factors and mechanistic links. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167561. [PMID: 39505048 DOI: 10.1016/j.bbadis.2024.167561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Major depressive disorder (MDD) is defined as mood disorder causing a persistent loss of interest and despair for two weeks or greater, with related symptoms. Depression can interfere with daily life and can cause those affected to not work, study, eat, sleep, and enjoy previously enjoyed hobbies and life events as they did previously. If untreated, it can become a serious health condition. Depression is multifactorial with a variety of factors influencing the condition. These factors include: (1) poor diet and exercise, (2) socioeconomic status, (3) gender, (4) biological clocks, (5) genetics and epigenetics, and (6) personal stressors. Treatment of depressive disorders is thus also multifactorial and utilizes the following therapies: (1) diet and exercise, (2) bright light therapy, (3) cognitive behavioral therapy, and (4) pharmaceutical therapy. Obesity is defined as body mass index over 30 and above, is believed to be causally linked to MDD through both psychological and molecular means. Atypical depression, a common form of MDD, is most strongly correlated with a high proclivity for obesity. Obesity and depression have a bidirectional relationship, a patient experiencing either condition singularly is more likely to develop the other due to the neural links between the two, including emotional lability, physical health of the brain, hormones, cytokine secretion, appetite, diet and feeding habits, inflammatory state. In individuals consuming a high fat diet (HFD) commonly ingested by those with obesity, the gut-microbiome is altered leading to systemic inflammation and the dysregulation of mood and the HPA axis impacting their neural health. The purpose of this paper is to examine the interplay of potential molecular, psychological, societal, and environmental causal factors of depressive disorders and how obesity perpetuates depression. A secondary aim of this paper is to examine current interventions that may help improve those affected by both conditions.
Collapse
Affiliation(s)
- Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jean Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jackson Driskill
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
14
|
Edmunds KJ, Pandos AA, Hoang I, Mamlouk GM, Motovylyak A, Lose SR, Asthana S, Stremlau M, Johnson SC, van Praag H, Okonkwo OC. BDNF expression mediates verbal learning and memory in women in a cohort enriched with risk for Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70062. [PMID: 39822291 PMCID: PMC11736622 DOI: 10.1002/dad2.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION This study examined whether sex differences in verbal learning and memory (VLM) are mediated by plasma brain-derived neurotrophic factor (BDNF) expression. METHODS In a sample of n = 201 participants (63.81 ± 6.04 years, 66.2% female, 65.7% family history of Alzheimer's disease [AD], 38% apolipoprotein E [APOE] ε4+) from the Wisconsin Registry for Alzheimer's Prevention, VLM was measured using trials 3 through 5 and delayed recall from the Rey Auditory Verbal Learning Test. Plasma BDNF was measured using a Human BDNF Quantikine Immunoassay. Mediation analysis used bootstrapping, and stratified mediation models tested the conditional dependence of APOE ε4 carriage. RESULTS BDNF partially mediated the sex-VLM relationship (β = -0.07; 95% confidence interval [CI]: -0.18, -0.01). Female APOE ε4 carriers had higher VLM scores (β = -0.53; p = 0.03), while female non-carriers had both higher BDNF levels (β = -0.68; p < 0.01) and VLM scores (β = -1.06; p < 0.01); BDNF was again a significant mediator (β = -0.18; 95% CI: -0.37, -0.05). DISCUSSION This study found that circulating BDNF mediates higher verbal memory scores in females-particularly in APOE ε4 non-carriers. Highlights Sex differences in verbal learning and memory (VLM) were mediated by plasma brain-derived neurotrophic factor (BDNF) levels.Women exhibited higher VLM scores and plasma BDNF levels compared to men.The protective effect of BDNF in women was attenuated by apolipoprotein E ε4 carriage.Findings suggest sex-specific mechanisms against verbal memory decline in aging.
Collapse
Affiliation(s)
- Kyle J. Edmunds
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Alyssa A. Pandos
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Isabella Hoang
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Gabriella M. Mamlouk
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Alice Motovylyak
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sarah R. Lose
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Matthew Stremlau
- Lab of NeurosciencesNational Institute on Aging (NIA), IRPBaltimoreMarylandUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Henriette van Praag
- Lab of NeurosciencesNational Institute on Aging (NIA), IRPBaltimoreMarylandUSA
- Stiles‐Nicholson Brain Institute and Charles E. Schmidt College of MedicineFlorida Atlantic UniversityJupiterFloridaUSA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
15
|
Quirié A, Mor D, Méloux A, Etievant A, Garnier P, Totoson P, Wirtz J, Prigent-Tessier A, Marie C, Demougeot C. Anxio-depressive phenotype and impaired memory in mice with a conditional knockout of brain-derived neurotrophic factor in endothelial cells. Am J Physiol Cell Physiol 2025; 328:C303-C314. [PMID: 39652745 DOI: 10.1152/ajpcell.00699.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The present study investigated the role of endothelial brain-derived neurotrophic factor (BDNF) in cognition. Male adult mice with a selective knockout of BDNF in endothelial cells (BDNFECKO) and their wild-type (WT) littermates were subjected to tests for detection of anxiety- and depression-like behaviors and impaired recognition memory. Neuronal activity and synaptogenesis were assessed from hippocampal levels of c-fos and synaptophysin, respectively, and cerebral capillary density from forebrain levels of CD31. BDNF/TrkB (tropomyosin-related kinase type B) receptor signaling was investigated through hippocampal levels of BDNF and activated TrkB receptors coupled with their immunolabeling by neurons and endothelial cells from both cerebrovascular fractions enriched in capillaries and hippocampal arterioles. Endothelial nitric oxide (NO) production was assessed from the expression of endothelial NO synthase phosphorylated at serine 1177. BDNFECKO mice exhibited anxio-depressive phenotype, impaired memory, and reduced synaptogenesis. Neither neuronal activity, neuronal BDNF/TrkB signaling, nor capillary density differed between BDNFECKO and WT mice. However, endothelial-activated TrkB receptors as well as endothelial NO production and hippocampal BDNF levels were lower in BDNFECKO than those in WT mice. We conclude that endothelial BDNF is involved in cognition through mechanisms independent of neuronal BDNF/TrkB signaling and that endothelial NO might be a driver of the procognitive effect of endothelial BDNF.NEW & NOTEWORTHY The study provides the proof of concept that endothelial brain-derived neurotrophic factor (BDNF) plays a crucial role in postnatal synaptogenesis and development of behavior/memory. It also shows that neuronal tropomyosin-related kinase type B (TrkB) receptors are not a target of endothelium-derived BDNF.
Collapse
Affiliation(s)
- Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Damien Mor
- UMR INSERM 1322 LINC, Université de Franche-Comté, Besançon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Adeline Etievant
- UMR INSERM 1322 LINC, Université de Franche-Comté, Besançon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Perle Totoson
- EFS, INSERM, UMR 1098 RIGHT, Université de Franche-Comté, Besançon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Christine Marie
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Céline Demougeot
- EFS, INSERM, UMR 1098 RIGHT, Université de Franche-Comté, Besançon, France
| |
Collapse
|
16
|
Hammad H, Shaltout I, Fawzy MM, Rashed LA, Adel N, Abdelaziz TS. Brain-derived Neurotrophic Factor Level and Gene Polymorphism as Risk Factors for Depression in Patients with type 2 Diabetes Mellitus- A Case-Controlled Study. Curr Diabetes Rev 2025; 21:13-20. [PMID: 38192135 DOI: 10.2174/0115733998274778231218145449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Diabetes mellitus and depression are comorbidities that can be caused by each other. Brain-derived neurotrophic factor (BDNF) functions as a neuronal growth factor. It maintains the functional integrity of the nervous system. AIM To study the possible association between BDNF levels and gene polymorphism with depression in patients diagnosed with type 2 diabetes mellitus. METHODS The Elisa technique measured BDNF, and rs6265 gene polymorphism was detected using real-time PCR. Depression was assessed utilizing a clinical interview tool designed to establish the diagnosis of depression and differentiate it from other psychiatric diseases. RESULTS BDNF levels were significantly lower in patients with type 2 diabetes mellitus and symptoms of depression than in patients with type 2 diabetes mellitus and no symptoms of depression (82.6±16.1. vs. 122± 17.47, P< 0.001). There was a statistically significant difference in BDNF levels in patients with diabetes among the three genotypes of the BDNF gene (P-value < 0.001). Val/ Val carriers had the highest serum BDNF levels, and Met/ Met carriers had the lowest serum BDNF levels. Subgroup analysis showed statistically significant genotype-related differences in serum BDNF levels among the three subgroups in the Depression group. Val/ Val carriers had the highest serum BDNF levels, and Met/ Met carriers had the lowest serum BDNF levels. BDNF Val66Met polymorphism had no significant association with the presence of depression, yet there was a trend towards significance (p = 0.05). CONCLUSION In this pilot, Low levels of BDNF were associated with depression in patients with type 2 diabetes. Carriers of the Met/ Met allele have the lowest serum BDNF levels. Multicenter studies with more participants are required.
