1
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2025; 25:266-284. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
2
|
Shiwal A, Nibrad D, Tadas M, Katariya R, Kale M, Wankhede N, Kotagale N, Umekar M, Taksande B. Polyamines signalling pathway: A key player in unveiling the molecular mechanisms underlying Huntington's disease. Neuroscience 2025; 570:213-224. [PMID: 39986431 DOI: 10.1016/j.neuroscience.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Polyaminesare essential organic cations found in all eukaryotic cells and play an important role in many cellular processes including growth, differentiation, andneuroprotection. This review explores the complex relationship between polyamine signaling and Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder characterized by the progressive degeneration of medium-spiny neurons in the striatum and cortex due to mutations in the huntingtin gene. We provide a comprehensive overview of how polyamines, specificallyputrescine,spermidine, andspermine, regulate important cellular functions such as gene expression, protein synthesis, membrane stability, and ion channel regulation with implications for HD. Dysfunction in polyamine metabolism in HD, reveals how changes in these molecules promote oxidative stress, mitochondrial dysfunction, andexcitotoxicity. Importantly, polyamines interact with mutanthuntingtin protein (mHTT) to affect its aggregationand neurotoxicity. This effect may contribute to the pathophysiological mechanisms underlying HD, suggesting that polyamines may act as potential biomarkers of disease progression. Additionally, we discuss the therapeutic implications of targeting the polyamine signaling pathway to alleviate HD symptoms. By enhancing autophagy and modulating neurotransmitter systems, polyamines mayprovideneuroprotectionagainstmHTT-inducedtoxicity. Moreover, the present review provides new insight into the role of polyamines in the pathogenesis of HDand suggests that regulation of polyamine metabolism may represent a promising therapy to slow the disease progression. Besides this, the review highlights the need for further investigation of the diverse roles of polyamines in neurodegenerative diseases, including HD, paving the way for novel interventions to improve cellular homeostasis andpatient outcomes.
Collapse
Affiliation(s)
- Amit Shiwal
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Dhanshree Nibrad
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nitu Wankhede
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, MS 444 604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India.
| |
Collapse
|
3
|
Campos-Pereira FD, Gonçalves LR, Jardim RVH, Cagnoni LB, Moraes KCM, Marin-Morales MA. Genotoxicity of putrescine and its effects on gene expression in HepG2 cell line. Toxicol In Vitro 2025; 106:106048. [PMID: 40086645 DOI: 10.1016/j.tiv.2025.106048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Decomposing bodies release necro-leachate, a toxic fluid containing harmful compounds such as biogenic amines. This study investigated the genotoxic effects of the different concentrations (0.5, 1.4, 2.3, 3.2 mM) of bioamine putrescine on HepG2 cells using the comet assay, the micronucleus test, and gene expression analysis. The results were compared to negative control and indicated significant DNA damage in the comet assay highlighting tail DNA intensity that exhibited significant differences across all tested concentrations (0.5 = 192 %, 1.4 = 189 %, 2.3 = 208 %, 3.2 = 132 %). The micronucleus test revealed a significant increase in micronuclei for concentrations 0.5 (193 %), 1.4 (229 %), 2.3 (206 %); nuclear buds 3.2 (173 %); chromosomal bridges 3.2 (735 %). Furthermore, genes linked to oxidative stress and DNA damage exhibited statistically significant expression alterations. These findings suggest that putrescine has genotoxic potential in human-derived HepG2 cells, raising concerns about cemetery contaminants' occupational and environmental risks. This study is the first to assess putrescine's toxicity as an environmental pollutant, as previous research has mainly focused on its role in the food sector. These insights highlight the potential threats necro-leachate poses to environmental health, emphasizing the need for further research on cemetery pollution.
Collapse
Affiliation(s)
- Franco Dani Campos-Pereira
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Avenida 24-A, n° 1515, Bela Vista, CEP 13506-900 Rio Claro, São Paulo, Brazil
| | - Letícia Rocha Gonçalves
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Avenida 24-A, n° 1515, Bela Vista, CEP 13506-900 Rio Claro, São Paulo, Brazil
| | - Raquel Vaz Hara Jardim
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Avenida 24-A, n° 1515, Bela Vista, CEP 13506-900 Rio Claro, São Paulo, Brazil
| | - Letícia Bulascochi Cagnoni
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Avenida 24-A, n° 1515, Bela Vista, CEP 13506-900 Rio Claro, São Paulo, Brazil
| | - Karen C M Moraes
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Avenida 24-A, n° 1515, Bela Vista, CEP 13506-900 Rio Claro, São Paulo, Brazil
| | - Maria Aparecida Marin-Morales
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Avenida 24-A, n° 1515, Bela Vista, CEP 13506-900 Rio Claro, São Paulo, Brazil.
| |
Collapse
|
4
|
Liu H, Chen YG. Spermine attenuates TGF-β-induced EMT by downregulating fibronectin. J Biol Chem 2025; 301:108352. [PMID: 40015634 DOI: 10.1016/j.jbc.2025.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a highly dynamic cellular process that occurs in development, tissue repair, and cancer metastasis. As a master EMT inducer, transforming growth factor-beta (TGF-β) can activate the EMT program by regulating the expression of key EMT-related genes and triggering other required cellular changes. However, it is unclear whether cell metabolism is involved in TGF-β-induced EMT. Here, we characterized early metabolic changes in response to transient TGF-β stimulation in HaCaT cells and discovered that TGF-β signaling significantly reduces the intracellular polyamine pool. Exogenous addition of spermine, but not other polyamines, attenuates TGF-β-induced EMT. Mechanistically, spermine downregulates the extracellular matrix protein fibronectin. Furthermore, we found that TGF-β activates extracellular signal-regulated kinase to enhance the expression of spermine oxidase, which is responsible for the reduced spermine concentration. This action of TGF-β on EMT via the polyamine metabolism provides new insights into the mechanisms underlying EMT and might be exploited as a way to target the EMT program for therapy.
Collapse
Affiliation(s)
- Huidong Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Han X, Wang Z, Shi L, Wei Z, Shangguan J, Shi L, Zhao M. Spermidine enhances the heat tolerance of Ganoderma lucidum by promoting mitochondrial respiration driven by fatty acid β-oxidation. Appl Environ Microbiol 2025; 91:e0097924. [PMID: 39878489 PMCID: PMC11837530 DOI: 10.1128/aem.00979-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025] Open
Abstract
High temperature is an unavoidable environmental stress that generally exerts detrimental effects on organisms and has widespread effects on metabolism. Spermidine is an important member of the polyamines family and is involved in a range of abiotic stress responses in plants. Mitochondria play an essential role in cellular homeostasis and are key components of the stress response. Our results indicated that mitochondrial respiratory intensity increased by 80% in wild-type (WT) under heat stress, but the activities of key enzymes of the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) were significantly reduced upon the knockdown of the spermidine synthase gene (spdS). Furthermore, the content of mitochondrial pyruvate decreased by 36.1%, whereas the levels of free fatty acid increased by 28.8% under heat stress. Upon spdS knockdown, the content of mitochondrial pyruvate was similar to that in the WT, but the medium-chain fatty acid (C6:0) decreased by 68.6%-84.2%, whereas the long-chain fatty acid (C18:2) marginally increased. Subsequent studies demonstrated that spermidine promoted the translation of long chain acyl-CoA dehydrogenase (LCAD) and mitochondrial trifunctional protein (MTP, also known as HADH), thereby enhancing fatty acid β-oxidation under heat stress. In conclusion, spermidine enhances key TCA cycle and ETC enzyme activities and is involved in heat stress-induced fatty acid β-oxidation by promoting the translation of LCAD and HADH, thereby improving the heat tolerance of Ganoderma lucidum. IMPORTANCE Polyamines are stress-responsive molecules that enhance the tolerance of plants to multiple abiotic stresses by regulating a variety of biological processes. Our previous research indicated that heat stress induces the the biosynthesis of polyamines and promotes the conversion of putrescine to spermidine in G. lucidum, but the physiological role of elevated spermidine levels is yet to be elucidated. In this study, our findings demonstrated that spermidine enhances the heat tolerance in G. lucidum and that mitochondrial respiration is essential for spermidine-enhanced heat tolerance. This study elucidated a preliminary mechanism by which spermidine enhances heat tolerance of G. lucidum and provided a new insight into the understanding of how microorganisms resist heat stress.
Collapse
Affiliation(s)
- Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lingyan Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ziyang Wei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaolei Shangguan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Benaceur O, Ferreira Montenegro P, Kahi M, Fontaine-Vive F, Mazure NM, Mehiri M, Bost F, Peraldi P. Development of a reliable, sensitive, and convenient assay for the discovery of new eIF5A hypusination inhibitors. PLoS One 2025; 20:e0308049. [PMID: 39937781 DOI: 10.1371/journal.pone.0308049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/21/2024] [Indexed: 02/14/2025] Open
Abstract
eIF5A is a translation factor dysregulated in several pathologies such as cancer and diabetes. eIF5A activity depends upon its hypusination, a unique post-translational modification catalyzed by two enzymes: DHPS and DOHH. Only a few molecules able to inhibit hypusination have been described, and none are used for the treatment of patients. The scarcity of new inhibitors is probably due to the challenge of measuring DHPS and DOHH activities. Here, we describe the Hyp'Assay, a convenient cell-free assay to monitor eIF5A hypusination. Hypusination is performed in 96-well plates using recombinant human eIF5A, DHPS, and DOHH and is revealed by an antibody against hypusinated eIF5A. Pharmacological values obtained with the Hyp'Assay, such as the EC50 of DHPS for spermidine or the IC50 of GC7 for DHPS, were similar to published data, supporting the reliability of the Hyp'Assay. As a proof of concept, we synthesized four new GC7 analogs and showed, using the Hyp'Assay, that these derivatives inhibit hypusination. In summary, we present the Hyp'Assay; a reliable and sensitive assay for new hypusination inhibitors. This assay could be of interest to researchers wanting an easier way to study hypusination, and also a valuable tool for large-scale screening of chemical libraries for new hypusination inhibitors.
