1
|
Ranjan M, Mahoney JJ, Rezai AR. Neurosurgical neuromodulation therapy for psychiatric disorders. Neurotherapeutics 2024; 21:e00366. [PMID: 38688105 PMCID: PMC11070709 DOI: 10.1016/j.neurot.2024.e00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Psychiatric disorders are among the leading contributors to global disease burden and disability. A significant portion of patients with psychiatric disorders remain treatment-refractory to best available therapy. With insights from the neurocircuitry of psychiatric disorders and extensive experience of neuromodulation with deep brain stimulation (DBS) in movement disorders, DBS is increasingly being considered to modulate the neural network in psychiatric disorders. Currently, obsessive-compulsive disorder (OCD) is the only U.S. FDA (United States Food and Drug Administration) approved DBS indication for psychiatric disorders. Medically refractory depression, addiction, and other psychiatric disorders are being explored for DBS neuromodulation. Studies evaluating DBS for psychiatric disorders are promising but lack larger, controlled studies. This paper presents a brief review and the current state of DBS and other neurosurgical neuromodulation therapies for OCD and other psychiatric disorders. We also present a brief review of MR-guided Focused Ultrasound (MRgFUS), a novel form of neurosurgical neuromodulation, which can target deep subcortical structures similar to DBS, but in a noninvasive fashion. Early experiences of neurosurgical neuromodulation therapies, including MRgFUS neuromodulation are encouraging in psychiatric disorders; however, they remain investigational. Currently, DBS and VNS are the only FDA approved neurosurgical neuromodulation options in properly selected cases of OCD and depression, respectively.
Collapse
Affiliation(s)
- Manish Ranjan
- Department of Neurosurgery, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA.
| | - James J Mahoney
- Department of Behavioral Medicine and Psychiatry, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA; Department of Neuroscience, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA
| | - Ali R Rezai
- Department of Neurosurgery, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA; Department of Neuroscience, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA
| |
Collapse
|
2
|
Acevedo N, Rossell S, Castle D, Groves C, Cook M, McNeill P, Olver J, Meyer D, Perera T, Bosanac P. Clinical outcomes of deep brain stimulation for obsessive-compulsive disorder: Insight as a predictor of symptom changes. Psychiatry Clin Neurosci 2024; 78:131-141. [PMID: 37984432 PMCID: PMC10952286 DOI: 10.1111/pcn.13619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/18/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
AIM Deep brain stimulation (DBS) is a safe and effective treatment option for people with refractory obsessive-compulsive disorder (OCD). Yet our understanding of predictors of response and prognostic factors remains rudimentary, and long-term comprehensive follow-ups are lacking. We aim to investigate the efficacy of DBS therapy for OCD patients, and predictors of clinical response. METHODS Eight OCD participants underwent DBS stimulation of the nucleus accumbens (NAc) in an open-label longitudinal trial, duration of follow-up varied between 9 months and 7 years. Post-operative care involved comprehensive fine tuning of stimulation parameters and adjunct multidisciplinary therapy. RESULTS Six participants achieved clinical response (35% improvement in obsessions and compulsions on the Yale Brown Obsessive Compulsive Scale (YBOCS)) within 6-9 weeks, response was maintained at last follow up. On average, the YBOCS improved by 45% at last follow up. Mixed linear modeling elucidated directionality of symptom changes: insight into symptoms strongly predicted (P = 0.008) changes in symptom severity during DBS therapy, likely driven by initial changes in depression and anxiety. Precise localization of DBS leads demonstrated that responders most often had their leads (and active contacts) placed dorsal compared to non-responders, relative to the Nac. CONCLUSION The clinical efficacy of DBS for OCD is demonstrated, and mediators of changes in symptoms are proposed. The symptom improvements within this cohort should be seen within the context of the adjunct psychological and biopsychosocial care that implemented a shared decision-making approach, with flexible iterative DBS programming. Further research should explore the utility of insight as a clinical correlate of response. The trial was prospectively registered with the ANZCTR (ACTRN12612001142820).
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
- St Vincent's HospitalMelbourneVictoriaAustralia
| | - Susan Rossell
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
- St Vincent's HospitalMelbourneVictoriaAustralia
| | - David Castle
- St Vincent's HospitalMelbourneVictoriaAustralia
- Centre for Addiction and Mental HealthUniversity of TorontoTorontoOntarioCanada
| | | | - Mark Cook
- St Vincent's HospitalMelbourneVictoriaAustralia
| | | | - James Olver
- Department of PsychiatryUniversity of MelbourneMelbourneVictoriaAustralia
| | - Denny Meyer
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
| | - Thushara Perera
- Bionics InstituteEast MelbourneVictoriaAustralia
- Department of Medical BionicsThe University of MelbourneMelbourneVictoriaAustralia
| | - Peter Bosanac
- St Vincent's HospitalMelbourneVictoriaAustralia
- Department of PsychiatryUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Anderson W, Ponce FA, Kinsman MJ, Sani S, Hwang B, Ghinda D, Kogan M, Mahoney JM, Amin DB, Van Horn M, McGuckin JP, Razo-Castaneda D, Bucklen BS. Robotic-Assisted Navigation for Stereotactic Neurosurgery: A Cadaveric Investigation of Accuracy, Time, and Radiation. Oper Neurosurg (Hagerstown) 2023; 26:01787389-990000000-00991. [PMID: 38054727 PMCID: PMC11008650 DOI: 10.1227/ons.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Despite frequent use, stereotactic head frames require manual coordinate calculations and manual frame settings that are associated with human error. This study examines freestanding robot-assisted navigation (RAN) as a means to reduce the drawbacks of traditional cranial stereotaxy and improve targeting accuracy. METHODS Seven cadaveric human torsos with heads were tested with 8 anatomic coordinates selected for lead placement mirrored in each hemisphere. Right and left hemispheres of the brain were randomly assigned to either the traditional stereotactic arc-based (ARC) group or the RAN group. Both target accuracy and trajectory accuracy were measured. Procedural time and the radiation required for registration were also measured. RESULTS The accuracy of the RAN group was significantly greater than that of the ARC group in both target (1.2 ± 0.5 mm vs 1.7 ± 1.2 mm, P = .005) and trajectory (0.9 ± 0.6 mm vs 1.3 ± 0.9 mm, P = .004) measurements. Total procedural time was also significantly faster for the RAN group than for the ARC group (44.6 ± 7.7 minutes vs 86.0 ± 12.5 minutes, P < .001). The RAN group had significantly reduced time per electrode placement (2.9 ± 0.9 minutes vs 5.8 ± 2.0 minutes, P < .001) and significantly reduced radiation during registration (1.9 ± 1.1 mGy vs 76.2 ± 5.0 mGy, P < .001) compared with the ARC group. CONCLUSION In this cadaveric study, cranial leads were placed faster and with greater accuracy using RAN than those placed with conventional stereotactic arc-based technique. RAN also required significantly less radiation to register the specimen's coordinate system to the planned trajectories. Clinical testing should be performed to further investigate RAN for stereotactic cranial surgery.
Collapse
Affiliation(s)
- William Anderson
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Francisco A. Ponce
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Michael J. Kinsman
- Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian Hwang
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
- Current Affiliation: Orange County Neurosurgical Associates, Laguna Hills, California, USA
| | - Diana Ghinda
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Michael Kogan
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Jonathan M. Mahoney
- Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania, USA
| | - Dhara B. Amin
- Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania, USA
| | - Margaret Van Horn
- Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania, USA
| | - Joshua P. McGuckin
- Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania, USA
| | - Dominic Razo-Castaneda
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Brandon S. Bucklen
- Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania, USA
| |
Collapse
|
4
|
Meier JM, Perdikis D, Blickensdörfer A, Stefanovski L, Liu Q, Maith O, Dinkelbach HÜ, Baladron J, Hamker FH, Ritter P. Virtual deep brain stimulation: Multiscale co-simulation of a spiking basal ganglia model and a whole-brain mean-field model with the virtual brain. Exp Neurol 2022; 354:114111. [DOI: 10.1016/j.expneurol.2022.114111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
|
5
|
Messina G, Vetrano IG, Bonomo G, Broggi G. Role of deep brain stimulation in management of psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:61-96. [PMID: 35396031 DOI: 10.1016/bs.pbr.2022.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nowadays, most of patients affected by psychiatric disorders are successfully treated with conservative therapies. Still, a variable percentage of them demonstrate resistance to conventional treatments, and alternative methods can then be considered. During the last 20 years, there is a progressive interest in use of deep brain stimulation (DBS) in mental illnesses. It has become clear nowadays, that this modality may be effectively applied under specific indications in some patients with major depressive disorder, obsessive-compulsive disorder, anorexia nervosa and other eating disorders, Tourette syndrome, schizophrenia, substance use disorder, and even pathologically aggressive behavior. Despite the fact that the efficacy of neuromodulation with DBS, as well as of various lesional interventions, in cases of mental illnesses is still not fully established, there are several premises for wider applications of such "unclassical" psychiatric treatments in the future. Novel technologies of DBS, developments in non-invasive lesioning using stereotactic radiosurgery and transcranial magnetic resonance-guided focused ultrasound, and advances of neurophysiological and neuroimaging modalities may bolster further clinical applications of psychiatric neurosurgery, improve its results, and allow for individually selected treatment strategies tailored to specific needs of the patient.
Collapse
Affiliation(s)
- Giuseppe Messina
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Ignazio G Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giulio Bonomo
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Broggi
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Neurosurgery, M Cecilia Hospital-GVM, Ravenna, Italy
| |
Collapse
|
6
|
De Salles A, Lucena L, Paranhos T, Ferragut MA, de Oliveira-Souza R, Gorgulho A. Modern neurosurgical techniques for psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:33-59. [PMID: 35396030 DOI: 10.1016/bs.pbr.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Psychosurgery refers to an ensemble of more or less invasive techniques designed to reduce the burden caused by psychiatric diseases in patients who have failed to respond to conventional therapy. While most surgeries are designed to correct apparent anatomical abnormalities, no discrete cerebral anatomical lesion is evident in most psychiatric diseases amenable to invasive interventions. Finding the optimal surgical targets in mental illness is troublesome. In general, contemporary psychosurgical procedures can be classified into one of two primary modalities: lesioning and stimulation procedures. The first group is divided into (a) thermocoagulation and (b) stereotactic radiosurgery or recently introduced transcranial magnetic resonance-guided focused ultrasound, whereas stimulation techniques mainly include deep brain stimulation (DBS), cortical stimulation, and the vagus nerve stimulation. The most studied psychiatric diseases amenable to psychosurgical interventions are severe treatment-resistant major depressive disorder, obsessive-compulsive disorder, Tourette syndrome, anorexia nervosa, schizophrenia, and substance use disorder. Furthermore, modern neuroimaging techniques spurred the interest of clinicians to identify cerebral regions amenable to be manipulated to control psychiatric symptoms. On this way, the concept of a multi-nodal network need to be embraced, enticing the collaboration of psychiatrists, psychologists, neurologists and neurosurgeons participating in multidisciplinary groups, conducting well-designed clinical trials.