Collapse
Affiliation(s)
- Hany Hammad
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Inass Shaltout
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai M Fawzy
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Kasr Alainy University Hospitals Cairo University, Cairo, Egypt
| | - Noha Adel
- Psychiatry Department, Faculty of Medicine, Kasr Alainy Cairo University, Cairo, Egypt
| | - Tarek S Abdelaziz
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Zoccali C, Capasso G. Genetic biomarkers of cognitive impairment and dementia of potential interest in CKD patients. J Nephrol 2024; 37:2473-2479. [PMID: 38970746 DOI: 10.1007/s40620-024-02006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review discusses genetic variants associated with cognitive dysfunction in chronic kidney disease (CKD) patients, emphasising the limited research in this area. Four studies have explored genetic markers of cognitive dysfunction in CKD, with findings suggesting shared genetic biomarkers between Alzheimer's Disease and CKD.Because of the limited specific research on genetic markers of cognitive dysfunction and dementia in CKD, we extracted data from the current literature studies on genetic markers in the general population that may be relevant to the CKD population. These markers include Apolipoprotein E (APOE), Complement Receptor 1 (CR1), Clusterin (CLU), Sortilin-related receptor 1 (SORL1), Catechol-O-methyltransferase (COMT), and Brain-derived neurotrophic factor (BDNF), all of which are known to be associated with cognitive dysfunction and dementia in other populations. These genes play various roles in lipid metabolism, inflammation, Aβ clearance, and neuronal function, making them potential candidates for studying cognitive decline in CKD patients.CKD-specific research is needed to understand the role of these genetic markers in CKD-related cognitive dysfunction. Investigating how these genes influence cognitive decline in CKD patients could provide valuable insights into early detection, targeted interventions, and personalised treatment strategies. Overall, genetic studies to enhance our understanding and management of cognitive dysfunction in CKD represent a clinical research priority in this population.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, New York, USA.
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy.
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy.
| | - Giovambattista Capasso
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
18
|
Goto T, Von Ah D, Li X, Xiang L, Kwiat C, Nguyen C, Hsiao CP, Saligan LN. Brain-Derived Neurotrophic Factor rs6265 polymorphism is associated with severe cancer-related fatigue and neuropathic pain in female cancer survivors. J Cancer Surviv 2024; 18:1851-1860. [PMID: 37462904 PMCID: PMC11502548 DOI: 10.1007/s11764-023-01426-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/27/2023] [Indexed: 10/25/2024]
Abstract
PURPOSE This study examined the relationships between a single-nucleotide polymorphism (SNP) of brain-derived neurotrophic factor (BDNF) rs6265 and psychoneurological (PN) symptoms in female cancer survivors. METHODS This secondary analysis examined 393 study participants. In addition to demographic variables, self-reported PN symptom scores (anxiety, bodily pain, depression, fatigue, neuropathic pain, and sleep disturbance) were collected using the Patient-Reported Outcomes Measurement Information System and 36-Item Short-Form Health Survey. Buccal swab samples were collected to obtain genotypes for BDNF rs6265 (Val/Val, Val/Met, or Met/Met). The PN symptom scores were compared across genotypes, and the relationships were examined using a regression model. We also explored correlations between different symptoms within each genotype. RESULTS Participants with the Met/Met genotype reported significantly worse cancer-related fatigue and neuropathic pain, which was confirmed by rank-based regression analysis. In addition, cancer-related fatigue was correlated with other PN symptoms, particularly depression. These correlations were stronger in study participants with the Met/Met genotype than those with other genotypes. CONCLUSION Our study suggests that female cancer survivors with the Met/Met genotype of BDNF rs6265 are likely to experience worse cancer-related fatigue and neuropathic pain and that cancer-related fatigue is a good predictor of co-occurring PN symptoms in this population. IMPLICATIONS FOR CANCER SURVIVORS Our findings advance the scientific community's understanding of cancer-related PN symptoms experienced by female cancer survivors, especially the unique role of BDNF rs6265 polymorphism in these symptoms. Our findings offer valuable insights for clinical practice that the symptom experience among female cancer survivors may vary based on BDNF genotypes.
Collapse
Affiliation(s)
- Taichi Goto
- Symptoms Biology Unit, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Diane Von Ah
- The Ohio State University College of Nursing, Columbus, OH, USA
| | - Xiaobai Li
- Department of Biostatistics, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Lichen Xiang
- Symptoms Biology Unit, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Catherine Kwiat
- Symptoms Biology Unit, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Nguyen
- Symptoms Biology Unit, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Chao-Pin Hsiao
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Leorey N Saligan
- Symptoms Biology Unit, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
- Symptoms Biology Unit, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, 3 Center Drive, Building 3, Room 5E14, Bethesda, USA.
| |
Collapse
|
19
|
Bumrungthai S, Buddhisa S, Duangjit S, Passorn S, Sumala S, Prakobkaew N. Association of HHV‑6 reactivation and SLC6A3 (C>T, rs40184), BDNF (C>T, rs6265), and JARID2 (G>A, rs9383046) single nucleotide polymorphisms in depression. Biomed Rep 2024; 21:181. [PMID: 39420919 PMCID: PMC11484186 DOI: 10.3892/br.2024.1869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Major depressive disorder (MDD) is a global health concern with a complex etiology involving genetic, environmental and infectious factors. The exact cause of MDD remains unknown. The present study explored the association between genetic factors, human herpesvirus 6 (HHV-6) and MDD. The present study analyzed single nucleotide polymorphisms (SNPs) and HHV-6 viral load in oral buccal samples from patients with MDD (with and without blood relatives with MDD) and healthy controls. The study used high-resolution melt analysis to examine rs40184 (C>T) in the solute carrier family 6 member 3 (SLC6A31) gene, rs6265 (C>T) in the brain-derived neurotrophic factor (BDNF) gene and rs9383046 (G>A) in the jumonji and AT-rich interaction domain-containing 2 (JARID2) gene. HHV-6 infection and viral load was assessed using the quantitative PCR. Whole-exome sequencing was used to examine SNPs. The variant alleles of SNPs rs40184 [18/40 (45.00) vs. 29/238 (12.55%)] and rs6265 [30/54 (55.46) vs. 117/292 (40.06%)] were significantly more common in patients with MDD than in healthy controls, indicating they may be probable hereditary risk factors for MDD. HHV-6 positivity was significantly more common in carriers of the G/A genotype (12/15, 80%) than carriers of the G/G genotype (75/363, 20.7%) for rs9383046, implying that genetic variations may affect HHV-6 risk and MDD onset. Similarly, HHV-6 viral loads were significantly higher in carriers of the G/A genotype (99,990.85±118,392.64 copies/ng DNA) than carriers of the G/G genotype (48,249.30±101,216.28 copies/ng DNA) for rs9383046. Whole-exome sequencing identified two SNPs in JARID2 (rs11757092 and rs9383050) associated with MDD, highlighting its genetic complexity. The present study helps explain the complex interactions between HHV-6 infection, genetics and MDD onset, improving understanding of how SNPs in JARID2 contribute to HHV-6 infection and MDD onset; these findings may impact future approaches to diagnosing and treating MDD.
Collapse
Affiliation(s)
- Sureewan Bumrungthai
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surachat Buddhisa
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Sureewan Duangjit
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Supaporn Passorn
- Division of Biotechnology, School of Agriculture and Natural resources, University of Phayao, Phayao 56000, Thailand
| | - Sasiwimon Sumala
- Division of Biotechnology, School of Agriculture and Natural resources, University of Phayao, Phayao 56000, Thailand
| | - Nattaphol Prakobkaew
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
20
|
Geiger LS, Wüstenberg T, Zang Z, Melzer M, Witt SH, Rietschel M, Nöthen MM, Herms S, Degenhardt F, Meyer-Lindenberg A, Moessnang C. Longitudinal markers of cognitive procedural learning in fronto-striatal circuits and putative effects of a BDNF plasticity-related variant. NPJ SCIENCE OF LEARNING 2024; 9:72. [PMID: 39604428 PMCID: PMC11603174 DOI: 10.1038/s41539-024-00282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Procedural learning and automatization have widely been studied in behavioral psychology and typically involves a rapid improvement, followed by a plateau in performance throughout repeated training. More recently, brain imaging studies have implicated frontal-striatal brain circuits in skill learning. However, it is largely unknown whether frontal-striatal activation during skill learning and behavioral changes follow a similar learning curve pattern. To address this gap in knowledge, we performed a longitudinal brain imaging study using a procedural working memory (pWM) task with repeated measurements across two weeks to map the temporal dynamics of skill learning. We additionally explored the effect of the BDNF Val66Met polymorphism, a common genetic polymorphism impacting neural plasticity, to further inform the relevance of the identified neural markers. We used linear and exponential modeling to characterize procedural learning by means of learning curves on the behavioral and brain functional level. We show that repeated training led to an exponential decay in a distributed set of brain regions including fronto-striatal circuits, which paralleled the exponential improvement in task performance. In addition, we show that both behavioral and neurofunctional readouts were sensitive to the BDNF Val66Met polymorphism, suggesting less efficient learning in 66Met-allele carriers along with protracted signal decay in frontal and striatal brain regions. Our results extend existing literature by showing the temporal relationship between procedural learning and frontal-striatal brain function and suggest a role of BDNF in mediating neural plasticity for establishing automatized behavior.
Collapse
Affiliation(s)
- Lena S Geiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Neurology & Stroke, University Hospital Tuebingen, Tuebingen, Germany.