Collapse
Affiliation(s)
| | | | - Michel Kahi
- Université Côte d'Azur, Inserm U1065, C3M, Nice, France
| | | | | | - Mohamed Mehiri
- Université Côte d'Azur, CNRS UMR 7272, Institut de Chimie de Nice, Nice, France
| | - Frederic Bost
- Université Côte d'Azur, Inserm U1065, C3M, Nice, France
| | | |
Collapse
|
7
|
Takamura H, Yorisue T, Tanaka K, Kadota I. Antifouling Activity of Xylemin, Its Structural Analogs, and Related Polyamines. Chem Biodivers 2025:e202403213. [PMID: 39920095 DOI: 10.1002/cbdv.202403213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/09/2025]
Abstract
Biofouling, which is the accumulation of organisms on undersea structures, poses significant global, social, and economic issues. Although organotin compounds were effective antifoulants since the 1960s, they were banned in 2008 due to their toxicity to marine life. Although tin-free alternatives have been developed, they also raise environmental concerns. This underscores the need for effective, nontoxic antifouling agents. We previously synthesized N-(4-aminobutyl)propylamine (xylemin) and its structural analogs. In this study, we assayed the antifouling activity and toxicity of xylemin, its structural analogs, and related polyamines toward cypris larvae of the barnacle Amphibalanus amphitrite. Xylemin and its Boc-protected analog exhibited antifouling activities with 50% effective concentrations (EC50) of 4.25 and 6.11 µg/mL, respectively. Four xylemin analogs did not show a settlement-inhibitory effect at a concentration of 50 µg/mL. Putrescine, spermidine, spermine, and thermospermine, which are xylemin-related polyamines, did not display antifoulant effects (EC50 > 50 µg/mL). All evaluated compounds were nontoxic at a concentration of 50 µg/mL. These findings indicate that the size and structure of the N-alkyl group are essential for the antifouling activity of xylemin. Therefore, xylemin and its analogs hold promise as nontoxic, eco-friendly antifouling agents, offering a sustainable solution to biofouling in marine environments.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takefumi Yorisue
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Japan
- Division of Nature and Environmental Management, Museum of Nature and Human Activities, Sanda, Japan
| | - Kenta Tanaka
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Fernández-Ramos D, Lopitz-Otsoa F, Lu SC, Mato JM. S-Adenosylmethionine: A Multifaceted Regulator in Cancer Pathogenesis and Therapy. Cancers (Basel) 2025; 17:535. [PMID: 39941901 PMCID: PMC11816870 DOI: 10.3390/cancers17030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
S-adenosylmethionine (SAMe) is a key methyl donor that plays a critical role in a variety of cellular processes, such as DNA, RNA and protein methylation, essential for maintaining genomic stability, regulating gene expression and maintaining cellular homeostasis. The involvement of SAMe in cancer pathogenesis is multifaceted, as through its multiple cellular functions, it can influence tumor initiation, progression and therapeutic resistance. In addition, the connection of SAMe with polyamine synthesis and oxidative stress management further underscores its importance in cancer biology. Recent studies have highlighted the potential of SAMe as a biomarker for cancer diagnosis and prognosis. Furthermore, the therapeutic implications of SAMe are promising, with evidence suggesting that SAMe supplementation or modulation could improve the efficacy of existing cancer treatments by restoring proper methylation patterns and mitigating oxidative damage and protect against damage induced by chemotherapeutic drugs. Moreover, targeting methionine cycle enzymes to both regulate SAMe availability and SAMe-independent regulatory effects, particularly in methionine-dependent cancers such as colorectal and lung cancer, presents a promising therapeutic approach. Additionally, exploring epitranscriptomic regulations, such as m6A modifications, and their interaction with non-coding RNAs could enhance our understanding of tumor progression and resistance mechanisms. Precision medicine approaches integrating patient subtyping and combination therapies with chemotherapeutics, such as decitabine or doxorubicin, together with SAMe, can enhance chemosensitivity and modulate epigenomics, showing promising results that may improve treatment outcomes. This review comprehensively examines the various roles of SAMe in cancer pathogenesis, its potential as a diagnostic and prognostic marker, and its emerging therapeutic applications. While SAMe modulation holds significant promise, challenges such as bioavailability, patient stratification and context-dependent effects must be addressed before clinical implementation. In addition, better validation of the obtained results into specific cancer animal models would also help to bridge the gap between research and clinical practice.
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - José M. Mato
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| |
Collapse
|
9
|
Johnston J, Taylor J, Nahata S, Gatica-Gomez A, Anderson YL, Kiger S, Pham T, Karimi K, Lacar JF, Carter NS, Roberts SC. Putrescine Depletion in Leishmania donovani Parasites Causes Immediate Proliferation Arrest Followed by an Apoptosis-like Cell Death. Pathogens 2025; 14:137. [PMID: 40005515 PMCID: PMC11858418 DOI: 10.3390/pathogens14020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
The polyamine pathway in Leishmania parasites has emerged as a promising target for therapeutic intervention, yet the functions of polyamines in parasites remain largely unexplored. Ornithine decarboxylase (ODC) and spermidine synthase (SPDSYN) catalyze the sequential conversion of ornithine to putrescine and spermidine. We previously found that Leishmania donovani Δodc and Δspdsyn mutants exhibit markedly reduced growth in vitro and diminished infectivity in mice, with the effect being most pronounced in putrescine-depleted Δodc mutants. Here, we report that, in polyamine-free media, ∆odc mutants arrested proliferation and replication, while ∆spdsyn mutants showed a slow growth and replication phenotype. Starved ∆odc parasites also exhibited a marked reduction in metabolism, which was not observed in the starved ∆spdsyn cells. In contrast, both mutants displayed mitochondrial membrane hyperpolarization. Hallmarks of apoptosis, specifically DNA fragmentation and membrane modifications, were observed in Δodc mutants incubated in polyamine-free media. These results show that putrescine depletion had an immediate detrimental effect on cell growth, replication, and mitochondrial metabolism and caused an apoptosis-like death phenotype. Our findings establish ODC as the most promising therapeutic target within the polyamine biosynthetic pathway for treating leishmaniasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sigrid C. Roberts
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (J.J.); (J.T.); (S.N.); (A.G.-G.); (Y.L.A.); (S.K.); (T.P.); (K.K.); (J.-F.L.); (N.S.C.)
| |
Collapse
|
10
|
Oguro A, Uemura T, Machida K, Kitajiri K, Tajima A, Furuchi T, Kawai G, Imataka H. Polyamines enhance repeat-associated non-AUG translation from CCUG repeats by stabilizing the tertiary structure of RNA. J Biol Chem 2025; 301:108251. [PMID: 39894221 PMCID: PMC11919584 DOI: 10.1016/j.jbc.2025.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Repeat expansion disorders are caused by abnormal expansion of microsatellite repeats. Repeat-associated non-AUG (RAN) translation is one of the pathogenic mechanisms underlying repeat expansion disorders, but the exact molecular mechanism underlying RAN translation remains unclear. Polyamines are ubiquitous biogenic amines that are essential for cell proliferation and cellular functions. They are predominantly found in cells in complexes with RNA and influence many cellular events, but the relationship between polyamines and RAN translation is yet to be explored. Here, we show that, in both a cell-free protein synthesis system and cell culture, polyamines promote RAN translation of RNA-containing CCUG repeats. The CCUG-dependent RAN translation is suppressed when cells are depleted of polyamines but can be recovered by the addition of polyamines. Thermal stability analysis revealed that the tertiary structure of the CCUG-repeat RNA is stabilized by the polyamines. Spermine was the most effective polyamine for stabilizing CCUG-repeat RNA and enhancing RAN translation. These results suggest that polyamines, particularly spermine, modulate RAN translation of CCUG-repeat RNA by stabilizing the tertiary structure of the repeat RNA.
Collapse
Affiliation(s)
- Akihiro Oguro
- Division of Physical Fitness, Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Takeshi Uemura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Kanta Kitajiri
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Ayasa Tajima
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takemitsu Furuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Gota Kawai
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan.
| |
Collapse
|
11
|
Carvalho I, Peixoto D, Ferreira I, Robledo D, Ramos-Pinto L, Silva RM, Gonçalves JF, Machado M, Tafalla C, Costas B. Exploring the effects of dietary methionine supplementation on European seabass mucosal immune responses against Tenacibaculum maritimum. Front Immunol 2025; 16:1513516. [PMID: 39911390 PMCID: PMC11794538 DOI: 10.3389/fimmu.2025.1513516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Dietary methionine supplementation has been shown to enhance immunity and disease resistance in fish. However, excessive intake may lead to adverse effects. The present study aimed to evaluate the immune status of European seabass (Dicentrarchus labrax) fed increasing levels of dietary methionine supplementation and to investigate the early immune response to Tenacibaculum maritimum. Methods For this purpose, juvenile European seabass were fed one of three experimental diets containing methionine at 8.6 mg/g (CTRL), 18.5 mg/g (MET2), and 29.2 mg/g (MET3) for four weeks, followed by a bath challenge with T. maritimum. Results While higher methionine intake reduced hemoglobin levels, no other significant changes in the immune status were observed. However, after infection, fish fed higher methionine levels exhibited a dose-dependent decrease in the mRNA expression of some proinflammatory genes. Similarly, RNA sequencing analysis of skin tissue revealed an attenuated immune response in the MET2 group at 24 hours post-infection, with few proinflammatory genes upregulated, which intensified at 48 h, potentially due to advanced tissue colonization by T. maritimum. The MET3 group displayed the least pronounced immune response, along with the enrichment of some immune-related pathways among the downregulated transcripts. These findings, together with the lower mRNA expression of proinflammatory genes in the head kidney and the higher mortality rates observed in this group, suggest a potential impairment of the immune response.`. Discussion Overall, these findings indicate that dietary methionine supplementation may significantly influence both systemic and local immune responses in European seabass, highlighting the need for careful consideration when supplementing diets with methionine.
Collapse
Affiliation(s)
- Inês Carvalho
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diogo Peixoto
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Inês Ferreira
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lourenço Ramos-Pinto
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Rodolfo Miguel Silva
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Technología Agraria y Alimentaria (CISA-INIA-CSIC), Madrid, Spain
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Nakamura A, Matsumoto M. Role of polyamines in intestinal mucosal barrier function. Semin Immunopathol 2025; 47:9. [PMID: 39836273 PMCID: PMC11750915 DOI: 10.1007/s00281-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy. Although the vital role of polyamines in normal intestinal epithelial cell growth and barrier function has been known since the 1980s, recent studies have provided new insights into this topic at the molecular level, such as eukaryotic initiation factor-5A hypusination and autophagy, with rapid advances in polyamine biology in normal cells using biological technologies. This review summarizes recent advances in our understanding of the role of polyamines in regulating normal, non-cancerous, intestinal epithelial barrier function, with a particular focus on intestinal epithelial renewal, cell junctions, and immune cell differentiation in the lamina propria.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.
| |
Collapse
|
13
|
Wiechert F, Unbehaun A, Sprink T, Seibel H, Bürger J, Loerke J, Mielke T, Diebolder C, Schacherl M, Spahn CT. Visualizing the modification landscape of the human 60S ribosomal subunit at close to atomic resolution. Nucleic Acids Res 2025; 53:gkae1191. [PMID: 39658079 PMCID: PMC11724314 DOI: 10.1093/nar/gkae1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical modifications of ribosomal RNAs (rRNAs) and proteins expand their topological repertoire, and together with the plethora of bound ligands, fine-tune ribosomal function. Detailed knowledge of this natural composition provides important insights into ribosome genesis and function and clarifies some aspects of ribosomopathies. The discovery of new structural properties and functional aspects of ribosomes has gone hand in hand with cryo-electron microscopy (cryo-EM) and its technological development. In line with the ability to visualize atomic details - a prerequisite for identifying chemical modifications and ligands in cryo-EM maps - in this work we present the structure of the 60S ribosomal subunit from HeLa cells at the very high global resolution of 1.78 Å. We identified 113 rRNA modifications and four protein modifications including uL2-Hisβ-ox216, which stabilizes the local structure near the peptidyl transferase centre via an extended hydrogen-bonding network. We can differentiate metal ions Mg2+ and K+, polyamines spermine, spermidine and putrescine and identify thousands of water molecules binding to the 60S subunit. Approaching atomic resolution cryo-EM has become a powerful tool to examine fine details of macromolecular structures that will expand our knowledge about translation and other biological processes in the future and assess the variability of the chemical space due to differences between species/tissues or varying physicochemical environment.
