1
|
Gao YJ, Meng LL, Lu ZY, Li XY, Luo RQ, Lin H, Pan ZM, Xu BH, Huang QK, Xiao ZG, Li TT, Yin E, Wei N, Liu C, Lin H. Degree centrality values in the left calcarine as a potential imaging biomarker for anxious major depressive disorder. World J Psychiatry 2025; 15:100289. [DOI: 10.5498/wjp.v15.i4.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Major depressive disorder (MDD) with comorbid anxiety is an intricate psychiatric condition, but limited research is available on the degree centrality (DC) between anxious MDD and nonanxious MDD patients.
AIM To examine changes in DC values and their use as neuroimaging biomarkers in anxious and non-anxious MDD patients.
METHODS We examined 23 anxious MDD patients, 30 nonanxious MDD patients, and 28 healthy controls (HCs) using the DC for data analysis.
RESULTS Compared with HCs, the anxious MDD group reported markedly reduced DC values in the right fusiform gyrus (FFG) and inferior occipital gyrus, whereas elevated DC values in the left middle frontal gyrus and left inferior parietal angular gyrus. The nonanxious MDD group exhibited surged DC values in the bilateral cerebellum IX, right precuneus, and opercular part of the inferior frontal gyrus. Unlike the nonanxious MDD group, the anxious MDD group exhibited declined DC values in the right FFG and bilateral calcarine (CAL). Besides, declined DC values in the right FFG and bilateral CAL negatively correlated with anxiety scores in the MDD group.
CONCLUSION This study shows that abnormal DC patterns in MDD, especially in the left CAL, can distinguish MDD from its anxiety subtype, indicating a potential neuroimaging biomarker.
Collapse
Affiliation(s)
- Yu-Jun Gao
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Li-Li Meng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan Hospital of Psychotherapy, Wuhan 430030, Hubei Province, China
| | - Zhao-Yuan Lu
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
| | - Xiang-You Li
- Department of Nephrology, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430064, Hubei Province, China
| | - Ru-Qin Luo
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
| | - Hang Lin
- Department of Nephrology, Xiaogan Central Hospital, Xiaogan 432000, Hubei Province, China
| | - Zhi-Ming Pan
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Bao-Hua Xu
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Qian-Kun Huang
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Zhi-Gang Xiao
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Ting-Ting Li
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - E Yin
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Nian Wei
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Chen Liu
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Hong Lin
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| |
Collapse
|
2
|
Ren X, White EJ, Kuplicki R, Paulus MP, Ironside M, Aupperle RL, Stewart JL. Differential Insular Cortex Activation During Reward Anticipation in Major Depressive Disorder with and without Anxiety. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00057-6. [PMID: 39978463 DOI: 10.1016/j.bpsc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Anticipation involves preparatory resource allocation to optimize upcoming responses, linked to insular cortex function. Although major depressive disorder (MDD) shows impairments in anticipatory processing and blunted insula activation, it is unclear whether this pattern holds across MDD with and without comorbid anxiety disorders (MDD+ANX). The Monetary Incentive Delay task (MID), combined with magnetic resonance imaging (MRI)-guided electroencephalogram (EEG) source localization, offers a robust approach to study anticipatory mechanisms in MDD subtypes. METHOD Participants with MDD (n=53) or MDD+ANX (n=108) and healthy controls (CTL; n=38) completed the MID task during simultaneous EEG-MRI recording. Stimulus-preceding negativity event-related potentials were source-localized to identify insular cortical activity differences across groups (MDD, MDD+ANX, CTL), sex (male, female), MID conditions (gain, loss), hemisphere (left, right), and six insular subregions. RESULTS Behavioral performance revealed that the CTL group reacted faster than the MDD+ANX in both gain and loss conditions (p=.03). Insular source analysis showed lower activity in MDD+ANX (p<.001) and MDD (p=.06) compared to CTL during gain anticipation, and lower activity in MDD+ANX than both CTL (p=.003) and MDD (p<.001) during loss anticipation. CONCLUSIONS Results highlight potential intervention targets for improving anticipatory deficits in MDD+ANX. The MDD+ANX group exhibited distinctive patterns of insular cortical activity, with lower activity during the anticipation of both gain and loss feedback compared to the control and MDD groups, suggesting significant neural alterations. Moreover, in MDD+ANX, higher anxiety severity was linked to increased insula activity during loss anticipation, indicating a specific neural correlate of anxiety in this comorbid condition.
Collapse
Affiliation(s)
- Xi Ren
- Laureate Institute for Brain Research, Tulsa, OK, United States.
| | - Evan J White
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| | - Maria Ironside
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| | - Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
3
|
Wu H, Lu B, Xiang N, Qiu M, Da H, Xiao Q, Zhang Y, Shi H. Different activation in dorsolateral prefrontal cortex between anxious depression and non-anxious depression during an autobiographical memory task: A fNIRS study. J Affect Disord 2024; 362:585-594. [PMID: 39019227 DOI: 10.1016/j.jad.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE Using functional near-infrared spectroscopy (fNIRS) previous studies have found that activation differences in the dorsolateral prefrontal cortex (DLPFC) during an autobiographical memory task (AMT) under the condition of different emotional valences may be neurophysiological markers of depression and different depression subtypes. Additionally, compared with non-anxious depression, anxious depression presents abnormal hemodynamic activation in the DLPFC. This study aimed to use fNIRS to investigate hemodynamic activation in the DLPFC of depression patients with and without anxiety during AMT triggered by different emotional valence stimuli. METHODS We recruited 194 patients with depression (91 with non-anxious depression, 103 with anxious depression) and 110 healthy controls from Chinese college students. A 53-channel fNIRS was used to detect cerebral hemodynamic differences in the three groups during AMT. RESULTS The results showed that: (1) the activation of oxy-Hb in the left DLPFC was significantly higher under positive emotional valence than under negative emotional valence for healthy controls and patients with non-anxious depression, while there was no significant difference between positive and negative emotional valence observed in response to anxious depression; and (2) Oxy-Hb activation under negative emotional valence was significantly higher in the anxious depression group than in the non-anxious depression group. CONCLUSIONS This study revealed that the hemodynamic hyperactivation of negative emotional valence in the left DLPFC may be due to the neurophysiological differences between anxious and non-anxious patients with depression.
Collapse
Affiliation(s)
- Huifen Wu
- School of Education, Hubei Engineering University, Xiaogan 432000, China
| | - Baoquan Lu
- School of Education, Hubei Engineering University, Xiaogan 432000, China; School of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Nian Xiang
- Department of Neurology, Hospital of Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Qiu
- Department of Neurology, Hospital of Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Da
- School of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiang Xiao
- Department of Neurology, Hospital of Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan Zhang
- School of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hui Shi
- Department of Clinical Psychology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
4
|
Liu Y, Jing Y, Gao Y, Li M, Qin W, Xie Y, Zhang B, Li J. Exploring the correlation between childhood trauma experiences, inflammation, and brain activity in first-episode, drug-naive major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01847-3. [PMID: 39073445 DOI: 10.1007/s00406-024-01847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Childhood trauma experiences and inflammation are pivotal factors in the onset and perpetuation of major depressive disorder (MDD). However, research on brain mechanisms linking childhood trauma experiences and inflammation to depression remains insufficient and inconclusive. METHODS Resting-state fMRI scans were performed on fifty-six first-episode, drug-naive MDD patients and sixty healthy controls (HCs). A whole-brain functional network was constructed by thresholding 246 brain regions, and connectivity and network properties were calculated. Plasma interleukin-6 (IL-6) levels were assessed using enzyme-linked immunosorbent assays in MDD patients, and childhood trauma experiences were evaluated through the Childhood Trauma Questionnaire (CTQ). RESULTS Negative correlations were observed between CTQ total (r = -0.28, p = 0.047), emotional neglect (r = -0.286, p = 0.042) scores, as well as plasma IL-6 levels (r = -0.294, p = 0.036), with mean decreased functional connectivity (FC) in MDD patients. Additionally, physical abuse exhibited a positive correlation with the nodal clustering coefficient of the left thalamus in patients (r = 0.306, p = 0.029). Exploratory analysis indicated negative correlations between CTQ total and emotional neglect scores and mean decreased FC in MDD patients with lower plasma IL-6 levels (n = 28), while these correlations were nonsignificant in MDD patients with higher plasma IL-6 levels (n = 28). CONCLUSIONS This finding enhances our understanding of the correlation between childhood trauma experiences, inflammation, and brain activity in MDD, suggesting potential variations in their underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Yifan Jing
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Ying Gao
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Meijuan Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China.
| |
Collapse
|
5
|
Juan Q, Shiwan T, Yurong S, Jiabo S, Yu C, Shui T, Zhijian Y, Qing L. Brain structural and functional abnormalities in affective network are associated with anxious depression. BMC Psychiatry 2024; 24:533. [PMID: 39054442 PMCID: PMC11270941 DOI: 10.1186/s12888-024-05970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Anxious depression (AD) is a common subtype of major depressive disorder (MDD). Neuroimaging studies of AD have revealed inconsistent and heterogeneous brain alterations with the use of single-model methods. Therefore, it is necessary to explore the pathogenesis of AD using multi-model imaging analyses to obtain more homogeneous and robust results. METHODS One hundred and eighty-two patients with MDD and 64 matched healthy controls (HCs) were recruited. Voxel-based morphometry (VBM) was used to estimate the gray matter volume (GMV) of all subjects. The GMV differences between the AD and non-anxious depression (NAD) participants were used as regions of interest (ROIs) for subsequent resting state functional connectivity (rs-FC) analyses. Correlation analysis was used to evaluate the associations between clinical symptoms and abnormal function in specific brain areas. RESULTS Decreased GMV in the medial frontal gyrus (MFG) and the superior frontal gyrus (SFG) was observed in the AD group compared to the NAD group. Taking the MFG and SFG as ROIs, the rs-FC analysis revealed decreased FC between the left SFG and left temporal pole and between the left SFG and right MFG in the AD group compared to the NAD group. Finally, the FC between the left SFG and left temporal pole was negatively correlated with HAMD-17 scores in the AD group. CONCLUSION By combining the GMV and rs-FC models, this study revealed that structural and functional disruption of the affective network may be an important pathophysiology underlying AD. The structural impairment may serve as the foundation of the functional impairment.
Collapse
Affiliation(s)
- Qiao Juan
- Department of Psychology, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Xuzhou, 221004, China
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Shiwan
- West China Hospital, Mental Health Center, Sichuan University, Chengdu, 610047, China
| | - Sun Yurong
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Shi Jiabo
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Chen Yu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Tian Shui
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yao Zhijian
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Lu Qing
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China.
| |
Collapse
|
6
|
Zhang Q, Zhang W, Zhang P, Zhao Z, Yang L, Zheng F, Zhang L, Huang G, Zhang J, Zheng W, Ma R, Yao Z, Hu B. Altered dynamic functional connectivity in rectal cancer patients with and without chemotherapy: a resting-state fMRI study. Int J Neurosci 2024; 134:584-594. [PMID: 36178032 DOI: 10.1080/00207454.2022.2130295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 10/17/2022]
Abstract
Purpose: Understanding the mechanism of brain functional alterations in rectal cancer (RC) patients is of great significance to improve the prognosis and quality of life of patients. Additionally, the influence of chemotherapy on brain function in RC patients is still unclear. In this study, we aimed to investigate the alterations of brain functional network dynamics in RC patients and explore the effects of chemotherapy on temporal dynamics of dynamic functional connectivity (DFC). Methods: The group independent component analysis (GICA) and sliding window method were applied to investigate abnormalities of DFC based on resting-state functional magnetic resonance imaging (rs-fMRI) of 18 RC patients without chemotherapy (RC_NC), 21 RC patients with chemotherapy (RC_C) and 33 healthy controls (HC). Then, the Spearman correlation between aberrant properties and clinical measures was calculated. Results: Two discrete states were identified. Compared to HC, RC_NC exhibited increased mean dwell time (MDT) and fractional windows (FW) in state 2 and decreased transition numbers between the two states. Notably, three temporal properties in RC_C showed an intermediate trend in comparison with RC_NC and HC. Furthermore, RC_C also demonstrated abnormal intra- and inter-network connections, involving the visual (VIS), default mode (DM), and cognitive control (CC) networks, and most connections related to VIS were correlated with the severity of anxiety and depression. Conclusions: Our study suggested that abnormal DFC patterns could be manifested in RC patients and chemotherapy would further correct abnormalities of network dynamics, which may provide new insights into the brain functional alterations in patients with RC from the time-varying connectivity perspective.