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Core Facility for Neuroscience of Self-Regulation (CNSR), Field of Focus 4, Heidelberg University, Heidelberg, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mirjam Melzer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Department of Child and Adolescent Psychiatry, LVR University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Faculty of Applied Psychology, SRH University Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Al-Serri A, Al-Janahi HA, Jamal MH, AlTarrah D, Ziyab AH, Al-Bustan SA. Influence of the Brain-Derived Neurotrophic Factor Gene Polymorphism on Weight Loss Following Intragastric Balloon Intervention: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2024; 17:4299-4306. [PMID: 39582783 PMCID: PMC11585270 DOI: 10.2147/dmso.s481547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Background and Aim There is noticeable heterogeneity in weight loss outcomes following intragastric balloon (IGB) treatment, with average weight loss ranging between 11% to 15% of total body weight. Genetic variations associated with obesity have been found to influence weight loss response, however such variations are limited. Therefore, the aim of this study is to investigate the impact of the obesity associated brain-derived neurotrophic factor (BDNF) gene polymorphism rs11030104 with weight loss outcomes following IGB treatment. Methods In this cross-sectional study, BDNF rs11030104 was analysed in 106 individuals who underwent intragastric balloon treatment. Weight loss metrics were evaluated at the three-month follow-up: percentage of total weight loss (%TWL), percentage of excess weight loss (%EWL), and percentage of body mass index loss (%EBMIL). The effects of additive and dominant genetic models were evaluated. Both linear and logistic regression were applied to assess associations between rs11030104 genotypes and weight loss metrics. Results A total of 71 participants completed the 3-month follow-up assessment (loss to follow-up: 33%). This study found a significant association between the BDNF rs11030104 polymorphism and weight loss. A-allele carriers showed a better response to IGB treatment. Individuals carrying the AA genotype were found to have a greater %TWL than those carrying the GG genotype at 3 months post-IGB treatment (11.05% vs 5.09%, p=0.003). Conclusion Our results suggest that BDNF rs11030104 influences the response to weight loss after IGB treatment and therefore could be added to the growing list of genetic variants that predict greater weight loss response.
Collapse
Affiliation(s)
- Ahmad Al-Serri
- Department of Pathology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Hessa A Al-Janahi
- Department of Pathology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mohammad H Jamal
- Department of Surgery, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Dana AlTarrah
- Department of Social and Behavioral Science, Faculty of Public Health, Kuwait University, Kuwait City, Kuwait
| | - Ali H Ziyab
- Department of Community Medicine and Behavioral Sciences, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Suzanne A Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
22
|
Allsopp RC, Hernández LM, Taylor MK. The Val66Met variant of brain-derived neurotrophic factor is linked to reduced telomere length in a military population: a pilot study. Sci Rep 2024; 14:27013. [PMID: 39506036 PMCID: PMC11542005 DOI: 10.1038/s41598-024-78033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
In military populations, gene-environment interactions can influence performance and health outcomes. Brain-derived neurotrophic factor (BDNF) is a central nervous system protein that is important for neuronal function and synaptic plasticity. A BDNF single nucleotide polymorphism, rs6265, leads to an amino acid substitution of valine (Val) with methionine (Met) at codon 66 (Val66Met), which may influence an individual's response to occupational stress, and predispose military members to psychological disorders. Telomere length (TL), a novel measure of biological aging, can be used as a biomarker of stress. Accordingly, telomere shortening may be a surrogate indicator of physiological weathering due to chronic disease and stressful life events. To increase our understanding about the potential effect of the Val66Met mutation on the human stress response, we evaluated the relationships between Val66Met, TL, and mental health symptoms in a military population. In this pilot study (N = 164), we observed an association between Val66Met and reduced TL (p = 0.048). There was no relationship between Val66Met and mental health symptoms. These results support the investigation of gene-environment interactions, and their potential influence on TL due to occupational stress such as military service.
Collapse
Affiliation(s)
- Richard C Allsopp
- Yanagimachi Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Biomed Sciences Building, Honolulu, HI, 96813, USA
| | - Lisa M Hernández
- Leidos, Inc., 10260 Campus Point Drive, San Diego, CA, 92121, USA.
- Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA.
| | - Marcus K Taylor
- Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA
| |
Collapse
|
23
|
Ma K, Zhang D, McDaniel K, Webb M, Newton SS, Lee FS, Qin L. A sexually dimorphic signature of activity-dependent BDNF signaling on the intrinsic excitability of pyramidal neurons in the prefrontal cortex. Front Cell Neurosci 2024; 18:1496930. [PMID: 39569070 PMCID: PMC11576208 DOI: 10.3389/fncel.2024.1496930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with strong genetic heterogeneity and more prevalent in males than females. We and others hypothesize that diminished activity-dependent neural signaling is a common molecular pathway dysregulated in ASD caused by diverse genetic mutations. Brain-derived neurotrophic factor (BDNF) is a key growth factor mediating activity-dependent neural signaling in the brain. A common single nucleotide polymorphism (SNP) in the pro-domain of the human BDNF gene that leads to a methionine (Met) substitution for valine (Val) at codon 66 (Val66Met) significantly decreases activity-dependent BDNF release without affecting basal BDNF secretion. By using mice with genetic knock-in of this human BDNF methionine (Met) allele, our previous studies have shown differential severity of autism-like social deficits in male and female BDNF+/Met mice. Pyramidal neurons are the principal neurons in the prefrontal cortex (PFC), a key brain region for social behaviors. Here, we investigated the impact of diminished activity-dependent BDNF signaling on the intrinsic excitability of pyramidal neurons in the PFC. Surprisingly, diminished activity-dependent BDNF signaling significantly increased the intrinsic excitability of pyramidal neurons in male mice, but not in female mice. Notably, significantly decreased thresholds of action potentials were observed in male BDNF+/Met mice, but not in female BDNF+/Met mice. Voltage-clamp recordings revealed that the sodium current densities were significantly increased in the pyramidal neurons of male BDNF+/Met mice, which were mediated by increased transcriptional level of Scn2a encoding sodium channel NaV 1.2. Medium after hyperpolarization (mAHP), another important parameter to determine intrinsic neuronal excitability, is strongly associated with neuronal firing frequency. Further, the amplitudes of mAHP were significantly decreased in male BDNF+/Met mice only, which were mediated by the downregulation of Kcnn2 encoding small conductance calcium-activated potassium channel 2 (SK2). This study reveals a sexually dimorphic signature of diminished activity-dependent BDNF signaling on the intrinsic neuronal excitability of pyramidal neurons in the PFC, which provides possible cellular and molecular mechanisms underpinning the sex differences in idiopathic ASD patients and human autism victims who carry BDNF Val66Met SNP.
Collapse
Affiliation(s)
- Kaijie Ma
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Daoqi Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Kylee McDaniel
- Department of Biotechnology, Mount Marty University, Yankton, SD, United States
| | - Maria Webb
- School of Health Sciences, University of South Dakota, Vermillion, SD, United States
| | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Francis S. Lee
- Department of Psychiatry, Department of Pharmacology, Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, United States
| | - Luye Qin
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
24
|
Hong H, Mocci E, Kamp K, Zhu S, Cain KC, Burr RL, Perry JA, Heitkemper MM, Weaver-Toedtman KR, Dorsey SG. Genetic Variations in TrkB.T1 Isoform and Their Association With Somatic and Psychological Symptoms in Individuals With IBS. THE JOURNAL OF PAIN 2024; 25:104634. [PMID: 39004388 PMCID: PMC11567289 DOI: 10.1016/j.jpain.2024.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Irritable bowel syndrome (IBS), a disorder of gut-brain interaction, is often comorbid with somatic pain and psychological disorders. Dysregulated signaling of brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), has been implicated in somatic-psychological symptoms in individuals with IBS. We investigated the association of 10 single-nucleotide polymorphisms (SNPs) in the regulatory 3' untranslated region of neurotrophic receptor tyrosine kinase-2 (NTRK2) kinase domain-deficient truncated isoform (TrkB.T1) and BDNF Val66Met SNP with somatic and psychological symptoms and quality-of-life (QoL) in a cohort from the United States (IBS, n = 464; healthy controls, n = 156). We found that the homozygous recessive genotype (G/G) of rs2013566 in individuals with IBS is associated with worsened somatic symptoms, including headache, back pain, joint pain, muscle pain, and somatization as well as diminished sleep quality, energy level, and overall QoL. Validation using United Kingdom BioBank data confirmed the association of rs2013566 with an increased likelihood of headache. Several SNPs (rs1627784, rs1624327, and rs1147198) showed significant associations with muscle pain in our U.S. cohort. These 4 SNPs are predominantly located in H3K4Me1-enriched regions, suggesting their enhancer and/or transcription regulation potential. Our findings suggest that genetic variation within the 3' untranslated region region of the TrkB.T1 isoform may contribute to comorbid conditions in individuals with IBS, resulting in a spectrum of somatic and psychological symptoms impacting their QoL. These findings advance our understanding of the genetic interaction between BDNF/TrkB pathways and somatic-psychological symptoms in IBS, highlighting the importance of further exploring this interaction for potential clinical applications. PERSPECTIVE: This study aims to understand the genetic effects on IBS-related symptoms across somatic, psychological, and quality-of-life (QoL) domains, validated by United Kingdom BioBank data. The rs2013566 homozygous recessive genotype correlates with worsened somatic symptoms and reduced QoL, emphasizing its clinical significance.