Collapse
MESH Headings
- Humans
- Cryoelectron Microscopy
- HeLa Cells
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/ultrastructure
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/ultrastructure
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Models, Molecular
- Hydrogen Bonding
Collapse
Affiliation(s)
- Franziska Wiechert
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anett Unbehaun
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thiemo Sprink
- Core Facility for Cryo-Electron Microscopy (CFcryoEM), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cryo-EM, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Helena Seibel
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Bürger
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Justus Loerke
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Christoph A Diebolder
- Core Facility for Cryo-Electron Microscopy (CFcryoEM), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cryo-EM, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Magdalena Schacherl
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
14
|
Saxena S, Roy S, Ahmad MN, Nandi AK. LDL2 and PAO5 genes are essential for systemic acquired resistance in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2025; 177:e70102. [PMID: 39903087 DOI: 10.1111/ppl.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/30/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
A partly infected plant becomes more resistant to subsequent infections by developing systemic acquired resistance (SAR). Primary infected tissues produce signals that travel to systemic tissues for SAR-associated priming of defense-related genes. The mechanism through which mobile signals contribute to long-lasting infection memory is mostly unknown. RSI1/FLD, a putative histone demethylase, is required for developing SAR. Here, we report that two other FLD homologs, LSD1-LIKE2 (LDL2) and POLYAMINE OXIDASE 5 (PAO5), are required for SAR development. The mutants of LDL2 and PAO5 are not defective in local resistance but are specifically impaired for SAR. The mutants are defective in salicylic acid accumulation and priming of defence-related genes such as PR1, FMO1, and SnRK2.8. LDL2 and PAO5 are expressed in systemic tissues upon SAR induction by pathogens or SAR mobile signal azelaic acid. The ldl2 and pao5 mutants generate SAR mobile signals like wild-type (WT) plants but fail to respond to the signal at the systemic leaves. Both LDL2 and PAO5 proteins contain polyamine oxidase (PAO) domains, suggesting their involvement in polyamine metabolism. Exogenous applications of polyamines such as spermine and spermidine activate SAR in WT and rescue SAR defects of ldl2 and pao5 plants. Inhibition of polyamine biosynthetic gene arginine decarboxylase blocks SAR development. Results altogether demonstrate specific non-redundant roles of LDL2 and PAO5 in SAR development with their possible involvement in polyamine metabolism.
Collapse
Affiliation(s)
- Shobhita Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Roy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mir Nasir Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
Kubota A, Ohno Y, Yasumoto J, Iijima M, Suzuki M, Iguchi A, Mori-Yasumoto K, Yasumoto-Hirose M, Sakata T, Suehiro T, Nakamae K, Mizusawa N, Jimbo M, Watabe S, Yasumoto K. The Role of Polyamines in pH Regulation in the Extracellular Calcifying Medium of Scleractinian Coral Spats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22635-22645. [PMID: 39652798 DOI: 10.1021/acs.est.4c10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
This study aims to elucidate a novel mechanism for elevating the pH within the calicoblastic extracellular calcifying medium (pHECM) of corals and demonstrate the potential contribution of calcifying organisms to CO2 sequestration. Departing from traditional models that attribute the increase in pHECM primarily to H+ expulsion via Ca2+-ATPase, we emphasize the significant role of polyamines. These ubiquitous biogenic amines conveyed by calicoblastic cells through polyamine transporters demonstrate a remarkable affinity for CO2. Their ability to form stable carbamate complexes is pivotal in facilitating carbonate ion transport, which is crucial for pH regulation and skeletal structure formation. In this study, a polyamine transporter inhibitor and a polyamine biosynthesis inhibitor in conjunction with the pH-sensitive probe 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) were employed to monitor pH variations. Furthermore, FM1-43FX dye was utilized to delineate the extracellular calcifying medium (ECM), whereas calcein was applied to visualize paracellular gaps and ECM. These methodologies provide profound insights into the intricate structural and functional dynamics of coral spats calcification. Findings suggest a potential reconsideration of established models of marine calcification and highlight the necessity to reassess the role of marine calcifying organisms in the carbon cycle, particularly their influence on CO2 fluxes.
Collapse
Affiliation(s)
- Azusa Kubota
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
- JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Yoshikazu Ohno
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Jun Yasumoto
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nakagusuku, Nishihara, Okinawa 903-0213, Japan
| | - Mariko Iijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kanami Mori-Yasumoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | - Tsuyoshi Sakata
- Biological Laboratory, Center for Natural Sciences, College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Takaaki Suehiro
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Kaho Nakamae
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Nanami Mizusawa
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Mitsuru Jimbo
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Ko Yasumoto
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
16
|
Gil-Martínez A, Galiana-Roselló C, Lázaro-Gómez A, Mulet-Rivero L, González-García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2024:e202400873. [PMID: 39656761 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
- Príncipe Felipe Research Center, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Andrea Lázaro-Gómez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Laura Mulet-Rivero
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
17
|
Xiang WL, Xiong J, Wang HY, Cai T, Shi P, Zhao QH, Tang J, Cai YM. The Bro-Xre toxin-antitoxin modules in Weissella cibaria: inducing persister cells to escape tetracycline stress by disrupting metabolism. Front Microbiol 2024; 15:1505841. [PMID: 39678910 PMCID: PMC11638225 DOI: 10.3389/fmicb.2024.1505841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Toxin-antitoxin (TA) modules are important mediators of persister cell formation in response to environmental stresses. However, the mechanisms through which persistence is controlled remain poorly understood. Weissella cibaria, a novel probiotic, can enter a persistent state upon exposure to tetracycline stress. This study found that the Bro-Xre TA modules of W. cibaria function as typical tetracycline regulators. The Bro-Xre TA modules were activated when exposed to tetracycline stress, and the released toxin Bro acted on various cellular metabolic processes, including energy, amino acid, and nucleotide metabolism. Among them, the genes related to intracellular energy pathways, such as PTS, EMP, HMP, TCA, and oxidative phosphorylation, were downregulated, leading to reduced ATP synthesis and proton motive force. This metabolic disruption resulted in cells adopting a persistent phenotype, characterized by an increase in cell length in W. cibaria. Additionally, the frequency of persister cells increased under tetracycline stress. These results provide a novel perspective for understanding the mechanism by which TA modules induce persistence in probiotics, allowing them to evade antibiotic stress through metabolic disruption.
Collapse
Affiliation(s)
- Wen-Liang Xiang
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jie Xiong
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Han-Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ting Cai
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Pei Shi
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Qiu-Huan Zhao
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jie Tang
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yi-Min Cai
- Japan International Research Center for Agricultural Science (JIRCAS), Tsukuba, Japan
| |
Collapse
|
18
|
Sukhanova MV, Anarbaev RO, Naumenko KN, Hamon L, Singatulina AS, Pastré D, Lavrik OI. Phase Separation of FUS with Poly(ADP-ribosyl)ated PARP1 Is Controlled by Polyamines, Divalent Metal Cations, and Poly(ADP-ribose) Structure. Int J Mol Sci 2024; 25:12445. [PMID: 39596510 PMCID: PMC11594298 DOI: 10.3390/ijms252212445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Fused in sarcoma (FUS) is involved in the formation of nuclear biomolecular condensates associated with poly(ADP-ribose) [PAR] synthesis catalyzed by a DNA damage sensor such as PARP1. Here, we studied FUS microphase separation induced by poly(ADP-ribosyl)ated PARP1WT [PAR-PARP1WT] or its catalytic variants PARP1Y986S and PARP1Y986H, respectively, synthesizing (short PAR)-PARP1Y986S or (short hyperbranched PAR)-PARP1Y986H using dynamic light scattering, fluorescence microscopy, turbidity assays, and atomic force microscopy. We observed that biologically relevant cations such as Mg2+, Ca2+, or Mn2+ or polyamines (spermine4+ or spermidine3+) were essential for the assembly of FUS with PAR-PARP1WT and FUS with PAR-PARP1Y986S in vitro. We estimated the range of the FUS-to-PAR-PARP1 molar ratio and the cation concentration that are favorable for the stability of the protein's microphase-separated state. We also found that FUS microphase separation induced by PAR-PARP1Y986H (i.e., a PARP1 variant attaching short hyperbranched PAR to itself) can occur in the absence of cations. The dependence of PAR-PARP1-induced FUS microphase separation on cations and on the branching of the PAR structure points to a potential role of the latter in the regulation of the formation of FUS-related biological condensates and requires further investigation.
Collapse
Affiliation(s)
- Maria V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Rashid O. Anarbaev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Konstantin N. Naumenko
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Loic Hamon
- INSERM U1204, Univ-Evry, University Paris Saclay, 91025 Evry, France;
| | - Anastasia S. Singatulina
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - David Pastré
- INSERM U1204, Univ-Evry, University Paris Saclay, 91025 Evry, France;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| |
Collapse
|
19
|
Murina F, Graziottin A, Toni N, Schettino MT, Bello L, Marchi A, Del Bravo B, Gambini D, Tiranini L, Nappi RE. Clinical Evidence Regarding Spermidine-Hyaluronate Gel as a Novel Therapeutic Strategy in Vestibulodynia Management. Pharmaceutics 2024; 16:1448. [PMID: 39598571 PMCID: PMC11597842 DOI: 10.3390/pharmaceutics16111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Vestibulodynia (VBD) represents a summation and overlapping of trigger factors (infections, hormonal disturbances, allergies, genetic aspects, psychological vulnerability, and others) with broad individual variability. As there are no standard treatment options for VBD, the disease is still in need of appropriate therapeutic tools. Objectives: A prospective observational trial was performed to confirm the efficacy of a topical gel containing a spermidine-hyaluronate complex (UBIGEL donna™) as either a stand-alone or companion treatment through a multicenter study on a large sample population. Methods: For women with VBD (n = 154), the treatment consisted of approximately two months (4 + 4 weeks) of applications according to the posology of UBIGEL. Evaluation of symptoms was performed on relevant clinical endpoints: dyspareunia and vulvovaginal pain/burning by a visual scale (VAS); vestibular trophism by a vestibular trophic health (VeTH) score; vulvoscopy through a cotton swab test; and the level of hypertonic pelvic floor by a physical graded assessment of levator ani hypertonus. Results: A total of 154 patients treated with UBIGEL donna™ showed significant improvements across all five evaluated parameters, including pain, dyspareunia, swab test results, muscle hypertonicity, and vestibular trophism. Pain and dyspareunia scores decreased by 46.5% and 33.5%, respectively, while significant improvements were also observed in the other parameters (p < 0.0001). These improvements were consistent across various stratifications, including age and disease duration. Conclusions: The findings of the present study suggest that UBIGEL donna™ is effective in alleviating pain and dyspareunia, as well as reducing vestibular hypersensitivity in women with VBD. Although UBIGEL donna™ alone cannot serve as a comprehensive substitute for all recommended therapies, we suggest that multimodal therapy strategies may be crucial for attaining substantial improvement in any aspect of the condition.
Collapse
Affiliation(s)
- Filippo Murina
- Lower Genital Tract Disease Unit, V. Buzzi Hospital, University of the Study of Milan, 20122 Milan, Italy
| | - Alessandra Graziottin
- Centre of Gynaecology and Medical Sexology, Department of Obstetrics and Gynaecology, San Raffaele Resnati Hospital, 20097 Milan, Italy;
| | - Nicla Toni
- Isola Tiberina Hospital-Gemelli Isola, 00186 Rome, Italy;
| | - Maria Teresa Schettino
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luca Bello
- Ce.Mu.S.S., ASL Città Di Torino, 10128 Turin, Italy;
| | | | | | - Dania Gambini
- Graziottin Foundation for the Management and Treatment of Pain in Women, NPO, 20097 Milan, Italy;
| | - Lara Tiranini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy; (L.T.); (R.E.N.)