Collapse
Affiliation(s)
- Qin Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Wenwen Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, PRChina
| | - Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou, PRChina
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, PRChina
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, PRChina
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Lin Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Fang Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, PRChina
| | - Jing Zhang
- Second Clinical School, Lanzhou University, Lanzhou, PRChina
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, PRChina
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, PRChina
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Rong Ma
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, PR China
- Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, PR China
| |
Collapse
|
7
|
Zhao B, Li Z, Shi C, Liu Y, Sun Y, Li B, Zhang J, Gong Z, Wang Y, Ma X, Yang X, Jiang H, Fu Y, Wang X, Li Y, Liu H, Bao T, Fei Y. Acupuncture as Add-on Therapy to SSRIs Can Improve Outcomes of Treatment for Anxious Depression: Subgroup Analysis of the AcuSDep Trial. Neuropsychiatr Dis Treat 2024; 20:1049-1064. [PMID: 38770535 PMCID: PMC11104384 DOI: 10.2147/ndt.s446034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Anxious depression (AD) is a common, distinct depression subtype. This exploratory subgroup analysis aimed to explore the effects of acupuncture as an add-on therapy of selective serotonin reuptake inhibitors (SSRIs) for patients with AD or non-anxious depression (NAD). Patients and Methods Four hundred and sixty-five patients with moderate-to-severe depression from the AcuSDep pragmatic trial were included in analysis. Patients were randomly assigned to receive MA+SSRIs, EA+SSRIs, or SSRIs alone (1:1:1) for six weeks. AD was defined by using dimensional criteria. The measurement instruments included 17-items Hamilton Depression Scale (HAMD-17), Self-Rating Depression Scale (SDS), Clinical Global Impression (CGI), Rating Scale for Side Effects (SERS), and WHO Quality of Life-BREF (WHOQOL-BREF). Comparison between AD and NAD subgroups and comparisons between groups within either AD or NAD subgroups were conducted. Results Eighty percent of the patients met the criteria for AD. The AD subgroup had poorer clinical manifestations and treatment outcomes compared to those of the NAD subgroup. For AD patients, the HAMD response rate, remission rate, early onset rate, and the score changes on each scale at most measurement points on the two acupuncture groups were significantly better than the SSRIs group. For NAD patients, the HAMD early onset rates of the two acupuncture groups were significantly better than the SSRIs group. Conclusion For AD subtype patients, either MA or EA add-on SSRIs showed comprehensive improvements, with small-to-medium effect sizes. For NAD subtype patients, both the add-on acupuncture could accelerate the response to SSRIs treatment. The study contributed to the existing literature by providing insights into the potential benefits of acupuncture in combination with SSRIs, especially for patients with AD subtypes. Due to its limited nature as a post hoc subgroup analysis, prospectively designed, high-quality trials are warranted. Clinical Trials Registration ChiCTR-TRC-08000297.
Collapse
Affiliation(s)
- Bingcong Zhao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Zhigang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chuan Shi
- Psychological Assessment Center, Peking University Sixth Hospital, Beijing, People’s Republic of China
| | - Yan Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yang Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Jie Zhang
- Department of Psychosomatic Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Zhizhong Gong
- Division of Medical Affairs, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yuanzheng Wang
- Department of Integrative TCM and Western Medicine, Peking University First Hospital, Beijing, People’s Republic of China
| | - Xuehong Ma
- Department of Acupuncture & Moxibustion, Dongfang Hospital, the Second Clinical Medical College of Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinjing Yang
- Department of Traditional Chinese Medicine, South China Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yuanbo Fu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Xin Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Yang Li
- Department of Psychosomatic Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Hengchia Liu
- Department of Psychosomatic Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yutong Fei
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Institute of Excellence in Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Beijing GRADE Centre, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Romo-Nava F, Awosika OO, Basu I, Blom TJ, Welge J, Datta A, Guillen A, Guerdjikova AI, Fleck DE, Georgiev G, Mori N, Patino LR, DelBello MP, McNamara RK, Buijs RM, Frye MA, McElroy SL. Effect of non-invasive spinal cord stimulation in unmedicated adults with major depressive disorder: a pilot randomized controlled trial and induced current flow pattern. Mol Psychiatry 2024; 29:580-589. [PMID: 38123726 PMCID: PMC11153138 DOI: 10.1038/s41380-023-02349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Converging theoretical frameworks suggest a role and a therapeutic potential for spinal interoceptive pathways in major depressive disorder (MDD). Here, we aimed to evaluate the antidepressant effects and tolerability of transcutaneous spinal direct current stimulation (tsDCS) in MDD. This was a double-blind, randomized, sham-controlled, parallel group, pilot clinical trial in unmedicated adults with moderate MDD. Twenty participants were randomly allocated (1:1 ratio) to receive "active" 2.5 mA or "sham" anodal tsDCS sessions with a thoracic (anode; T10)/right shoulder (cathode) electrode montage 3 times/week for 8 weeks. Change in depression severity (MADRS) scores (prespecified primary outcome) and secondary clinical outcomes were analyzed with ANOVA models. An E-Field model was generated using the active tsDCS parameters. Compared to sham (n = 9), the active tsDCS group (n = 10) showed a greater baseline to endpoint decrease in MADRS score with a large effect size (-14.6 ± 2.5 vs. -21.7 ± 2.3, p = 0.040, d = 0.86). Additionally, compared to sham, active tsDCS induced a greater decrease in MADRS "reported sadness" item (-1.8 ± 0.4 vs. -3.2 ± 0.4, p = 0.012), and a greater cumulative decrease in pre/post tsDCS session diastolic blood pressure change from baseline to endpoint (group difference: 7.9 ± 3.7 mmHg, p = 0.039). Statistical trends in the same direction were observed for MADRS "pessimistic thoughts" item and week-8 CGI-I scores. No group differences were observed in adverse events (AEs) and no serious AEs occurred. The current flow simulation showed electric field at strength within the neuromodulation range (max. ~0.45 V/m) reaching the thoracic spinal gray matter. The results from this pilot study suggest that tsDCS is feasible, well-tolerated, and shows therapeutic potential in MDD. This work also provides the initial framework for the cautious exploration of non-invasive spinal cord neuromodulation in the context of mental health research and therapeutics. The underlying mechanisms warrant further investigation. Clinicaltrials.gov registration: NCT03433339 URL: https://clinicaltrials.gov/ct2/show/NCT03433339 .
Collapse
Affiliation(s)
- Francisco Romo-Nava
- Lindner Center of HOPE, Mason, OH, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Oluwole O Awosika
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ishita Basu
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas J Blom
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc, New York, NY, USA
| | | | - Anna I Guerdjikova
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Nicole Mori
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Luis R Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ruud M Buijs
- Departamento de Fisiología Celular y Biología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Susan L McElroy
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
9
|
Zhao P, Wang X, Wang Q, Yan R, Chattun MR, Yao Z, Lu Q. Altered fractional amplitude of low-frequency fluctuations in the superior temporal gyrus: a resting-state fMRI study in anxious depression. BMC Psychiatry 2023; 23:847. [PMID: 37974113 PMCID: PMC10655435 DOI: 10.1186/s12888-023-05364-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Anxious depression, which is a common subtype of major depressive disorder, has distinct clinical features from nonanxious depression. However, little is known about the neurobiological characteristics of anxious depression. In this study, we explored resting-state regional brain activity changes between anxious depression and nonanxious depression. METHOD Resting-state functional magnetic resonance (rs-fMRI) imaging data were collected from 60 patients with anxious depression, 38 patients with nonanxious depression, and 60 matched healthy controls (HCs). One-way analysis of variance was performed to compare the whole-brain fractional amplitude of low-frequency fluctuation (fALFF) in the three groups. The correlation between the fALFF values and the clinical measures was examined. RESULTS Compared with those of HCs, the fALFF values in the left superior temporal gyrus (STG) in patients with anxious depression were significantly increased, while the fALFF values in the left middle temporal gyrus (MTG), left STG, and right STG in patients with nonanxious depression were significantly increased. Patients with anxious depression showed reduced fALFF values in the right STG compared with patients with nonanxious depression (p < 0.001, corrected). Within the anxious depression group, fALFF value in the right STG was positively correlated with the cognitive disturbance score (r = 0.36, p = 0.005 corrected). CONCLUSION The bilateral STG and left MTG, which are related to the default mode network, appear to be key brain regions in nonanxious depression, while the right STG plays an essential role in the neuropathological mechanism of anxious depression.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medical Psychology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China
| | - Qiang Wang
- Department of Medical Psychology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Mohammad Ridwan Chattun
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Wu X, Wang L, Jiang H, Fu Y, Wang T, Ma Z, Wu X, Wang Y, Fan F, Song Y, Lv Y. Frequency-dependent and time-variant alterations of neural activity in post-stroke depression: A resting-state fMRI study. Neuroimage Clin 2023; 38:103445. [PMID: 37269698 PMCID: PMC10244813 DOI: 10.1016/j.nicl.2023.103445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Post-stroke depression (PSD) is one of the most frequent psychiatric disorders after stroke. However, the underlying brain mechanism of PSD remains unclarified. Using the amplitude of low-frequency fluctuation (ALFF) approach, we aimed to investigate the abnormalities of neural activity in PSD patients, and further explored the frequency and time properties of ALFF changes in PSD. METHODS Resting-state fMRI data and clinical data were collected from 39 PSD patients (PSD), 82 S patients without depression (Stroke), and 74 age- and sex-matched healthy controls (HC). ALFF across three frequency bands (ALFF-Classic: 0.01-0.08 Hz; ALFF-Slow4: 0.027-0.073 Hz; ALFF-Slow5: 0.01-0.027 Hz) and dynamic ALFF (dALFF) were computed and compared among three groups. Ridge regression analyses and spearman's correlation analyses were further applied to explore the relationship between PSD-specific alterations and depression severity in PSD. RESULTS We found that PSD-specific alterations of ALFF were frequency-dependent and time-variant. Specially, compared to both Stroke and HC groups, PSD exhibited increased ALFF in the contralesional dorsolateral prefrontal cortex (DLPFC) and insula in all three frequency bands. Increased ALFF in ipsilesional DLPFC were observed in both slow-4 and classic frequency bands which were positively correlated with depression scales in PSD, while increased ALFF in the bilateral hippocampus and contralesional rolandic operculum were only found in slow-5 frequency band. These PSD-specific alterations in different frequency bands could predict depression severity. Moreover, decreased dALFF in contralesional superior temporal gyrus were observed in PSD group. LIMITATIONS Longitudinal studies are required to explore the alterations of ALFF in PSD as the disease progress. CONCLUSIONS The frequency-dependent and time-variant properties of ALFF could reflect the PSD-specific alterations in complementary ways, which may assist to elucidate underlying neural mechanisms and be helpful for early diagnosis and interventions for the disease.
Collapse
Affiliation(s)
- Xiumei Wu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibo Jiang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhui Fu
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Tiantian Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Zhenqiang Ma
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yiying Wang
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China.
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China.
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Fan Y, Wang L, Jiang H, Fu Y, Ma Z, Wu X, Wang Y, Song Y, Fan F, Lv Y. Depression circuit adaptation in post-stroke depression. J Affect Disord 2023; 336:52-63. [PMID: 37201899 DOI: 10.1016/j.jad.2023.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lesion locations of post-stroke depression (PSD) mapped to a depression circuit which centered by the left dorsolateral prefrontal cortex (DLPFC). However, it remains unknown whether the compensatory adaptations that may occur in this depression circuit due to the lesions in PSD. METHODS Rs-fMRI data were collected from 82 non-depressed stroke patients (Stroke), 39 PSD patients and 74 healthy controls (HC). We tested the existence of depression circuit, examined PSD-related alterations of DLPFC-seeded connectivity and their associations with depression severity, and analyzed the connectivity between each repetitive transcranial magnetic stimulation (rTMS) target and DLPFC to find the best treatment target for PSD. RESULTS We found that: 1) the left DLPFC showed significantly stronger connectivity to lesions of PSD than Stroke group; 2) in comparison to both Stroke and HC groups, PSD exhibited increased connectivity with DLPFC in bilateral lingual gyrus, contralesional superior frontal gyrus, precuneus, and middle frontal gyrus (MFG); 3) the connectivity between DLPFC and the contralesional lingual gyrus positively correlated with depression severity; 4) the rTMS target in center of MFG showed largest between-group difference in connectivity with DLPFC, and also reported the highest predicted clinical efficacy. LIMITATIONS Longitudinal studies are required to explore the alterations of depression circuit in PSD as the disease progress. CONCLUSION PSD underwent specific alterations in depression circuit, which may help to establish objective imaging markers for early diagnosis and interventions of the disease.
Collapse
Affiliation(s)
- Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Luoyu Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibo Jiang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhui Fu
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Zhenqiang Ma
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning 114005, China
| | - Yiying Wang
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China.
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China.
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Hou J, Liu S, van Wingen G. Increased subcortical brain activity in anxious but not depressed individuals. J Psychiatr Res 2023; 160:38-46. [PMID: 36773346 DOI: 10.1016/j.jpsychires.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Anxiety and depressive symptoms usually co-occur. Neuroimaging abnormalities in patients with depression and anxiety disorders are therefore related to a combination of symptoms. Here, we used a large population study to select individuals with anxiety, depressive, or both anxiety and depressive symptoms to identify whether neuroimaging differences are unique or shared between anxiety and depressive symptoms. METHODS We selected four groups of 200 individuals (anxiety, depression, anxiety and depression, controls) from the UK Biobank, matched for age, sex, intelligence, and educational attainment (total N = 800). We extracted the amplitude of low frequency fluctuations (ALFF) from resting-state functional magnetic resonance imaging data, which indexes spontaneous neuronal activity. Group differences were assessed using permutation testing to correct for multiple comparisons, with age, sex, IQ, and head motion as covariates. RESULTS Compared to controls, anxious individuals had higher ALFF values in many subcortical brain regions including the striatum, thalamus, medial temporal lobe, midbrain, pons, as well as the cerebellum. Anxious individuals also showed higher ALFF in the hippocampus, parahippocampal gyrus, cerebellum, and pons compared to individuals with depressive symptoms. No significant differences were found for the depression and combined anxiety/depression groups. Post-hoc tests with largest possible samples showed comparable results in the anxiety group and in the combined group, but still no significant differences for the depression group. CONCLUSIONS Anxiety but not depressive symptoms were associated with increased subcortical activity during rest. This suggest that anxiety symptoms may have the largest contribution to the neuroimaging differences in individuals with depression and anxiety disorders.