Collapse
Affiliation(s)
- Hyejeong Hong
- Department of Biobehavioral Health Sciences, University of Pennsylvania School of Nursing, Philadelphia, PA
| | - Evelina Mocci
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD
| | - Kendra Kamp
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing, Seattle, WA
| | - Shijun Zhu
- Department of Organizational Systems and Adult Health, University of Maryland School of Nursing, Baltimore, MD
| | - Kevin C Cain
- Department of Biostatistics, University of Washington School of Nursing, Seattle, WA
| | - Robert L Burr
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing, Seattle, WA
| | - James A Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Margaret M Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing, Seattle, WA
| | - Kristen R Weaver-Toedtman
- Department of Biobehavioral Health and Nursing Science, University of South Carolina College of Nursing, Columbia, SC
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD.
| |
Collapse
|
25
|
Rabelo TK, Campos ACP, Almeida Souza TH, Mahmud F, Popovic MR, Covolan L, Betta VHC, DaCosta L, Lipsman N, Diwan M, Hamani C. Deep brain stimulation mitigates memory deficits in a rodent model of traumatic brain injury. Brain Stimul 2024; 17:1186-1196. [PMID: 39419474 DOI: 10.1016/j.brs.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major life-threatening event. In addition to neurological deficits, it can lead to long-term impairments in attention and memory. Deep brain stimulation (DBS) is an established therapy for movement disorders that has been recently investigated for memory improvement in various disorders. In models of TBI, stimulation delivered to different brain targets has been administered to rodents long after the injury with the objective of treating motor deficits, coordination and memory impairment. OBJECTIVE To test the hypothesis that DBS administered soon after TBI may prevent the development of memory deficits and exert neuroprotective effects. METHODS Male rats were implanted with DBS electrodes in the anterior nucleus of the thalamus (ANT) one week prior to lateral fluid percussion injury (FPI). Immediately after TBI, animals received active or sham stimulation for 6 h. Four days later, they were assessed in a novel object/novel location recognition test (NOR/NLR) and a Barnes maze paradigm. After the experiments, hippocampal cells were counted. Separate groups of animals were sacrificed at different timepoints after TBI to measure cytokines and brain derived neurotrophic factor (BDNF). In a second set of experiments, TBI-exposed animals receiving active or sham stimulation were injected with the tropomyosin receptor kinase B (TrkB) antagonist ANA-12, followed by behavioural testing. RESULTS Rats exposed to TBI given DBS had an improvement in several variables of the Barnes maze, but no significant improvements in NOR/NLR compared to Sham DBS TBI animals or non-implanted controls. Animals receiving stimulation had a significant increase in BDNF levels, as well as in hippocampal cell counts in the hilus, CA3 and CA1 regions. DBS failed to normalize the increased levels of TNFα and the proinflammatory cytokine IL1β in the perilesional cortex and the hippocampus of the TBI-exposed animals. Pharmacological experiments revealed that ANA-12 administered alongside DBS did not counter the memory improvement observed in ANT stimulated animals. CONCLUSIONS DBS delivered immediately after TBI mitigated memory deficits, increased the expression of BDNF and the number of hippocampal cells in rats. Mechanisms for these effects were not related to an anti-inflammatory effect or mediated via TrkB receptors.
Collapse
Affiliation(s)
| | | | | | - Faiza Mahmud
- Sunnybrook Research Institute, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering University of Toronto, ON, Canada
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering University of Toronto, ON, Canada; Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Luciene Covolan
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Victor H C Betta
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Leodante DaCosta
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
26
|
Yang F, You H, Mizui T, Ishikawa Y, Takao K, Miyakawa T, Li X, Bai T, Xia K, Zhang L, Pang D, Xu Y, Zhu C, Kojima M, Lu B. Inhibiting proBDNF to mature BDNF conversion leads to ASD-like phenotypes in vivo. Mol Psychiatry 2024; 29:3462-3474. [PMID: 38762692 DOI: 10.1038/s41380-024-02595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Autism Spectrum Disorders (ASD) comprise a range of early age-onset neurodevelopment disorders with genetic heterogeneity. Most ASD related genes are involved in synaptic function, which is regulated by mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF in a diametrically opposite manner: proBDNF inhibits while mBDNF potentiates synapses. Here we generated a knock-in mouse line (BDNFmet/leu) in which the conversion of proBDNF to mBDNF is attenuated. Biochemical experiments revealed residual mBDNF but excessive proBDNF in the brain. Similar to other ASD mouse models, the BDNFmet/leu mice showed reduced dendritic arborization, altered spines, and impaired synaptic transmission and plasticity in the hippocampus. They also exhibited ASD-like phenotypes, including stereotypical behaviors and deficits in social interaction. Moreover, the plasma proBDNF/mBDNF ratio was significantly increased in ASD patients compared to normal children in a case-control study. Thus, deficits in proBDNF to mBDNF conversion in the brain may contribute to ASD-like behaviors, and plasma proBDNF/mBDNF ratio may be a potential biomarker for ASD.
Collapse
Affiliation(s)
- Feng Yang
- China National Clinical Research Center for Neurological Diseases, Basic and Translational Medicine Center, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - He You
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
- School of Pharmaceutical Sciences and IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Toshiyuki Mizui
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Yasuyuki Ishikawa
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | - Keizo Takao
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-0194, Japan
| | - Tsuyoshi Miyakawa
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Xiaofei Li
- China National Clinical Research Center for Neurological Diseases, Basic and Translational Medicine Center, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - Ting Bai
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dizhou Pang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Masami Kojima
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan.
- Biomedical Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology (KIT), Ishikawa, 924-0838, Japan.
| | - Bai Lu
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China.
- School of Pharmaceutical Sciences and IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
27
|
Humińska-Lisowska K. Dopamine in Sports: A Narrative Review on the Genetic and Epigenetic Factors Shaping Personality and Athletic Performance. Int J Mol Sci 2024; 25:11602. [PMID: 39519153 PMCID: PMC11546834 DOI: 10.3390/ijms252111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review examines the relationship between dopamine-related genetic polymorphisms, personality traits, and athletic success. Advances in sports genetics have identified specific single nucleotide polymorphisms (SNPs) in dopamine-related genes linked to personality traits crucial for athletic performance, such as motivation, cognitive function, and emotional resilience. This review clarifies how genetic variations can influence athletic predisposition through dopaminergic pathways and environmental interactions. Key findings reveal associations between specific SNPs and enhanced performance in various sports. For example, polymorphisms such as COMT Val158Met rs4680 and BDNF Val66Met rs6265 are associated with traits that could benefit performance, such as increased focus, stress resilience and conscientiousness, especially in martial arts. DRD3 rs167771 is associated with higher agreeableness, benefiting teamwork in sports like football. This synthesis underscores the multidimensional role of genetics in shaping athletic ability and advocates for integrating genetic profiling into personalized training to optimize performance and well-being. However, research gaps remain, including the need for standardized training protocols and exploring gene-environment interactions in diverse populations. Future studies should focus on how genetic and epigenetic factors can inform tailored interventions to enhance both physical and psychological aspects of athletic performance. By bridging genetics, personality psychology, and exercise science, this review paves the way for innovative training and performance optimization strategies.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| |
Collapse
|
28
|
Barbo M, Koritnik B, Leonardis L, Blagus T, Dolžan V, Ravnik-Glavač M. Genetic Variability in Oxidative Stress, Inflammatory, and Neurodevelopmental Pathways: Impact on the Susceptibility and Course of Spinal Muscular Atrophy. Cell Mol Neurobiol 2024; 44:71. [PMID: 39463208 PMCID: PMC11513727 DOI: 10.1007/s10571-024-01508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The spinal muscular atrophy (SMA) phenotype strongly correlates with the SMN2 gene copy number. However, the severity and progression of the disease vary widely even among affected individuals with identical copy numbers. This study aimed to investigate the impact of genetic variability in oxidative stress, inflammatory, and neurodevelopmental pathways on SMA susceptibility and clinical progression. Genotyping for 31 genetic variants across 20 genes was conducted in 54 SMA patients and 163 healthy controls. Our results revealed associations between specific polymorphisms and SMA susceptibility, disease type, age at symptom onset, and motor and respiratory function. Notably, the TNF rs1800629 and BDNF rs6265 polymorphisms demonstrated a protective effect against SMA susceptibility, whereas the IL6 rs1800795 was associated with an increased risk. The polymorphisms CARD8 rs2043211 and BDNF rs6265 were associated with SMA type, while SOD2 rs4880, CAT rs1001179, and MIR146A rs2910164 were associated with age at onset of symptoms after adjustment for clinical parameters. In addition, GPX1 rs1050450 and HMOX1 rs2071747 were associated with motor function scores and lung function scores, while MIR146A rs2910164, NOTCH rs367398 SNPs, and GSTM1 deletion were associated with motor and upper limb function scores, and BDNF rs6265 was associated with lung function scores after adjustment. These findings emphasize the potential of genetic variability in oxidative stress, inflammatory processes, and neurodevelopmental pathways to elucidate the complex course of SMA. Further exploration of these pathways offers a promising avenue for developing personalized therapeutic strategies for SMA patients.