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy; (L.T.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology—Menopause Unit, IRCCS S Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
20
|
Cen J, Wang L, Zhang H, Guo Y. Analysis of the prognostic significance and potential mechanisms of lncRNAs related to m6A methylation in laryngeal cancer. Biotechnol Genet Eng Rev 2024; 40:2129-2154. [PMID: 37053494 DOI: 10.1080/02648725.2023.2198630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/26/2023] [Indexed: 04/15/2023]
Abstract
Objective to investigate the prognostic significance and potential mechanism analysis of m6A methylation-associated lncRNAs in laryngeal cancer. Methods based on the expression of m6A-associated lncRNAs, the samples were divided into two clusters and least absolute value and selection operator (LASSO) regression analysis was performed to build and validate prognostic models. In addition, the relationships between risk scores, clusters, arginine synthase (SMS), tumor microenvironment, clinicopathological features, immune infiltration, immune checkpoints, and tumor mutation burden were analyzed. Finally, the relationship between SMS and m6A-associated IncRNAs was analyzed and SMS-associated pathways were enriched by gene set enrichment analysis (GSEA). Results a total of 95 lncRNAs were associated with the expression of 22 m6A methylation regulators in laryngeal cancer, 14 of which were prognostic lncRNAs. These lncRNAs were divided into two clusters and evaluated. Clinicopathological features did not show significant differences. However, the two clusters differed significantly in terms of naive B cells, memory B cells, naive CD4 T cells, T helper cells and immune score. lASSO regression analysis showed that risk score was a significant predictor of progression-free survival. Conclusion low expression of m6A-related lncRNAs involved in laryngeal cancer development in laryngeal cancer tissues can be used as an indicator to diagnose patients with laryngeal cancer, reduce patient prognosis, be an independent risk factor affecting patient prognosis and be able to assess patient prognosis.
Collapse
Affiliation(s)
- Jingtu Cen
- Shanghai Municipal Hospital of Traditional Chinese Medicine,ear-nose-throat department, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine,ear-nose-throat department, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haopeng Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine,ear-nose-throat department, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Guo
- Shanghai Municipal Hospital of Traditional Chinese Medicine,ear-nose-throat department, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Liu F, Liu J, Luo Y, Wu S, Liu X, Chen H, Luo Z, Yuan H, Shen F, Zhu F, Ye J. A Single-Cell Metabolic Profiling Characterizes Human Aging via SlipChip-SERS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406668. [PMID: 39231358 PMCID: PMC11538647 DOI: 10.1002/advs.202406668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Metabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface-enhanced Raman spectroscopy (SERS), termed SlipChip-SERS, is developed for single-cell metabolism analysis. This SlipChip-SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip-SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence-associated β-glactosidase activity, elevated expression of senescence-related genes and reduced LMNB1 levels. Additionally, the senescence-inducing capacity of spermine in HUVECs and WRL-68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip-SERS system is developed for single-cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Fugang Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jiaqing Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yang Luo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Siyi Wu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xu Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Haoran Chen
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Zhewen Luo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Haitao Yuan
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Feng Shen
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Fangfang Zhu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jian Ye
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghai200240China
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
22
|
Yorgan TA, Zhu Y, Wiedemann P, Schöneck K, Pohl S, Schweizer M, Amling M, Barvencik F, Oheim R, Schinke T. Inactivation of spermine synthase in mice causes osteopenia due to reduced osteoblast activity. J Bone Miner Res 2024; 39:1606-1620. [PMID: 39331754 DOI: 10.1093/jbmr/zjae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024]
Abstract
Spermine synthase, encoded by the SMS gene, is involved in polyamine metabolism, as it is required for the synthesis of spermine from its precursor molecule spermidine. Pathogenic variants of SMS are known to cause Snyder-Robinson syndrome (SRS), an X-linked recessive disorder causing various symptoms, including intellectual disability, muscular hypotonia, infertility, but also skeletal abnormalities, such as facial dysmorphisms and osteoporosis. Since the impact of a murine SMS deficiency has so far only been analyzed in Gy mice, where a large genomic deletion also includes the neighboring Phex gene, there is only limited knowledge about the potential role of SMS in bone cell regulation. In the present manuscript, we describe 2 patients carrying distinct SMS variants, both diagnosed with osteoporosis. Whereas the first patient displayed all characteristic hallmarks of SRS, the second patient was initially diagnosed, based on laboratory findings, as a case of adult-onset hypophosphatasia. To study the impact of SMS inactivation on bone remodeling, we took advantage of a newly developed mouse model carrying a pathogenic SMS variant (p.G56S). Compared to their wildtype littermates, 12-wk-old male SMSG56S/0 mice displayed reduced trabecular bone mass and cortical thickness, as assessed by μCT analysis of the femur. This phenotype was histologically confirmed by the analysis of spine and tibia sections, where we also observed a moderate enrichment of non-mineralized osteoid in SMSG56S/0 mice. Cellular and dynamic histomorphometry further identified a reduced bone formation rate as a main cause of the low bone mass phenotype. Likewise, primary bone marrow cells from SMSG56S/0 mice displayed reduced capacity to form a mineralized matrix ex vivo, thereby suggesting a cell-autonomous mechanism. Taken together, our data identify SMS as an enzyme with physiological relevance for osteoblast activity, thereby demonstrating an important role of polyamine metabolism in the control of bone remodeling.
Collapse
Affiliation(s)
- Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Yihao Zhu
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Philip Wiedemann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Kenneth Schöneck
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| |
Collapse
|
23
|
Tamura R, Chen J, De Jaeger M, Morris JF, Scott DA, Vangheluwe P, Looger LL. Genetically encoded fluorescent sensors for visualizing polyamine levels, uptake, and distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609037. [PMID: 39229183 PMCID: PMC11370472 DOI: 10.1101/2024.08.21.609037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polyamines are abundant and physiologically essential biomolecules that play a role in numerous processes, but are disrupted in diseases such as cancer, and cardiovascular and neurological disorders. Despite their importance, measuring free polyamine concentrations and monitoring their metabolism and uptake in cells in real-time remains impossible due to the lack of appropriate biosensors. Here we engineered, characterized, and validated the first genetically encoded biosensors for polyamines, named iPASnFRs. We demonstrate the utility of iPASnFR for detecting polyamine import into mammalian cells, to the cytoplasm, mitochondria, and the nucleus. We demonstrate that these sensors are useful to probe the activity of polyamine transporters and to uncover biochemical pathways underlying the distribution of polyamines amongst organelles. The sensors powered a high-throughput small molecule compound library screen, revealing multiple compounds in different chemical classes that strongly modulate cellular polyamine levels. These sensors will be powerful tools to investigate the complex interplay between polyamine uptake and metabolic pathways, address open questions about their role in health and disease, and enable screening for therapeutic polyamine modulators.
Collapse
|
24
|
Ferreira FHDC, Farrell NP, Costa LAS. Spermine and spermidine SI-PPCs: Molecular dynamics reveals enhanced biomolecular interactions. Int J Biol Macromol 2024; 278:134654. [PMID: 39128748 DOI: 10.1016/j.ijbiomac.2024.134654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
In this paper the effects on the interaction of highly positively charged substitution-inert platinum polynuclear complexes (SI-PPCs) with negatively charged DNA and heparin are examined and compared by theoretical chemistry methods. Electrostatic and hydrogen bonding interactions contribute to the overall effects on the biomolecule. Root Mean Square (RMS) deviation, Solvent Accessible Surface, RMS fluctuation, and interaction analysis all confirm similar effects on both biomolecules, dictated predominantly by the total positive charge and total number of hydrogen bonds formed. Especially, changes in structural parameters suggesting condensation and reduction of available surface area will reduce or prevent normal protein recognition and may thus potentially inhibit biological mechanisms related to apoptosis (DNA) or reduced vascularization viability (HEP). Thermodynamic analyses supported these findings with favourable interaction energies. The comparison of DNA and heparin confirms the general intersectionality between the two biomolecules and confirms the intrinsic dual-nature function of this chemotype. The distinction between the two-limiting mode of actions (HS or DNA-centred) could reflect an intriguing balance between extracellular (GAG) and intracellular (DNA) binding and affinities. The results underline the need to fully understand GAG-small molecule interactions and their contribution to drug pharmacology and related therapeutic modalities. This report contributes to that understanding.
Collapse
Affiliation(s)
- Frederico Henrique do C Ferreira
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA
| | - Luiz Antônio S Costa
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil.
| |
Collapse
|
25
|
Del Santos N, Vázquez-Ramírez R, Mendes E, Silva Júnior PI, Borges MM. Impact of Mygalin on Inflammatory Response Induced by Toll-like Receptor 2 Agonists and IFN-γ Activation. Int J Mol Sci 2024; 25:10555. [PMID: 39408882 PMCID: PMC11476598 DOI: 10.3390/ijms251910555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Several natural products are being studied to identify new bioactive molecules with therapeutic potential for infections, immune modulation, and other pathologies. TLRs are a family of receptors that play a crucial role in the immune system, constituting the first line of immune defense. They recognize specific products derived from microorganisms that activate multiple pathways and transcription factors in target cells, which are vital for producing immune mediators. Mygalin is a synthetic acylpolyamine derived from hemocytes of the spider Acanthoscurria gomesiana. This molecule negatively regulates macrophage response to LPS stimulation by interacting with MD2 in the TLR4/MD2 complex. Here, we investigated the activity of Mygalin mediated by TLR2 agonists in cells treated with Pam3CSK4 (TLR2/1), Pam2CSK4, Zymosan (TLR2/6), and IFN-γ. Our data showed that Mygalin significantly inhibited stimulation with agonists and IFN-γ, reducing NO and IL-6 synthesis, regardless of the stimulation. There was also a significant reduction in the phosphorylation of proteins NF-κB p65 and STAT-1 in cells treated with Pam3CSK4. Molecular docking assays determined the molecular structure of Mygalin and agonists Pam3CSK4, Pam2CSK4, and Zymosan, as well as their interaction and free energy with the heterodimeric complexes TLR2/1 and TLR2/6. Mygalin interacted with the TLR1 and TLR2 dimer pathway through direct interaction with the agonists, and the ligand-binding domain was similar in both complexes. However, the binding of Mygalin was different from that of the agonists, since the interaction energy with the receptors was lower than with the agonists for their receptors. In conclusion, this study showed the great potential of Mygalin as a potent natural inhibitor of TLR2/1 and TLR2/6 and a suppressor of the inflammatory response induced by TLR2 agonists, in part due to its ability to interact with the heterodimeric complexes.
Collapse
Affiliation(s)
- Nayara Del Santos
- Bacteriology Laboratory, Butantan Institute, São Paulo 05585-000, Brazil;
| | - Ricardo Vázquez-Ramírez
- Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Elizabeth Mendes
- Bacteriology Laboratory, Butantan Institute, São Paulo 05585-000, Brazil;
| | | | | |
Collapse
|
26
|
Qiao Z, Do PH, Yeo JY, Ero R, Li Z, Zhan L, Basak S, Gao YG. Structural insights into polyamine spermidine uptake by the ABC transporter PotD-PotABC. SCIENCE ADVANCES 2024; 10:eado8107. [PMID: 39303029 DOI: 10.1126/sciadv.ado8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Polyamines, characterized by their polycationic nature, are ubiquitously present in all organisms and play numerous cellular functions. Among polyamines, spermidine stands out as the predominant type in both prokaryotic and eukaryotic cells. The PotD-PotABC protein complex in Escherichia coli, belonging to the adenosine triphosphate-binding cassette transporter family, is a spermidine-preferential uptake system. Here, we report structural details of the polyamine uptake system PotD-PotABC in various states. Our analyses reveal distinct "inward-facing" and "outward-facing" conformations of the PotD-PotABC transporter, as well as conformational changes in the "gating" residues (F222, Y223, D226, and K241 in PotB; Y219 and K223 in PotC) controlling spermidine uptake. Therefore, our structural analysis provides insights into how the PotD-PotABC importer recognizes the substrate-binding protein PotD and elucidates molecular insights into the spermidine uptake mechanism of bacteria.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Phong Hoa Do
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Joshua Yi Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Zhuowen Li
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
27
|
Sukhanova MV, Anarbaev RO, Maltseva EA, Kutuzov MM, Lavrik OI. Divalent and multivalent cations control liquid-like assembly of poly(ADP-ribosyl)ated PARP1 into multimolecular associates in vitro. Commun Biol 2024; 7:1148. [PMID: 39278937 PMCID: PMC11402994 DOI: 10.1038/s42003-024-06811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
The formation of nuclear biomolecular condensates is often associated with local accumulation of proteins at a site of DNA damage. The key role in the formation of DNA repair foci belongs to PARP1, which is a sensor of DNA damage and catalyzes the synthesis of poly(ADP-ribose) attracting repair factors. We show here that biogenic cations such as Mg2+, Ca2+, Mn2+, spermidine3+, or spermine4+ can induce liquid-like assembly of poly(ADP-ribosyl)ated [PARylated] PARP1 into multimolecular associates (hereafter: self-assembly). The self-assembly of PARylated PARP1 affects the level of its automodification and hydrolysis of poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase (PARG). Furthermore, association of PARylated PARP1 with repair proteins strongly stimulates strand displacement DNA synthesis by DNA polymerase β (Pol β) but has no noticeable effect on DNA ligase III activity. Thus, liquid-like self-assembly of PARylated PARP1 may play a critical part in the regulation of i) its own activity, ii) PARG-dependent hydrolysis of poly(ADP-ribose), and iii) Pol β-mediated DNA synthesis. The latter can be considered an additional factor influencing the choice between long-patch and short-patch DNA synthesis during repair.