Collapse
Affiliation(s)
- Jiangyun Hou
- Amsterdam UMC Location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Shu Liu
- Amsterdam UMC Location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Guido van Wingen
- Amsterdam UMC Location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Li M, Wu F, Cao Y, Jiang X, Kong L, Tang Y. Abnormal white matter integrity in Papez circuit in first-episode medication-naive adults with anxious depression: A combined voxel-based analysis and region of interest study. J Affect Disord 2023; 324:489-495. [PMID: 36610591 DOI: 10.1016/j.jad.2022.12.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Anxious depression is one of the subtypes of major depressive disorder (MDD), usually defined as "patients with MDD and high levels of anxiety symptoms". Compared to non-anxious MDD (naMDD), patients with anxious MDD (aMDD) have more severe depressive symptoms and suicidal ideation, worse treatment outcomes and remission rates, and poorer prognosis. Current research suggests that the Papez circuit is an important brain structure closely related to emotion, memory, and cognition. This study applied DTI to explore the altered white matter integrity in Papez circuit of patients with aMDD. METHODS DTI data were acquired from 30 medication-naive outpatients with naMDD and 55 with aMDD and 88 demographically similar healthy control (HC) subjects. Voxel-based analysis (VBM) and region of interest (ROI) analysis were conducted to explore the significant difference of fractional anisotropy (FA) values among 3 groups. Pearson's correlations were performed to analyze the correlation between FA values and the score of HAMA-14 and HAMD-17. RESULTS We found that aMDD patients had significantly higher FA values in left fornix (belong to Papez circuit) and left posterior thalamic radiation and right anterior corona radiata (belong to limbic-thalamo-cortical circuitry) compared with HC. And there was variability in the white matter integrity in right posterior thalamic radiation (belong to limbic-thalamo-cortical circuitry) and left fornix (belong to Papez circuit) between aMDD and naMDD patients. LIMITATIONS The cross-sectional study and the population vary between aMDD group and naMDD group are limitations. CONCLUSIONS Abnormal white matter integrity in Papez circuit and Limbic-Thalamo-Cortical circuitry may play an important role in the neuropathology of aMDD and might help to identify aMDD.
Collapse
Affiliation(s)
- Mengxue Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Feng Wu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yang Cao
- Shenyang Mental Health Center, Shenyang 110168, Liaoning, China
| | - Xiaowei Jiang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Lingtao Kong
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| |
Collapse
|
14
|
Straus LD, An X, Ji Y, McLean SA, Neylan TC. Utility of Wrist-Wearable Data for Assessing Pain, Sleep, and Anxiety Outcomes After Traumatic Stress Exposure. JAMA Psychiatry 2023; 80:220-229. [PMID: 36630119 PMCID: PMC9857758 DOI: 10.1001/jamapsychiatry.2022.4533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/09/2022] [Indexed: 01/12/2023]
Abstract
Importance Adverse posttraumatic neuropsychiatric sequelae after traumatic stress exposure are common and have higher incidence among socioeconomically disadvantaged populations. Pain, depression, avoidance of trauma reminders, reexperiencing trauma, anxiety, hyperarousal, sleep disruption, and nightmares have been reported. Wrist-wearable devices with accelerometers capable of assessing 24-hour rest-activity characteristics are prevalent and may have utility in measuring these outcomes. Objective To evaluate whether wrist-wearable devices can provide useful biomarkers for recovery after traumatic stress exposure. Design, Setting, and Participants Data were analyzed from a diverse cohort of individuals seen in the emergency department after experiencing a traumatic stress exposure, as part of the Advancing Understanding of Recovery After Trauma (AURORA) study. Participants recruited from 27 emergency departments wore wrist-wearable devices for 8 weeks, beginning in the emergency department, and completed serial assessments of neuropsychiatric symptoms. A total of 19 019 patients were screened. Of these, 3040 patients met study criteria, provided informed consent, and completed baseline assessments. A total of 2021 provided data from wrist-wearable devices, completed the 8-week assessment, and were included in this analysis. The data were randomly divided into 2 equal parts (n = 1010) for biomarker identification and validation. Data were collected from September 2017 to January 2020, and data were analyzed from May 2020 to November 2022. Exposures Participants were recruited for the study after experiencing a traumatic stress exposure (most commonly motor vehicle collision). Main Outcomes and Measures Rest-activity characteristics were derived and validated from wrist-wearable devices associated with specific self-reported symptom domains at a point in time and changes in symptom severity over time. Results Of 2021 included patients, 1257 (62.2%) were female, and the mean (SD) age was 35.8 (13.0) years. Eight wrist-wearable device biomarkers for symptoms of adverse posttraumatic neuropsychiatric sequelae exceeded significance thresholds in the derivation cohort. One of these, reduced 24-hour activity variance, was associated with greater pain severity (r = -0.14; 95% CI, -0.20 to -0.07). Changes in 6 rest-activity measures were associated with changes in pain over time, and changes in the number of transitions between sleep and wake over time were associated with changes in pain, sleep, and anxiety. Simple cutoffs for these biomarkers identified individuals with good recovery for pain (positive predictive value [PPV], 0.85; 95% CI, 0.82-0.88), sleep (PPV, 0.63; 95% CI, 0.59-0.67, and anxiety (PPV, 0.76; 95% CI, 0.72-0.80) with high predictive value. Conclusions and Relevance These findings suggest that wrist-wearable device biomarkers may have utility as screening tools for pain, sleep, and anxiety symptom outcomes after trauma exposure in high-risk populations.
Collapse
Affiliation(s)
- Laura D. Straus
- San Francisco VA Medical Center, San Francisco, California
- Department of Psychiatry, University of California, San Francisco
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill
| | - Yinyao Ji
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill
| | - Samuel A. McLean
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill
- Department of Emergency Medicine, University of North Carolina at Chapel Hill
| | - Thomas C. Neylan
- Department of Psychiatry, University of California, San Francisco
- Department of Neurology, University of California, San Francisco
| | | |
Collapse
|
15
|
Beaudoin FL, An X, Basu A, Ji Y, Liu M, Kessler RC, Doughtery RF, Zeng D, Bollen KA, House SL, Stevens JS, Neylan TC, Clifford GD, Jovanovic T, Linnstaedt SD, Germine LT, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Kurz MC, Swor RA, Murty VP, McGrath ME, Hudak LA, Pascual JL, Datner EM, Chang AM, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, Neil BJO, Sergot P, Sanchez LD, Bruce SE, Baker JT, Joormann J, Miller MW, Pietrzak RH, Barch DM, Pizzagalli DA, Sheridan JF, Smoller JW, Harte SE, Elliott JM, Koenen KC, Ressler KJ, McLean SA. Use of serial smartphone-based assessments to characterize diverse neuropsychiatric symptom trajectories in a large trauma survivor cohort. Transl Psychiatry 2023; 13:4. [PMID: 36609484 PMCID: PMC9823011 DOI: 10.1038/s41398-022-02289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
The authors sought to characterize adverse posttraumatic neuropsychiatric sequelae (APNS) symptom trajectories across ten symptom domains (pain, depression, sleep, nightmares, avoidance, re-experiencing, anxiety, hyperarousal, somatic, and mental/fatigue symptoms) in a large, diverse, understudied sample of motor vehicle collision (MVC) survivors. More than two thousand MVC survivors were enrolled in the emergency department (ED) and completed a rotating battery of brief smartphone-based surveys over a 2-month period. Measurement models developed from survey item responses were used in latent growth curve/mixture modeling to characterize homogeneous symptom trajectories. Associations between individual trajectories and pre-trauma and peritraumatic characteristics and traditional outcomes were compared, along with associations within and between trajectories. APNS across all ten symptom domains were common in the first two months after trauma. Many risk factors and associations with high symptom burden trajectories were shared across domains. Both across and within traditional diagnostic boundaries, APNS trajectory intercepts, and slopes were substantially correlated. Across all domains, symptom severity in the immediate aftermath of trauma (trajectory intercepts) had the greatest influence on the outcome. An interactive data visualization tool was developed to allow readers to explore relationships of interest between individual characteristics, symptom trajectories, and traditional outcomes ( http://itr.med.unc.edu/aurora/parcoord/ ). Individuals presenting to the ED after MVC commonly experience a broad constellation of adverse posttraumatic symptoms. Many risk factors for diverse APNS are shared. Individuals diagnosed with a single traditional outcome should be screened for others. The utility of multidimensional categorizations that characterize individuals across traditional diagnostic domains should be explored.
Collapse
Affiliation(s)
- Francesca L Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Emergency Medicine, Brown University, Providence, RI, USA
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Archana Basu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Yinyao Ji
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mochuan Liu
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | | | - Donglin Zeng
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MA, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura T Germine
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- The Many Brains Project, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E Punches
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- College of Nursing, University of Cincinnati, Cincinnati, OH, USA
| | - Michael C Kurz
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
- Department of Surgery, Division of Acute Care Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Meghan E McGrath
- Department of Emergency Medicine, Boston Medical Center, Boston, MA, USA
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth M Datner
- Department of Emergency Medicine, Einstein Healthcare Network, Philadelphia, PA, USA
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anna M Chang
- Department of Emergency Medicine, Jefferson University Hospitals, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Detroit, MI, USA
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roland C Merchant
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert M Domeier
- Department of Emergency Medicine, Saint Joseph Mercy Hospital, Ypsilanti, MI, USA
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J O' Neil
- Department of Emergency Medicine, Wayne State University, Detroit, MI, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School, University of Texas Health, Houston, TX, USA
| | - Leon D Sanchez
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | | | - Jutta Joormann
- Department of Psychology, Yale University, West Haven, CT, USA
| | - Mark W Miller
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Robert H Pietrzak
- National Center for PTSD, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - John F Sheridan
- Department of Biosciences, OSU Wexner Medical Center, Columbus, OH, USA
- Institute for Behavioral Medicine Research, OSU Wexner Medical Center, Columbus, OH, USA
| | - Jordan W Smoller
- Department of Psychiatry, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James M Elliott
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Northern Sydney Local, Health District, NSW, Australia
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Samuel A McLean
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Cheng B, Wang X, Roberts N, Zhou Y, Wang S, Deng P, Meng Y, Deng W, Wang J. Abnormal dynamics of resting-state functional activity and couplings in postpartum depression with and without anxiety. Cereb Cortex 2022; 32:5597-5608. [PMID: 35174863 DOI: 10.1093/cercor/bhac038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Postpartum depression (PPD) and PPD comorbid with anxiety (PPD-A) are highly prevalent and severe mental health problems in postnatal women. PPD and PPD-A share similar pathopsychological features, leading to ongoing debates regarding the diagnostic and neurobiological uniqueness. This paper aims to delineate common and disorder-specific neural underpinnings and potential treatment targets for PPD and PPD-A by characterizing functional dynamics with resting-state functional magnetic resonance imaging in 138 participants (45 first-episode, treatment-naïve PPD; 31 PDD-A patients; and 62 healthy postnatal women [HPW]). PPD-A group showed specifically increased dynamic amplitude of low-frequency fluctuation in the subgenual anterior cingulate cortex (sgACC) and increased dynamic functional connectivity (dFC) between the sgACC and superior temporal sulcus. PPD group exhibited specifically increased static FC (sFC) between the sgACC and ventral anterior insula. Common disrupted sFC between the sgACC and middle temporal gyrus was found in both PPD and PPD-A patients. Interestingly, dynamic changes in dFC between the sgACC and superior temporal gyrus could differentiate PPD, PPD-A, and HPW. Our study presents initial evidence on specifically abnormal functional dynamics of limbic, emotion regulation, and social cognition systems in patients with PDD and PPD-A, which may facilitate understanding neurophysiological mechanisms, diagnosis, and treatment for PPD and PPD-A.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xiuli Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Neil Roberts
- Edinburgh Imaging facility, The Queen's Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Yushan Zhou
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Pengcheng Deng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
17
|
Li GZ, Liu PH, Zhang AX, Andari E, Zhang KR. A resting state fMRI study of major depressive disorder with and without anxiety. Psychiatry Res 2022; 315:114697. [PMID: 35839636 DOI: 10.1016/j.psychres.2022.114697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The neurobiology of the Major depressive disorder (MDD) with anxiety is still unclear. The present study aimed to explore the brain correlates of MDD with and without anxiety in men and women during resting-state fMRI. METHODS Two hundred and fifty-four patients with MDD (MDD with anxiety, N = 152) and MDD without anxiety, N = 102) and 228 healthy controls (HCs) participated in this study. We compared the fALFF(fractional amplitude of low-frequency fluctuations) and ReHo(regional homogeneity) of ACC(anterior cingulate cortex) and insula among these three groups. We also compared gender difference between MDD with anxiety and MDD without anxiety. RESULTS We found that the fALFF values within the ACC and insula were significantly lower in MDD with anxiety compared to without anxiety and HCs. However, we did not find differences in ReHo values among the three groups. In women, we found significant differences in fALFF values between MDD with and without anxiety. These differences were not observed in men. CONCLUSIONS It is possible that MDD with anxiety show less spontaneous BOLD-fMRI signal intensity within the ACC and insula compared to MDD without anxiety, especially in women. The fALFF within the ACC and insula can be a potential biomarker for severe MDD phenotype.