Collapse
Affiliation(s)
- Maruša Barbo
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- , Ljubljana, Slovenia.
| |
Collapse
|
29
|
Guerin AA, Spolding B, Bozaoglu K, Swinton C, Liu Z, Panizzutti Parry B, Truong T, Dean B, Lawrence AJ, Bonomo Y, Nestler EJ, Hamilton PJ, Berk M, Rossell S, Walder K, Kim JH. Associations between methamphetamine use disorder and SLC18A1, SLC18A2, BDNF, and FAAH gene sequence variants and expression levels. DIALOGUES IN CLINICAL NEUROSCIENCE 2024; 26:64-76. [PMID: 39394974 PMCID: PMC11486062 DOI: 10.1080/19585969.2024.2413476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION Assessing candidate gene sequence variations and expression helps to understand methamphetamine use disorder and inform potential treatments. We investigated single nucleotide polymorphisms (SNPs) and gene expression in four candidate genes: SLC18A1, SLC18A2, BDNF, and FAAH, between controls and people with methamphetamine use disorder. METHODS Fifty-nine participants (29 people with methamphetamine use disorder and 30 controls) completed a clinical interview, cognitive tasks, and provided a blood sample. SLC18A1, SLC18A2, BDNF, and FAAH SNPs were genotyped, and gene expression was assessed with real-time quantitative PCR. RESULTS SLC18A1 Pro4Thr was associated with methamphetamine use disorder (OR = 6.22; p = .007). SLC18A2 variants, rs363227 and rs363387, were negatively associated with methamphetamine use severity (p = .003) and positively associated with inhibitory control performance (p = .006), respectively. BDNF Val66Met was associated with the severity of use (p = .008). SLC18A2 and FAAH mRNA levels were lower in people who use methamphetamine relative to controls (p = .021 and .010, respectively). CONCLUSIONS SLC18A1 is identified for the first time to play a potential role in methamphetamine use disorder. Lower levels of blood SLC18A2 and FAAH mRNA in people with methamphetamine use disorder suggest reduced monoamine reuptake, recycling, or release, and higher anandamide levels in this clinical group, which may be potential therapeutic targets.
Collapse
Affiliation(s)
- Alexandre A. Guerin
- Centre for Youth Mental, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Briana Spolding
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Kiymet Bozaoglu
- Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Courtney Swinton
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Zoe Liu
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Bruna Panizzutti Parry
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Trang Truong
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Yvonne Bonomo
- Department of Addiction Medicine, St Vincent’s Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Women’s Alcohol and Drug Service, Royal Women’s Hospital, Melbourne, Australia
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J. Hamilton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Michael Berk
- Orygen, Melbourne, Australia
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Jee Hyun Kim
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
30
|
Macedonia M, Mathias B, Rodella C, Andrä C, Sedaghatgoftar N, Repetto C. Reduction in physical activity during Covid-19 lockdowns predicts individual differences in cognitive performance several months after the end of the safety measures. Acta Psychol (Amst) 2024; 250:104472. [PMID: 39306872 DOI: 10.1016/j.actpsy.2024.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 11/12/2024] Open
Abstract
Prior studies suggest that the reductions in physical activity during Covid-19-related lockdowns impacted physical and mental health. Whether reductions in physical activity that occurred during lockdowns also relate to cognitive functions such as memory and attention is less explored. Here, we investigated whether changes in physical activity (PA) that occurred during and following Covid-19-related lockdowns could predict a variety of measures of cognitive performance in 318 young adults. Participants were assessed on their engagement in PA before, during, and after lockdowns. They also completed tests of cognitive control, working memory, and short-term memory following lockdown(s). As expected, engagement in PA decreased during lockdown and returned to near baseline levels thereafter. Decreases in PA during lockdown predicted individual differences in cognitive performance following lockdown. Greater reductions in PA during lockdown were associated with lower scores on the go/no-go task, a measure of cognitive control ability, and the n-back task, a measure of working memory performance. Larger post-lockdown increases in PA were associated with higher scores on the same tasks. Individual differences in pandemic-related stress and insomnia also predicted cognitive outcomes. These findings suggest that reductions of PA can predict cognitive performance, and underscore the importance of maintaining PA for cognitive health, especially in situations such as lockdowns.
Collapse
Affiliation(s)
- Manuela Macedonia
- Department of Information Engineering, Johannes Kepler University, Linz, Austria.
| | - Brian Mathias
- School of Psychology, University of Aberdeen, Aberdeen, United Kingdom
| | - Claudia Rodella
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Christian Andrä
- Department of Movement and Sport Pedagogy, University of Applied Sciences for Sport and Management, Potsdam, Germany
| | | | - Claudia Repetto
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
31
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
32
|
Shen T, Sheriff S, You Y, Jiang J, Schulz A, Francis H, Mirzaei M, Saks D, Palanivel V, Basavarajappa D, Chitranshi N, Gupta V, Wen W, Sachdev PS, Jia H, Sun X, Graham SL, Gupta VK. Brain-Derived Neurotrophic Factor Val66Met is Associated with Variation in Cortical Structure in Healthy Aging Subjects. Aging Dis 2024; 15:2315-2327. [PMID: 38916728 PMCID: PMC11346411 DOI: 10.14336/ad.2024.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Aging is associated with progressive brain atrophy and declines in learning and memory, often attributed to hippocampal or cortical deterioration. The role of brain-derived neurotrophic factor (BDNF) in modulating the structural and functional changes in the brain and visual system, particularly in relation to BDNF Val66Met polymorphism, remains underexplored. In this present cross-sectional observational study, we aimed to assess the effects of BDNF polymorphism on brain structural integrity, cognitive function, and visual pathway alterations. A total of 108 older individuals with no evidence of dementia and a mean (SD) age of 67.3 (9.1) years were recruited from the Optic Nerve Decline and Cognitive Change (ONDCC) study cohort. The BDNF Met allele carriage had a significant association with lower entorhinal cortex volume (6.7% lower compared to the Val/Val genotype, P = 0.02) and posterior cingulate volume (3.2% lower than the Val/Val group, P = 0.03), after adjusting for confounding factors including age, sex and estimated total intracranial volumes (eTIV). No significant associations were identified between the BDNF Val66Met genotype and other brain volumetric or diffusion measures, cognitive performances, or vision parameters except for temporal retinal nerve fibre layer thickness. Small but significant correlations were found between visual structural and functional, cognitive, and brain morphological metrics. Our findings suggest that carriage of BDNF Val66Met polymorphism is associated with lower entorhinal cortex and posterior cingulate volumes and may be involved in modulating the cortical morphology along the aging process.
Collapse
Affiliation(s)
- Ting Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Samran Sheriff
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuyi You
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Angela Schulz
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Heather Francis
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Neurology Department, Royal North Shore Hospital, St Leonards NSW 2065, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Danit Saks
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Veer Gupta
- Faculty of Health, Deakin University, VIC 3125, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick NSW 2031, Australia
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Stuart L Graham
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Vivek K Gupta
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
33
|
Katz DE, Rector NA, Ornstein T, McKinnon M, McCabe RE, Hawley LL, Rowa K, Richter MA, Regev R, Laposa JM. Neurocognitive performance in the context of acute symptom reduction in OCD: Treatment effects and the impact of BDNF. J Affect Disord 2024; 362:679-687. [PMID: 39009317 DOI: 10.1016/j.jad.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) has been associated with neurocognitive impairments. The present study examined the effect of treatment on neurocognitive performance in OCD and the relationship between neurocognitive change and symptom change. The present study also examined polymorphisms influencing brain derived neurotrophic factor (BDNF) as predictors of neurocognitive change. METHOD Treatment-seeking participants with OCD (N = 125) were assigned to cognitive behavioural therapy (CBT) alone, CBT combined with regular physical exercise, exercise alone, or a waitlist control group. Measures of OCD symptom severity and a neuropsychological battery were completed pre- and post-treatment. Blood or saliva samples were used to genotype the BDNF Val66Met polymorphism. RESULTS OCD symptom severity was not cross-sectionally associated with neurocognitive performance. Several neurocognitive measures improved over treatment. The BDNF Val66Met polymorphism was significantly associated with worse performance on the Stroop test but did not significantly predict change in neurocognitive performance over time. LIMITATIONS Limitations include lack of a healthy control group. CONCLUSION Improvement in neurocognitive performance corresponded to symptomatic improvement and was independent of the BDNF Val66Met genotype.
Collapse
Affiliation(s)
- Danielle E Katz
- Forest Hill Centre for Cognitive Behavioural Therapy, Toronto, Ontario, Canada
| | - Neil A Rector
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Department of Psychiatry, Toronto, Ontario, Canada; University of Toronto, Department of Psychiatry, Toronto, Ontario, Canada.