Collapse
Affiliation(s)
- Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Rashid O Anarbaev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Ekaterina A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia.
| |
Collapse
|
28
|
Heruye SH, Myslinski J, Zeng C, Zollman A, Makino S, Nanamatsu A, Mir Q, Janga SC, Doud EH, Eadon MT, Maier B, Hamada M, Tran TM, Dagher PC, Hato T. Inflammation primes the murine kidney for recovery by activating AZIN1 adenosine-to-inosine editing. J Clin Invest 2024; 134:e180117. [PMID: 38954486 PMCID: PMC11364396 DOI: 10.1172/jci180117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and adenosine deaminase isoform switching. We found that A-to-I editing of antizyme inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I-edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.
Collapse
Affiliation(s)
- Segewkal Hawaze Heruye
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jered Myslinski
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Amy Zollman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shinichi Makino
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Azuma Nanamatsu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Quoseena Mir
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, USA
| | - Sarath Chandra Janga
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernhard Maier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- AIST–Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Tuan M. Tran
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | - Pierre C. Dagher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Prabodh A, Grimm LM, Biswas PK, Mahram V, Biedermann F. Pillar[n]arene-Based Fluorescence Turn-On Chemosensors for the Detection of Spermine, Spermidine, and Cadaverine in Saline Media and Biofluids. Chemistry 2024; 30:e202401071. [PMID: 39140791 DOI: 10.1002/chem.202401071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 08/15/2024]
Abstract
Polyamines are essential analytes due to their critical role in various biological processes and human health in general. Due to their role as regulators for cell growth and proliferation (putrescine and spermine), as neuroprotectors, gero-, and cardiovascular protectors (spermidine), and as bacterial growth indicators (cadaverine), rapid, simple, and cost-effective methods for polyamine detection in biofluids are in demand. The present study focuses on the development and investigation of self-assembled and fluorescent host⋅dye chemo-sensors based on sulfonated pillar[5]arene for the specific detection of polyamines. Binding studies, as well as stability and functionality assessments of the turn-on chemosensors for selective polyamine detection in saline and biologically relevant media, are shown. Furthermore, the practical applicability of the developed chemo-sensors is demonstrated in biofluids such as human urine and saliva.
Collapse
Affiliation(s)
- Amrutha Prabodh
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Laura M Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Pronay Kumar Biswas
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Vahideh Mahram
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
30
|
Rajangam SL, Narasimhan MK. Current treatment strategies for targeting virulence factors and biofilm formation in Acinetobacter baumannii. Future Microbiol 2024; 19:941-961. [PMID: 38683166 PMCID: PMC11290764 DOI: 10.2217/fmb-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
A higher prevalence of Acinetobacter baumannii infections and mortality rate has been reported recently in hospital-acquired infections (HAI). The biofilm-forming capability of A. baumannii makes it an extremely dangerous pathogen, especially in device-associated hospital-acquired infections (DA-HAI), thereby it resists the penetration of antibiotics. Further, the transmission of the SARS-CoV-2 virus was exacerbated in DA-HAI during the epidemic. This review specifically examines the complex interconnections between several components and genes that play a role in the biofilm formation and the development of infections. The current review provides insights into innovative treatments and therapeutic approaches to combat A. baumannii biofilm-related infections, thereby ultimately improving patient outcomes and reducing the burden of HAI.
Collapse
Affiliation(s)
- Seetha Lakshmi Rajangam
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
31
|
Tueffers L, Batra A, Zimmermann J, Botelho J, Buchholz F, Liao J, Mendoza Mejía N, Munder A, Klockgether J, Tüemmler B, Rupp J, Schulenburg H. Variation in the response to antibiotics and life-history across the major Pseudomonas aeruginosa clone type (mPact) panel. Microbiol Spectr 2024; 12:e0014324. [PMID: 38860784 PMCID: PMC11218531 DOI: 10.1128/spectrum.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous, opportunistic human pathogen. Since it often expresses multidrug resistance, new treatment options are urgently required. Such new treatments are usually assessed with one of the canonical laboratory strains, PAO1 or PA14. However, these two strains are unlikely representative of the strains infecting patients, because they have adapted to laboratory conditions and do not capture the enormous genomic diversity of the species. Here, we characterized the major P. aeruginosa clone type (mPact) panel. This panel consists of 20 strains, which reflect the species' genomic diversity, cover all major clone types, and have both patient and environmental origins. We found significant strain variation in distinct responses toward antibiotics and general growth characteristics. Only few of the measured traits are related, suggesting independent trait optimization across strains. High resistance levels were only identified for clinical mPact isolates and could be linked to known antimicrobial resistance (AMR) genes. One strain, H01, produced highly unstable AMR combined with reduced growth under drug-free conditions, indicating an evolutionary cost to resistance. The expression of microcolonies was common among strains, especially for strain H15, which also showed reduced growth, possibly indicating another type of evolutionary trade-off. By linking isolation source, growth, and virulence to life history traits, we further identified specific adaptive strategies for individual mPact strains toward either host processes or degradation pathways. Overall, the mPact panel provides a reasonably sized set of distinct strains, enabling in-depth analysis of new treatment designs or evolutionary dynamics in consideration of the species' genomic diversity. IMPORTANCE New treatment strategies are urgently needed for high-risk pathogens such as the opportunistic and often multidrug-resistant pathogen Pseudomonas aeruginosa. Here, we characterize the major P. aeruginosa clone type (mPact) panel. It consists of 20 strains with different origins that cover the major clone types of the species as well as its genomic diversity. This mPact panel shows significant variation in (i) resistance against distinct antibiotics, including several last resort antibiotics; (ii) related traits associated with the response to antibiotics; and (iii) general growth characteristics. We further developed a novel approach that integrates information on resistance, growth, virulence, and life-history characteristics, allowing us to demonstrate the presence of distinct adaptive strategies of the strains that focus either on host interaction or resource processing. In conclusion, the mPact panel provides a manageable number of representative strains for this important pathogen for further in-depth analyses of treatment options and evolutionary dynamics.
Collapse
Affiliation(s)
- Leif Tueffers
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Aditi Batra
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic resistance group, Max-Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Johannes Zimmermann
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic resistance group, Max-Planck Institute for Evolutionary Biology, Ploen, Germany
| | - João Botelho
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic resistance group, Max-Planck Institute for Evolutionary Biology, Ploen, Germany
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Florian Buchholz
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Junqi Liao
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | | | - Antje Munder
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Jens Klockgether
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Burkhard Tüemmler
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic resistance group, Max-Planck Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
32
|
Mozibullah M, Khatun M, Sikder M, Islam M, Sharmin M. Identifying Oncogenic Missense Single Nucleotide Polymorphisms in Human SAT1 Gene Using Computational Algorithms and Molecular Dynamics Tools. Cancer Rep (Hoboken) 2024; 7:e2130. [PMID: 39041636 PMCID: PMC11264109 DOI: 10.1002/cnr2.2130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/04/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND The human SAT1 gene encodes spermidine/spermine N1-acetyltransferase 1 (SSAT1), a regulatory biological catalyst of polyamine catabolism. Numerous essential biological processes, such as cellular proliferation, differentiation, and survival, depend on polyamines like spermidine and spermine. Thus, SSAT1 is involved in key cellular activities such as proliferation and survival of cells and mediates various diseases including cancer. A plethora of studies established the involvement of missense single nucleotide polymorphisms (SNPs) in numerous pathological conditions due to their ability to adversely affect the structure and subsequent function of the protein. AIMS To date, an in silico study to identify the pathogenic missense SNPs of the human SAT1 gene has not been accomplished yet. This study aimed to filter the missense SNPs that were functionally detrimental and pathogenic. METHODS AND RESULTS The rs757435207 (I21N) was ascertained to be the most deleterious and pathogenic by all algorithmic tools. Stability and evolutionary conservation analysis tools also stated that I21N variant decreased the stability and was located in the highly conserved residue. Molecular dynamics simulation revealed that I21N caused substantial alterations in the conformational stability and dynamics of the SSAT1 protein. Consequently, the I21N variant could disrupt the native functional roles of the SSAT1 enzyme. CONCLUSION Therefore, the I21N variant was identified and concluded to be an oncogenic missense variant of the human SAT1 gene. Overall, the findings of this study would be a great directory of future experimental research to develop personalized medicine.
Collapse
Affiliation(s)
- Md. Mozibullah
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Marina Khatun
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Asaduzzaman Sikder
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Mehbuba Sharmin
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| |
Collapse
|
33
|
Mojumdar A, B S U, Packirisamy G. A simple and effective method for smartphone-based detection of polyamines in oral cancer. Biomed Mater 2024; 19:045044. [PMID: 38871001 DOI: 10.1088/1748-605x/ad581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Oral cancer accounts for 50%-70% of all cancer-related deaths in India and ranks sixth among the most frequent cancers globally. Roughly 90% of oral malignancies are histologically arise from squamous cells and are therefore called oral squamous cell carcinoma. Organic polycations known as biogenic polyamines, for example, putrescine (Put), spermidine (Spd), and spermine (Spm), are vital for cell proliferation, including gene expression control, regulation of endonuclease-mediated fragmentation of DNA, and DNA damage inhibition. Higher Spm and Spd levels have been identified as cancer biomarkers for detecting tumour development in various cancers. The current study utilises tannic acid, a polyphenolic compound, as a reducing and capping agent to fabricate AuNPs via a one-step microwave-assisted synthesis. The fabricated TA@AuNPs were utilised as a nanoprobe for colourimetric sensing of polyamines in PBS. When TA@AuNPs are added to the polyamine, the amine groups in polyamines interact with the phenolic groups of TA@AuNPs via hydrogen bonding or electrostatic interactions. These interactions cause the aggregation of TA@AuNPs, resulting in a red shift of the Surface Plasmon Resonance band of TA@AuNPs from 530 nm to 560 nm. The nanoprobe was found to be highly specific for Spm at low concentrations. TA@AuNPs were able to detect Spm successfully in artificial saliva samples. On recording the RGB values of the sensing process using a smartphone app, it was found that as the nanoparticles aggregated due to the presence of Spm, the intensity of theR-value decreased, indicating the aggregation of TA@AuNPs due to interaction with the polyamine.