Collapse
Affiliation(s)
- Gai-Zhi Li
- Department of psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng-Hong Liu
- Department of psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ai-Xia Zhang
- Department of psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi, China
| | - Elissar Andari
- Department of Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.
| | - Ke-Rang Zhang
- Department of psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
18
|
Kamishikiryo T, Okada G, Itai E, Masuda Y, Yokoyama S, Takamura M, Fuchikami M, Yoshino A, Mawatari K, Numata S, Takahashi A, Ohmori T, Okamoto Y. Left DLPFC activity is associated with plasma kynurenine levels and can predict treatment response to escitalopram in major depressive disorder. Psychiatry Clin Neurosci 2022; 76:367-376. [PMID: 35543406 PMCID: PMC9544423 DOI: 10.1111/pcn.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 11/27/2022]
Abstract
AIM To establish treatment response biomarkers that reflect the pathophysiology of depression, it is important to use an integrated set of features. This study aimed to determine the relationship between regional brain activity at rest and blood metabolites related to treatment response to escitalopram to identify the characteristics of depression that respond to treatment. METHODS Blood metabolite levels and resting-state brain activity were measured in patients with moderate to severe depression (n = 65) before and after 6-8 weeks of treatment with escitalopram, and these were compared between Responders and Nonresponders to treatment. We then examined the relationship between blood metabolites and brain activity related to treatment responsiveness in patients and healthy controls (n = 36). RESULTS Thirty-two patients (49.2%) showed a clinical response (>50% reduction in the Hamilton Rating Scale for Depression score) and were classified as Responders, and the remaining 33 patients were classified as Nonresponders. The pretreatment fractional amplitude of low-frequency fluctuation (fALFF) value of the left dorsolateral prefrontal cortex (DLPFC) and plasma kynurenine levels were lower in Responders, and the rate of increase of both after treatment was correlated with an improvement in symptoms. Moreover, the fALFF value of the left DLPFC was significantly correlated with plasma kynurenine levels in pretreatment patients with depression and healthy controls. CONCLUSION Decreased resting-state regional activity of the left DLPFC and decreased plasma kynurenine levels may predict treatment response to escitalopram, suggesting that it may be involved in the pathophysiology of major depressive disorder in response to escitalopram treatment.
Collapse
Affiliation(s)
- Toshiharu Kamishikiryo
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Eri Itai
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Yoshikazu Masuda
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Satoshi Yokoyama
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Masahiro Takamura
- Department of Neurology, Faculty of MedicineShimane UniversityIzumo‐shiJapan
| | - Manabu Fuchikami
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Shusuke Numata
- Department of Psychiatry, Institute of Biomedical ScienceTokushima University Graduate SchoolTokushimaJapan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Tetsuro Ohmori
- Department of Psychiatry, Institute of Biomedical ScienceTokushima University Graduate SchoolTokushimaJapan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
19
|
Zhou J, Chen W, Wu Q, Chen L, Chen HH, Liu H, Xu XQ, Wu FY, Hu H. Reduced cortical complexity in patients with thyroid-associated ophthalmopathy. Brain Imaging Behav 2022; 16:2133-2140. [PMID: 35821157 DOI: 10.1007/s11682-022-00683-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Psychical and functional disturbances of thyroid-associated ophthalmopathy (TAO) patients are drawing increasingly attention, despite the characterized ophthalmic symptoms. We aimed to investigate the alterations of structural complexity using fractal dimension (FD) analysis in patients with TAO. Thirty-nine TAO patients and 25 healthy controls underwent high-resolution 3.0 T structural brain magnetic resonance imaging (MRI). FD values of brain regions were calculated by Computational Anatomy Toolbox (CAT12) and compared between groups. The associations between clinical variables and FD values were further estimated. We found that TAO patients exhibited significantly decreased FD values in right caudal anterior cingulate cortex, right lingual gyrus, right pars orbitalis and right cuneus cortex (FDR corrected p < 0.05). FD values of right cuneus cortex were positively correlated with visual acuity, and FD values of right caudal anterior cingulate cortex were also positively correlated with cognitive performance. Meanwhile, FD values of right lingual gyrus were found to be negatively correlated with emotional function. Our study indicated disturbed cortical complexity in brain regions corresponding to known functional deficits of vision, emotion and cognition in TAO. FD might be a potential marker for reflecting the underlying neurobiological basis of TAO.
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China.
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China.
| |
Collapse
|
20
|
Nawijn L, Dinga R, Aghajani M, van Tol M, van der Wee NJA, Wunder A, Veltman DJ, Penninx BWHJ. Neural correlates of anxious distress in depression: A neuroimaging study of reactivity to emotional faces and resting-state functional connectivity. Depress Anxiety 2022; 39:573-585. [PMID: 35536093 PMCID: PMC9543619 DOI: 10.1002/da.23264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Comorbid anxiety disorders and anxious distress are highly prevalent in major depressive disorder (MDD). The presence of the DSM-5 anxious distress specifier (ADS) has been associated with worse treatment outcomes and chronic disease course. However, little is known about the neurobiological correlates of anxious distress in MDD. METHODS We probed the relation between the DSM-5 ADS and task-related reactivity to emotional faces, as well as resting-state functional connectivity patterns of intrinsic salience and basal ganglia networks in unmedicated MDD patients with (MDD/ADS+, N = 24) and without ADS (MDD/ADS-, N = 48) and healthy controls (HC, N = 59). Both categorical and dimensional measures of ADS were investigated. RESULTS MDD/ADS+ patients had higher left amygdala responses to emotional faces compared to MDD/ADS- patients (p = .015)-part of a larger striato-limbic cluster. MDD/ADS+ did not differ from MDD/ADS- or controls in resting-state functional connectivity of the salience or basal ganglia networks. CONCLUSIONS Current findings suggest that amygdala and striato-limbic hyperactivity to emotional faces may be a neurobiological hallmark specific to MDD with anxious distress, relative to MDD without anxious distress. This may provide preliminary indications of the underlying mechanisms of anxious distress in depression, and underline the importance to account for heterogeneity in depression research.
Collapse
Affiliation(s)
- Laura Nawijn
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Location VUmcVrije Universiteit AmsterdamAmsterdamThe Netherlands,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Location Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Richard Dinga
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Location VUmcVrije Universiteit AmsterdamAmsterdamThe Netherlands,Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Location VUmcVrije Universiteit AmsterdamAmsterdamThe Netherlands,Section Forensic Family & Youth Care, Institute of Education and Child StudiesLeiden UniversityLeidenThe Netherlands
| | - Marie‐José van Tol
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, Cognitive Neuroscience CenterGroningenThe Netherlands
| | | | - Andreas Wunder
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine and Clinical PharmacologyBiberach an der RissGermany
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Location VUmcVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Brenda W. H. J. Penninx
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Location VUmcVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
21
|
Sun J, Chen L, He J, Du Z, Ma Y, Wang Z, Guo C, Luo Y, Gao D, Hong Y, Zhang L, Xu F, Cao J, Hou X, Xiao X, Tian J, Fang J, Yu X. Altered Brain Function in First-Episode and Recurrent Depression: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:876121. [PMID: 35546875 PMCID: PMC9083329 DOI: 10.3389/fnins.2022.876121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/10/2023] Open
Abstract
Background Studies on differences in brain function activity between the first depressive episode (FDE) and recurrent depressive episodes (RDE) are scarce. In this study, we used regional homogeneity (ReHo) and amplitude of low-frequency fluctuations (ALFF) as indices of abnormal brain function activity. We aimed to determine the differences in these indices between patients with FDE and those with RDE, and to investigate the correlation between areas of abnormal brain function and clinical symptoms. Methods A total of 29 patients with RDE, 28 patients with FDE, and 29 healthy controls (HCs) who underwent resting-state functional magnetic resonance imaging were included in this study. The ReHo and ALFF measurements were used for image analysis and further analysis of the correlation between different brain regions and clinical symptoms. Results Analysis of variance showed significant differences among the three groups in ReHo and ALFF in the frontal, parietal, temporal, and occipital lobes. ReHo was higher in the right inferior frontal triangular gyrus and lower in the left inferior temporal gyrus in the RDE group than in the FDE group. Meanwhile, ALFF was higher in the right inferior frontal triangular gyrus, left anterior cingulate gyrus, orbital part of the left middle frontal gyrus, orbital part of the left superior frontal gyrus, and right angular gyrus, but was lower in the right lingual gyrus in the RDE group than in the FDE group. ReHo and ALFF were lower in the left angular gyrus in the RDE and FDE groups than in the HC group. Pearson correlation analysis showed a positive correlation between the ReHo and ALFF values in these abnormal areas in the frontal lobe and the severity of depressive symptoms (P < 0.05). Abnormal areas in the temporal and occipital lobes were negatively correlated with the severity of depressive symptoms (P < 0.05). Conclusion The RDE and FDE groups had abnormal neural function activity in some of the same brain regions. ReHo and ALFF were more widely distributed in different brain regions and had more complex neuropathological mechanisms in the RDE group than in the FDE group, especially in the right inferior frontal triangular gyrus of the frontal lobe.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengquan Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiudong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jing Tian
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| |
Collapse
|
22
|
Horáková A, Němcová H, Mohr P, Sebela A. Structural, functional, and metabolic signatures of postpartum depression: A systematic review. Front Psychiatry 2022; 13:1044995. [PMID: 36465313 PMCID: PMC9709336 DOI: 10.3389/fpsyt.2022.1044995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Postpartum depression (PPD) is a serious condition with debilitating consequences for the mother, offspring, and the whole family. The scope of negative outcomes of PPD highlights the need to specify effective diagnostics and treatment which might differ from major depressive disorder (MDD). In order to improve our clinical care, we need to better understand the underlying neuropathological mechanisms of PPD. Therefore, we conducted a systematic review of published neuroimaging studies assessing functional, structural, and metabolic correlates of PPD. METHODS Relevant papers were identified using a search code for English-written studies in the PubMed, Scopus, and Web of Science databases published by March 2022. Included were studies with structural magnetic resonance imaging, functional magnetic resonance imaging, both resting-state and task-related, magnetic resonance spectroscopy, or positron emission tomography. The findings were analyzed to assess signatures in PPD-diagnosed women compared to healthy controls. The review protocol was registered in PROSPERO (CRD42022313794). RESULTS The total of 3,368 references were initially identified. After the removal of duplicates and non-applicable papers, the search yielded 74 full-text studies assessed for eligibility. Of them, 26 met the inclusion criteria and their findings were analyzed and synthesized. The results showed consistent functional, structural, and metabolic changes in the default mode network and the salient network in women with PPD. During emotion-related tasks, PPD was associated with changes in the corticolimbic system activity, especially the amygdala. DISCUSSION This review offers a comprehensive summary of neuroimaging signatures in PPD-diagnosed women. It indicates the brain regions and networks which show functional, structural, and metabolic changes. Our findings offer better understanding of the nature of PPD, which clearly copies some features of MDD, while differs in others.
Collapse
Affiliation(s)
- Anna Horáková
- Center of Perinatal Mental Health, National Institute of Mental Health, Klecany, Czechia.,Department of Psychology, Faculty of Arts, Charles University, Prague, Czechia
| | - Hana Němcová
- Center of Perinatal Mental Health, National Institute of Mental Health, Klecany, Czechia.,Department of Psychology, Faculty of Arts, Charles University, Prague, Czechia
| | - Pavel Mohr
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czechia.,Clinical Center, National Institute of Mental Health, Klecany, Czechia
| | - Antonin Sebela
- Center of Perinatal Mental Health, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
23
|
Veselinović T, Rajkumar R, Amort L, Junger J, Shah NJ, Fimm B, Neuner I. Connectivity Patterns in the Core Resting-State Networks and Their Influence on Cognition. Brain Connect 2021; 12:334-347. [PMID: 34182786 DOI: 10.1089/brain.2020.0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction: Three prominent resting-state networks (rsNW) (default mode network [DMN], salience network [SN], and central executive network [CEN]) are recognized for their important role in several neuropsychiatric conditions. However, our understanding of their relevance in terms of cognition remains insufficient. Materials and Methods: In response, this study aims at investigating the patterns of different network properties (resting-state activity [RSA] and short- and long-range functional connectivity [FC]) in these three core rsNWs, as well as the dynamics of age-associated changes and their relation to cognitive performance in a sample of healthy controls (N = 74) covering a large age span (20-79 years). Using a whole-network based approach, three measures were calculated from the functional magnetic resonance imaging (fMRI) data: amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and degree of network centrality (DC). The cognitive test battery covered the following domains: memory, executive functioning, processing speed, attention, and visual perception. Results: For all three fMRI measures (ALFF, ReHo, and DC), the highest values of spontaneous brain activity (ALFF), short- and long-range connectivity (ReHo, DC) were observed in the DMN and the lowest in the SN. Significant age-associated decrease was observed in the DMN for ALFF and DC, and in the SN for ALFF and ReHo. Significant negative partial correlations were observed for working memory and ALFF in all three networks, as well as for additional cognitive parameters and ALFF in CEN. Discussion: Our results show that higher RSA in the three core rsNWs may have an unfavorable effect on cognition. Conversely, the pattern of network properties in healthy subjects included low RSA and FC in the SN. This complements previous research related to the three core rsNW and shows that the chosen approach can provide additional insight into their function.