Collapse
Affiliation(s)
- Antonio De Salles
- University of California Los Angeles (UCLA), Los Angeles, CA, United States; NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil.
| | - Luan Lucena
- NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil
| | - Thiago Paranhos
- Hospital Rede D'Or, São Luiz, SP, Brazil; Federal University of Rio De Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Ricardo de Oliveira-Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Federal University of the State of Rio De Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | |
Collapse
|
7
|
Mar-Barrutia L, Real E, Segalás C, Bertolín S, Menchón JM, Alonso P. Deep brain stimulation for obsessive-compulsive disorder: A systematic review of worldwide experience after 20 years. World J Psychiatry 2021; 11:659-680. [PMID: 34631467 PMCID: PMC8474989 DOI: 10.5498/wjp.v11.i9.659] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Twenty years after its first use in a patient with obsessive-compulsive disorder (OCD), the results confirm that deep brain stimulation (DBS) is a promising therapy for patients with severe and resistant forms of the disorder. Nevertheless, many unknowns remain, including the optimal anatomical targets, the best stimulation parameters, the long-term (LT) effects of the therapy, and the clinical or biological factors associated with response. This systematic review of the articles published to date on DBS for OCD assesses the short and LT efficacy of the therapy and seeks to identify predictors of response.
AIM To summarize the existing knowledge on the efficacy and tolerability of DBS in treatment-resistant OCD.
METHODS A comprehensive search was conducted in the PubMed, Cochrane, Scopus, and ClinicalTrials.gov databases from inception to December 31, 2020, using the following strategy: “(Obsessive-compulsive disorder OR OCD) AND (deep brain stimulation OR DBS).” Clinical trials and observational studies published in English and evaluating the effectiveness of DBS for OCD in humans were included and screened for relevant information using a standardized collection tool. The inclusion criteria were as follows: a main diagnosis of OCD, DBS conducted for therapeutic purposes and variation in symptoms of OCD measured by the Yale-Brown Obsessive-Compulsive scale (Y-BOCS) as primary outcome. Data were analyzed with descriptive statistics.
RESULTS Forty articles identified by the search strategy met the eligibility criteria. Applying a follow-up threshold of 36 mo, 29 studies (with 230 patients) provided information on short-term (ST) response to DBS in, while 11 (with 155 patients) reported results on LT response. Mean follow-up period was 18.5 ± 8.0 mo for the ST studies and 63.7 ± 20.7 mo for the LT studies. Overall, the percentage of reduction in Y-BOCS scores was similar in ST (47.4%) and LT responses (47.2%) to DBS, but more patients in the LT reports met the criteria for response (defined as a reduction in Y-BOCS scores > 35%: ST, 60.6% vs LT, 70.7%). According to the results, the response in the first year predicts the extent to which an OCD patient will benefit from DBS, since the maximum symptom reduction was achieved in most responders in the first 12-14 mo after implantation. Reports indicate a consistent tendency for this early improvement to be maintained to the mid-term for most patients; but it is still controversial whether this improvement persists, increases or decreases in the long term. Three different patterns of LT response emerged from the analysis: 49.5% of patients had good and sustained response to DBS, 26.6% were non responders, and 22.5% were partial responders, who might improve at some point but experience relapses during follow-up. A significant improvement in depressive symptoms and global functionality was observed in most studies, usually (although not always) in parallel with an improvement in obsessive symptoms. Most adverse effects of DBS were mild and transient and improved after adjusting stimulation parameters; however, some severe adverse events including intracranial hemorrhages and infections were also described. Hypomania was the most frequently reported psychiatric side effect. The relationship between DBS and suicide risk is still controversial and requires further study. Finally, to date, no clear clinical or biological predictors of response can be established, probably because of the differences between studies in terms of the neuroanatomical targets and stimulation protocols assessed.
CONCLUSION The present review confirms that DBS is a promising therapy for patients with severe resistant OCD, providing both ST and LT evidence of efficacy.
Collapse
Affiliation(s)
- Lorea Mar-Barrutia
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Cinto Segalás
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Sara Bertolín
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| |
Collapse
|
8
|
Acevedo N, Bosanac P, Pikoos T, Rossell S, Castle D. Therapeutic Neurostimulation in Obsessive-Compulsive and Related Disorders: A Systematic Review. Brain Sci 2021; 11:brainsci11070948. [PMID: 34356182 PMCID: PMC8307974 DOI: 10.3390/brainsci11070948] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/16/2023] Open
Abstract
Invasive and noninvasive neurostimulation therapies for obsessive-compulsive and related disorders (OCRD) were systematically reviewed with the aim of assessing clinical characteristics, methodologies, neuroanatomical substrates, and varied stimulation parameters. Previous reviews have focused on a narrow scope, statistical rather than clinical significance, grouped together heterogenous protocols, and proposed inconclusive outcomes and directions. Herein, a comprehensive and transdiagnostic evaluation of all clinically relevant determinants is presented with translational clinical recommendations and novel response rates. Electroconvulsive therapy (ECT) studies were limited in number and quality but demonstrated greater efficacy than previously identified. Targeting the pre-SMA/SMA is recommended for transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). TMS yielded superior outcomes, although polarity findings were conflicting, and refinement of frontal/cognitive control protocols may optimize outcomes. For both techniques, standardization of polarity, more treatment sessions (>20), and targeting multiple structures are encouraged. A deep brain stimulation (DBS) 'sweet spot' of the striatum for OCD was proposed, and CBT is strongly encouraged. Tourette's patients showed less variance and reliance on treatment optimization. Several DBS targets achieved consistent, rapid, and sustained clinical response. Analysis of fiber connectivity, as opposed to precise neural regions, should be implemented for target selection. Standardization of protocols is necessary to achieve translational outcomes.
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- Correspondence:
| | - Peter Bosanac
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toni Pikoos
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
| | - David Castle
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Addiction and Mental Health, 252 College Street, Toronto, ON M5T 1R7, Canada
| |
Collapse
|
9
|
Ranjan M, Ranjan N, Deogaonkar M, Rezai A. Deep Brain Stimulation for Refractory Depression, Obsessive-Compulsive Disorder and Addiction. Neurol India 2021; 68:S282-S287. [PMID: 33318363 DOI: 10.4103/0028-3886.302459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Depression, Obsessive-compulsive Disorder (OCD), and addiction are the leading disabling psychiatric conditions with huge health care and psychosocial burden besides increased morbidity and mortality. Deep brain stimulation (DBS) for depression, OCD, and addiction is increasingly explored and is quite challenging. We present a brief review of the pertinent literature of DBS for depression, OCD, and addiction and present the status and challenges. Objective The aim of this study was to review the current status and challenges with the DBS for Depression, Obsessive-compulsive Disorder (OCD), and addiction. Method The pertinent brief literature was reviewed in reference to the DBS for Depression, Obsessive-compulsive Disorder (OCD), and addiction. Results To date, OCD is the only psychiatric condition approved for DBS therapy (under humanitarian device exemption). Although the initial encouraging results of DBS in depression were encouraging but the two larger multicenter clinical trials failed to meet the primary objective. Further evaluation and studies are ongoing. Similarly, the initial results of DBS for addiction are encouraging; however, the experience is limited. Conclusion DBS for depression, OCD, and addiction seem challenging but promising. Further refinement of the target and evaluation in a larger and controlled setting is needed, specifically for depression and addiction.
Collapse
Affiliation(s)
- Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, USA
| | - Nutan Ranjan
- Department of Behavioral Medicine and Psychiatry, West Virginia University, West Virginia, USA
| | | | - Ali Rezai
- Department of Neurosurgery, Rockefeller Neuroscience Institute, USA
| |
Collapse
|
10
|
Alternatives to Pharmacological and Psychotherapeutic Treatments in Psychiatric Disorders. PSYCHIATRY INTERNATIONAL 2021. [DOI: 10.3390/psychiatryint2010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nowadays, most of the patients affected by psychiatric disorders are successfully treated with psychotherapy and pharmacotherapy. Nevertheless, according to the disease, a variable percentage of patients results resistant to such modalities, and alternative methods can then be considered. The purpose of this review is to summarize the techniques and results of invasive modalities for several treatment-resistant psychiatric diseases. A literature search was performed to provide an up-to-date review of advantages, disadvantages, efficacy, and complications of Deep-Brain Stimulation, Magnetic Resonance-guided Focused-Ultrasound, radiofrequency, and radiotherapy lesioning for depression, obsessive-compulsive disorder, schizophrenia, addiction, anorexia nervosa, and Tourette’s syndrome. The literature search did not strictly follow the criteria for a systematic review: due to the large differences in methodologies and patients’ cohort, we tried to identify the highest quality of available evidence for each technique. We present the data as a comprehensive, narrative review about the role, indication, safety, and results of the contemporary instrumental techniques that opened new therapeutic fields for selected patients unresponsive to psychotherapy and pharmacotherapy.
Collapse
|
11
|
Horn A, Fox MD. Opportunities of connectomic neuromodulation. Neuroimage 2020; 221:117180. [PMID: 32702488 PMCID: PMC7847552 DOI: 10.1016/j.neuroimage.2020.117180] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
The process of altering neural activity - neuromodulation - has long been used to treat patients with brain disorders and answer scientific questions. Deep brain stimulation in particular has provided clinical benefit to over 150,000 patients. However, our understanding of how neuromodulation impacts the brain is evolving. Instead of focusing on the local impact at the stimulation site itself, we are considering the remote impact on brain regions connected to the stimulation site. Brain connectivity information derived from advanced magnetic resonance imaging data can be used to identify these connections and better understand clinical and behavioral effects of neuromodulation. In this article, we review studies combining neuromodulation and brain connectomics, highlighting opportunities where this approach may prove particularly valuable. We focus on deep brain stimulation, but show that the same principles can be applied to other forms of neuromodulation, such as transcranial magnetic stimulation and MRI-guided focused ultrasound. We outline future perspectives and provide testable hypotheses for future work.