Collapse
Affiliation(s)
- Asmita Mojumdar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Unnikrishnan B S
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Gopinath Packirisamy
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
34
|
Campbell K, Kowalski CH, Kohler KM, Barber MF. Evolution of polyamine resistance in Staphylococcus aureus through modulation of potassium transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599172. [PMID: 38915543 PMCID: PMC11195161 DOI: 10.1101/2024.06.15.599172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Microbes must adapt to diverse biotic and abiotic factors encountered in host environments. Polyamines are an abundant class of aliphatic molecules that play essential roles in fundamental cellular processes across the tree of life. Surprisingly, the bacterial pathogen Staphylococcus aureus is highly sensitive to polyamines encountered during infection, and acquisition of a polyamine resistance locus has been implicated in spread of the prominent USA300 methicillin-resistant S. aureus lineage. At present, alternative pathways of polyamine resistance in staphylococci are largely unknown. Here we applied experimental evolution to identify novel mechanisms and consequences of S. aureus adaption when exposed to increasing concentrations of the polyamine spermine. Evolved populations of S. aureus exhibited striking evidence of parallel adaptation, accumulating independent mutations in the potassium transporter genes ktrA and ktrD. Mutations in either ktrA or ktrD are sufficient to confer polyamine resistance and function in an additive manner. Moreover, we find that ktr mutations provide increased resistance to multiple classes of unrelated cationic antibiotics, suggesting a common mechanism of resistance. Consistent with this hypothesis, ktr mutants exhibit alterations in cell surface charge indicative of reduced affinity and uptake of cationic molecules. Finally, we observe that laboratory-evolved ktr mutations are also present in diverse natural S. aureus isolates, suggesting these mutations may contribute to antimicrobial resistance during human infections. Collectively this study identifies a new role for potassium transport in S. aureus polyamine resistance with consequences for susceptibility to both host-derived and clinically-used antimicrobials.
Collapse
Affiliation(s)
- Killian Campbell
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
- Department of Biology, University of Oregon, Eugene, OR USA
| | | | - Kristin M. Kohler
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Matthew F. Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
- Department of Biology, University of Oregon, Eugene, OR USA
| |
Collapse
|
35
|
Adams JME, Moulding PB, El-Halfawy OM. Polyamine-Mediated Sensitization of Klebsiella pneumoniae to Macrolides through a Dual Mode of Action. ACS Infect Dis 2024; 10:2183-2195. [PMID: 38695481 DOI: 10.1021/acsinfecdis.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Chemicals bacteria encounter at the infection site could shape their stress and antibiotic responses; such effects are typically undetected under standard lab conditions. Polyamines are small molecules typically overproduced by the host during infection and have been shown to alter bacterial stress responses. We sought to determine the effect of polyamines on the antibiotic response of Klebsiella pneumoniae, a Gram-negative priority pathogen. Interestingly, putrescine and other natural polyamines sensitized K. pneumoniae to azithromycin, a macrolide protein translation inhibitor typically used for Gram-positive bacteria. This synergy was further potentiated in the physiological buffer, bicarbonate. Chemical genomic screens suggested a dual mechanism, whereby putrescine acts at the membrane and ribosome levels. Putrescine permeabilized the outer membrane of K. pneumoniae (NPN and β-lactamase assays) and the inner membrane (Escherichia coli β-galactosidase assays). Chemically and genetically perturbing membranes led to a loss of putrescine-azithromycin synergy. Putrescine also inhibited protein synthesis in an E. coli-derived cell-free protein expression assay simultaneously monitoring transcription and translation. Profiling the putrescine-azithromycin synergy against a combinatorial array of antibiotics targeting various ribosomal sites suggested that putrescine acts as tetracyclines targeting the 30S ribosomal acceptor site. Next, exploiting the natural polyamine-azithromycin synergy, we screened a polyamine analogue library for azithromycin adjuvants, discovering four azithromycin synergists with activity starting from the low micromolar range and mechanisms similar to putrescine. This work sheds light on the bacterial antibiotic responses under conditions more reflective of those at the infection site and provides a new strategy to extend the macrolide spectrum to drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Joshua M E Adams
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
36
|
Zhang S, Tang H, Zhou M, Pan L. Sexual dimorphism association of combined exposure to volatile organic compounds (VOC) with kidney damage. ENVIRONMENTAL RESEARCH 2024; 258:119426. [PMID: 38879106 DOI: 10.1016/j.envres.2024.119426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Epidemiological evidence emphasizes air pollutants' role in chronic kidney disease (CKD). Volatile organic compounds (VOCs) contribute to air pollution, yet research on VOCs and kidney damage, especially gender disparities, is limited. METHODS This study analyzed NHANES data to explore associations between urinary VOC metabolite mixtures (VOCMs) and key kidney-related parameters: estimated glomerular filtration rate (eGFR), albumin-to-creatinine ratio (ACR), chronic kidney disease (CKD), and albuminuria. Mediation analyses assessed the potential mediating roles of biological aging (BA) and serum albumin in VOCM mixtures' effects on kidney damage. Sensitivity analyses were also conducted. RESULTS The mixture analysis unveiled a noteworthy positive association between VOCM mixtures and the risk of developing CKD, coupled with a significant negative correlation with eGFR within the overall participant cohort. These findings remained consistent when examining the female subgroup. However, among male participants, no significant link emerged between VOCM mixtures and CKD or eGFR. Furthermore, in both the overall and female participant groups, there was an absence of a significant correlation between VOCM mixtures and either ACR or albuminuria. On the other hand, in male participants, while no significant correlation was detected with albuminuria, a significant positive correlation was observed with ACR. Pollutant analysis identified potential links between kidney damage and 1,3-butadiene, toluene, ethylbenzene, styrene, xylene, acrolein, crotonaldehyde and propylene oxide. Mediation analyses suggested that BA might partially mediate the relationship between VOCM mixtures and kidney damage. CONCLUSION The current findings highlight the widespread exposure to VOCs among the general U.S. adult population and indicate a potential correlation between exposure to VOC mixtures and compromised renal function parameters, with notable gender disparities. Females appear to exhibit greater sensitivity to impaired renal function resulting from VOCs exposure. Anti-aging treatments may offer some mitigation against kidney damage due to VOCs exposure.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Male Reproductive Health, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China; Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China.
| | - Hanhan Tang
- Graduate School of Xuzhou Medical University, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, China
| | - Minglian Zhou
- Department of Male Reproductive Health, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China; Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China
| | - Linqing Pan
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China
| |
Collapse
|
37
|
Gázquez A, García-Serna AM, Hernández-Caselles T, Martín-Orozco E, Cantero-Cano E, Prieto-Sánchez MT, Molina-Ruano MD, Castillo-Lacalle R, Vioque J, Morales E, García-Marcos L, Larqué E. Plasma polyamines during pregnancy and their relationships with maternal allergies and the immune response of the neonates. Pediatr Allergy Immunol 2024; 35:e14167. [PMID: 38860435 DOI: 10.1111/pai.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Some studies have reported that polyamine levels may influence immune system programming. The aim of this study was to evaluate the polyamine profile during gestation and its associations with maternal allergy and cytokine production in cord blood cells in response to different allergenic stimuli. METHODS Polyamines were determined in plasma of pregnant women (24 weeks, N = 674) and in umbilical cord samples (N = 353 vein and N = 160 artery) from the Mediterranean NELA birth cohort. Immune cell populations were quantified, and the production of cytokines in response to different allergic and mitogenic stimuli was assessed in cord blood. RESULTS Spermidine and spermine were the most prevalent polyamines in maternal, cord venous, and cord arterial plasma. Maternal allergies, especially allergic conjunctivitis, were associated with lower spermine in umbilical cord vein. Higher levels of polyamines were associated with higher lymphocyte number but lower Th2-related cells in cord venous blood. Those subjects with higher levels of circulating polyamines in cord showed lower production of inflammatory cytokines, especially IFN-α, and lower production of Th2-related cytokines, mainly IL-4 and IL-5. The effects of polyamines on Th1-related cytokines production were uncertain. CONCLUSIONS Spermidine and spermine are the predominant polyamines in plasma of pregnant women at mid-pregnancy and also in umbilical cord. Maternal allergic diseases like allergic conjunctivitis are related to lower levels of polyamines in cord vein, which could influence the immune response of the newborn. Cord polyamine content is related to a decreased Th2 response and inflammatory cytokines production, which might be important to reduce an allergenic phenotype in the neonate.
Collapse
Affiliation(s)
- Antonio Gázquez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Physiology, University of Murcia, Murcia, Spain
| | - Azahara M García-Serna
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Public Health Sciences, University of Murcia, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain
| | - Elena Martín-Orozco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain
| | | | - María T Prieto-Sánchez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Obstetrics & Gynaecology Service, "Virgen de la Arrixaca" University Clinical Hospital, University of Murcia, Murcia, Spain
| | - María D Molina-Ruano
- Obstetrics & Gynaecology Service, "Virgen de la Arrixaca" University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Rafaela Castillo-Lacalle
- Obstetrics & Gynaecology Service, "Virgen de la Arrixaca" University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Jesús Vioque
- Health and Biomedical Research Institute of Alicante (ISABIAL-UMH), Alicante, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Public Health Sciences, University of Murcia, Murcia, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Luís García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain
| | - Elvira Larqué
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Physiology, University of Murcia, Murcia, Spain
| |
Collapse
|
38
|
Takahashi Y. ACL5 acquired strict thermospermine synthesis activity during the emergence of vascular plants. THE NEW PHYTOLOGIST 2024; 242:2669-2681. [PMID: 38587066 DOI: 10.1111/nph.19733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
Norspermine (Nspm), one of the uncommon polyamines (PAs), was detected in bryophytes and lycophytes; therefore, the aminopropyltransferases involved in the synthesis of Nspm were investigated. The enzymatic activity was evaluated by the transient high expression of various aminopropyltransferase genes in Nicotiana benthamiana, followed by quantification of PA distribution in the leaves using gas chromatography-mass spectrometry. The bryophyte orthologues of ACL5, which is known to synthesise thermospermine (Tspm) in flowering plants, were found to have strong Nspm synthesis activity. In addition, two ACL5 orthologous with different substrate specificities were conserved in Selaginella moellendorffii, one of which was involved in Tspm synthesis and the other in Nspm synthesis. Therefore, further detailed analysis using these two factors revealed that the β-hairpin structural region consisting of β-strands 1 and 2 at the N-terminus of ACL5 is involved in substrate specificity. Through functional analysis of a total of 40 ACL5 genes in 33 organisms, including algae, it was shown that ACL5 has changed its substrate specificity several times during plant evolution and diversification. Furthermore, it was strongly suggested that ACL5 acquired strict Tspm synthesis activity during the emergence of vascular plants, especially through major changes around the β-hairpin structural region.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University, 2-3-1 Matsukadai Higashi-ku, Fukuoka, 813-8503, Japan
| |
Collapse
|
39
|
Lin YT, Wang YC, Xue YM, Tong Z, Jiang GY, Hu XR, Crittenden JC, Wang C. Decoding the influence of low temperature on biofilm development: The hidden roles of c-di-GMP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172376. [PMID: 38604376 DOI: 10.1016/j.scitotenv.2024.172376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Biofilms are widely used and play important roles in biological processes. Low temperature of wastewater inhibits the development of biofilms derived from wastewater activated sludge. However, the specific mechanism of temperature on biofilm development is still unclear. This study explored the mechanism of temperature on biofilm development and found a feasible method to enhance biofilm development at low temperature. The amount of biofilm development decreased by approximately 66 % and 55 % at 4 °C and 15 °C, respectively, as compared to 28 °C. The cyclic dimeric guanosine monophosphate (c-di-GMP) concentration also decreased at low temperature and was positively correlated with extracellular polymeric substance (EPS) content, formation, and adhesion strength. Microbial community results showed that low temperature inhibited the normal survival of most microorganisms, but promoted the growth of some psychrophile bacteria like Sporosarcina, Caldilineaceae, Gemmataceae, Anaerolineaceae and Acidobacteriota. Further analysis of functional genes demonstrated that the abundance of functional genes related to the synthesis of c-di-GMP (K18968, K18967 and K13590) decreased at low temperature. Subsequently, the addition of exogenous spermidine increased the level of intracellular c-di-GMP and alleviated the inhibition effect of low temperature on biofilm development. Therefore, the possible mechanism of low temperature on biofilm development could be the inhibition of the microorganism activity and reduction of the communication level between cells, which is the closely related to the EPS content, formation, and adhesion strength. The enhancement of c-di-GMP level through the exogenous addition of spermidine provides an alternative strategy to enhance biofilm development at low temperatures. The results of this study enhance the understanding of the influence of temperature on biofilm development and provide possible strategies for enhancing biofilm development at low temperatures.