Collapse
Affiliation(s)
- Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Jessica Junger
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany
| | - Nadim Jon Shah
- JARA-BRAIN-Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Bruno Fimm
- JARA-BRAIN-Translational Medicine, Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
24
|
Arnsten AFT, Datta D, Wang M. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Mol Psychiatry 2021; 26:3684-3700. [PMID: 33319854 PMCID: PMC8203737 DOI: 10.1038/s41380-020-00973-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer's disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without "bottom-up" sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP-PKA-calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP-PKA signaling. Excessive levels of cAMP-calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium-cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium-cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3). Age-related loss of regulatory proteins which result in elevated calcium-cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the "genie" we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
25
|
Zheng W, Wang L, Chen Q, Li X, Chen X, Qin W, Li K, Lu J, Chen N. Functional Reorganizations Outside the Sensorimotor Regions Following Complete Thoracolumbar Spinal Cord Injury. J Magn Reson Imaging 2021; 54:1551-1559. [PMID: 34060693 DOI: 10.1002/jmri.27764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Studies have shown that loss of sensorimotor function in spinal cord injury (SCI) leads to brain functional reorganization, which may play important roles in motor function recovery. However, the specific functional changes following SCI are still poorly understood. PURPOSE To investigate whether there are functional reorganizations outside the sensorimotor regions after complete thoracolumbar SCI (CTSCI), and how these reorganizations are associated with clinical manifestations. STUDY TYPE Prospective. SUBJECTS Eighteen CTSCI patients (28-67 years of age; 16 men) and 18 age-, gender-matched healthy controls (HCs) (27-64 years of age; 16 men). FIELD STRENGTH/SEQUENCE Resting-state functional magnetic resonance imaging (RS-fMRI) using echo-planar-imaging (EPI) sequence at 3.0 T. ASSESSMENT Data preprocessing was performed using Data Processing Assistant for Resting-State fMRI (DPARSF). Amplitude of low-frequency fluctuations (ALFF) was used to characterize regional neural function, and seed-based functional connectivity (FC) was used to evaluate the functional integration of the brain network. STATISTICAL TESTS Two-sample t-tests were used for ALFF and FC measures (the data conform to the normal distribution), partial correlation analysis was used to analyze the correlation between clinical and imaging indicators, and receiver operating characteristic (ROC) analysis was used to search for sensitive imaging indicators. RESULTS Compared with HCs, CTSCI patients showed decreased ALFF in right lingual gyrus (LG), increased ALFF in right middle frontal gyrus (MFG), and decreased FC between the right LG and Vermis_3 (cluster-level FWE correction with P < 0.05). Subsequent correlation analyses revealed that decreased FC between the right LG and Vermis_3 positively correlated with the visual analog scale (VAS) (P = 0.043, r = 0.443). Finally, the ROC analysis showed that the area under the curve (AUC) of FC value between right LG and Vermis3 was 0.881. DATA CONCLUSION These findings suggest a possible theoretical basis of the mechanism of visual-, emotion-, and cognition-related techniques in rehabilitation training for CTSCI.
Collapse
Affiliation(s)
- Weimin Zheng
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Ling Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuejing Li
- Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Xin Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
26
|
Wu H, Zheng Y, Zhan Q, Dong J, Peng H, Zhai J, Zhao J, She S, Wu C. Covariation between spontaneous neural activity in the insula and affective temperaments is related to sleep disturbance in individuals with major depressive disorder. Psychol Med 2021; 51:731-740. [PMID: 31839025 DOI: 10.1017/s0033291719003647] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Affective temperaments have been considered antecedents of major depressive disorder (MDD). However, little is known about how the covariation between alterations in brain activity and distinct affective temperaments work collaboratively to contribute to MDD. Here, we focus on the insular cortex, a critical hub for the integration of subjective feelings, emotions, and motivations, to examine the neural correlates of affective temperaments and their relationship to depressive symptom dimensions. METHODS Twenty-nine medication-free patients with MDD and 58 healthy controls underwent magnetic resonance imaging scanning and completed the Temperament Evaluation of Memphis, Pisa, Paris and San Diego (TEMPS). Patients also received assessments of the Hamilton Depression Rating Scale (HDRS). We used multivariate analyses of partial least squares regression and partial correlation analyses to explore the associations among the insular activity, affective temperaments, and depressive symptom dimensions. RESULTS A profile (linear combination) of increased fractional amplitude of low-frequency fluctuations (fALFF) of the anterior insular subregions (left dorsal agranular-dysgranular insula and right ventral agranuar insula) was positively associated with an affective-temperament (depressive, irritable, anxious, and less hyperthymic) profile. The covariation between the insula-fALFF profile and the affective-temperament profile was significantly correlated with the sleep disturbance dimension (especially the middle and late insomnia scores) in the medication-free MDD patients. CONCLUSIONS The resting-state spontaneous activity of the anterior insula and affective temperaments collaboratively contribute to sleep disturbances in medication-free MDD patients. The approach used in this study provides a practical way to explore the relationship of multivariate measures in investigating the etiology of mental disorders.
Collapse
Affiliation(s)
- Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou510370, China
| | - Yingjun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou510370, China
| | - Qianqian Zhan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou510370, China
| | - Jie Dong
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou510370, China
| | - Hongjun Peng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou510370, China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, Jining272067, China
| | - Jingping Zhao
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou510370, China
| | - Shenglin She
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou510370, China
| | - Chao Wu
- School of Nursing, Peking University Health Science Center, Beijing100191, China
| |
Collapse
|
27
|
Tian S, Zhu R, Chattun MR, Wang H, Chen Z, Zhang S, Shao J, Wang X, Yao Z, Lu Q. Temporal dynamics alterations of spontaneous neuronal activity in anterior cingulate cortex predict suicidal risk in bipolar II patients. Brain Imaging Behav 2021; 15:2481-2491. [PMID: 33656698 DOI: 10.1007/s11682-020-00448-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/25/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
Bipolar disorder type II (BD-II) is linked to an increased suicidal risk. Since a prior suicide attempt (SA) is the single most important risk factor for sequent suicide, the elucidation of involved neural substrates is critical for its prevention. Therefore, we examined the spontaneous brain activity and its temporal variabilities in suicide attempters with bipolar II during a major depressive episode. In this cross-sectional study, 101 patients with BD-II, including 44 suicidal attempters and 57 non-attempters, and 60 non-psychiatric controls underwent a resting-state functional magnetic resonance imaging (fMRI). Participants were assessed with Hamilton Rating Scale for Depression (HAMD) and Nurses, Global Assessment of Suicide Risk (NGASR). The dynamics of low-frequency fluctuation (dALFF) was measured using sliding-window analysis and its correlation with suicidal risk was conducted using Pearson correlation. Compared to non-attempters, suicidal attempters showed an increase in brain activity and temporal dynamics in the anterior cingulate cortex (ACC). In addition, the temporal variabilities of ACC activity positively correlated with suicidal risk (R = 0.45, p = 0.004), while static ACC activity failed to (R = 0.08, p > 0.05). Our findings showed that an aberrant static ALFF and temporal variability could affect suicidal behavior in BD-II patients. However, temporal variability of neuronal activity was more sensitive than static amplitude in reflecting diathesis for suicide in BD-II. Dynamics of brain activity could be considered in developing neuromarkers for suicide prevention.
Collapse
Affiliation(s)
- Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Jiangsu Province, Nanjing, 210096, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, 210096, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mohammad Ridwan Chattun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Jiangsu Province, Nanjing, 210096, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, 210096, China
| | - Zhilu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Siqi Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Jiangsu Province, Nanjing, 210096, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, 210096, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Jiangsu Province, Nanjing, 210096, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, 210096, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Jiangsu Province, Nanjing, 210096, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, 210096, China
| | - Zhijian Yao
- School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Jiangsu Province, Nanjing, 210096, China.
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Jiangsu Province, Nanjing, 210096, China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, 210096, China.
| |
Collapse
|
28
|
Han X, Gao Y, Yin X, Zhang Z, Lao L, Chen Q, Xu S. The mechanism of electroacupuncture for depression on basic research: a systematic review. Chin Med 2021; 16:10. [PMID: 33436036 PMCID: PMC7805231 DOI: 10.1186/s13020-020-00421-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 12/26/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Electroacupuncture (EA) is generally accepted as a safe and harmless treatment option for alleviating depression. However, there are several challenges related to the use of EA. Although EA has been shown to be effective in treating depression, the molecular mechanism is unclear. OBJECTIVE To reveal the therapeutic effect of EA and its possible mechanism in the treatment of depression. SEARCH STRATEGY We performed a systematic search according to PRISMA guidelines. We electronically searched PubMed, Web of Science (WOS), the China National Knowledge Infrastructure (CNKI), Wanfang Data Information Site and the VIP information database for animal studies in English published from the inception of these databases to December 31, 2019. INCLUSION CRITERIA Electronic searches of PubMed, WOS, the CNKI, Wanfang and the VIP database were conducted using the following search terms: (depression OR depressive disorder OR antidepressive), (rat OR mouse) AND (acupuncture OR EA). DATA EXTRACTION AND ANALYSIS The data were extracted primarily by one author, and a follow-up review was conducted by the other authors. RESULTS Twenty-eight articles met the inclusion criteria. The most commonly used method for inducing depression in animal models was 21 days of chronic unpredictable mild stress. For the depression model, the most commonly selected EA frequency was 2 Hz. Among the 28 selected studies, 11 studies observed depression-related behaviors and used them as indicators of EA efficacy. The other 17 studies focused on mechanisms and assessed the indexes that exhibited abnormalities that were known to result from depression and then returned to a normal range after EA treatment. Treatment of depression by EA involves multiple therapeutic mechanisms, including inhibition of HPA axis hyperactivity and inflammation, regulation of neuropeptides and neurotransmitters, modulation of the expression of particular genes, restoration of hippocampal synaptic plasticity, increased expression of BDNF, and regulation of several signaling pathways. CONCLUSIONS This review reveals that the mechanisms underlying the effect of acupuncture involve multiple pathways and targets, suggesting that acupuncture is a wholistic treatment for people rather than for diseases. Our findings also explain why acupuncture can treat various disorders in addition to depression.
Collapse
Affiliation(s)
- Xuke Han
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 China
| | - Yang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Xuan Yin
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 China
| | - Zhangjin Zhang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Virginia University of Integrative Medicine, Fairfax, Virginia 22031 USA
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Shifen Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 China
| |
Collapse
|
29
|
Qiao J, Tao S, Wang X, Shi J, Chen Y, Tian S, Yao Z, Lu Q. Brain functional abnormalities in the amygdala subregions is associated with anxious depression. J Affect Disord 2020; 276:653-659. [PMID: 32871697 DOI: 10.1016/j.jad.2020.06.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Functional neuroimaging studies have provided strong support for the critical role the amygdala plays in emotional processing. The amygdala is composed of three primary distinct nuclei that have different functions in emotional regulation. Anxious depression (AD) was considered as a common dimensional symptom of Major Depressive Disorder (MDD). However, the neuroimaging basis of this special MDD subtype remains largely unknown. Therefore, it is necessary to study the functional connectivity of the amygdala's subregions in AD patients. METHODS Eighty-three patients with AD, 70 non-anxious depression (NAD) patients, and 62 healthy controls were collected. Age and gender were well-matched. The functional connectivity of three amygdala subregions, including centromedial (CM), laterobasal (LB), and superficial (SF), were compared among the AD, NAD, and HC groups. The correlation between functional connectivity in the amygdala subregions and the HAMD factor scores were further analyzed. RESULTS Patients with AD showed decreased functional connectivity between the right CM/LB and the right middle frontal gyrus relative to the NAD group. The NAD patients showed decreased functional connectivity between the right precentral gyrus and the right CM/SF compared to the HC group. The functional connectivity between the right CM and the right middle frontal gyrus was negatively correlated with the anxiety/somatization factor. CONCLUSION The functional connectivity between the right CM/LB and the right middle frontal gyrus might be the neurobiological mechanism of anxious depression. The FC between the right CM and the right middle frontal gyrus may help to explain the special clinical feature of the AD patients.
Collapse
Affiliation(s)
- Juan Qiao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Psychiatry, Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Shiwan Tao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Jiabo Shi
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Yu Chen
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
30
|
Schneider I, Schmitgen MM, Bach C, Listunova L, Kienzle J, Sambataro F, Depping MS, Kubera KM, Roesch-Ely D, Wolf RC. Cognitive remediation therapy modulates intrinsic neural activity in patients with major depression. Psychol Med 2020; 50:2335-2345. [PMID: 31524112 DOI: 10.1017/s003329171900240x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cognitive impairment is a core feature of major depressive disorder (MDD). Cognitive remediation may improve cognition in MDD, yet so far, the underlying neural mechanisms are unclear. This study investigated changes in intrinsic neural activity in MDD after a cognitive remediation trial. METHODS In a longitudinal design, 20 patients with MDD and pronounced cognitive deficits and 18 healthy controls (HC) were examined using resting-state functional magnetic resonance imaging. MDD patients received structured cognitive remediation therapy (CRT) over 5 weeks. The whole-brain fractional amplitude of low-frequency fluctuations was computed before the first and after the last training session. Univariate methods were used to address regionally-specific effects, and a multivariate data analysis strategy was employed to investigate functional network strength (FNS). RESULTS MDD patients significantly improved in cognitive function after CRT. Baseline comparisons revealed increased right caudate activity and reduced activity in the left frontal cortex, parietal lobule, insula, and precuneus in MDD compared to HC. In patients, reduced FNS was found in a bilateral prefrontal system at baseline (p < 0.05, uncorrected). In MDD, intrinsic neural activity increased in right inferior frontal gyrus after CRT (p < 0.05, small volume corrected). Left inferior parietal lobule, left insula, left precuneus, and right caudate activity showed associations with cognitive improvement (p < 0.05, uncorrected). Prefrontal network strength increased in patients after CRT, but this increase was not associated with improved cognitive performance. CONCLUSIONS Our findings support the role of intrinsic neural activity of the prefrontal cortex as a possible mediator of cognitive improvement following CRT in MDD.