Collapse
Affiliation(s)
- Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Sectio Charité - University Medicine Berlin,, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Michael D Fox
- Berenson-Allen Center for Non-invasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, United States; Martinos Center for Biomedical Imaging, Departments of Neurology and Radiology, Harvard Medical School and Massachusetts General Hospital, United States; Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Harvard Medical School and Brigham and Women's Hospital, United States.
| |
Collapse
|
12
|
Abstract
Purpose of Review Parkinson’s disease (PD) has a wide spectrum of symptoms including the presence of psychiatric disease. At present, most treatment plans, comprised of dopaminergic drugs, are chronic and complex. Though dopaminergic agents are quite efficient in managing the motor aspects of the disease, chronic pharmacotherapy specifically with dopamine receptor agonists has been highly linked to the occurrence of Impulse Compulsive disorder (ICD), which can be problematic for individual patients. Recent Findings Much of what is known today about PD-related ICD stems from brain imaging studies, however, evidence is not quite conclusive. Research in the field has been focused on identifying the underlying mechanisms of PD-related ICD and understanding the functions of the structures involved in the reward network. Summary This article presents an update of recent findings from key neuroimaging studies in PD-related ICD, discusses results from controversial studies, and identifies areas for future research in the field.
Collapse
Affiliation(s)
- Andreas-Antonios Roussakis
- Neurology Imaging Unit, Imperial College London - Hammersmith Hospital, 1st Floor, B-Block, Du Cane Road, London, W12 0NN, UK
| | - Nicholas P Lao-Kaim
- Neurology Imaging Unit, Imperial College London - Hammersmith Hospital, 1st Floor, B-Block, Du Cane Road, London, W12 0NN, UK
| | - Paola Piccini
- Neurology Imaging Unit, Imperial College London - Hammersmith Hospital, 1st Floor, B-Block, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
13
|
The effects of deep-brain non-stimulation in severe obsessive-compulsive disorder: an individual patient data meta-analysis. Transl Psychiatry 2019; 9:183. [PMID: 31383848 PMCID: PMC6683131 DOI: 10.1038/s41398-019-0522-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023] Open
Abstract
Non-intervention-related effects have long been recognized in an array of medical interventions, to which surgical procedures like deep-brain stimulation are no exception. While the existence of placebo and micro-lesion effects has been convincingly demonstrated in DBS for major depression and Parkinson's disease, systematic investigations for obsessive-compulsive disorder (OCD) are currently lacking. We therefore undertook an individual patient data meta-analysis with the aim of quantifying the effect of DBS for severe, treatment-resistant OCD that is not due to the electrical stimulation of brain tissue. The MEDLINE/PubMed database was searched for double-blind, sham-controlled randomized clinical trials published in English between 1998 and 2018. Individual patient data was obtained from the original authors and combined in a meta-analysis. We assessed differences from baseline in obsessive-compulsive symptoms following sham treatment, as measured by the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Four studies met the inclusion criteria, randomizing 49 patients to two periods of active or sham stimulation. To preclude confounding by period effects, our estimate was based only on data from those patients who underwent sham stimulation first (n = 24). We found that sham stimulation induced a significant change in the Y-BOCS score (t = -3.15, P < 0.005), lowering it by 4.9 ± 1.6 points [95% CI = (-8.0, -1.8)]. We conclude that non-stimulation-related effects of DBS exist also in OCD. The identification of the factors determining the magnitude and occurrence of these effects will help to design strategies that will ultimately lead to a betterment of future randomized clinical trials.
Collapse
|
14
|
Park YS, Sammartino F, Young NA, Corrigan J, Krishna V, Rezai AR. Anatomic Review of the Ventral Capsule/Ventral Striatum and the Nucleus Accumbens to Guide Target Selection for Deep Brain Stimulation for Obsessive-Compulsive Disorder. World Neurosurg 2019; 126:1-10. [PMID: 30790738 DOI: 10.1016/j.wneu.2019.01.254] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Disturbances in the reward network of the brain underlie addiction, depression, and obsessive-compulsive disorder. The ventral capsule/ventral striatum and nucleus accumbens (NAc) region is a clinically approved target for deep brain stimulation for obsessive-compulsive disorder. METHODS We performed a comprehensive literature review to define clinically relevant anatomy and connectivity of the ventral capsule/ventral striatum and NAc region to guide target selection for deep brain stimulation. RESULTS Architecturally and functionally, the NAc is divided into the core and the shell, with each area having different connections. The shell primarily receives limbic information, and the core typically receives information from the motor system. In general, afferents from the prefrontal cortex, hippocampus, and amygdala are excitatory. The dopaminergic projections to the NAc from the ventral tegmental area modulate the balance of these excitatory inputs. Several important inputs to the NAc converge at the junction of the internal capsule (IC) and the anterior commissure (AC): the ventral amygdalofugal pathways that run parallel to and underneath the AC, the precommissural fornical fibers that run anterior to the AC, axons from the ventral prefrontal cortex and medial orbitofrontal cortex that occupy the most ventral part of the IC and embedding within the NAc and AC, and the superolateral branch of the medial forebrain bundle located parallel to the anterior thalamic radiation in the IC. CONCLUSIONS The caudal part of the NAc passing through the IC-AC junction may be an effective target for deep brain stimulation to improve behavioral symptoms associated with obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Yong-Sook Park
- Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea
| | | | - Nicole A Young
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - John Corrigan
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA.
| | - Ali R Rezai
- Department of Neurosurgery, West Virginia University Hospital, Morgantown, West Virginia, USA
| |
Collapse
|
15
|
Senova S, Clair AH, Palfi S, Yelnik J, Domenech P, Mallet L. Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder: Towards an Individualized Approach. Front Psychiatry 2019; 10:905. [PMID: 31920754 PMCID: PMC6923766 DOI: 10.3389/fpsyt.2019.00905] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder featuring repetitive intrusive thoughts and behaviors associated with a significant handicap. Of patients, 20% are refractory to medication and cognitive behavioral therapy. Refractory OCD is associated with suicidal behavior and significant degradation of social and professional functioning, with high health costs. Deep brain stimulation (DBS) has been proposed as a reversible and controllable method to treat refractory patients, with meta-analyses showing 60% response rate following DBS, whatever the target: anterior limb of the internal capsule (ALIC), ventral capsule/ventral striatum (VC/VS), nucleus accumbens (NAcc), anteromedial subthalamic nucleus (amSTN), or inferior thalamic peduncle (ITP). But how do we choose the "best" target? Functional neuroimaging studies have shown that ALIC-DBS requires the modulation of the fiber tract within the ventral ALIC via the ventral striatum, bordering the bed nucleus of the stria terminalis and connecting the medial prefrontal cortex with the thalamus to be successful. VC/VS effective sites of stimulation were found within the VC and primarily connected to the medial orbitofrontal cortex (OFC) dorsomedial thalamus, amygdala, and the habenula. NAcc-DBS has been found to reduce OCD symptoms by decreasing excessive fronto-striatal connectivity between NAcc and the lateral and medial prefrontal cortex. The amSTN effective stimulation sites are located at the inferior medial border of the STN, primarily connected to lateral OFC, dorsal anterior cingulate, and dorsolateral prefrontal cortex. Finally, ITP-DBS recruits a bidirectional fiber pathway between the OFC and the thalamus. Thus, these functional connectivity studies show that the various DBS targets lie within the same diseased neural network. They share similar efficacy profiles on OCD symptoms as estimated on the Y-BOCS, the amSTN being the target supported by the strongest evidence in the literature. VC/VS-DBS, amSTN-DBS, and ALIC-DBS were also found to improve mood, behavioral adaptability and potentially both, respectively. Because OCD is such a heterogeneous disease with many different symptom dimensions, the ultimate aim should be to find the most appropriate DBS target for a given refractory patient. This quest will benefit from further investigation and understanding of the individual functional connectivity of OCD patients.
Collapse
Affiliation(s)
- Suhan Senova
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Anne-Hélène Clair
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Stéphane Palfi
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Jérôme Yelnik
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Philippe Domenech
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Luc Mallet
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France.,Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Tastevin M, Spatola G, Régis J, Lançon C, Richieri R. Deep brain stimulation in the treatment of obsessive-compulsive disorder: current perspectives. Neuropsychiatr Dis Treat 2019; 15:1259-1272. [PMID: 31190832 PMCID: PMC6526924 DOI: 10.2147/ndt.s178207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Deep brain stimulation (DBS) is a neuro-psychosurgical technique widely accepted in movement disorders, such as Parkinson's disease. Since 1999, DBS has been explored for severe, chronic and treatment-refractory psychiatric diseases. Our review focuses on DBS in obsessive-compulsive disorder (OCD), considered as a last treatment resort by most of learned societies in psychiatry. Two main stimulation areas have been studied: the striatal region and the subthalamic nucleus. But, most of the trials are open-labeled, and the rare controlled ones have failed to highlight the most efficient target. The recent perspectives are otherwise encouraging. Indeed, clinicians are currently considering other promising targets. A case series of 2 patients reported a decrease in OCD symptoms after DBS in the medial forebrain bundle and an open-label study is exploring bilateral habenula stimulation. New response criteria are also investigating such as quality of life, or subjective and lived-experience. Moreover, first papers about cost-effectiveness which is an important criterion in decision making, have been published. The effectiveness of tractography-assisted DBS or micro-assisted DBS is studying with the aim to improve targeting precision. In addition, a trial involving rechargeable pacemakers is undergoing because this mechanism could be efficient and have a positive impact on cost-effectiveness. A recent trial has discussed the possibility of using combined cognitive behavioral therapy (CBT) and DBS as an augmentation strategy. Finally, based on RDoc Research, the latest hypotheses about the understanding of cortico-striato-thalamo-cortical circuits could offer new directions including clinical predictors and biomarkers to perform adaptive closed-loop systems in the next future.
