1
|
Combinations of classical and non-classical voltage dependent potassium channel openers suppress nociceptor discharge and reverse chronic pain signs in a rat model of Gulf War illness. Neurotoxicology 2022; 93:186-199. [PMID: 36216193 DOI: 10.1016/j.neuro.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2022]
Abstract
In a companion paper we examined whether combinations of Kv7 channel openers (Retigabine and Diclofenac; RET, DIC) could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. In the present report, we examined the combinations of Retigabine/Meclofenamate (RET/MEC) and Meclofenamate/Diclofenac (MEC/DIC). Voltage clamp experiments were performed on deep tissue nociceptors isolated from rat DRG (dorsal root ganglion). In voltage clamp studies, a stepped voltage protocol was applied (-55 to -40 mV; Vh=-60 mV; 1500 msec) and Kv7 evoked currents were subsequently isolated by Linopirdine subtraction. MEC greatly enhanced voltage dependent conductance and produced exceptional maximum sustained currents of 6.01 ± 0.26 pA/pF (EC50: 62.2 ± 8.99 μM). Combinations of RET/MEC, and MEC/DIC substantially amplified resting currents at low concentrations. MEC/DIC also greatly improved voltage dependent conductance. In current clamp experiments, a cholinergic challenge test (Oxotremorine-M, 10 μM; OXO), associated with our GWI rat model, produced powerful action potential (AP) bursts (85 APs). Optimized combinations of RET/MEC (5 and 0.5 μM) and MEC/DIC (0.5 and 2.5 μM) significantly reduced AP discharges to 3 and 7 Aps, respectively. Treatment of pain-like ambulatory behavior in our rat model with a RET/MEC combination (5 and 0.5 mg/kg) successfully rescued ambulation deficits, but could not be fully separated from the effect of RET alone. Further development of this approach is recommended.
Collapse
|
2
|
Development of KVO treatment strategies for chronic pain in a rat model of Gulf War Illness. Toxicol Appl Pharmacol 2022; 434:115821. [PMID: 34896435 DOI: 10.1016/j.taap.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/19/2022]
Abstract
We examined whether combinations of Kv7 channel openers could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. Voltage clamp experiments were performed on subclassified nociceptors isolated from rat DRG (dorsal root ganglion). A stepped voltage protocol was applied (-55 to -40 mV; Vh = -60 mV; 1500 ms) and Kv7 evoked currents were subsequently isolated by linopirdine subtraction. Directly activated and voltage activated K+ currents were characterized in the presence and absence of Retigabine (5-100 μM) and/or Diclofenac (50-140 μM). Retigabine produced substantial voltage dependent effects and a maximal sustained current of 1.14 pA/pF ± 0.15 (ED50: 62.7 ± 3.18 μM). Diclofenac produced weak voltage dependent effects but a similar maximum sustained current of 1.01 ± 0.26 pA/pF (ED50: 93.2 ± 8.99 μM). Combinations of Retigabine and Diclofenac substantially amplified resting currents but had little effect on voltage dependence. Using a cholinergic challenge test (Oxotremorine, 10 μM) associated with our GWI rat model, combinations of Retigabine (5 uM) and Diclofenac (2.5, 20 and 50 μM) substantially reduced or totally abrogated action potential discharge to the cholinergic challenge. When combinations of Retigabine and Diclofenac were used to relieve pain-signs in our rat model of GWI, only those combinations associated with serious subacute side effects could relieve pain-like behaviors.
Collapse
|
3
|
Liu Y, Bian X, Wang K. Pharmacological Activation of Neuronal Voltage-Gated Kv7/KCNQ/M-Channels for Potential Therapy of Epilepsy and Pain. Handb Exp Pharmacol 2021; 267:231-251. [PMID: 33837465 DOI: 10.1007/164_2021_458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Native M-current is a low-threshold, slowly activating potassium current that exerts an inhibitory control over neuronal excitability. The M-channel is primarily co-assembled by heterotetrameric Kv7.2/KCNQ2 and Kv7.3/KCNQ3 subunits that are specifically expressed in the brain and peripheral nociceptive and visceral sensory neurons in the spinal cord. Reduction of M-channel function leads to neuronal hyperexcitability that defines the fundamental mechanism of neurological disorders such as epilepsy and pain, indicating that pharmacological activation of Kv7/KCNQ/M-channels may serve the basis for the therapy. The well-known KCNQ opener retigabine (ezogabine or Potiga) was approved by FDA in 2011 as an anticonvulsant used for an adjunctive treatment of partial epilepsies. Unfortunately, retigabine was discontinued in 2017 due to its side effects of blue-colored appearance of the skin and eyes after prolonged intake. In addition, flupirtine, a structural derivative of retigabine and a centrally acting non-opioid analgesic, was also withdrawn in 2018 for liver toxicity. Fortunately, these side effects are compound-structures related and can be avoided. Thus, further identification and development of novel potent and selective Kv7 channel openers may lead to an effective therapy with improved safety window for anti-epilepsy and anti-nociception.