Collapse
Affiliation(s)
- Isabella Schneider
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg Germany, Voßstr. 4, 69115Heidelberg, Germany
| | - Mike M Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg Germany, Voßstr. 4, 69115Heidelberg, Germany
| | - Claudia Bach
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg Germany, Voßstr. 4, 69115Heidelberg, Germany
| | - Lena Listunova
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg Germany, Voßstr. 4, 69115Heidelberg, Germany
| | - Johanna Kienzle
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg Germany, Voßstr. 4, 69115Heidelberg, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Malte S Depping
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg Germany, Voßstr. 4, 69115Heidelberg, Germany
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg Germany, Voßstr. 4, 69115Heidelberg, Germany
| | - Daniela Roesch-Ely
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg Germany, Voßstr. 4, 69115Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg Germany, Voßstr. 4, 69115Heidelberg, Germany
| |
Collapse
|
31
|
Yu H, Li ML, Li YF, Li XJ, Meng Y, Liang S, Li Z, Guo W, Wang Q, Deng W, Ma X, Coid J, Li DT. Anterior cingulate cortex, insula and amygdala seed-based whole brain resting-state functional connectivity differentiates bipolar from unipolar depression. J Affect Disord 2020; 274:38-47. [PMID: 32469830 DOI: 10.1016/j.jad.2020.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The frontal-limbic circuit is hypothesized as sub-serving emotional regulation. We performed whole brain resting-state functional connectivity (rs-FC) analysis by studying the key hubs of frontal-limbic circuit: anterior cingulate cortex (ACC), bilateral insula subregions, bilateral amygdala (Amy) as seeds, separately, to discriminate bipolar depression (BipD) from unipolar depression (UniD). METHODS We compared seed-based rs-FC of the frontal-limbic seeds with whole brain among 23 BipD participants; 23 age, gender, and depression severity matched patients with UniD, and 23 healthy controls (HCs). We also used support vector machine learning to study classification based on the rs-FC of ACC, bilateral insula subregions, and bilateral Amy seeds with whole brain. RESULTS BipD showed increased rs-FC between the left ventral anterior insula (vAI) seed and the left anterior supramarginal gyrus (aSMG) and left postcentral gyrus, as well as increased rs-FC between left amygdala seed and the left aSMG when compared to HCs and UniD. Compared to UniD, BipD was associated with increased rs-FC between right dorsal anterior insula seed and right superior frontal gyrus, as well as increased rs-FC between left posterior insula seed and right precentral gyrus and right thalamus. Combined rs-FC of ACC, bilateral insula subregions and bilateral Amy seeds with the whole brain discriminated BipD from UniD with an accuracy of 91.30%. CONCLUSIONS Rs-FC of the emotional regulation circuit is more widely disturbed in BipD than UniD. Using rs-FC with this circuit may lead to further developments in diagnostic decision-making.
Collapse
Affiliation(s)
- Hua Yu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ming-Li Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yin-Fei Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Jing Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yajing Meng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Sugai Liang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhe Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wanjun Guo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jeremy Coid
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - D Tao Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Cheng Y, Huang X, Hu YX, Huang MH, Yang B, Zhou FQ, Wu XR. Comparison of intrinsic brain activity in individuals with low/moderate myopia versus high myopia revealed by the amplitude of low-frequency fluctuations. Acta Radiol 2020; 61:496-507. [PMID: 31398992 DOI: 10.1177/0284185119867633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Previous neuroimaging studies demonstrated that individuals with high myopia are associated with abnormalities in anatomy of the brain. Purpose The purpose of this study was to explore alterations in the intrinsic brain activity by studying the amplitude of low-frequency fluctuations. Material and Methods A total of 64 myopia individuals (41 with high myopia with a refractive error <–600 diopter [D], 23 with low/moderate myopia with a refractive error between –100 and –600 D, and similarly 59 healthy controls with emmetropia closely matched for age) were recruited. The amplitude of low-frequency fluctuations method was conducted to investigate the difference of intrinsic brain activity across three groups. Results Compared with the healthy controls, individuals with low/moderate myopia showed significantly decreased amplitude of low-frequency fluctuation values in the bilateral rectal gyrus, right cerebellum anterior lobe/calcarine, and bilateral thalamus and showed significantly increased amplitude of low-frequency fluctuation values in left white matter (optic radiation), right prefrontal cortex, and left primary motor cortex (M1)/primary somatosensory cortex (S1). In addition, individuals with high myopia showed significantly decreased amplitude of low-frequency fluctuation values in the right cerebellum anterior lobe/calcarine/bilateral parahippocampal gyrus, bilateral posterior cingulate cortex, and bilateral middle cingulate cortex and significantly increased amplitude of low-frequency fluctuation values in left white matter (optic radiation), bilateral frontal parietal cortex, and left M1/S1. Moreover, we found that the amplitude of low-frequency fluctuation values of the different brain areas was closely related to the clinical features in the high myopia group. Conclusion Our results demonstrated that individuals with low/moderate myopia and high myopia had abnormal intrinsic brain activities in various brain regions related to the limbic system, default mode network, and thalamo-occipital pathway.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Yu-Xiang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Mu-Hua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
| | - Bo Yang
- Department of Ophthalmology, The People’s Hospital of Xinjiang, Urumqi, PR China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
| | - Xiao-Rong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| |
Collapse
|
33
|
Qiao D, Zhang A, Sun N, Yang C, Li J, Zhao T, Wang Y, Xu Y, Wen Y, Zhang K, Liu Z. Altered Static and Dynamic Functional Connectivity of Habenula Associated With Suicidal Ideation in First-Episode, Drug-Naïve Patients With Major Depressive Disorder. Front Psychiatry 2020; 11:608197. [PMID: 33391057 PMCID: PMC7772142 DOI: 10.3389/fpsyt.2020.608197] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Investigating the neurobiological mechanism of suicidal ideation (SI) in major depressive disorder (MDD) may be beneficial to prevent the suicidal behavior. Mounting evidence showed that habenula contributed to the etiology of MDD. The habenula is a key brain region that links the forebrain to midbrain, crucial for the processing of reward and aversion. The aim of the present study was to identify whether first-episode, drug-naive MDD patients with SI displayed altered habenula neural circuitry. Forty-three and 38 drug-naïve patients with first-episode MDD with or without SI (SI+/- group) and 35 healthy control subjects (HC) underwent resting-state functional magnetic resonance imaging. The whole-brain habenula static (sFC) and dynamic functional connectivity (dFC) were calculated to identify regions showing significant difference among these three groups followed by region of interest to region of interest post hoc analysis. For sFC, compared with SI- and HC groups, SI+ group showed decreased sFC from habenula to the precuneus and the inferior frontal gyrus. Patients with MDD displayed increased sFC from habenula to the putamen but decreased sFC to the precentral gyrus. For dFC, SI+ group showed increased dFC from habenula to the superior temporal gyrus, the precuneus, but decreased dFC to the lingual gyrus, the postcentral gyrus, when comparing with SI- and HC groups. Patients with MDD, regardless of SI, displayed decreased dFC from the habenula to the angular gyrus. These findings provide evidence that SI in first-episode, drug-naïve patients with MDD may be related to an abnormality in habenula neural circuitry, which may provide the theoretical basis of novel treatments.
Collapse
Affiliation(s)
- Dan Qiao
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China.,The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Aixia Zhang
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianying Li
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ting Zhao
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuchen Wang
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yifan Xu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujiao Wen
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kerang Zhang
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
34
|
Yuan H, Zhu X, Tang W, Cai Y, Shi S, Luo Q. Connectivity between the anterior insula and dorsolateral prefrontal cortex links early symptom improvement to treatment response. J Affect Disord 2020; 260:490-497. [PMID: 31539685 DOI: 10.1016/j.jad.2019.09.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/09/2019] [Accepted: 09/08/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Early improvement (EI) following treatment with antidepressants is a widely reported predictor to the treatment response. This study aimed to identify the resting-state functional connectivity (rs-FC) and its related clinical features that link the treatment response at the time of EI. METHODS This study included 23 first-episode treatment-naive patients with MDD. After 2 weeks of antidepressant treatment, these patients received 3.0 Tesla resting-state functional magnetic resonance imaging scanning and were subgrouped into an EI group (N = 13) and a non-EI group (N = 10). Using the anterior insula (rAI) as a seed region, this study identified the rs-FC that were associated with both EI and the treatment response at week 12, and further tested the associations of the identified rs-FC with either the clinical features or the early symptom improvement. RESULTS Rs-FC between rAI and the left dorsolateral prefrontal cortex (dlPFC) was associated with EI (t21 = -6.091, p = 0.022 after FDR correction for multiple comparisons). This rs-FC was also associated with an interaction between EI and the treatment response at the week 12 (t21 = -5.361, p = 6.37e-5). Moreover, among the clinical features, this rs-FC was associated with the early symptom improvement in the insomnia, somatic symptoms, and anxiety symptoms, and these early symptom improvements were associated with the treatment response. CONCLUSION Rs-FC between the rAI and the left dlPFC played a crucial role in the early antidepressant effect, which linked the treatment response. The early treatment effect relating to rAI may represent an early symptom improvement in self-perceptual anxiety, somatic symptoms and insomnia.
Collapse
Affiliation(s)
- Hsinsung Yuan
- Psychiatry Department of Huashan Hospital, Fudan University, Shanghai, China; Psychiatry Department of Nanjing Meishan Hospital, Nanjing, China
| | - Xiao Zhu
- Psychiatry Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Weijun Tang
- Radiological Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyun Cai
- Psychiatry Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Shenxun Shi
- Psychiatry Department of Huashan Hospital, Fudan University, Shanghai, China.
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Wu Z, Luo Q, Wu H, Wu Z, Zheng Y, Yang Y, He J, Ding Y, Yu R, Peng H. Amplitude of Low-Frequency Oscillations in Major Depressive Disorder With Childhood Trauma. Front Psychiatry 2020; 11:596337. [PMID: 33551867 PMCID: PMC7862335 DOI: 10.3389/fpsyt.2020.596337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Major Depressive Disorder (MDD) with childhood trauma is one of the functional subtypes of depression. Frequency-dependent changes in the amplitude of low-frequency fluctuations (ALFF) have been reported in MDD patients. However, there are few studies on ALFF about MDD with childhood trauma. Resting-state functional magnetic resonance imaging was used to measure the ALFF in 69 MDD patients with childhood trauma (28.7 ± 9.6 years) and 30 healthy subjects (28.12 ± 4.41 years). Two frequency bands (slow-5: 0.010-0.027 Hz; slow-4: 0.027-0.073 Hz) were analyzed. Compared with controls, the MDD with childhood trauma had decreased ALFF in left S1 (Primary somatosensory cortex), and increased ALFF in left insula. More importantly, significant group × frequency interactions were found in right dorsal anterior cingulate cortex (dACC). Our finding may provide insights into the pathophysiology of MDD with childhood trauma.
Collapse
Affiliation(s)
- Zhuoying Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huawang Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Yang
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfei He
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Ding
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
Mathematics and the Brain: A Category Theoretical Approach to Go Beyond the Neural Correlates of Consciousness. ENTROPY 2019. [PMCID: PMC7514579 DOI: 10.3390/e21121234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Consciousness is a central issue in neuroscience, however, we still lack a formal framework that can address the nature of the relationship between consciousness and its physical substrates. In this review, we provide a novel mathematical framework of category theory (CT), in which we can define and study the sameness between different domains of phenomena such as consciousness and its neural substrates. CT was designed and developed to deal with the relationships between various domains of phenomena. We introduce three concepts of CT which include (i) category; (ii) inclusion functor and expansion functor; and, most importantly, (iii) natural transformation between the functors. Each of these mathematical concepts is related to specific features in the neural correlates of consciousness (NCC). In this novel framework, we will examine two of the major theories of consciousness, integrated information theory (IIT) of consciousness and temporospatial theory of consciousness (TTC). We conclude that CT, especially the application of the notion of natural transformation, highlights that we need to go beyond NCC and unravels questions that need to be addressed by any future neuroscientific theory of consciousness.
Collapse
|
37
|
Peng W, Jia Z, Huang X, Lui S, Kuang W, Sweeney JA, Gong Q. Brain structural abnormalities in emotional regulation and sensory processing regions associated with anxious depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109676. [PMID: 31226395 DOI: 10.1016/j.pnpbp.2019.109676] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Considerable patients with major depressive disorder (MDD) comorbid with anxious symptoms, referred as anxious depression. The neural structural basis of this MDD specifier remains largely unknown. METHODS 104 patients with anxious depression, 57 MDD patients without significant anxious symptoms, and 160 healthy controls from single research center participated in the study with age and sex well-matched. We investigated gray matter alterations in anxious and non-anxious depression, explored different brain alterations between these two patient groups, and possible relationships between brain structural parameter and clinical information in patients. RESULTS Gray matter volumes differed in the right inferior frontal gyrus, right orbital frontal gyrus, left postcentral gyrus, bilateral culmen and left cuneus among the three groups. Anxious depression had smaller gray matter volumes in the right inferior frontal gyrus and orbital frontal gyrus relative to both non-anxious depression and healthy controls. Patients with anxious depression presented larger gray matter volumes in the left postcentral gyrus than non-anxious depression, and larger gray matter volumes in the left cuneus than healthy controls. In addition, both patient groups showed larger gray matter volumes in bilateral culmen relative to healthy controls. Gray matter volumes in the left postcentral gyrus were positively associated with overall depression severity and anxiety factor scores in anxious depression. CONCLUSION Our study revealed brain structural abnormalities in emotional regulation and sensory processing regions of anxious depression, which may suggested distinct neurobiological mechanisms of this MDD specifier and could help explain different clinical manifestations in anxious depression from pure depression.