| | - Tish Ornstein
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Margaret McKinnon
- McMaster University, Department of Psychology and Behavioural Neurosciences, Hamilton, Ontario, Canada; Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Randi E McCabe
- McMaster University, Department of Psychology and Behavioural Neurosciences, Hamilton, Ontario, Canada; Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Lance L Hawley
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Department of Psychiatry, Toronto, Ontario, Canada; University of Toronto, Department of Psychiatry, Toronto, Ontario, Canada
| | - Karen Rowa
- McMaster University, Department of Psychology and Behavioural Neurosciences, Hamilton, Ontario, Canada; Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Margaret A Richter
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Department of Psychiatry, Toronto, Ontario, Canada; University of Toronto, Department of Psychiatry, Toronto, Ontario, Canada
| | - Rotem Regev
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Department of Psychiatry, Toronto, Ontario, Canada
| | - Judith M Laposa
- University of Toronto, Department of Psychiatry, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Zheng N, Luo S, Zhang X, Hu L, Huang M, Li M, McCaig C, Ding YQ, Lang B. Haploinsufficiency of intraflagellar transport protein 172 causes autism-like behavioral phenotypes in mice through BDNF. J Adv Res 2024:S2090-1232(24)00382-5. [PMID: 39265888 DOI: 10.1016/j.jare.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION Primary cilia are hair-like solitary organelles growing on most mammalian cells that play fundamental roles in embryonic patterning and organogenesis. Defective cilia often cause a suite of inherited diseases called ciliopathies with multifaceted manifestations. Intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium, actively facilitates the formation and absorption of primary cilia. IFT172 is the largest component of the IFT-B complex, and its roles in Bardet-Biedl Syndrome (BBS) have been appreciated with unclear mechanisms. OBJECTIVES We performed a battery of behavioral tests with Ift172 haploinsufficiency (Ift172+/-) and WT littermates. We use RNA sequencing to identify the genes and signaling pathways that are differentially expressed and enriched in the hippocampus of Ift172+/- mice. Using AAV-mediated sparse labeling, electron microscopic examination, patch clamp and local field potential recording, western blot, luciferase reporter assay, chromatin immunoprecipitation, and neuropharmacological approach, we investigated the underlying mechanisms for the aberrant phenotypes presented by Ift172+/- mice. RESULTS Ift172+/- mice displayed excessive self-grooming, elevated anxiety, and impaired cognition. RNA sequencing revealed enrichment of differentially expressed genes in pathways relevant to axonogenesis and synaptic plasticity, which were further confirmed by less spine density and synaptic number. Ift172+/- mice demonstrated fewer parvalbumin-expressing neurons, decreased inhibitory synaptic transmission, augmented theta oscillation, and sharp-wave ripples in the CA1 region. Moreover, Ift172 haploinsufficiency caused less BDNF production and less activated BDNF-TrkB signaling pathway through transcription factor Gli3. Application of 7,8-Dihydroxyflavone, a potent small molecular TrkB agonist, fully restored BDNF-TrkB signaling activity and abnormal behavioral phenotypes presented by Ift172+/- mice. With luciferase and chip assays, we provided further evidence that Gli3 may physically interact with BDNF promoter I and regulate BDNF expression. CONCLUSIONS Our data suggest that Ift172 per se drives neurotrophic effects and, when defective, could cause neurodevelopmental disorders reminiscent of autism-like disorders.
Collapse
Affiliation(s)
- Nanxi Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Psychiatry, Fujian Medical University Affiliated Fuzhou Neuropsychiatric Hospital, Fuzhou 350005, China
| | - Shilin Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorder, Central South University, Changsha, China; Engineering Research Center of Human Province in Cognitive Impairment Disorders, Changsha 410008, China
| | - Xin Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ling Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200433 Shanghai, China
| | - Muzhi Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mingyu Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Colin McCaig
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, Scotland, UK
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200433 Shanghai, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
35
|
Bryant RA, Dawson KS, Azevedo S, Yadav S, Cahill C, Kenny L, Maccallum F, Tran J, Rawson N, Tockar J, Garber B, Keyan D. A pilot study of the role of the BDNF Val66Met polymorphism in response to exercise-augmented exposure therapy for posttraumatic stress disorder. Psychoneuroendocrinology 2024; 167:107106. [PMID: 38943720 DOI: 10.1016/j.psyneuen.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is implicated in extinction learning, which is a primary mechanism of exposure therapy for posttraumatic stress disorder (PTSD). Brief aerobic exercise has been shown to promote BDNF release and augment extinction learning. On the premise that the Val allele of the BDNF Val66Met polymorphism facilitates greater release of BDNF, this study examined the extent to which the Val allele of the BDNF polymorphism predicted treatment response in PTSD patients who underwent exposure therapy combined with aerobic exercise or passive stretching. PTSD patients (N = 85) provided saliva samples in order to extract genomic DNA to identify Val/Val and Met carriers of the BDNF Val66Met genotype, and were assessed for PTSD severity prior to and following a 9-week course of exposure therapy combined with aerobic exercise or stretching. The sample comprised 52 Val/Val carriers and 33 Met carriers. Patients with the BDNF high-expression Val allele display greater reduction of PTSD symptoms at posttreatment than Met carriers. Hierarchical regression analysis indicated that greater PTSD reduction was specifically observed in Val/Val carriers who received exposure therapy in combination with the aerobic exercise. This finding accords with animal and human evidence that the BDNF Val allele promotes greater extinction learning, and that these individuals may benefit more from exercise-augmented extinction. Although preliminary, this result represents a possible avenue for augmented exposure therapy in patients with the BDNF Val allele.
Collapse
Affiliation(s)
- Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia; Brain Dynamics Centre, Westmead Institute for Medical Research, Sydney, New South Wales, Australia.
| | - Katie S Dawson
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Suzanna Azevedo
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Srishti Yadav
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Catherine Cahill
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Lucy Kenny
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Fiona Maccallum
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
| | - Jenny Tran
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Natasha Rawson
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Julia Tockar
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Benjamin Garber
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Dharani Keyan
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
37
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 PMCID: PMC11040316 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
38
|
Zarza-Rebollo JA, López-Isac E, Rivera M, Gómez-Hernández L, Pérez-Gutiérrez AM, Molina E. The relationship between BDNF and physical activity on depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111033. [PMID: 38788892 DOI: 10.1016/j.pnpbp.2024.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND/OBJECTIVE Major depressive disorder (MDD) is one of the leading causes of disease burden and disability worldwide. Brain-derived neurotrophic factor (BDNF) seems to have an important role in the molecular mechanisms underlying MDD aetiology, given its implication in regulating neuronal plasticity. There is evidence that physical activity (PA) improves depressive symptoms, with a key role of BDNF in this effect. We aim to perform a systematic review examining the relationship between the BDNF Val66Met polymorphism and the BDNF protein, PA and MDD. METHODS Both observational and experimental design original articles or systematic reviews were selected, according to the PRISMA statement. RESULTS Six studies evaluated the Val66Met polymorphism, suggesting a greater impact of physical activity on depression depending on the Val66Met genotype. More discordant findings were observed among the 13 studies assessing BDNF levels with acute or chronic exercise interventions, mainly due to the high heterogeneity found among intervention designs, limited sample size, and potential bias. CONCLUSIONS Overall, there is cumulative evidence supporting the potential role of BDNF in the interaction between PA and MDD. However, this review highlights the need for further research with more homogeneous and standardised criteria, and pinpoints important confounding factors that must be considered in future studies to provide robust conclusions.
Collapse
Affiliation(s)
- Juan Antonio Zarza-Rebollo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), 18071 Granada, Spain
| | - Elena López-Isac
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), 18071 Granada, Spain
| | - Margarita Rivera
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), 18071 Granada, Spain.
| | - Laura Gómez-Hernández
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Ana M Pérez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), 18071 Granada, Spain
| | - Esther Molina
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), 18071 Granada, Spain; Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
39
|
Gredicak M, Nikolac Perkovic M, Nedic Erjavec G, Uzun S, Kozumplik O, Svob Strac D, Pivac N. Association between reduced plasma BDNF concentration and MMSE scores in both chronic schizophrenia and mild cognitive impairment. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111086. [PMID: 39002927 DOI: 10.1016/j.pnpbp.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Reduced brain derived neurotrophic factor (BDNF) concentration is reported to be associated with a cognitive decline in schizophrenia, depending on the stage of the disease. Aim of the study was to examine the possible association between plasma BDNF and cognitive decline in chronic stable schizophrenia and mild cognitive impairment (MCI). The study included 123 inpatients of both sexes with schizophrenia, 123 patients with MCI and 208 healthy control subjects. Cognitive abilities were assessed using mini mental state examination (MMSE), Clock Drawing test (CDT) and cognitive subscale of the Positive and Negative Syndrome Scale (PANSS). Plasma BDNF concentration was determined using ELISA. BDNF concentration was lower in patients with schizophrenia and MCI compared to age-matched healthy controls and was similar in carriers of different BDNF Val/66Met genotypes. The MMSE and CDT scores were lower in patients with schizophrenia compared to healthy controls and subjects with MCI. Reduced plasma BDNF was significantly associated with lower MMSE scores in all subjects. BDNF concentration in patients with schizophrenia was not affected by clinical and demographic factors. BDNF Val66Met polymorphism was not associated with the MMSE scores in all participants. Further studies should include longitudinal follow-up and other cognitive scales to confirm these results and offer cognition-improving strategies to prevent cognitive decline in chronic schizophrenia.
Collapse
Affiliation(s)
- Martin Gredicak
- General Hospital Zabok and Hospital for the Croatian Veterans, Zabok, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb.
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb.
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatry, Clinics for Psychiatry Vrapce, Zagreb, Croatia; School of Medicine University of Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatry, Clinics for Psychiatry Vrapce, Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb.