Collapse
Affiliation(s)
- Maud Tastevin
- Department of Psychiatry, Addictions and Psychiatry for Children, Public Assistance Marseille Hospitals, 13005 Marseille, France
| | - Giorgio Spatola
- Department of Functional and Stereotactic Neurosurgery, Public Assistance Marseille Hospitals, 13005 Marseille, France.,Institut de Neurosciences des Systèmes, Aix Marseille University, Inserm UMR1106, France
| | - Jean Régis
- Department of Functional and Stereotactic Neurosurgery, Public Assistance Marseille Hospitals, 13005 Marseille, France.,Institut de Neurosciences des Systèmes, Aix Marseille University, Inserm UMR1106, France
| | - Christophe Lançon
- Department of Psychiatry, Addictions and Psychiatry for Children, Public Assistance Marseille Hospitals, 13005 Marseille, France
| | - Raphaëlle Richieri
- Department of Psychiatry, Addictions and Psychiatry for Children, Public Assistance Marseille Hospitals, 13005 Marseille, France.,Faculté des Sciences de Saint Jérôme, Aix Marseille University, Institut Fresnel - UMR 7249, Marseille, France
| |
Collapse
|
17
|
Borders C, Hsu F, Sweidan AJ, Matei ES, Bota RG. Deep brain stimulation for obsessive compulsive disorder: A review of results by anatomical target. Ment Illn 2018; 10:7900. [PMID: 30542526 PMCID: PMC6240923 DOI: 10.4081/mi.2018.7900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022] Open
Abstract
Studies suggest deep brain stimulation (DBS) as a treatment modality for the refractory obsessive-compulsive disorder (OCD). It is unclear where to place the DBS. Various sites are proposed for placement with the ventral capsule/ventral striatum (VC/VS) among the most studied. Herein, we aim to summarize both quantitative Yale-Brown Obsessive-Compulsive Scale (YBOCS) data and qualitative descriptions of the participants' symptoms when given. A literature search conducted via PubMed yielded 32 articles. We sought to apply a standard based on the utilization of YBOCS. This yielded 153 distinct patients. The outcome measure we focused on in this review is the latest YBOCS score reported for each patient/cohort in comparison to the location of the DBS. A total of 32 articles were found in the search results. In total, 153 distinct patients' results were reported in these studies. Across this collection of papers, a total of 9 anatomic structures were targeted. The majority of studies showed a better response at the last time point as compared to the first time point. Most patients had DBS at nucleus accumbens followed by VC/VS and the least patients had DBS at the bilateral superolateral branch of the median forebrain bundle and the bilateral basolateral amygdala. The average YBOCS improvement did not seem to directly correlate with the percentile of patients responding to the intervention. Well-controlled, randomized studies with larger sample sizes with close follow up are needed to provide a more accurate determination for placement of DBS for OCD.
Collapse
Affiliation(s)
| | - Frank Hsu
- University of California Irvine, Orange, CA, USA
| | | | | | | |
Collapse
|
18
|
Holland MT, Zanaty M, Li L, Thomsen T, Beeghly JH, Greenlee JD, Reddy CG. Successful deep brain stimulation for central post-stroke pain and dystonia in a single operation. J Clin Neurosci 2018; 50:190-193. [DOI: 10.1016/j.jocn.2018.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/08/2018] [Indexed: 11/26/2022]
|
19
|
Sharma M, Reeves K, Deogaonkar M, Rezai AR. Deep Brain Stimulation for Obsessive–Compulsive Disorder. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Saleh C, Hasler G. Deep brain stimulation for psychiatric disorders: Is there an impact on social functioning? Surg Neurol Int 2017; 8:134. [PMID: 28781911 PMCID: PMC5523473 DOI: 10.4103/sni.sni_15_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/06/2017] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) for refractory psychiatric disorders shows promising effects on symptom-reduction, however, little is known regarding the effects of DBS on social outcome. METHODS A PubMed search based on original studies of DBS for psychiatric disorders [treatment resistant depression (TRD), Gilles de la Tourette's syndrome (GTS), and obsessive compulsive disorder (OCD)] was conducted. Data on social outcome following surgery were extracted and analyzed. RESULTS Social functioning was not a primary outcome measure in the reviewed article. The literature is incomplete and inconclusive on this variable, however from the reported data, there is some evidence that DBS has the potential to improve social functioning. CONCLUSIONS More systematic and detailed data gathering and reporting on social outcome with longer follow-ups are needed to evaluate more exhaustively the role of DBS in refractory psychiatric disorders.
Collapse
Affiliation(s)
- Christian Saleh
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Deep brain stimulation and treatment-resistant obsessive-compulsive disorder: A systematic review. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2017; 12:37-51. [PMID: 28676437 DOI: 10.1016/j.rpsm.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 04/05/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION At least 10% of patients with Obsessive-compulsive Disorder (OCD) are refractory to psychopharmacological treatment. The emergence of new technologies for the modulation of altered neuronal activity in Neurosurgery, deep brain stimulation (DBS), has enabled its use in severe and refractory OCD cases. The objective of this article is to review the current scientific evidence on the effectiveness and applicability of this technique to refractory OCD. METHOD We systematically reviewed the literature to identify the main characteristics of deep brain stimulation, its use and applicability as treatment for obsessive-compulsive disorder. Therefore, we reviewed PubMed/Medline, Embase and PsycINFO databases, combining the key-words 'Deep brain stimulation', 'DBS' and 'Obsessive-compulsive disorder' 'OCS'. The articles were selected by two of the authors independently, based on the abstracts, and if they described any of the main characteristics of the therapy referring to OCD: applicability; mechanism of action; brain therapeutic targets; efficacy; side-effects; co-therapies. All the information was subsequently extracted and analysed. RESULTS The critical analysis of the evidence shows that the use of DBS in treatment-resistant OCD is providing satisfactory results regarding efficacy, with assumable side-effects. However, there is insufficient evidence to support the use of any single brain target over another. Patient selection has to be done following analyses of risks/benefits, being advisable to individualize the decision of continuing with concomitant psychopharmacological and psychological treatments. CONCLUSIONS The use of DBS is still considered to be in the field of research, although it is increasingly used in refractory-OCD, producing in the majority of studies significant improvements in symptomatology, and in functionality and quality of life. It is essential to implement random and controlled studies regarding its long-term efficacy, cost-risk analyses and cost/benefit.
Collapse
|
22
|
Horn A, Kühn AA, Merkl A, Shih L, Alterman R, Fox M. Probabilistic conversion of neurosurgical DBS electrode coordinates into MNI space. Neuroimage 2017; 150:395-404. [PMID: 28163141 DOI: 10.1016/j.neuroimage.2017.02.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022] Open
Abstract
In neurosurgical literature, findings such as deep brain stimulation (DBS) electrode positions are conventionally reported in relation to the anterior and posterior commissures of the individual patient (AC/PC coordinates). However, the neuroimaging literature including neuroanatomical atlases, activation patterns, and brain connectivity maps has converged on a different population-based standard (MNI coordinates). Ideally, one could relate these two literatures by directly transforming MRIs from neurosurgical patients into MNI space. However obtaining these patient MRIs can prove difficult or impossible, especially for older studies or those with hundreds of patients. Here, we introduce a methodology for mapping an AC/PC coordinate (such as a DBS electrode position) to MNI space without the need for MRI scans from the patients themselves. We validate our approach using a cohort of DBS patients in which MRIs are available, and test whether several variations on our approach provide added benefit. We then use our approach to convert previously reported DBS electrode coordinates from eight different neurological and psychiatric diseases into MNI space. Finally, we demonstrate the value of such a conversion using the DBS target for essential tremor as an example, relating the site of the active DBS contact to different MNI atlases as well as anatomical and functional connectomes in MNI space.
Collapse
Affiliation(s)
- Andreas Horn
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Charité - University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Germany.
| | - Andrea A Kühn
- Charité - University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Germany
| | - Angela Merkl
- Charité - University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Germany
| | - Ludy Shih
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ron Alterman
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Beth Israel Deaconess Medical Center, Neurosurgery Department, Harvard Medical School, Boston, MA 02215
| | - Michael Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
23
|
Hollingworth M, Sims-Williams HP, Pickering AE, Barua N, Patel NK. Single Electrode Deep Brain Stimulation with Dual Targeting at Dual Frequency for the Treatment of Chronic Pain: A Case Series and Review of the Literature. Brain Sci 2017; 7:brainsci7010009. [PMID: 28098766 PMCID: PMC5297298 DOI: 10.3390/brainsci7010009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 01/02/2023] Open
Abstract
Deep Brain Stimulation (DBS) has been used to target many deep brain structures for the treatment of chronic pain. The periaqueductal grey and periventricular grey (PAG/PVG) is an effective target but results are variable, sometimes short-lived or subject to tolerance. The centromedian intra-laminar parafascicular complex (CMPf) modulates medial pain pathways and CMPf DBS may address the affective aspects of pain perception. Stimulation of multiple deep brain targets may offer a strategy to optimize management of patients with complex pain symptomatology. However, previous attempts to stimulate multiple targets requires multiple trajectories and considerable expense. Using a single electrode to stimulate multiple targets would help overcome these challenges. A pre-requisite of such a technique is the ability to use different stimulation parameters at different contacts simultaneously on the same electrode. We describe a novel technique in 3 patients with chronic pain syndromes for whom conventional medical and/or neuromodulation therapy had failed using a single electrode technique to stimulate PVG/PAG and CMPf at dual frequencies.
Collapse
Affiliation(s)
- Milo Hollingworth
- Department of Neurosurgery, North Bristol Trust, Bristol BS10 5NB, UK.
| | | | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| | - Neil Barua
- Department of Neurosurgery, North Bristol Trust, Bristol BS10 5NB, UK.
| | - Nikunj K Patel
- Department of Neurosurgery, North Bristol Trust, Bristol BS10 5NB, UK.
| |
Collapse
|
24
|
Neumaier F, Paterno M, Alpdogan S, Tevoufouet EE, Schneider T, Hescheler J, Albanna W. Surgical Approaches in Psychiatry: A Survey of the World Literature on Psychosurgery. World Neurosurg 2017; 97:603-634.e8. [DOI: 10.1016/j.wneu.2016.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/11/2022]
|
25
|
Naesström M, Blomstedt P, Bodlund O. A systematic review of psychiatric indications for deep brain stimulation, with focus on major depressive and obsessive-compulsive disorder. Nord J Psychiatry 2016; 70:483-91. [PMID: 27103550 DOI: 10.3109/08039488.2016.1162846] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Deep brain stimulation is a treatment under investigation for a range of psychiatric disorders. It has shown promising results for therapy-refractory obsessive-compulsive disorder (OCD) and major depressive disorder (MDD). Other indications under investigation include Tourette's syndrome, anorexia nervosa and substance use disorders. AIMS To review current studies on psychiatric indications for deep brain stimulation (DBS), with focus on OCD and MDD. METHOD A systematic search was carried out in MEDLINE, and the literature was searched to identify studies with DBS for psychiatric disorders. The identified studies were analysed based on patient characteristics, treatment results and adverse effects of DBS. RESULTS A total of 52 papers met the inclusion criteria and described a total of 286 unique patients treated with DBS for psychiatric indications; 18 studies described 112 patients treated with DBS for OCD in six different anatomical targets, while nine studies presented 100 patients with DBS for MDD in five different targets. CONCLUSION DBS may show promise for treatment-resistant OCD and MDD but the results are limited by small sample size and insufficient randomized controlled data. Deep brain stimulation for OCD has received United States Food and Drug Administration approval. Other psychiatric indications are currently of a purely experimental nature.