Collapse
Affiliation(s)
- Wei Peng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, People's Hospital of Deyang City, Deyang, PR China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China.
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Jabbi M, Nemeroff CB. Convergent neurobiological predictors of mood and anxiety symptoms and treatment response. Expert Rev Neurother 2019; 19:587-597. [PMID: 31096806 DOI: 10.1080/14737175.2019.1620604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Mood and anxiety disorders are leading contributors to the global burden of diseases. Comorbid mood and anxiety disorders have a lifetime prevalence of ~20% globally and increases the risk for suicide, a leading cause of death. Areas covered: In this review, authors highlight recent advances in the understanding of multilevel-neurobiological mechanisms for normal/pathological human affective-functioning. The authors then address the complex interplay between environmental-adversity and molecular-genetic mediators of brain correlates of affective-symptoms. The molecular focus is strategically limited to GTF2i, BDNF, and FKBP5 genes that are, respectively, involved in transcriptional-, neurodevelopmental- and neuroendocrine-pathway mediation of affective-functions. The importance of these genes is illustrated with studies of copy-number-variants, genome-wide association (GWAS), and candidate gene-sequence variant associations with disease etiology. Authors concluded by highlighting the predictive values of integrative neurobiological processing of gene-environment interactions for affective disorder symptom management. Expert opinion: Given the transcriptional, neurodevelopmental and neuroimmune relevance of GTF2i, BDNF, and FKBP5 genes, respectively, authors reviewed the putative roles of these genes in neurobiological mediation of adaptive affective-responses. Authors discussed the importance of studying gene-dosage effects in understanding affective disorder risk biology, and how such targeted neurogenetic studies could guide precision identification of novel pharmacotherapeutic targets and aid in prediction of treatment response.
Collapse
Affiliation(s)
- Mbemba Jabbi
- a Department of Psychiatry , Dell Medical School, University of Texas at Austin , Austin , TX , USA.,b Mulva Neuroscience Institute, Dell Medical School , University of Texas at Austin , Austin , TX , USA.,c Institute of Neuroscience , University of Texas at Austin , Austin , TX , USA.,d Department of Psychology , University of Texas at Austin , Austin , TX , USA
| | - Charles B Nemeroff
- a Department of Psychiatry , Dell Medical School, University of Texas at Austin , Austin , TX , USA.,b Mulva Neuroscience Institute, Dell Medical School , University of Texas at Austin , Austin , TX , USA.,e Institute for Early Life Adversity , Dell Medical School, University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
39
|
Zhang K, Tang Y, Meng L, Zhu L, Zhou X, Zhao Y, Yan X, Tang B, Guo J. The Effects of SNCA rs894278 on Resting-State Brain Activity in Parkinson's Disease. Front Neurosci 2019; 13:47. [PMID: 30778284 PMCID: PMC6369188 DOI: 10.3389/fnins.2019.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is not well established. The rs894278 polymorphism of SNCA has been associated with PD. We performed this study to investigate the relationship between rs894278 and PD status on resting-state brain activity, by analyzing the amplitude of low-frequency fluctuation (ALFF). A total of 81 PD patients and 64 healthy controls were recruited. Disease severity and PD stage were evaluated in PD patients using the unified Parkinson's disease rating scale (UPDRS) and the Hoehn and Yahr (HY) scale, while the cognitive function of all participants was assessed using the mini-mental state examination (MMSE). All participants were genotyped for the rs894278 SNP and underwent a resting state functional magnetic resonance imaging scan. We found that the ALFF values of PD patients in the lingual gyrus and left caudate were lower than those of HCs; and the ALFF values for the right fusiform of participants with G allele were lower than those of participants without G allele. And we further revealed higher ALFF values in bilateral fusiform in rs894278-G carriers than in rs894278-G non-carriers in the PD group and lower ALFF values in bilateral fusiform in rs894278-G carriers than in rs894278-G non-carriers in the HC group. Our findings show that rs894278 and PD status interactively affect the brain activity of PD patients and HCs, and changes in the brain connectomes may play a key role in the pathogenesis of PD. Thus, our work sheds light on the mechanism underlying PD pathogenesis.
Collapse
Affiliation(s)
- Kailin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,School of Information Science and Engineering, Central South University, Changsha, China
| | - Li Meng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing China.,Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
40
|
Zhao P, Yan R, Wang X, Geng J, Chattun MR, Wang Q, Yao Z, Lu Q. Reduced Resting State Neural Activity in the Right Orbital Part of Middle Frontal Gyrus in Anxious Depression. Front Psychiatry 2019; 10:994. [PMID: 32038329 PMCID: PMC6987425 DOI: 10.3389/fpsyt.2019.00994] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Anxious depression (AD), which is generally recognized as a common clinical subtype of major depressive disorder (MDD), holds distinctive features compared with unanxious depression (UAD). However, the neural mechanism of AD still remains unrevealed. To give insight to it, we compared resting-state functional magnetic resonance amplitude of low-frequency fluctuation (ALFF) and functional connectivity (FC) between AD and UAD patients. METHOD The data were collected from 60 AD patients, 38 UAD patients, and 60 matched healthy controls. The ALFF and seed-based FC were examined. Pearson correlations were computed between ALFF/FC and clinical measures. RESULTS In Comparison with the UAD group, the ALFF value of the right orbital part of middle frontal gyrus (RO-MFG) decreased in AD group. Specifically, the ALFF values of the RO-MFG were negatively correlated with retardation factor scores in AD group (r = -0.376, p = 0.003). CONCLUSIONS AD patients exhibited disturbed intrinsic brain function compared with UAD patients. The decreased activity of the RO-MFG is indicative of the alterations involved in the neural basis of AD.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Medical Psychology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Jiting Geng
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Mohammad Ridwan Chattun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Medical Psychology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| |
Collapse
|
41
|
Han Q, Yang J, Xiong H, Shang H. Voxel-based meta-analysis of gray and white matter volume abnormalities in spinocerebellar ataxia type 2. Brain Behav 2018; 8:e01099. [PMID: 30125476 PMCID: PMC6160648 DOI: 10.1002/brb3.1099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To identify the consistent findings from the whole-brain voxel-based morphometry (VBM) studies on spinocerebellar ataxia type 2 (SCA2). METHODS The whole-brain VBM studies comparing SCA2 patients and healthy controls (HCs) were systematically searched in PubMed, Embase databases from January 2000 to June 2017. The coordinates with significant differences in gray matter (GM) and white matter (WM) between SCA2 patients and HCs were extracted separately from each cluster. A meta-analysis was performed using anisotropic effect size-based signed differential mapping (AES-SDM) software. RESULTS A total of five studies with 65 SCA2 patients and 124 HCs were included in the GM meta-analysis. Four of the five studies with 50 SCA2 patients and 109 HCs were included in the WM meta-analysis. Significant and consistent GM volume reductions were detected in bilateral cerebellar hemispheres, cerebellar vermis, the right fusiform gyrus, the right parahippocampal gyrus, and the right lingual gyrus. The WM volume reductions were observed in bilateral cerebellar hemispheres, cerebellar vermis, middle cerebellar peduncles, pons, and bilateral cortico-spinal projections. The findings of the study remained largely unchanged in jackknife sensitivity analysis. CONCLUSIONS The consistent findings from our meta-analysis showed that GM volume reductions in SCA2 patients were not limited in cerebellum while significant WM volume reductions widely existed in cerebellum and pyramidal system. The findings provide morphological basis for further studies on SCA2.
Collapse
Affiliation(s)
- Qing Han
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Xiong
- Department of Geriatrics, The Fourth Affiliated Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
42
|
GAD65 Promoter Polymorphism rs2236418 Modulates Harm Avoidance in Women via Inhibition/Excitation Balance in the Rostral ACC. J Neurosci 2018; 38:5067-5077. [PMID: 29724796 DOI: 10.1523/jneurosci.1985-17.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 01/04/2023] Open
Abstract
Anxiety disorders are common and debilitating conditions with higher prevalence in women. However, factors that predispose women to anxiety phenotypes are not clarified. Here we investigated potential contribution of the single nucleotide polymorphism rs2236418 in GAD2 gene to changes in regional inhibition/excitation balance, anxiety-like traits, and related neural activity in both sexes. One hundred and five healthy individuals were examined with high-field (7T) multimodal magnetic resonance imaging (MRI); including resting-state functional MRI in combination with assessment of GABA and glutamate (Glu) levels via MR spectroscopy. Regional GABA/Glu levels in anterior cingulate cortex (ACC) subregions were assessed as mediators of gene-personality interaction for the trait harm avoidance and moderation by sex was tested. In AA homozygotes, with putatively lower GAD2 promoter activity, we observed increased intrinsic neuronal activity and higher inhibition/excitation balance in pregenual ACC (pgACC) compared with G carriers. The pgACC drove a significant interaction of genotype, region, and sex, where inhibition/excitation balance was significantly reduced only in female AA carriers. This finding was specific for rs2236418 as other investigated single nucleotide polymorphisms of the GABA synthesis related enzymes (GAD1, GAD2, and GLS) were not significant. Furthermore, only in women there was a negative association of pgACC GABA/Glu ratios with harm avoidance. A moderated-mediation model revealed that pgACC GABA/Glu also mediated the association between the genotype variant and level of harm avoidance, dependent on sex. Our data thus provide new insights into the neurochemical mechanisms that control emotional endophenotypes in humans and constitute predisposing factors for the development of anxiety disorders in women.SIGNIFICANCE STATEMENT Anxiety disorders are among the most common and burdensome psychiatric disorders, with higher prevalence rates in women. The causal mechanisms are, however, poorly understood. In this study we propose a neurobiological basis that could help to explain female bias of anxiety endophenotypes. Using magnetic resonance brain imaging and personality questionnaires we show an interaction of the genetic variation rs2236418 in the GAD2 gene and sex on GABA/glutamate (Glu) balance in the pregenual anterior cingulate cortex (pgACC), a region previously connected to affect regulation and anxiety disorders. The GAD2 gene polymorphism further influenced baseline neuronal activity in the pgACC. Importantly, GABA/Glu was shown to mediate the relationship between the genetic variant and harm avoidance, however, only in women.
Collapse
|
43
|
Patients with anxious depression: overview of prevalence, pathophysiology and impact on course and treatment outcome. Curr Opin Psychiatry 2018; 31:17-25. [PMID: 29120914 DOI: 10.1097/yco.0000000000000376] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Major depressive disorder with a comorbid anxiety disorder or with significant anxiety symptoms (here called anxious depression) is common and has been associated with poor clinical course trajectories. However, various dichotomous as well as dimensional definitions have been used to label anxious depression and it remains unclear to which extent these result in inconsistent findings. This review provides an overview of recent literature on the impact of anxiety in depressed patients on clinical course trajectories, treatment outcomes, and underlying neurobiological dysregulations. RECENT FINDINGS Anxious depression seems associated with poorer clinical course trajectories and treatment nonresponse as compared with 'pure' depression, regardless of which definition is used. Recent studies have attempted to determine specific efficacy of novel pharmacological treatments for anxious depressed patients, but have not been conclusive because of the insufficient number of studies and differences in definitions and assessment of anxious depression. Neurobiology studies suggest that anxious depression is associated with increased immune dysregulation, more cortical thinning, and corticolimbic dysfunctions as compared with 'pure' depression. SUMMARY Anxious depression appears to be a common and clinically relevant subtype of depression as it predicts poorer course trajectories. As populations with anxious depression may benefit from specific treatment regimens, further research is necessary to better delineate its definition and neurobiology. The relatively new Diagnostic and Statistical Manual of Mental Disorders-5 anxious distress specifier is a welcome development and should be further investigated and compared against other anxiety constructs.
Collapse
|
44
|
Liu CH, Guo J, Lu SL, Tang LR, Fan J, Wang CY, Wang L, Liu QQ, Liu CZ. Increased Salience Network Activity in Patients With Insomnia Complaints in Major Depressive Disorder. Front Psychiatry 2018; 9:93. [PMID: 29615938 PMCID: PMC5869937 DOI: 10.3389/fpsyt.2018.00093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Insomnia is one of the main symptom correlates of major depressive disorder (MDD), but the neural mechanisms underlying the multifaceted interplay between insomnia and depression are not fully understood. MATERIALS AND METHODS Patients with MDD and high insomnia (MDD-HI, n = 24), patients with MDD and low insomnia (MDD-LI, n = 37), and healthy controls (HCs, n = 51) were recruited to participate in the present study. The amplitude of low-frequency fluctuations (ALFF) during the resting state were compared among the three groups. RESULTS We observed ALFF differences between the three groups in the right inferior frontal gyrus/anterior insula (IFG/AI), right middle temporal gyrus, left calcarine, and bilateral dorsolateral prefrontal cortex (dlPFC). Further region of interest (ROI) comparisons showed that the increases in the right IFG/AI reflected an abnormality specific to insomnia in MDD, while increases in the bilateral dlPFC reflected an abnormality specific to MDD generally. Increased ALFF in the right IFG/AI was also found to be correlated with sleep disturbance scores when regressing out the influence of the severity of anxiety and depression. CONCLUSION Our findings suggest that increased resting state ALLF in IFG/AI may be specifically related to hyperarousal state of insomnia in patients with MDD, independently of the effects of anxiety and depression.