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb; University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia.
| |
Collapse
|
40
|
Thomson D, Rosenich E, Maruff P, Lim YY. BDNF Val66Met moderates episodic memory decline and tau biomarker increases in early sporadic Alzheimer's disease. Arch Clin Neuropsychol 2024; 39:683-691. [PMID: 38454193 PMCID: PMC11345111 DOI: 10.1093/arclin/acae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE Allelic variation in the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has been shown to moderate rates of cognitive decline in preclinical sporadic Alzheimer's disease (AD; i.e., Aβ + older adults), and pre-symptomatic autosomal dominant Alzheimer's disease (ADAD). In ADAD, Met66 was also associated with greater increases in CSF levels of total-tau (t-tau) and phosphorylated tau (p-tau181). This study sought to determine the extent to which BDNF Val66Met is associated with changes in episodic memory and CSF t-tau and p-tau181 in Aβ + older adults in early-stage sporadic AD. METHOD Aβ + Met66 carriers (n = 94) and Val66 homozygotes (n = 192) enrolled in the Alzheimer's Disease Neuroimaging Initiative who did not meet criteria for AD dementia, and with at least one follow-up neuropsychological and CSF assessment, were included. A series of linear mixed models were conducted to investigate changes in each outcome over an average of 2.8 years, covarying for CSF Aβ42, APOE ε4 status, sex, age, baseline diagnosis, and years of education. RESULTS Aβ + Met66 carriers demonstrated significantly faster memory decline (d = 0.33) and significantly greater increases in CSF t-tau (d = 0.30) and p-tau181 (d = 0.29) compared to Val66 homozygotes, despite showing equivalent changes in CSF Aβ42. CONCLUSIONS These findings suggest that reduced neurotrophic support, which is associated with Met66 carriage, may increase vulnerability to Aβ-related tau hyperphosphorylation, neuronal dysfunction, and cognitive decline even prior to the emergence of dementia. Additionally, these findings highlight the need for neuropsychological and clinicopathological models of AD to account for neurotrophic factors and the genes which moderate their expression.
Collapse
Affiliation(s)
- Diny Thomson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
| | | | - Paul Maruff
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
- Cogstate Ltd, Melbourne, VIC 3000, Australia
| | - Yen Ying Lim
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
| | | |
Collapse
|
41
|
Mercado NM, Szarowicz C, Stancati JA, Sortwell CE, Boezwinkle SA, Collier TJ, Caulfield ME, Steece-Collier K. Advancing age and the rs6265 BDNF SNP are permissive to graft-induced dyskinesias in parkinsonian rats. NPJ Parkinsons Dis 2024; 10:163. [PMID: 39179609 PMCID: PMC11344059 DOI: 10.1038/s41531-024-00771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The rs6265 single nucleotide polymorphism (SNP) in the gene for brain-derived neurotrophic factor is a common variant that alters therapeutic outcomes for individuals with Parkinson's disease (PD). We previously investigated the effects of this SNP on the experimental therapeutic approach of neural grafting, demonstrating that young adult parkinsonian rats carrying the variant Met allele exhibited enhanced graft function compared to wild-type rats and also exclusively developed aberrant graft-induced dyskinesias (GID). Aging is the primary risk factor for PD and reduces graft efficacy. Here we investigated whether aging interacts with this SNP to further alter cell transplantation outcomes. We hypothesized that aging would reduce enhancement of graft function associated with this genetic variant and exacerbate GID in all grafted subjects. Unexpectedly, beneficial graft function was maintained in aged rs6265 subjects. However, aging was permissive to GID induction, regardless of genotype, with the greatest incidence and severity found in rs6265-expressing animals.
Collapse
Affiliation(s)
- Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Carlye Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Samuel A Boezwinkle
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Margaret E Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
42
|
Kang DW, Wang SM, Um YH, Kim S, Kim T, Kim D, Lee CU, Lim HK. Effects of transcranial direct current stimulation on cognition in MCI with Alzheimer's disease risk factors using Bayesian analysis. Sci Rep 2024; 14:18818. [PMID: 39138281 PMCID: PMC11322558 DOI: 10.1038/s41598-024-67664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Despite the growing interest in precision medicine-based therapies for Alzheimer's disease (AD), little research has been conducted on how individual AD risk factors influence changes in cognitive function following transcranial direct current stimulation (tDCS). This study evaluates the cognitive effects of sequential tDCS on 63 mild cognitive impairment (MCI) patients, considering AD risk factors such as amyloid-beta deposition, APOE ε4, BDNF polymorphism, and sex. Using both frequentist and Bayesian methods, we assessed the interaction of tDCS with these risk factors on cognitive performance. Notably, we found that amyloid-beta deposition significantly interacted with tDCS in improving executive function, specifically Stroop Word-Color scores, with strong Bayesian support for this finding. Memory enhancements were differentially influenced by BDNF Met carrier status. However, sex and APOE ε4 status did not show significant effects. Our results highlight the importance of individual AD risk factors in modulating cognitive outcomes from tDCS, suggesting that precision medicine may offer more effective tDCS treatments tailored to individual risk profiles in early AD stages.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea
| | - TaeYeong Kim
- Research Institute, NEUROPHET Inc., Seoul, 06247, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul, 06247, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea.
- Research Institute, NEUROPHET Inc., Seoul, 06247, Republic of Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Cao J, Gorwood P, Ramoz N, Viltart O. The Role of Central and Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker of Anorexia Nervosa Reconceptualized as a Metabo-Psychiatric Disorder. Nutrients 2024; 16:2617. [PMID: 39203753 PMCID: PMC11357464 DOI: 10.3390/nu16162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Neurotrophic factors play pivotal roles in shaping brain development and function, with brain-derived neurotrophic factor (BDNF) emerging as a key regulator in various physiological processes. This review explores the intricate relationship between BDNF and anorexia nervosa (AN), a complex psychiatric disorder characterized by disordered eating behaviors and severe medical consequences. Beginning with an overview of BDNF's fundamental functions in neurodevelopment and synaptic plasticity, the review delves into recent clinical and preclinical evidence implicating BDNF in the pathophysiology of AN. Specifically, it examines the impact of BDNF polymorphisms, such as the Val66Met variant, on AN susceptibility, prognosis, and treatment response. Furthermore, the review discusses the interplay between BDNF and stress-related mood disorders, shedding light on the mechanisms underlying AN vulnerability to stress events. Additionally, it explores the involvement of BDNF in metabolic regulation, highlighting its potential implications for understanding the metabolic disturbances observed in AN. Through a comprehensive analysis of clinical data and animal studies, the review elucidates the nuanced role of BDNF in AN etiology and prognosis, emphasizing its potential as a diagnostic and prognostic biomarker. Finally, the review discusses limitations and future directions in BDNF research, underscoring the need for further investigations to elucidate the complex interplay between BDNF signaling and AN pathology.
Collapse
Affiliation(s)
- Jingxian Cao
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Nicolas Ramoz
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- SCALab Laboratory, PsySEF Faculty, Université de Lille, UMR CNRS 9193, F-59650 Villeneuve d’Ascq, France
| |
Collapse
|
44
|
Singh J, Wilkins G, Goodman-Vincent E, Chishti S, Bonilla Guerrero R, Fiori F, Ameenpur S, McFadden L, Zahavi Z, Santosh P. Using Precision Medicine to Disentangle Genotype-Phenotype Relationships in Twins with Rett Syndrome: A Case Report. Curr Issues Mol Biol 2024; 46:8424-8440. [PMID: 39194714 DOI: 10.3390/cimb46080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Rett syndrome (RTT) is a paediatric neurodevelopmental disorder spanning four developmental stages. This multi-system disorder offers a unique window to explore genotype-phenotype relationships in a disease model. However, genetic prognosticators of RTT have limited clinical value due to the disorder's heterogeneity on multiple levels. This case report used a precision medicine approach to better understand the clinical phenotype of RTT twins with an identical pathogenic MECP2 mutation and discordant neurodevelopmental profiles. Targeted genotyping, objective physiological monitoring of heart rate variability (HRV) parameters, and clinical severity were assessed in a RTT twin pair (5 years 7 months old) with an identical pathogenic MECP2 mutation. Longitudinal assessment of autonomic HRV parameters was conducted using the Empatica E4 wristband device, and clinical severity was assessed using the RTT-anchored Clinical Global Impression Scale (RTT-CGI) and the Multi-System Profile of Symptoms Scale (MPSS). Genotype data revealed impaired BDNF function for twin A when compared to twin B. Twin A also had poorer autonomic health than twin B, as indicated by lower autonomic metrics (autonomic inflexibility). Hospitalisation, RTT-CGI-S, and MPSS subscale scores were used as measures of clinical severity, and these were worse in twin A. Treatment using buspirone shifted twin A from an inflexible to a flexible autonomic profile. This was mirrored in the MPSS scores, which showed a reduction in autonomic and cardiac symptoms following buspirone treatment. Our findings showed that a combination of a co-occurring rs6265 BDNF polymorphism, and worse autonomic and clinical profiles led to a poorer prognosis for twin A compared to twin B. Buspirone was able to shift a rigid autonomic profile to a more flexible one for twin A and thereby prevent cardiac and autonomic symptoms from worsening. The clinical profile for twin A represents a departure from the disorder trajectory typically observed in RTT and underscores the importance of wider genotype profiling and longitudinal objective physiological monitoring alongside measures of clinical symptoms and severity when assessing genotype-phenotype relationships in RTT patients with identical pathogenic mutations. A precision medicine approach that assesses genetic and physiological risk factors can be extended to other neurodevelopmental disorders to monitor risk when genotype-phenotype relationships are not so obvious.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Georgina Wilkins
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Ella Goodman-Vincent
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Samiya Chishti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Federico Fiori
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Shashidhar Ameenpur
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Leighton McFadden
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Zvi Zahavi
- Myogenes Limited, Borehamwood WD6 4PJ, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| |
Collapse
|
45
|
Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front Neurol 2024; 15:1385042. [PMID: 39148705 PMCID: PMC11325594 DOI: 10.3389/fneur.2024.1385042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Background Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
46
|
Hu J, Lian Z, Weng Z, Xu Z, Gao J, Liu Y, Luo T, Wang X. Intranasal Delivery of Near-Infrared and Magnetic Dual-Response Nanospheres to Rapidly Produce Antidepressant-Like and Cognitive Enhancement Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405547. [PMID: 38778461 DOI: 10.1002/adma.202405547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Restricted by synaptic plasticity, dopamine receptor (DR) upregulation takes a long time to work. Moreover, the impact of the blood-brain barrier (BBB) on delivery efficiency restricts the development of drugs. Taking inspiration from snuff bottles, a convenient, fast-acting, and nonaddictive nasal drug delivery system has been developed to rapidly reshape the balance of synaptic transmitters. This optical and magnetic response system called CFs@DP, comprised of carbonized MIL-100 (Fe) frameworks (CFs) and domperidone (DP), which can enter the brain via nasal administration. Under dual stimulation of near-infrared (NIR) irradiation and catecholamine-induced complexation, CFs@DP disintegrates to release iron ions and DP, causing upregulation of the dopamine type 1 (D1), type 2 (D2) receptors, and brain-derived neurotrophic factor (BDNF) to achieve a therapeutic effect. In vivo experiments demonstrate that the DR density of mice (postnatal day 50-60) increased in the prefrontal cortex (PFC) and the hippocampus (HPC) after 10 days of therapy, resulting in antidepressant-like and cognitive enhancement effects. Interestingly, the cognitive enhancement effect of CFs@DP is even working in noniron deficiency (normal fed) mice, making it a promising candidate for application in enhancing learning ability.