Collapse
Affiliation(s)
- Matilda Naesström
- a Department of Clinical Sciences/Psychiatry , Umeå University , Umeå , Sweden
| | - Patric Blomstedt
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Owe Bodlund
- a Department of Clinical Sciences/Psychiatry , Umeå University , Umeå , Sweden
| |
Collapse
|
26
|
Maarouf M, Neudorfer C, El Majdoub F, Lenartz D, Kuhn J, Sturm V. Deep Brain Stimulation of Medial Dorsal and Ventral Anterior Nucleus of the Thalamus in OCD: A Retrospective Case Series. PLoS One 2016; 11:e0160750. [PMID: 27504631 PMCID: PMC4978440 DOI: 10.1371/journal.pone.0160750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The current notion that cortico-striato-thalamo-cortical circuits are involved in the pathophysiology of obsessive-compulsive disorder (OCD) has instigated the search for the most suitable target for deep brain stimulation (DBS). However, despite extensive research, uncertainty about the ideal target remains with many structures being underexplored. The aim of this report is to address a new target for DBS, the medial dorsal (MD) and the ventral anterior (VA) nucleus of the thalamus, which has thus far received little attention in the treatment of OCD. METHODS In this retrospective trial, four patients (three female, one male) aged 31-48 years, suffering from therapy-refractory OCD underwent high-frequency DBS of the MD and VA. In two patients (de novo group) the thalamus was chosen as a primary target for DBS, whereas in two patients (rescue DBS group) lead implantation was performed in a rescue DBS attempt following unsuccessful primary stimulation. RESULTS Continuous thalamic stimulation yielded no significant improvement in OCD symptom severity. Over the course of thalamic DBS symptoms improved in only one patient who showed "partial response" on the Yale-Brown Obsessive Compulsive (Y-BOCS) Scale. Beck Depression Inventory scores dropped by around 46% in the de novo group; anxiety symptoms improved by up to 34%. In the de novo DBS group no effect of DBS on anxiety and mood was observable. CONCLUSION MD/VA-DBS yielded no adequate alleviation of therapy-refractory OCD, the overall strategy in targeting MD/VA as described in this paper can thus not be recommended in DBS for OCD. The magnocellular portion of MD (MDMC), however, might prove a promising target in the treatment of mood related and anxiety disorders.
Collapse
Affiliation(s)
- Mohammad Maarouf
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne, Germany
- * E-mail:
| | - Clemens Neudorfer
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne, Germany
| | - Faycal El Majdoub
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne, Germany
| | - Doris Lenartz
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Volker Sturm
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Deep Brain Stimulation for Obesity: From a Theoretical Framework to Practical Application. Neural Plast 2015; 2016:7971460. [PMID: 26819774 PMCID: PMC4706960 DOI: 10.1155/2016/7971460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022] Open
Abstract
Obesity remains a pervasive global health problem. While there are a number of nonsurgical and surgical options for treatment, the incidence of obesity continues to increase at an alarming rate. The inability to curtail the growing rise of the obesity epidemic may be related to a combination of increased food availability and palatability. Research into feeding behavior has yielded a number of insights into the homeostatic and reward mechanisms that govern feeding. However, there remains a gap between laboratory investigations of feeding physiology in animals and translation into meaningful treatment options for humans. In addition, laboratory investigation may not be able to recapitulate all aspects of human food consumption. In a landmark pilot study of deep brain stimulation (DBS) of the lateral hypothalamic area for obesity, we found that there was an increase in resting metabolic rate as well as a decreased urge to eat. In this review, the authors will review some of the work relating to feeding physiology and research surrounding two nodes involved in feeding homeostasis, nucleus accumbens (NAc) and hypothalamus, and use this to provide a framework for future investigations of DBS as a viable therapeutic modality for obesity.
Collapse
|
28
|
Fitzgerald PB, Segrave RA. Deep brain stimulation in mental health: Review of evidence for clinical efficacy. Aust N Z J Psychiatry 2015; 49:979-93. [PMID: 26246408 DOI: 10.1177/0004867415598011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE There is increasing interest in the use of deep brain stimulation as a treatment for psychiatric disorders. In this review, we consider the evidence for the effectiveness of deep brain stimulation for psychiatric indications, with a primary focus on obsessive compulsive disorder and major depressive disorder. METHODS Case reports, case series and clinical trials where deep brain stimulation was primarily utilised in the treatment of a psychiatric disorder, including obsessive compulsive disorder, major depressive disorder, anorexia nervosa or an addictive disorder were identified. The evidence for the effectiveness of deep brain stimulation in the treatment of obsessive compulsive disorder and major depressive disorder was reviewed with studies clustered by the site of implantation. RESULTS The majority of identified manuscripts report small case series or single cases. A limited number of studies have reported some form of randomised or blinded stimulation comparison. All of these comparative reports have included small samples of subjects (less than 20 per study in total) compromising the feasibility of making statistical comparison between outcomes in the comparison phases. The two exceptions to this have been industry-sponsored studies conducted in the treatment of major depressive disorder. However, both were stopped prematurely due to concerns about poor efficacy. CONCLUSIONS There is insufficient evidence at this point in time to support the use of deep brain stimulation as a clinical treatment for any psychiatric disorder outside of research and programmes where formal outcome data are being systematically collated. While some promising initial data exist to support its potential efficacy for a number of psychiatric conditions, further research is required to establish optimal implantation targets, patient characteristics associated with positive therapeutic outcomes and optimal deep brain stimulation parameters and parameter-programming methods.
Collapse
Affiliation(s)
- Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Alfred Psychiatry Research Centre, Monash University Central Clinical School and Alfred Health, Melbourne, VIC, Australia
| | - Rebecca A Segrave
- Monash Alfred Psychiatry Research Centre, Alfred Psychiatry Research Centre, Monash University Central Clinical School and Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Alonso P, Cuadras D, Gabriëls L, Denys D, Goodman W, Greenberg BD, Jimenez-Ponce F, Kuhn J, Lenartz D, Mallet L, Nuttin B, Real E, Segalas C, Schuurman R, Tezenas du Montcel S, Menchon JM. Deep Brain Stimulation for Obsessive-Compulsive Disorder: A Meta-Analysis of Treatment Outcome and Predictors of Response. PLoS One 2015. [PMID: 26208305 PMCID: PMC4514753 DOI: 10.1371/journal.pone.0133591] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Deep brain stimulation (DBS) has been proposed as an alternative to ablative neurosurgery for severe treatment-resistant Obsessive-Compulsive Disorder (OCD), although with partially discrepant results probably related to differences in anatomical targetting and stimulation conditions. We sought to determine the efficacy and tolerability of DBS in OCD and the existence of clinical predictors of response using meta-analysis. Methods We searched the literature on DBS for OCD from 1999 through January 2014 using PubMed/MEDLINE and PsycINFO. We performed fixed and random-effect meta-analysis with score changes (pre-post DBS) on the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) as the primary-outcome measure, and the number of responders to treatment, quality of life and acceptability as secondary measures. Findings Thirty-one studies involving 116 subjects were identified. Eighty-three subjects were implanted in striatal areas—anterior limb of the internal capsule, ventral capsule and ventral striatum, nucleus accumbens and ventral caudate—27 in the subthalamic nucleus and six in the inferior thalamic peduncle. Global percentage of Y-BOCS reduction was estimated at 45.1% and global percentage of responders at 60.0%. Better response was associated with older age at OCD onset and presence of sexual/religious obsessions and compulsions. No significant differences were detected in efficacy between targets. Five patients dropped out, but adverse effects were generally reported as mild, transient and reversible. Conclusions Our analysis confirms that DBS constitutes a valid alternative to lesional surgery for severe, therapy-refractory OCD patients. Well-controlled, randomized studies with larger samples are needed to establish the optimal targeting and stimulation conditions and to extend the analysis of clinical predictors of outcome.
Collapse
Affiliation(s)
- Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain
- Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
- * E-mail:
| | - Daniel Cuadras
- Methodological and Statistical Assessment Unit, Parc Sanitari Sant Joan de Déu—Fundació Sant Joan de Déu, Barcelona, Spain
| | - Loes Gabriëls
- University Centre for OCD, Department of Psychiatry, UPC-KULeuven, Leuven, Belgium
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Brain Imaging Center, Academic Medical Center, University of Amsterdam, and the Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Wayne Goodman
- Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ben D. Greenberg
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Butler Hospital, Providence, Rhode Island, United States of America
| | - Fiacro Jimenez-Ponce
- Unit of Stereotactic, Functional Neurosurgery and Radiosurgery, General Hospital of Mexico, Mexico City, Mexico
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Doris Lenartz
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Luc Mallet
- UPMC-Inserm U1127-CNRS UMR7225, ICM–Brain & Spine Institute, Paris, France
| | - Bart Nuttin
- Department of Neurosurgery, UZ Leuven, KU Leuven, Belgium
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain
| | - Cinto Segalas
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain
| | - Rick Schuurman
- Department of Neurosurgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sophie Tezenas du Montcel
- UPMC Univ Paris 06, ER4, Modelling in Clinical Research, Paris, France
- AP-HP, Hopitaux Universitaires Pitié-Salpétrière Charles-Foix, Department of Biostatistics and Medical Informatics, Paris, France
| | - Jose M. Menchon
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain
- Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Hamani C, Pilitsis J, Rughani AI, Rosenow JM, Patil PG, Slavin KS, Abosch A, Eskandar E, Mitchell LS, Kalkanis S. Deep brain stimulation for obsessive-compulsive disorder: systematic review and evidence-based guideline sponsored by the American Society for Stereotactic and Functional Neurosurgery and the Congress of Neurological Surgeons (CNS) and endorsed by the CNS and American Association of Neurological Surgeons. Neurosurgery 2015; 75:327-33; quiz 333. [PMID: 25050579 DOI: 10.1227/neu.0000000000000499] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It is estimated that 40% to 60% of patients with obsessive-compulsive disorder (OCD) continue to experience symptoms despite adequate medical management. For this population of treatment-refractory patients, promising results have been reported with the use of deep brain stimulation (DBS). OBJECTIVE To conduct a systematic review of the literature and develop evidence-based guidelines on DBS for OCD. METHODS A systematic literature search was undertaken using the PubMed database for articles published between 1966 and October 2012 combining the following words: "deep brain stimulation and obsessive-compulsive disorder" or "electrical stimulation and obsessive-compulsive disorder." Of 353 articles, 7 were retrieved for full-text review and analysis. The quality of the articles was assigned to each study and the strength of recommendation graded according to the guidelines development methodology of the American Association of Neurological Surgeons/Congress of Neurological Surgeons Joint Guidelines Committee. RESULTS Of the 7 studies, 1 class I and 2 class II double-blind, randomized, controlled trials reported that bilateral DBS is more effective in improving OCD symptoms than sham treatment. CONCLUSION Based on the data published in the literature, the following recommendations can be made: (1) There is Level I evidence, based on a single class I study, for the use of bilateral subthalamic nucleus DBS for the treatment of medically refractory OCD. (2) There is Level II evidence, based on a single class II study, for the use of bilateral nucleus accumbens DBS for the treatment of medically refractory OCD. (3) There is insufficient evidence to make a recommendation for the use of unilateral DBS for the treatment of medically refractory OCD.