Collapse
Affiliation(s)
- Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Yi-Mei Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Zhen Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - John C Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| |
Collapse
|
40
|
Furumoto T, Yamaoka S, Kohchi T, Motose H, Takahashi T. Thermospermine Is an Evolutionarily Ancestral Phytohormone Required for Organ Development and Stress Responses in Marchantia Polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:460-471. [PMID: 38179828 PMCID: PMC11020214 DOI: 10.1093/pcp/pcae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Thermospermine suppresses auxin-inducible xylem differentiation, whereas its structural isomer, spermine, is involved in stress responses in angiosperms. The thermospermine synthase, ACAULIS5 (ACL5), is conserved from algae to land plants, but its physiological functions remain elusive in non-vascular plants. Here, we focused on MpACL5, a gene in the liverwort Marchantia polymorpha, that rescued the dwarf phenotype of the acl5 mutant in Arabidopsis. In the Mpacl5 mutants generated by genome editing, severe growth retardation was observed in the vegetative organ, thallus, and the sexual reproductive organ, gametangiophore. The mutant gametangiophores exhibited remarkable morphological defects such as short stalks, fasciation and indeterminate growth. Two gametangiophores fused together, and new gametangiophores were often initiated from the old ones. Furthermore, Mpacl5 showed altered responses to heat and salt stresses. Given the absence of spermine in bryophytes, these results suggest that thermospermine has a dual primordial function in organ development and stress responses in M. polymorpha. The stress response function may have eventually been assigned to spermine during land plant evolution.
Collapse
Affiliation(s)
- Takuya Furumoto
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| |
Collapse
|
41
|
Zhao X, Xu Q, Wang Q, Liang X, Wang J, Jin H, Man Y, Guo D, Gao F, Tang X. Induced Self-Assembly of Vitamin E-Spermine/siRNA Nanocomplexes via Spermine/Helix Groove-Specific Interaction for Efficient siRNA Delivery and Antitumor Therapy. Adv Healthc Mater 2024; 13:e2303186. [PMID: 38234201 DOI: 10.1002/adhm.202303186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Gene therapy has been one of potential strategies for the treatment of different diseases, where efficient and safe gene delivery systems are also extremely in need. Current lipid nanoparticles (LNP) technology highly depends on the packing and condensation of nucleic acids with amine moieties. Here, an attempt to covalently link two natural compounds, spermine and vitamin E, is made to develop self-assembled nucleic acid delivery systems. Among them, the spermine moieties specifically interact with the major groove of siRNA helix through salt bridge interaction, while vitamin E moieties are located around siRNA duplex. Such amphiphilic vitamin E-spermine/siRNA complexes can further self-assemble into nanocomplexes like multiblade wheels. Further studies indicate that these siRNA nanocomplexes with the neutrally charged surface of vitamin E can enter cells via caveolin/lipid raft mediated endocytosis pathway and bypass lysosome trapping. With these self-assembled delivery systems, efficient siRNA delivery is successfully achieved for Eg5 and Survivin gene silencing as well as DNA plasmid delivery. Further in vivo study indicates that VE-Su-Sper/DSPE-PEG2000/siSurvivin self-assembled nanocomplexes can accumulate in cancer cells and gradually release siRNA in tumor tissues and show significant antitumor effect in vivo. The self-assembled delivery system provides a novel strategy for highly efficient siRNA delivery.
Collapse
Affiliation(s)
- Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Qi Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Xingxing Liang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Yizhi Man
- School of Chemistry and Materials Science, Anhui Normal University, NO. 189 Jiuhua South Rd., Anhui, Wuhu, 241002, China
| | - Dongyang Guo
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Feng Gao
- School of Chemistry and Materials Science, Anhui Normal University, NO. 189 Jiuhua South Rd., Anhui, Wuhu, 241002, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| |
Collapse
|
42
|
Nair AV, Singh A, Devasurmutt Y, Rahman SA, Tatu US, Chakravortty D. Spermidine constitutes a key determinant of motility and attachment of Salmonella Typhimurium through a novel regulatory mechanism. Microbiol Res 2024; 281:127605. [PMID: 38232495 DOI: 10.1016/j.micres.2024.127605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Spermidine is a poly-cationic molecule belonging to the family of polyamines and is ubiquitously present in all organisms. Salmonella synthesizes, and harbours specialized transporters to import spermidine. A group of polyamines have been shown to assist in Salmonella Typhimurium's virulence and regulation of Salmonella pathogenicity Inslad 1 (SPI-1) genes and stress resistance; however, the mechanism remains elusive. The virulence trait of Salmonella depends on its ability to employ multiple surface structures to attach and adhere to the surface of the target cells before invasion and colonization of the host niche. Our study discovers the mechanism by which spermidine assists in the early stages of Salmonella pathogenesis. For the first time, we report that Salmonella Typhimurium regulates spermidine transport and biosynthesis processes in a mutually inclusive manner. Using a mouse model, we show that spermidine is critical for invasion into the murine Peyer's patches, which further validated our in vitro cell line observation. We show that spermidine controls the mRNA expression of fimbrial (fimA) and non-fimbrial adhesins (siiE, pagN) in Salmonella and thereby assists in attachment to host cell surfaces. Spermidine also regulated the motility through the expression of flagellin genes by enhancing the translation of sigma-28, which features an unusual start codon and a poor Shine-Dalgarno sequence. Besides regulating the formation of the adhesive structures, spermidine tunes the expression of the two-component system BarA/SirA to regulate SPI-1 encoded genes. Thus, our study unravels a novel regulatory mechanism by which spermidine exerts critical functions during Salmonella Typhimurium pathogenesis.
Collapse
Affiliation(s)
- Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Yashas Devasurmutt
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - S A Rahman
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Utpal Shashikant Tatu
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
43
|
Kobayashi T, Sakamoto A, Hisano T, Kashiwagi K, Igarashi K, Takao K, Uemura T, Furuchi T, Sugita Y, Moriya T, Oshima T, Terui Y. Caldomycin, a new guanidopolyamine produced by a novel agmatine homocoupling enzyme involved in homospermidine biosynthesis. Sci Rep 2024; 14:7566. [PMID: 38555406 PMCID: PMC10981699 DOI: 10.1038/s41598-024-58296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
An extreme thermophilic bacterium, Thermus thermophilus produces more than 20 unusual polyamines, but their biosynthetic pathways, including homospermidine, are not yet fully understood. Two types of homospermidine synthases have been identified in plants and bacteria, which use spermidine and putrescine or two molecules of putrescine as substrates. However, homospermidine synthases with such substrate specificity have not been identified in T. thermophilus. Here we identified a novel agmatine homocoupling enzyme that is involved in homospermidine biosynthesis in T. thermophilus. The reaction mechanism is different from that of a previously described homospermidine synthase, and involves conjugation of two molecules of agmatine, which produces a diamidino derivative of homospermidine (caldomycin) as an immediate precursor of homospermidine. We conclude that there is a homospermidine biosynthetic pathway from agmatine via caldomycin synthase followed by ureohydrolase in T. thermophilus. Furthermore, it is shown that caldomycin is a novel compound existing in nature.
Collapse
Affiliation(s)
- Teruyuki Kobayashi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan
| | - Tamao Hisano
- RIKEN Center for Biosystems Dynamics Research (BDR), Tsurumi, Kanagawa, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Japan
| | - Koichi Takao
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Takeshi Uemura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Takemitsu Furuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Yoshiaki Sugita
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Toshiyuki Moriya
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo, Japan
| | - Tairo Oshima
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan.
- School of Pharmacy, International University of Health and Welfare, Otawara, Tochigi, Japan.
| |
Collapse
|
44
|
Uehara M, Fukumoto A, Omote H, Hiasa M. Polyamine release and vesicular polyamine transporter expression in megakaryoblastic cells and platelets. Biochim Biophys Acta Gen Subj 2024:130610. [PMID: 38527572 DOI: 10.1016/j.bbagen.2024.130610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Polyamines not only play essential roles in cell growth and function of living organisms but are also released into the extracellular space and function as regulators of chemical transduction, although the cells from which they are released and their mode of release are not well understood. The vesicular polyamine transporter (VPAT), encoded by the SLC18B1 is responsible for the vesicular storage of spermine and spermidine, followed by their vesicular release from secretory cells. Focusing on VPAT will help identify polyamine-secreting cells and new polyamine functions. In this study, we investigated the possible involvement of VPAT in vesicular release of polyamines in MEG-01 clonal megakaryoblastic cells and platelets. RT-PCR, western blotting, and immunohistochemistry revealed VPAT expression in MEG-01 cells. MEG-01 cells secreted polyamines upon A23187 stimulation in the presence of Ca2+, which is temperature-dependent and sensitive to bafilomycin A1. A23187-induced polyamine secretion from MEG-01 cells was reduced by treatment with reserpine, VPAT inhibitors, or VPAT RNA interference. Platelets also expressed VPAT, displaying a punctate distribution, and released spermidine upon A23187 and thrombin stimulation. These findings have demonstrated VPAT-mediated vesicular polyamine release from MEG-01 cells, suggesting the presence of similar vesicular polyamine release mechanisms in platelets.
Collapse
Affiliation(s)
- Mizuki Uehara
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Ayaka Fukumoto
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Miki Hiasa
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
45
|
Alayoubi AM, Iqbal M, Aman H, Hashmi JA, Alayadhi L, Al-Regaiey K, Basit S. Loss-of-function variant in spermidine/spermine N1-acetyl transferase like 1 (SATL1) gene as an underlying cause of autism spectrum disorder. Sci Rep 2024; 14:5765. [PMID: 38459140 PMCID: PMC10923806 DOI: 10.1038/s41598-024-56253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complicated, lifelong neurodevelopmental disorder affecting verbal and non-verbal communication and social interactions. ASD signs and symptoms appear early in development before the age of 3 years. It is unlikely for a person to acquire autism after a period of normal development. However, we encountered an 8-year-old child who developed ASD later in life although his developmental milestones were normal at the beginning of life. Sequencing the complete coding part of the genome identified a hemizygous nonsense mutation (NM_001367857.2):c.1803C>G; (p.Tyr601Ter) in the gene (SATL1) encoding spermidine/spermine N1-acetyl transferase like 1. Screening an ASD cohort of 28 isolated patients for the SATL1 gene identified another patient with the same variant. Although SATL1 mutations have not been associated with any human diseases, our data suggests that a mutation in SATL1 is the underlying cause of ASD in our cases. In mammals, mutations in spermine synthase (SMS), an enzyme needed for the synthesis of spermidine polyamine, have been reported in a syndromic form of the X-linked mental retardation. Moreover, SATL1 gene expression studies showed a relatively higher expression of SATL1 transcripts in ASD related parts of the brain including the cerebellum, amygdala and frontal cortex. Additionally, spermidine has been characterized in the context of learning and memory and supplementations with spermidine increase neuroprotective effects and decrease age-induced memory impairment. Furthermore, spermidine biosynthesis is required for spontaneous axonal regeneration and prevents α-synuclein neurotoxicity in invertebrate models. Thus, we report, for the first time, that a mutation in the SATL1 gene could be a contributing factor in the development of autistic symptoms in our patients.