Collapse
Affiliation(s)
- Jiangnan Hu
- Institute of Biomedical Innovation, Jiangxi Medical College, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhenglong Lian
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhenzhen Weng
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zihao Xu
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Jie Gao
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Yuanyuan Liu
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Tao Luo
- Institute of Biomedical Innovation, Jiangxi Medical College, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| |
Collapse
|
47
|
Hernández-del Caño C, Varela-Andrés N, Cebrián-León A, Deogracias R. Neurotrophins and Their Receptors: BDNF's Role in GABAergic Neurodevelopment and Disease. Int J Mol Sci 2024; 25:8312. [PMID: 39125882 PMCID: PMC11311851 DOI: 10.3390/ijms25158312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Neurotrophins and their receptors are distinctly expressed during brain development and play crucial roles in the formation, survival, and function of neurons in the nervous system. Among these molecules, brain-derived neurotrophic factor (BDNF) has garnered significant attention due to its involvement in regulating GABAergic system development and function. In this review, we summarize and compare the expression patterns and roles of neurotrophins and their receptors in both the developing and adult brains of rodents, macaques, and humans. Then, we focus on the implications of BDNF in the development and function of GABAergic neurons from the cortex and the striatum, as both the presence of BDNF single nucleotide polymorphisms and disruptions in BDNF levels alter the excitatory/inhibitory balance in the brain. This imbalance has different implications in the pathogenesis of neurodevelopmental diseases like autism spectrum disorder (ASD), Rett syndrome (RTT), and schizophrenia (SCZ). Altogether, evidence shows that neurotrophins, especially BDNF, are essential for the development, maintenance, and function of the brain, and disruptions in their expression or signaling are common mechanisms in the pathophysiology of brain diseases.
Collapse
Affiliation(s)
- Carlos Hernández-del Caño
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natalia Varela-Andrés
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alejandro Cebrián-León
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rubén Deogracias
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
48
|
Forsell P, Parrado Fernández C, Nilsson B, Sandin J, Nordvall G, Segerdahl M. Positive Allosteric Modulators of Trk Receptors for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:997. [PMID: 39204102 PMCID: PMC11357672 DOI: 10.3390/ph17080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Neurotrophins are important regulators of neuronal and non-neuronal functions. As such, the neurotrophins and their receptors, the tropomyosin receptor kinase (Trk) family of receptor tyrosine kinases, has attracted intense research interest and their role in multiple diseases including Alzheimer's disease has been described. Attempts to administer neurotrophins to patients have been reported, but the clinical trials have so far have been hampered by side effects or a lack of clear efficacy. Thus, much of the focus during recent years has been on identifying small molecules acting as agonists or positive allosteric modulators (PAMs) of Trk receptors. Two examples of successful discovery and development of PAMs are the TrkA-PAM E2511 and the pan-Trk PAM ACD856. E2511 has been reported to have disease-modifying effects in preclinical models, whereas ACD856 demonstrates both a symptomatic and a disease-modifying effect in preclinical models. Both molecules have reached the stage of clinical development and were reported to be safe and well tolerated in clinical phase 1 studies, albeit with different pharmacokinetic profiles. These two emerging small molecules are interesting examples of possible novel symptomatic and disease-modifying treatments that could complement the existing anti-amyloid monoclonal antibodies for the treatment of Alzheimer's disease. This review aims to present the concept of positive allosteric modulators of the Trk receptors as a novel future treatment option for Alzheimer's disease and other neurodegenerative and cognitive disorders, and the current preclinical and clinical data supporting this new concept. Preclinical data indicate dual mechanisms, not only as cognitive enhancers, but also a tentative neurorestorative function.
Collapse
Affiliation(s)
- Pontus Forsell
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Cristina Parrado Fernández
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Boel Nilsson
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
| | - Johan Sandin
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Gunnar Nordvall
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Märta Segerdahl
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| |
Collapse
|
49
|
von Bohlen Und Halbach O, Klausch M. The Neurotrophin System in the Postnatal Brain-An Introduction. BIOLOGY 2024; 13:558. [PMID: 39194496 DOI: 10.3390/biology13080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Neurotrophins can bind to and signal through specific receptors that belong to the class of the Trk family of tyrosine protein kinase receptors. In addition, they can bind and signal through a low-affinity receptor, termed p75NTR. Neurotrophins play a crucial role in the development, maintenance, and function of the nervous system in vertebrates, but they also have important functions in the mature nervous system. In particular, they are involved in synaptic and neuronal plasticity. Thus, it is not surprisingly that they are involved in learning, memory and cognition and that disturbance in the neurotrophin system can contribute to psychiatric diseases. The neurotrophin system is sensitive to aging and changes in the expression levels correlate with age-related changes in brain functions. Several polymorphisms in genes coding for the different neurotrophins or neurotrophin receptors have been reported. Based on the importance of the neurotrophins for the central nervous system, it is not surprisingly that several of these polymorphisms are associated with psychiatric diseases. In this review, we will shed light on the functions of neurotrophins in the postnatal brain, especially in processes that are involved in synaptic and neuronal plasticity.
Collapse
Affiliation(s)
- Oliver von Bohlen Und Halbach
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| | - Monique Klausch
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| |
Collapse
|
50
|
Subramanian SK, Morgan RT, Rasmusson C, Shepherd KM, Li CL. Genetic polymorphisms and post-stroke upper limb motor improvement - A systematic review and meta-analysis. J Cent Nerv Syst Dis 2024; 16:11795735241266601. [PMID: 39049838 PMCID: PMC11268047 DOI: 10.1177/11795735241266601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Post-stroke upper limb (UL) motor improvement is associated with adaptive neuroplasticity and motor learning. Both intervention-related (including provision of intensive, variable, and task-specific practice) and individual-specific factors (including the presence of genetic polymorphisms) influence improvement. In individuals with stroke, most commonly, polymorphisms are found in Brain Derived Neurotrophic Factor (BDNF), Apolipoprotein (APOE) and Catechol-O-Methyltransferase (COMT). These involve a replacement of cystine by arginine (APOEε4) or valines by 1 or 2 methionines (BDNF:val66met, met66met; COMT:val158met; met158met). However, the implications of these polymorphisms on post-stroke UL motor improvement specifically have not yet been elucidated. Objective Examine the influence of genetic polymorphism on post-stroke UL motor improvement. Design Systematic Review and Meta-Analysis. Methods We conducted a systematic search of the literature published in English language. The modified Downs and Black checklist helped assess study quality. We compared change in UL motor impairment and activity scores between individuals with and without the polymorphisms. Meta-analyses helped assess change in motor impairment (Fugl Meyer Assessment) scores based upon a minimum of 2 studies/time point. Effect sizes (ES) were quantified based upon the Rehabilitation Treatment Specification System as follows: small (0.08-0.18), medium (0.19 -0.40) and large (≥0.41). Results We retrieved 10 (4 good and 6 fair quality) studies. Compared to those with BDNF val66met and met66met polymorphism, meta-analyses revealed lower motor impairment (large ES) in those without the polymorphism at intervention completion (0.5, 95% CI: 0.11-0.88) and at retention (0.58, 95% CI:0.06-1.11). The presence of CoMT val158met or met158met polymorphism had similar results, with lower impairment (large ES ≥1.5) and higher activity scores (large ES ranging from 0.5-0.76) in those without the polymorphism. Presence of APOEε4 form did not influence UL motor improvement. Conclusion Polymorphisms with the presence of 1 or 2 met alleles in BDNF and COMT negatively influence UL motor improvement. Registration https://osf.io/wk9cf/.
Collapse
Affiliation(s)
- Sandeep K. Subramanian
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physician Assistant Studies, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Rehabilitation Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Neurosciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Riley T. Morgan
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carl Rasmusson
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kayla M. Shepherd
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carol L. Li
- Department of Rehabilitation Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy VA Hospital, South Texas Veterans Health Administration, Polytrauma Rehabilitation Center, San Antonio, TX, USA
| |
Collapse
|