Collapse
Affiliation(s)
- Clement Hamani
- *Division of Neurosurgery, Toronto Western Hospital, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; ‡Department of Neurosurgery and Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York; §Neuroscience Institute, Maine Medical Center, Portland, Maine; ¶Department of Neurosurgery, Northwestern University, Chicago, Illinois; ‖Departments of Neurosurgery, Neurology, Anesthesiology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; #Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois; **Department of Neurosurgery, University of Colorado, Denver, Colorado; ‡‡Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts; §§Congress of Neurological Surgeons, Guidelines Department, Schaumburg, Illinois; ¶¶Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Senço NM, Huang Y, D'Urso G, Parra LC, Bikson M, Mantovani A, Shavitt RG, Hoexter MQ, Miguel EC, Brunoni AR. Transcranial direct current stimulation in obsessive-compulsive disorder: emerging clinical evidence and considerations for optimal montage of electrodes. Expert Rev Med Devices 2015; 12:381-91. [PMID: 25982412 DOI: 10.1586/17434440.2015.1037832] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Neuromodulation techniques for obsessive-compulsive disorder (OCD) treatment have expanded with greater understanding of the brain circuits involved. Transcranial direct current stimulation (tDCS) might be a potential new treatment for OCD, although the optimal montage is unclear. OBJECTIVE To perform a systematic review on meta-analyses of repetitive transcranianal magnetic stimulation (rTMS) and deep brain stimulation (DBS) trials for OCD, aiming to identify brain stimulation targets for future tDCS trials and to support the empirical evidence with computer head modeling analysis. METHODS Systematic reviews of rTMS and DBS trials on OCD in Pubmed/MEDLINE were searched. For the tDCS computational analysis, we employed head models with the goal of optimally targeting current delivery to structures of interest. RESULTS Only three references matched our eligibility criteria. We simulated four different electrodes montages and analyzed current direction and intensity. CONCLUSION Although DBS, rTMS and tDCS are not directly comparable and our theoretical model, based on DBS and rTMS targets, needs empirical validation, we found that the tDCS montage with the cathode over the pre-supplementary motor area and extra-cephalic anode seems to activate most of the areas related to OCD.
Collapse
Affiliation(s)
- Natasha M Senço
- Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pepper J, Hariz M, Zrinzo L. Deep brain stimulation versus anterior capsulotomy for obsessive-compulsive disorder: a review of the literature. J Neurosurg 2015; 122:1028-37. [DOI: 10.3171/2014.11.jns132618] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating psychiatric condition. Traditionally, anterior capsulotomy (AC) was an established procedure for treatment of patients with refractory OCD. Over recent decades, deep brain stimulation (DBS) has gained popularity. In this paper the authors review the published literature and compare the outcome of AC and DBS targeting of the area of the ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (NAcc).
Patients in published cases were grouped according to whether they received AC or DBS and according to their preoperative scores on the Yale-Brown Obsessive-Compulsive Scale (YBOCS), and then separated according to outcome measures: remission (YBOCS score < 8); response (≥ 35% improvement in YBOCS score); nonresponse (< 35% improvement in YBOCS score); and unfavorable (i.e., worsening of the baseline YBOCS score).
Twenty studies were identified reporting on 170 patients; 62 patients underwent DBS of the VC/VS or the NAcc (mean age 38 years, follow-up 19 months, baseline YBOCS score of 33), and 108 patients underwent AC (mean age 36 years, follow-up 61 months, baseline YBOCS score of 30). In patients treated with DBS there was a 40% decrease in YBOCS score, compared with a 51% decrease for those who underwent AC (p = 0.004). Patients who underwent AC were 9% more likely to go into remission than patients treated with DBS (p = 0.02). No difference in complication rates was noted.
Anterior capsulotomy is an efficient procedure for refractory OCD. Deep brain stimulation in the VC/VS and NAcc area is an emerging and promising therapy. The current popularity of DBS over ablative surgery for OCD is not due to nonefficacy of AC, but possibly because DBS is perceived as more acceptable by clinicians and patients.
Collapse
Affiliation(s)
- Joshua Pepper
- 1Unit of Functional Neurosurgery, University College London Institute of Neurology, Queen Square
| | - Marwan Hariz
- 1Unit of Functional Neurosurgery, University College London Institute of Neurology, Queen Square
- 2Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Ludvic Zrinzo
- 1Unit of Functional Neurosurgery, University College London Institute of Neurology, Queen Square
- 3Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom; and
| |
Collapse
|
33
|
van Westen M, Rietveld E, Figee M, Denys D. Clinical Outcome and Mechanisms of Deep Brain Stimulation for Obsessive-Compulsive Disorder. Curr Behav Neurosci Rep 2015; 2:41-48. [PMID: 26317062 PMCID: PMC4544542 DOI: 10.1007/s40473-015-0036-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical outcome of deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) shows robust effects in terms of a mean Yale-Brown Obsessive-Compulsive Scale (YBOCS) reduction of 47.7 % and a mean response percentage (minimum 35 % YBOCS reduction) of 58.2 %. It appears that most patients regain a normal quality of life (QoL) after DBS. Reviewing the literature of the last 4 years, we argue that the mechanisms of action of DBS are a combination of excitatory and inhibitory as well as local and distal effects. Evidence from DBS animal models converges with human DBS EEG and imaging findings, in that DBS may be effective for OCD by reduction of hyperconnectivity between frontal and striatal areas. This is achieved through reduction of top-down-directed synchrony and reduction of frontal low-frequency oscillations. DBS appears to counteract striatal dysfunction through an increase in striatal dopamine and through improvement of reward processing. DBS affects anxiety levels through reduction of stress hormones and improvement of fear extinction.
Collapse
Affiliation(s)
- Maarten van Westen
- Department of Psychiatry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Erik Rietveld
- Department of Psychiatry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ; Amsterdam Brain and Cognition Center, University of Amsterdam, Nieuwe Achtergracht 129 (Building L), 1018 WS Amsterdam, The Netherlands ; Department of Philosophy, Institute for Logic, Language and Computation, University of Amsterdam, Science Park 107, 1098 XG Amsterdam, The Netherlands
| | - Martijn Figee
- Department of Psychiatry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ; Amsterdam Brain and Cognition Center, University of Amsterdam, Nieuwe Achtergracht 129 (Building L), 1018 WS Amsterdam, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ; Amsterdam Brain and Cognition Center, University of Amsterdam, Nieuwe Achtergracht 129 (Building L), 1018 WS Amsterdam, The Netherlands ; The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
34
|
Zibly Z, Shaw A, Harnof S, Sharma M, Graves C, Deogaonkar M, Rezai A. Modulation of mind: therapeutic neuromodulation for cognitive disability. J Clin Neurosci 2014; 21:1473-7. [DOI: 10.1016/j.jocn.2013.11.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/07/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022]
|
35
|
Abstract
Neuromodulation techniques in obsessive-compulsive disorder (OCD) involve electroconvulsive therapy (ECT), transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), and deep brain stimulation (DBS). This article reviews the available literature on the efficacy and applicability of these techniques in OCD. ECT is used for the treatment of comorbid depression or psychosis. One case report on tDCS showed no effects in OCD. Low-frequency TMS provides significant but mostly transient improvement of obsessive-compulsive symptoms. DBS shows a response rate of 60% in open and sham-controlled studies. In OCD, it can be concluded that DBS, although more invasive, is the most efficacious technique.
Collapse
Affiliation(s)
- Melisse Bais
- Department of Psychiatry, Academic Medical Center, Meibergdreef 5, Amsterdam 1105 AZ, The Netherlands
| | - Martijn Figee
- Department of Psychiatry, Academic Medical Center, Meibergdreef 5, Amsterdam 1105 AZ, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, Meibergdreef 5, Amsterdam 1105 AZ, The Netherlands; Neuromodulation & Behavior group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam 1105 BA, The Netherlands.
| |
Collapse
|
36
|
Yampolsky C, Bendersky D. [Surgery for behavioral disorders: the state of the art]. Surg Neurol Int 2014; 5:S211-31. [PMID: 25165612 PMCID: PMC4138826 DOI: 10.4103/2152-7806.137936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/15/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Surgery for behavioral disorders (SBD) is becoming a more common treatment since the development of neuromodulation techniques. METHODS This article is a non-systematic review of the history, current indications, techniques and surgical targets of SBD. We divide its history into 3 eras: the first era starts in the beginning of psychosurgery and finishes with the development of stereotactic techniques, when the second one starts. It is characterized by the realization of stereotactic lesions. We are traveling through the third era, which begins when deep brain stimulation (DBS) starts to be used for SBD. RESULTS In spite of the serious mistakes committed in the past, nowadays, SBD is reawakening. The psychiatric disorders which are most frequently treated by surgery are: treatment-resistant depression, obsessive-compulsive disorder and Tourette syndrome. Furthermore, some patients with abnormal aggression were surgically treated. There are several stereotactic targets described for these disorders. Vagus nerve stimulation may be also used for depression. CONCLUSION The results of DBS in these disorders seem to be encouraging. However, more randomized trials are needed in order to establish the effectiveness of SBD. It must be taken in mind that a proper patient selection will help us to perform a safer procedure as well as to achieve better surgical results, leading SBD to be more accepted by psychiatrists, patients and their families. Further research is needed in several topics such as: physiopathology of behavioral disorders, indications of SBD and new surgical targets.