Collapse
Affiliation(s)
- Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jing Guo
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shun-Li Lu
- Beijing Key Laboratory of Mental Disorders, Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Li-Rong Tang
- Beijing Key Laboratory of Mental Disorders, Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jin Fan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chuan-Yue Wang
- Beijing Key Laboratory of Mental Disorders, Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, United States
| | - Qing-Quan Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cun-Zhi Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Xia W, Zhou R, Zhao G, Wang F, Mao R, Peng D, Yang T, Wang Z, Chen J, Fang Y. Abnormal white matter integrity in Chinese young adults with first-episode medication-free anxious depression: a possible neurological biomarker of subtype major depressive disorder. Neuropsychiatr Dis Treat 2018; 14:2017-2026. [PMID: 30127612 PMCID: PMC6091250 DOI: 10.2147/ndt.s169583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Almost half of patients with major depressive disorder (MDD) also have clinically meaningful levels of anxiety. Anxious depression is a distinct clinical subtype of MDD, which has poor response to pharmacotherapy; however, the neural mechanisms behind are largely unknown. In the present study, we explored the white matter (WM) integrity traits of anxious depression in first-episode and medication-free (medication-naïve and medication washout) Chinese young adult patients by detecting differences in diffusion tensor imaging (DTI) with the tract-based spatial statistics (TBSS) method. SUBJECTS AND METHODS DTI was obtained from 39 first-episode, medication-free anxious depressive patients, 45 nonanxious depressive patients, and 50 demographically similar healthy controls. All subjects underwent clinical assessments. TBSS was carried out to investigate the difference in WM integrity among three groups within DTI parameter maps. WM integrity was measured using fractional anisotropy (FA), mean diffusivity, axial diffusivity, and radial diffusivity (RD). The correlations between WM integrity and clinical features were also computed. RESULTS When compared with nonanxious patients, lower FA values in anxious depressive patients were found in multiple regions of the brain, mainly involving left uncinate fasciculus (UF), superior longitudinal fasciculus (SLF), and forceps major and minor. Higher RD in forceps major and minor and SLF were also detected. The decreased FA values and increased RD values correlated with both anxiety level and depression level in the pooled depressive group. CONCLUSION The anxious depressive patients had more abnormalities in WM integrity at the early phase than the nonanxious group. Alternations in WM integrity in fiber pathways, including SLF, UF, and forceps major and minor, may play a critical role in the neuropathology of anxious depression and might help to identify anxious MDD from nonanxious MDD. Further study with larger sample size, larger age range, and longitudinal design is needed to confer a robust inference to better understand the dynamic neurological change and neuropathology of WM integrity in anxious MDD.
Collapse
Affiliation(s)
- Weiping Xia
- Division of Mood Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, , .,Department of Medical Psychology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Rubai Zhou
- Division of Mood Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ,
| | - Guoqing Zhao
- Division of Mood Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ,
| | - Fan Wang
- Division of Mood Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ,
| | - Ruizhi Mao
- Division of Mood Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ,
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ,
| | - Tao Yang
- Division of Mood Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ,
| | - Zuowei Wang
- Division of Mood Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, , .,Mood Disorder Department, Hongkou District Mental Health Center of Shanghai, Shanghai, People's Republic of China
| | - Jun Chen
- Division of Mood Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, ,
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China, , .,State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, CAS, Shanghai, People's Republic of China, .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, People's Republic of China,
| |
Collapse
|
46
|
Jiang X, Dai X, Kale Edmiston E, Zhou Q, Xu K, Zhou Y, Wu F, Kong L, Wei S, Zhou Y, Chang M, Geng H, Wang D, Wang Y, Cui W, Wang F, Tang Y. Alteration of cortico-limbic-striatal neural system in major depressive disorder and bipolar disorder. J Affect Disord 2017; 221:297-303. [PMID: 28668591 DOI: 10.1016/j.jad.2017.05.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/17/2017] [Accepted: 05/09/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND It is often difficult to differentiate major depressive disorder (MDD) and bipolar disorder (BD) merely according to clinical symptoms. Similarities and differences in neural activity between the two disorders remain unclear. In current study, we use amplitude of low-frequency fluctuations (ALFF) to compare neural activation changes between MDD and BD patients. METHODS One hundred and eighty-three adolescents and young adults (57 MDD, 46 BD and 80 healthy controls, HC) were scanned during resting state. The ALFF for each participant was calculated, and were then compared among all groups using voxel-based analysis. RESULTS There was a significant effect of diagnosis in the core regions of cortico-limbic-striatal neural system. Furthermore, MDD showed left-sided abnormal neural activity while BD showed a bilateral abnormality in this neural system. LIMITATIONS This study was underpowered to consider medications, mood states and neural developmental effects on the neural activation. CONCLUSIONS Differences in lateralization of ALFF alterations were found. Alterations predominated in the left hemisphere for MDD, whereas alterations were bilateral for BD.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Dai
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Elliot Kale Edmiston
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Qian Zhou
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifang Zhou
- Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Wu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lingtao Kong
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shengnan Wei
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuning Zhou
- Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Geng
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dahai Wang
- Shenyang Mental Health Center, Shenyang, Liaoning, China
| | - Ye Wang
- Shenyang Mental Health Center, Shenyang, Liaoning, China
| | - Wenhui Cui
- Shenyang Mental Health Center, Shenyang, Liaoning, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
47
|
Coloigner J, Kim Y, Bush A, Choi S, Balderrama MC, Coates TD, O’Neil SH, Lepore N, Wood JC. Contrasting resting-state fMRI abnormalities from sickle and non-sickle anemia. PLoS One 2017; 12:e0184860. [PMID: 28981541 PMCID: PMC5628803 DOI: 10.1371/journal.pone.0184860] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 08/31/2017] [Indexed: 11/20/2022] Open
Abstract
Sickle cell disease (SCD) is a chronic blood disorder that is often associated with acute and chronic cerebrovascular complications, including strokes and impaired cognition. Using functional resting state magnetic resonance images, we performed whole-brain analysis of the amplitude of low frequency fluctuations (ALFF), to detect areas of spontaneous blood oxygenation level dependent signal across brain regions. We compared the ALFF of 20 SCD patients to that observed in 19 healthy, age and ethnicity-matched, control subjects. Significant differences were found in several brain regions, including the insula, precuneus, anterior cingulate cortex and medial superior frontal gyrus. To identify the ALFF differences resulting from anemia alone, we also compared the ALFF of SCD patients to that observed in 12 patients having comparable hemoglobin levels but lacking sickle hemoglobin. Increased ALFF in the orbitofrontal cortex and the anterior and posterior cingulate cortex and decreased ALFF in the frontal pole, cerebellum and medial superior frontal gyrus persisted after accounting for the effect of anemia. The presence of white matter hyperintensities was associated with depressed frontal and medial superior frontal gyri activity in the SCD subjects. Decreased ALFF in the frontal lobe was correlated with decreased verbal fluency and cognitive flexibility. These findings may lead to a better understanding of the pathophysiology of SCD.
Collapse
Affiliation(s)
- Julie Coloigner
- CIBORG laboratory, Division of Radiology, Children’s Hospital, Los Angeles, California, United States of America
| | - Yeun Kim
- CIBORG laboratory, Division of Radiology, Children’s Hospital, Los Angeles, California, United States of America
| | - Adam Bush
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Soyoung Choi
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Melissa C. Balderrama
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children’s Hospital, Los Angeles, California, United States of America
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Thomas D. Coates
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children’s Hospital, Los Angeles, California, United States of America
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sharon H. O’Neil
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Division of Neurology, Children’s Hospital, Los Angeles, California, United States of America
- The Saban Research Institute, Children’s Hospital, Los Angeles, California, United States of America
| | - Natasha Lepore
- CIBORG laboratory, Division of Radiology, Children’s Hospital, Los Angeles, California, United States of America
| | - John C. Wood
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Division of Cardiology, Children’s Hospital, Los Angeles, California, United States of America
| |
Collapse
|
48
|
Feng D, Yuan K, Li Y, Cai C, Yin J, Bi Y, Cheng J, Guan Y, Shi S, Yu D, Jin C, Lu X, Qin W, Tian J. Intra-regional and inter-regional abnormalities and cognitive control deficits in young adult smokers. Brain Imaging Behav 2017; 10:506-16. [PMID: 26164168 DOI: 10.1007/s11682-015-9427-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tobacco use during later adolescence and young adulthood may cause serious neurophysiological changes; rationally, it is extremely important to study the relationship between brain dysfunction and behavioral performances in young adult smokers. Previous resting state studies investigated the neural mechanisms in smokers. Unfortunately, few studies focused on spontaneous activity differences between young adult smokers and nonsmokers from both intra-regional and inter-regional levels, less is known about the association between resting state abnormalities and behavioral deficits. Therefore, we used fractional amplitude of low frequency fluctuation (fALFF) and resting state functional connectivity (RSFC) to investigate the resting state spontaneous activity differences between young adult smokers and nonsmokers. A correlation analysis was carried out to assess the relationship between neuroimaging findings and clinical information (pack-years, cigarette dependence, age of onset and craving score) as well as cognitive control deficits measured by the Stroop task. Consistent with previous addiction findings, our results revealed the resting state abnormalities within frontostriatal circuits, i.e., enhanced spontaneous activity of the caudate and reduced functional strength between the caudate and anterior cingulate cortex (ACC) in young adult smokers. Moreover, the fALFF values of the caudate were correlated with craving and RSFC strength between the caudate and ACC was associated with the cognitive control impairments in young adult smokers. Our findings could lead to a better understanding of intrinsic functional architecture of baseline brain activity in young smokers by providing regional and brain circuit spontaneous neuronal activity properties as well as their association with cognitive control impairments.
Collapse
Affiliation(s)
- Dan Feng
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China. .,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China.
| | - Yangding Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Chenxi Cai
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Junsen Yin
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Yanzhi Bi
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Jiadong Cheng
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Yanyan Guan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Sha Shi
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, People's Republic of China.
| | - Chenwang Jin
- Department of Medical Imaging, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaoqi Lu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, People's Republic of China
| | - Wei Qin
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China.,Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| |
Collapse
|
49
|
Wang S, Zhou M, Chen T, Yang X, Chen G, Gong Q. Delay discounting is associated with the fractional amplitude of low-frequency fluctuations and resting-state functional connectivity in late adolescence. Sci Rep 2017; 7:10276. [PMID: 28860514 PMCID: PMC5579001 DOI: 10.1038/s41598-017-11109-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/18/2017] [Indexed: 02/05/2023] Open
Abstract
As a component of self-regulation, delay discounting (DD) refers to an individual’s tendency to prefer smaller-but-sooner rewards over larger-but-later rewards and plays an essential role in many aspects of human behavior. Although numerous studies have examined the neural underpinnings of DD in adults, there are far fewer studies focusing on the neurobiological correlates underlying DD in adolescents. Here, we investigated the associations between individual differences in DD and the fractional amplitude of low-frequency fluctuations (fALFF) and resting-state functional connectivity (RSFC) in 228 high school students using resting-state functional magnetic resonance imaging (RS-fMRI). At the regional level, we found an association between higher DD and greater fALFF in the dorsal anterior cingulate cortex (dACC), which is involved in conflict monitoring and strategy adaptation. At the connectivity level, DD was positively correlated with the RSFC between the dACC and the left dorsolateral prefrontal cortex (DLPFC), a critical functional circuit in the cognitive control network. Furthermore, these effects persisted even after adjusting for the influences of general intelligence and trait impulsivity. Overall, this study reveals the fALFF and RSFC as the functional brain basis of DD in late adolescents, aiding to strengthen and corroborate our understanding of the neural underpinnings of DD.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610031, China
| | - Ming Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Yang
- School of Sociality and Psychology, Southwest University for Nationalities, Chengdu, 610041, China
| | - Guangxiang Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China. .,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610031, China. .,Department of Psychology, School of Public Administration, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
50
|
Li Y, Jing B, Liu H, Li Y, Gao X, Li Y, Mu B, Yu H, Cheng J, Barker PB, Wang H, Han Y. Frequency-Dependent Changes in the Amplitude of Low-Frequency Fluctuations in Mild Cognitive Impairment with Mild Depression. J Alzheimers Dis 2017; 58:1175-1187. [PMID: 28550250 DOI: 10.3233/jad-161282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yuxia Li
- Department of Neurology, Xuan Wu Hospital of Capital Medical University, Beijing, China
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Han Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yifan Li
- XiangYa School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xuan Gao
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Yongqiu Li
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Bin Mu
- Department of Neurology, Xuan Wu Hospital of Capital Medical University, Beijing, China
| | - Haikuo Yu
- Department of Rehabilitation, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Jinbo Cheng
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Hongxing Wang
- Department of Neurology, Xuan Wu Hospital of Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuan Wu Hospital of Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- PKU Care Rehabilitation Hospital, Beijing, China
- Beijing Institute of Geriatrics, Beijing, China
| |
Collapse
|