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Basic Medical Sciences, Taibah University Medina, Almadinah Almunawwarah, Saudi Arabia
| | - Muhammad Iqbal
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hassan Aman
- Al-Amal Psychiatry Hospital Medina, Almadinah Almunawwarrah, Saudi Arabia
| | - Jamil A Hashmi
- Center for Genetics and Inherited Diseases, Taibah University Medina, Almadinah Almunawwarrah, Saudi Arabia
| | - Laila Alayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sulman Basit
- Department of Basic Medical Sciences, Taibah University Medina, Almadinah Almunawwarah, Saudi Arabia.
- Center for Genetics and Inherited Diseases, Taibah University Medina, Almadinah Almunawwarrah, Saudi Arabia.
- Department of Basic Medical Sciences, Taibah University Medina, Almadinah Almunawwarrah, Saudi Arabia.
| |
Collapse
|
46
|
Zhang H, Li X, Liu Z, Lin Z, Huang K, Wang Y, Chen Y, Liao L, Wu L, Xie Z, Hou J, Zhang X, Liu H. Elevated expression of HIGD1A drives hepatocellular carcinoma progression by regulating polyamine metabolism through c-Myc-ODC1 nexus. Cancer Metab 2024; 12:7. [PMID: 38395945 PMCID: PMC10893642 DOI: 10.1186/s40170-024-00334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Hypoxia contributes to cancer progression through various molecular mechanisms and hepatocellular carcinoma (HCC) is one of the most hypoxic malignancies. Hypoxia-inducible gene domain protein-1a (HIGD1A) is typically induced via epigenetic regulation and promotes tumor cell survival during hypoxia. However, the role of HIGD1A in HCC remains unknown. METHODS HIGD1A expression was determined in 24 pairs of human HCC samples and para-tumorous tissues. Loss-of-function experiments were conducted both in vivo and in vitro to explore the role of HIGD1A in HCC proliferation and metastasis. RESULTS Increased HIGD1A expression was found in HCC tissues and cell lines, which was induced by hypoxia or low-glucose condition. Moreover, HIGD1A knockdown in HCC cells arrested the cell cycle at the G2/M phase and promoted hypoxia-induced cell apoptosis, resulting in great inhibition of cell proliferation, migration, and invasion, as well as tumor xenograft formation. Interestingly, these anti-tumor effects were not observed in normal hepatocyte cell line L02. Further, HIGD1A knockdown suppressed the expression of ornithine decarboxylase 1 (ODC1), a rate-limiting enzyme of polyamine metabolism under c-Myc regulation. HIGD1A was found to bind with the c-Myc promoter region, and its knockdown decreased the levels of polyamine metabolites. Consistently, the inhibitory effect on HCC phenotype by HIGD1A silencing could be reversed by overexpression of c-Myc or supplementation of polyamines. CONCLUSIONS Our results demonstrated that HIGD1A activated c-Myc-ODC1 nexus to regulate polyamine synthesis and to promote HCC survival and malignant phenotype, implying that HIGD1A might represent a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Haixing Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoran Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziying Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zimo Lin
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kuiyuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiran Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Leyuan Wu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanglian Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
47
|
Chrysostomou PP, Freeman EL, Murphy MM, Pereira R, Esdaile DJ, Keohane P. A toxicological assessment of spermidine trihydrochloride produced using an engineered strain of Saccharomyces cerevisiae. Food Chem Toxicol 2024; 184:114428. [PMID: 38163454 DOI: 10.1016/j.fct.2023.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Spermidine is a polyamine consumed in the diet, endogenously biosynthesized in most cells, and produced by the intestinal microbiome. A variety of foods contribute to intake of spermidine along with other polyamines. Spermidine trihydrochloride (spermidine-3HCl) of high purity can be produced using an engineered strain of Saccharomyces cerevisiae. Spermidine has a demonstrated history of safe use in the diet; however, limited information is available in the public literature to assess the potential toxicity of spermidine-3HCl. To support a safety assessment for this spermidine-3HCl as a dietary source of spermidine, authoritative guideline and good laboratory practice (GLP) compliant in vitro genotoxicity assays (bacterial reverse mutation and mammalian micronucleus assays) and a 90-day oral (dietary) toxicity study in rats were conducted with spermidine-3HCl. Spermidine-3HCl was non-genotoxic in the in vitro assays, and no adverse effects were reported in the 90-day oral toxicity study up to the highest dose tested, 12500 ppm, equivalent to 728 mg/kg bw/day for males and 829 mg/kg bw/day for females. The subchronic no observed adverse effect level (NOAEL) is 728 mg/kg bw/day.
Collapse
Affiliation(s)
- Paola P Chrysostomou
- Exponent Inc., Center for Chemical Regulation and Food Safety, 1150 Connecticut Ave, NW, Suite 1100, Washington, DC, 20036, USA.
| | - Elaine L Freeman
- Exponent Inc., Center for Chemical Regulation and Food Safety, 1150 Connecticut Ave, NW, Suite 1100, Washington, DC, 20036, USA
| | - Mary M Murphy
- Exponent Inc., Center for Chemical Regulation and Food Safety, 1150 Connecticut Ave, NW, Suite 1100, Washington, DC, 20036, USA
| | - Rui Pereira
- Chrysea Labs Lda, Parque Tecnológico de Cantanhede Nucleo 4 Lote 2, 3060-197, Cantanhede, Portugal
| | - David J Esdaile
- Charles River Laboratories Hungary, Kft. H-8200 Veszprém, Szabadságpuszta, Hrsz. 028/1., Hungary
| | - Patrick Keohane
- Chrysea Labs Lda, Parque Tecnológico de Cantanhede Nucleo 4 Lote 2, 3060-197, Cantanhede, Portugal
| |
Collapse
|
48
|
Hammoud B, Nelson JB, May SC, Tersey SA, Mirmira RG. Discordant Effects of Polyamine Depletion by DENSpm and DFMO on β-cell Cytokine Stress and Diabetes Outcomes in Mice. Endocrinology 2024; 165:bqae001. [PMID: 38195178 PMCID: PMC10808000 DOI: 10.1210/endocr/bqae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease leading to dysfunction and loss of insulin-secreting β cells. In β cells, polyamines have been implicated in causing cellular stress and dysfunction. An inhibitor of polyamine biosynthesis, difluoromethylornithine (DFMO), has been shown to delay T1D in mouse models and preserve β-cell function in humans with recent-onset T1D. Another small molecule, N1,N11-diethylnorspermine (DENSpm), both inhibits polyamine biosynthesis and accelerates polyamine metabolism and is being tested for efficacy in cancer clinical trials. In this study, we show that DENSpm depletes intracellular polyamines as effectively as DFMO in mouse β cells. RNA-sequencing analysis, however, suggests that the cellular responses to DENSpm and DFMO differ, with both showing effects on cellular proliferation but the latter showing additional effects on mRNA translation and protein-folding pathways. In the low-dose streptozotocin-induced mouse model of T1D, DENSpm, unlike DFMO, did not prevent or delay diabetes outcomes but did result in improvements in glucose tolerance and reductions in islet oxidative stress. In nonobese diabetic (NOD) mice, short-term DENSpm administration resulted in a slight reduction in insulitis and proinflammatory Th1 cells in the pancreatic lymph nodes. Longer term treatment resulted in a dose-dependent increase in mortality. Notwithstanding the efficacy of both DFMO and DENSpm in reducing potentially toxic polyamine levels in β cells, our results highlight the discordant T1D outcomes that result from differing mechanisms of polyamine depletion and, more importantly, that toxic effects of DENSpm may limit its utility in T1D treatment.
Collapse
Affiliation(s)
- Batoul Hammoud
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Jennifer B Nelson
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah C May
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah A Tersey
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Li WX, Chen JX, Zhang CC, Luo MS, Zhang WQ. Functional analysis of Ornithine decarboxylase in manipulating the wing dimorphism in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). JOURNAL OF INSECT PHYSIOLOGY 2024; 152:104587. [PMID: 38043786 DOI: 10.1016/j.jinsphys.2023.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The brown planthopper (BPH, Nilaparvata lugens), a major insect pest of rice, can make a shift in wing dimorphism to adapt to complex external environments. Our previous study showed that NlODC (Ornithine decarboxylase in N. lugens) was involved in wing dimorphism of the brown planthopper. Here, further experiments were conducted to reveal possible molecular mechanism of NlODC in manipulating the wing dimorphism. We found that the long-winged rate (LWR) of BPH was significantly reduced after RNAi of NlODC or injection of DFMO (D, L-α-Difluoromethylornithine), and LWR of males and females significantly decreased by 21.7% and 34.6%, respectively. Meanwhile, we also examined the contents of three polyamines under DFMO treatment and found that the contents of putrescine and spermidine were significantly lower compared to the control. After 3rd instar nymphs were injected with putrescine and spermidine, LWR was increased significantly in both cases, and putrescine was a little bit more effective, with 5.6% increase in males and 11.4% in females. Three days after injection of dsNlODC, injection of putrescine and spermidine rescued LWR to the normal levels. In the regulation of wing differentiation in BPH, NlODC mutually antagonistic to NlAkt may act through other signaling pathways rather than the classical insulin signaling pathway. This study illuminated a physiological function of an ODC gene involved in wing differentiation in insects, which could be a potential target for pest control.
Collapse
Affiliation(s)
- Wan-Xue Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing-Xiang Chen
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuan-Chuan Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Min-Shi Luo
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
50
|
Brooks WH. Polyamine Dysregulation and Nucleolar Disruption in Alzheimer's Disease. J Alzheimers Dis 2024; 98:837-857. [PMID: 38489184 DOI: 10.3233/jad-231184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A hypothesis of Alzheimer's disease etiology is proposed describing how cellular stress induces excessive polyamine synthesis and recycling which can disrupt nucleoli. Polyamines are essential in nucleolar functions, such as RNA folding and ribonucleoprotein assembly. Changes in the nucleolar pool of anionic RNA and cationic polyamines acting as counterions can cause significant nucleolar dynamics. Polyamine synthesis reduces S-adenosylmethionine which, at low levels, triggers tau phosphorylation. Also, polyamine recycling reduces acetyl-CoA needed for acetylcholine, which is low in Alzheimer's disease. Extraordinary nucleolar expansion and/or contraction can disrupt epigenetic control in peri-nucleolar chromatin, such as chromosome 14 with the presenilin-1 gene; chromosome 21 with the amyloid precursor protein gene; chromosome 17 with the tau gene; chromosome 19 with the APOE4 gene; and the inactive X chromosome (Xi; aka "nucleolar satellite") with normally silent spermine synthase (polyamine synthesis) and spermidine/spermine-N1-acetyltransferase (polyamine recycling) alleles. Chromosomes 17, 19 and the Xi have high concentrations of Alu elements which can be transcribed by RNA polymerase III if positioned nucleosomes are displaced from the Alu elements. A sudden flood of Alu RNA transcripts can competitively bind nucleolin which is usually bound to Alu sequences in structural RNAs that stabilize the nucleolar heterochromatic shell. This Alu competition leads to loss of nucleolar integrity with leaking of nucleolar polyamines that cause aggregation of phosphorylated tau. The hypothesis was developed with key word searches (e.g., PubMed) using relevant terms (e.g., Alzheimer's, lupus, nucleolin) based on a systems biology approach and exploring autoimmune disease tautology, gaining synergistic insights from other diseases.
Collapse
|