Collapse
Affiliation(s)
- Claudio Yampolsky
- Servicio de Neurocirugía, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Damián Bendersky
- Servicio de Neurocirugía, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
37
|
Kohl S, Schönherr DM, Luigjes J, Denys D, Mueller UJ, Lenartz D, Visser-Vandewalle V, Kuhn J. Deep brain stimulation for treatment-refractory obsessive compulsive disorder: a systematic review. BMC Psychiatry 2014; 14:214. [PMID: 25085317 PMCID: PMC4149272 DOI: 10.1186/s12888-014-0214-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/18/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder is one of the most disabling of all psychiatric illnesses. Despite available pharmacological and psychotherapeutic treatments about 10% of patients remain severely affected and are considered treatment-refractory. For some of these patients deep brain stimulation offers an appropriate treatment method. The scope of this article is to review the published data and to compare different target structures and their effectiveness. METHODS PubMed search, last update June 2013, was conducted using the terms "deep brain stimulation" and "obsessive compulsive disorder". RESULTS In total 25 studies were found that reported five deep brain stimulation target structures to treat obsessive-compulsive disorder: the anterior limb of the internal capsule (five studies including 14 patients), nucleus accumbens (eight studies including 37 patients), ventral capsule/ventral striatum (four studies including 29 patients), subthalamic nucleus (five studies including 23 patients) and inferior thalamic peduncle (two studies including 6 patients). Despite the anatomical diversity, deep brain stimulation treatment results in similar response rates for the first four target structures. Inferior thalamic peduncle deep brain stimulation results in higher response rates but these results have to be interpreted with caution due to a very small number of cases. Procedure and device related adverse events are relatively low, as well as stimulation or therapy related side effects. Most stimulation related side effects are transient and decline after stimulation parameters have been changed. CONCLUSION Deep brain stimulation in treatment-refractory obsessive-compulsive disorder seems to be a relatively safe and promising treatment option. However, based on these studies no superior target structure could be identified. More research is needed to better understand mechanisms of action and response predictors that may help to develop a more personalized approach for these severely affected obsessive compulsive patients.
Collapse
Affiliation(s)
- Sina Kohl
- />Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Deva M Schönherr
- />Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Judy Luigjes
- />Department of Psychiatry, Academic Medical Center, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Damiaan Denys
- />Department of Psychiatry, Academic Medical Center, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
- />The Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Ulf J Mueller
- />Department of Psychiatry and Psychotherapy, University of Magdeburg, Leipzigerstrasse 44, 39120 Magdeburg, Germany
| | - Doris Lenartz
- />Department of Stereotactic and Functional Neurosurgery, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Veerle Visser-Vandewalle
- />Department of Stereotactic and Functional Neurosurgery, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Jens Kuhn
- />Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| |
Collapse
|
38
|
Lapidus KAB, Stern ER, Berlin HA, Goodman WK. Neuromodulation for obsessive-compulsive disorder. Neurotherapeutics 2014; 11:485-95. [PMID: 24981434 PMCID: PMC4121444 DOI: 10.1007/s13311-014-0287-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neuromodulation shows increasing promise in the treatment of psychiatric disorders, particularly obsessive-compulsive disorder (OCD). Development of tools and techniques including deep brain stimulation, transcranial magnetic stimulation, and electroconvulsive therapy may yield additional options for patients who fail to respond to standard treatments. This article reviews the motivation for and use of these treatments in OCD. We begin with a brief description of the illness followed by discussion of the circuit models thought to underlie the disorder. These circuits provide targets for intervention. Basal ganglia and talamocortical pathophysiology, including cortico-striato-thalamo-cortical loops is a focus of this discussion. Neuroimaging findings and historical treatments that led to the use of neuromodulation for OCD are presented. We then present evidence from neuromodulation studies using deep brain stimulation, electroconvulsive therapy, and transcranial magnetic stimulation, with targets including nucleus accumbens, subthalamic nucleus inferior thalamic peduncle, dorsolateral prefrontal cortex, supplementary motor area, and orbitofrontal cortex. Finally, we explore potential future neuromodulation approaches that may further refine and improve treatment.
Collapse
Affiliation(s)
- Kyle A B Lapidus
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA,
| | | | | | | |
Collapse
|
39
|
Morishita T, Fayad SM, Goodman WK, Foote KD, Chen D, Peace DA, Rhoton AL, Okun MS. Surgical neuroanatomy and programming in deep brain stimulation for obsessive compulsive disorder. Neuromodulation 2013; 17:312-9; discussion 319. [PMID: 24345303 DOI: 10.1111/ner.12141] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/06/2013] [Accepted: 10/31/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Deep brain stimulation (DBS) has been established as a safe, effective therapy for movement disorders (Parkinson's disease, essential tremor, etc.), and its application is expanding to the treatment of other intractable neuropsychiatric disorders including depression and obsessive-compulsive disorder (OCD). Several published studies have supported the efficacy of DBS for severely debilitating OCD. However, questions remain regarding the optimal anatomic target and the lack of a bedside programming paradigm for OCD DBS. Management of OCD DBS can be highly variable and is typically guided by each center's individual expertise. In this paper, we review the various approaches to targeting and programming for OCD DBS. We also review the clinical experience for each proposed target and discuss the relevant neuroanatomy. MATERIALS AND METHODS A PubMed review was performed searching for literature on OCD DBS and included all articles published before March 2012. We included all available studies with a clear description of the anatomic targets, programming details, and the outcomes. RESULTS Six different DBS approaches were identified. High-frequency stimulation with high voltage was applied in most cases, and predictive factors for favorable outcomes were discussed in the literature. CONCLUSION DBS remains an experimental treatment for medication refractory OCD. Target selection and programming paradigms are not yet standardized, though an improved understanding of the relationship between the DBS lead and the surrounding neuroanatomic structures will aid in the selection of targets and the approach to programming. We propose to form a registry to track OCD DBS cases for future clinical study design.
Collapse
Affiliation(s)
- Takashi Morishita
- Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lucas-Neto L, Neto D, Oliveira E, Martins H, Mourato B, Correia F, Rainha-Campos A, Gonçalves-Ferreira A. Three dimensional anatomy of the human nucleus accumbens. Acta Neurochir (Wien) 2013; 155:2389-98. [PMID: 23913108 DOI: 10.1007/s00701-013-1820-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/03/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND The Nucleus accumbens (Acc) is the main structure of the ventral striatum. It acts as a motor-limbic interface, being involved in emotional and psychomotor functions, frequently disturbed in neuropsychiatric disorders such as obsessive compulsive disorder and addiction. Most of the studies concerning the Acc were made in animals and those performed in humans are contradictory. Nevertheless, it has become a target for stereotactic deep brain stimulation for some of those diseases, when refractory to medical treatment. Previous studies performed by our group have established the localization, limits and dimensions of the human Acc and its stereotactic coordinates. Now it is our purpose to perform the Acc anatomical three-dimensional (3D) reconstruction in order to clarify its shape and topography and to render this nucleus a safer target for stereotactic procedures. METHODS Anatomical coronal slicing of ten Acc from human brains was performed, perpendicular to the anterior commissure-posterior commissure line and to the midline; then the Acc contours were traced and its dimensions and 3D stereotactic coordinates measured, on each slice. Finally a 3D computerized model was created. RESULTS The human Acc was identified as a distinct brain structure, with clear-cut limits on its posterior half. It lies parallel to the midline, descends caudally, and progresses from a globose to a flattened and dorsolateral concave shape. Its main expression is subcomissural. CONCLUSION This study defined more accurately the 3D anatomy of the human Acc, providing new tools for stereotactic procedures.
Collapse
Affiliation(s)
- L Lucas-Neto
- Anatomy Department, Lisbon Medical School, Lisbon, Portugal,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Deep Brain Stimulation in the Treatment of Obsessive-Compulsive Disorder. World Neurosurg 2013; 80:e245-53. [DOI: 10.1016/j.wneu.2012.10.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 10/02/2012] [Indexed: 11/21/2022]
|
42
|
Aronson JP, Katnani HA, Eskandar EN. Neuromodulation for obsessive-compulsive disorder. Neurosurg Clin N Am 2013; 25:85-101. [PMID: 24262902 DOI: 10.1016/j.nec.2013.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article describes the basis for neuromodulation procedures for obsessive-compulsive disorder (OCD) and summarizes the literature on the efficacy of these interventions. Discussion includes neural circuitry underlying OCD pathology, the history and types of ablative procedures, the targets and modalities used for neuromodulation, and future therapeutic directions.
Collapse
Affiliation(s)
- Joshua P Aronson
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
43
|
Höflich A, Savli M, Comasco E, Moser U, Novak K, Kasper S, Lanzenberger R. Neuropsychiatric deep brain stimulation for translational neuroimaging. Neuroimage 2013; 79:30-41. [DOI: 10.1016/j.neuroimage.2013.04.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022] Open
|
44
|
Knight EJ, Min HK, Hwang SC, Marsh MP, Paek S, Kim I, Felmlee JP, Abulseoud OA, Bennet KE, Frye MA, Lee KH. Nucleus accumbens deep brain stimulation results in insula and prefrontal activation: a large animal FMRI study. PLoS One 2013; 8:e56640. [PMID: 23441210 PMCID: PMC3575484 DOI: 10.1371/journal.pone.0056640] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/11/2013] [Indexed: 01/11/2023] Open
Abstract
Background Deep Brain Stimulation (DBS) of the nucleus accumbens (NAc) has previously been investigated clinically for the treatment of several psychiatric conditions, including obsessive-compulsive disorder and treatment resistant depression. However, the mechanism underlying the therapeutic benefit of DBS, including the brain areas that are activated, remains largely unknown. Here, we utilized 3.0 T functional Magnetic Resonance Imaging (fMRI) changes in Blood Oxygenation Level-Dependent (BOLD) signal to test the hypothesis that NAc/internal capsule DBS results in global neural network activation in a large animal (porcine) model Methods Animals (n = 10) were implanted in the NAc/internal capsule with DBS electrodes and received stimulation (1, 3, and 5 V, 130 Hz, and pulse widths of 100 and 500 µsec). BOLD signal changes were evaluated using a gradient echo-echo planar imaging (GRE-EPI) sequence in 3.0 T MRI. We used a normalized functional activation map for group analysis and applied general linear modeling across subjects (FDR<0.001). The anatomical location of the implanted DBS lead was confirmed with a CT scan Results We observed stimulation-evoked activation in the ipsilateral prefrontal cortex, insula, cingulate and bilateral parahippocampal region along with decrease in BOLD signal in the ipsilateral dorsal region of the thalamus. Furthermore, as the stimulation voltage increased from 3 V to 5 V, the region of BOLD signal modulation increased in insula, thalamus, and parahippocampal cortex and decreased in the cingulate and prefrontal cortex. We also demonstrated that right and left NAc/internal capsule stimulation modulates identical areas ipsilateral to the side of the stimulation Conclusions Our results suggest that NAc/internal capsule DBS results in modulation of psychiatrically important brain areas notably the prefrontal cortex, cingulate, and insular cortex, which may underlie the therapeutic effect of NAc DBS in psychiatric disorders. Finally, our fMRI setup in the large animal may be a useful platform for translational studies investigating the global neuromodulatory effects of DBS
Collapse
Affiliation(s)
- Emily J. Knight
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sun-Chul Hwang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Neurosurgery, Soonchunhyang University, Busheon Hospital, Bucheon, Republic of Korea
| | - Michael P. Marsh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Seungleal Paek
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Inyong Kim
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Joel P. Felmlee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kevin E. Bennet
- Division of Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
45
|
Lipsman N, Giacobbe P, Lozano AM. Deep brain stimulation in obsessive-compulsive disorder: neurocircuitry and clinical experience. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:245-250. [PMID: 24112898 DOI: 10.1016/b978-0-444-53497-2.00019-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The last decade has seen a significant rise in interest in the use of deep brain stimulation (DBS) for the management of obsessive-compulsive disorder (OCD), one of psychiatry's most challenging conditions. The prominent role of both thought (obsessions) and motor (compulsions) dysfunction in OCD place the condition at the border between the neurological and the psychiatric. This is supported by a growing body of literature that implicates structures in decision-making, reward, and action-selection circuits in the disorder. Here, we provide an overview of the neurocircuitry of OCD while reviewing the DBS literature to date for the condition. Results of DBS trials in treatment- resistant OCD have been remarkably similar, with clinical response rates in the range of 40-60%, despite the use of a diverse range of targets. These results imply that a common underlying circuit is being modulated, and moreover that there is room for improvement, and debate, in the development of an evidence-driven DBS treatment for this chronic, debilitating illness.
Collapse
Affiliation(s)
- Nir Lipsman
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
46
|
Ge S, Chang C, Kalanithi PS, Adler JR, Zhao H, Chang X, Gao L, Wu H, Wang J, Li N, Wang X, Gao G. Long-Term Changes in the Personality and Psychopathological Profile of Opiate Addicts after Nucleus Accumbens Ablative Surgery Are Associated with Treatment Outcome. Stereotact Funct Neurosurg 2013; 91:30-44. [DOI: 10.1159/000343199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 09/01/2012] [Indexed: 11/19/2022]
|
47
|
Mallory GW, Abulseoud O, Hwang SC, Gorman DA, Stead SM, Klassen BT, Sandroni P, Watson JC, Lee KH. The nucleus accumbens as a potential target for central poststroke pain. Mayo Clin Proc 2012; 87:1025-31. [PMID: 22980165 PMCID: PMC3498057 DOI: 10.1016/j.mayocp.2012.02.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 02/09/2012] [Indexed: 12/21/2022]
Abstract
Although deep brain stimulation (DBS) has been found to be efficacious for some chronic pain syndromes, its usefulness in patients with central poststroke pain (CPSP) has been disappointing. The most common DBS targets for pain are the periventricular gray region (PVG) and the ventralis caudalis of the thalamus. Despite the limited success of DBS for CPSP, few alternative targets have been explored. The nucleus accumbens (NAC), a limbic structure within the ventral striatum that is involved in reward and pain processing, has emerged as an effective target for psychiatric disease. There is also evidence that it may be an effective target for pain. We describe a 72-year-old woman with a large right hemisphere infarct who subsequently experienced refractory left hemibody pain. She underwent placement of 3 electrodes in the right PVG, ventralis caudalis of the thalamus, and NAC. Individual stimulation of the NAC and PVG provided substantial improvement in pain rating. The patient underwent implantation of permanent electrodes in both targets, and combined stimulation has provided sustained pain relief at nearly 1 year after the procedure. These results suggest that the NAC may be an effective DBS target for CPSP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kendall H. Lee
- Department of Neurosurgery, Mayo Clinic, Rochester, MN
- Correspondence: Address to Kendall H. Lee, MD, PhD, Department of Neurosurgery, Mayo Clinic, 200 First St SW, Rochester, MN 55901
| |
Collapse
|
48
|
DiFrancesco MF, Halpern CH, Hurtig HH, Baltuch GH, Heuer GG. Pediatric indications for deep brain stimulation. Childs Nerv Syst 2012; 28:1701-14. [PMID: 22828866 DOI: 10.1007/s00381-012-1861-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/10/2012] [Indexed: 12/16/2022]
Abstract
PURPOSE Based on the success of deep brain stimulation (DBS) in the treatment of adult disorders, it is reasonable to assume that the application of DBS in the pediatric population is an emerging area worthy of study. The purpose of this paper is to outline the current movement disorder indications for DBS in the pediatric population, and to describe areas of investigation, including possible medically refractory psychiatric indications. METHODS We performed a structured review of the English language literature from 1990 to 2011 related to studies of DBS in pediatrics using Medline and PubMed search results. RESULTS Twenty-four reports of DBS in the pediatric population were found. Based on published data on the use of DBS for pediatric indications, there is a spectrum of clinical evidence for the use of DBS to treat different disorders. Dystonia, a disease associated with a low rate of remission and significant disability, is routinely treated with DBS and is currently the most promising pediatric application of DBS. We caution the application of DBS to conditions associated with a high remission rate later in adulthood, like obsessive-compulsive disorder and Tourette's syndrome. Moreover, epilepsy and obesity are currently being investigated as indications for DBS in the adult population; however, both are associated with significant morbidity in pediatrics. CONCLUSION While currently dystonia is the most promising application of DBS in the pediatric population, multiple conditions currently being investigated in adults also afflict children and adolescents, and thus warrant further research.
Collapse
Affiliation(s)
- Matthew F DiFrancesco
- Center for Functional and Restorative Neurosurgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104-4399, USA
| | | | | | | | | |
Collapse
|
49
|
Haynes WIA, Millet B, Mallet L. [Obsessive-compulsive disorder, a new model of basal ganglia dysfunction? Elements from deep brain stimulation studies]. Rev Neurol (Paris) 2012; 168:649-54. [PMID: 22898561 DOI: 10.1016/j.neurol.2012.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/25/2012] [Indexed: 11/25/2022]
Abstract
Deep brain stimulation was first developed for movement disorders but is now being offered as a therapeutic alternative in severe psychiatric disorders after the failure of conventional therapies. One of such pathologies is obsessive-compulsive disorder. This disorder which associates intrusive thoughts (obsessions) and repetitive irrepressible rituals (compulsions) is characterized by a dysfunction of a cortico-subcortical loop. After having reviewed the pathophysiological evidence to show why deep brain stimulation was an interesting path to take for severe and resistant cases of obsessive-compulsive disorder, we will present the results of the different clinical trials. Finally, we will provide possible mechanisms for the effects of deep brain stimulation in this pathology.
Collapse
Affiliation(s)
- W I A Haynes
- Team Behaviour Emotion and Basal Ganglia, centre de recherche de l'institut du cerveau et de la moelle épinière (CRICM), Inserm US975, CNRS 7225, UPMC, bâtiment ICM, Paris cedex, France.
| | | | | |
Collapse
|
50
|
Jiménez F, Nicolini H, Lozano AM, Piedimonte F, Salín R, Velasco F. Electrical stimulation of the inferior thalamic peduncle in the treatment of major depression and obsessive compulsive disorders. World Neurosurg 2012; 80:S30.e17-25. [PMID: 22824558 DOI: 10.1016/j.wneu.2012.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 06/25/2012] [Accepted: 07/17/2012] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Stimulation of the inferior thalamic peduncle (ITP) is emerging as a promising new therapeutic target in certain psychiatric disorders. The circuitry that includes the nonspecific thalamic system (NSTS), which projects via the ITP to the orbitofrontal cortex (OFC), is involved in the physiopathology of major depression disorder (MDD) and obsessive compulsive disorder (OCD). The safety and efficacy of chronic ITP stimulation in cases of MDD and OCD refractory to medical treatment is presented. MATERIALS AND METHODS Six patients with OCD and one with MDD were implanted with tetrapolar deep brain stimulation electrodes in the ITP (x = 3.5 mm lateral to the ventricular wall, y = 5 mm behind the anterior commissure, and z = at the intercommissural plane, i.e., anterior commissure-posterior commissure [AC-PC] level). The effect of chronic stimulation at 130 Hz, 450 μs, and 5.0 V on OCD was evaluated before and 3, 6, and 12 months after initiation of electrical stimulation through the Yale-Brown Obsessive Compulsive Scale, Hamilton Depression Rating Scale, and Global Assessment of Function scale. RESULTS Chronic ITP electrical stimulation in OCD patients decreased the mean Yale-Brown Obsessive Compulsive Scale score to around 51% for the group at the 12-month follow-up, and increased the mean Global Assessment of Function scale score to 68% for a significant improvement (P = 0.026). Three of 6 patients returned to work. The Hamilton Depression Rating Scale score of the only patient with MDD treated to date went from 42 to 6. This condition of the patient, who had been incapacitated for 5 years prior to surgery, has not relapsed for 9 years. Three OCD patients with drug addiction continued to consume drugs in spite of their improvement in OCD. CONCLUSION Deep brain stimulation in the ITP is safe and may be effective in the treatment of OCD. A multicenter evaluation of the safety and efficacy of ITP in OCD is currently in process.
Collapse
Affiliation(s)
- Fiacro Jiménez
- Unit for Stereotactic, Functional Neurosurgery and Radiosurgery, Mexico General Hospital, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|