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Xiling Bian
- Department of Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China. .,Institute of Innovative Drugs Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
A Systematic Review of Pharmacologic and Rehabilitative Treatment of Small Fiber Neuropathies. Diagnostics (Basel) 2020; 10:diagnostics10121022. [PMID: 33260566 PMCID: PMC7761307 DOI: 10.3390/diagnostics10121022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/08/2020] [Accepted: 11/25/2020] [Indexed: 01/16/2023] Open
Abstract
The aim of this systematic review is to guide the physician in defining the pharmacologic and rehabilitative therapeutic approaches for adopting the best strategies described in the current literature. The search was conducted in PubMed, EMBASE, Cochrane Library and Web of Science to identify the treatment of small fiber neuropathies. Two reviewers independently reviewed and came to a consensus on which articles met inclusion/exclusion criteria. The authors excluded the duplicates, animal studies and included the English articles in which the treatment of patients with small fiber neuropathies was described. The search identified a total of 975 articles with the keywords “small fiber neuropathy” AND “rehabilitation” OR “therapy” OR “treatment”. Seventy-eight selected full-text were analyzed by the reviewers. Forty-two publications met the inclusion criteria and were included in the systematic review to describe the rehabilitative and pharmacologic treatment of small fiber neuropathies. Despite the range of different protocols of treatment for small fiber neuropathy, other robust trials are needed. In addition, always different therapeutic approaches are used; a unique protocol could be important for the clinicians. More research is needed to build evidence for the best strategy and to delineate a definitive therapeutic protocol.
Collapse
|
5
|
Chiaramonte R, Romano M, Vecchio M. A Systematic Review of the Diagnostic Methods of Small Fiber Neuropathies in Rehabilitation. Diagnostics (Basel) 2020; 10:E613. [PMID: 32825514 PMCID: PMC7554909 DOI: 10.3390/diagnostics10090613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
This systematic review describes the several methods to diagnose and measure the severity of small fiber neuropathies and aims to guide the physician to define all the diagnostic approaches for adopting the best strategies described in the current literature. The search was conducted in PubMed, EMBASE, Cochrane Library and Web of Science. Two reviewers independently reviewed and came to consensus on which articles met inclusion/exclusion criteria. The authors excluded all the duplicates, animals' studies, and included the English articles in which the diagnostic measures were finalized to assess the effectiveness of rehabilitation and pharmacologic treatment of patients with small fiber neuropathies. The search identified a total of 975 articles with the keywords "small fiber neuropathy" AND "rehabilitation" OR "therapy" OR "treatment". Seventy-eight selected full-text were analyzed by the reviewers. Forty-one publications met the inclusion criteria and were included in the systematic review. Despite the range of diagnostic tools for the assessment of small fiber neuropathy, other robust trials are needed. In addition, always different diagnostic approaches are used, a unique protocol could be important for the clinicians. More research is needed to build evidence for the best diagnostic methodologies and to delineate a definitive diagnostic protocol.
Collapse
Affiliation(s)
- Rita Chiaramonte
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| | - Marcello Romano
- Neurology Unit, Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, 90100 Palermo, Italy;
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
- Rehabilitation Unit, AOU Policlinico Vittorio Emanuele, University of Catania, 95125 Catania, Italy
| |
Collapse
|
6
|
Lawson K. Pharmacology and clinical applications of flupirtine: Current and future options. World J Pharmacol 2019; 8:1-13. [DOI: 10.5497/wjp.v8.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/17/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Flupirtine is the first representative in a class of triaminopyridines that exhibits pharmacological properties leading to the suppression of over-excitability of neuronal and non-neuronal cells. Consequently, this drug has been used as a centrally acting analgesic in patients with a range of acute and persistent pain conditions without the adverse effects characteristic of opioids and non-steroidal anti-inflammatory drug and is well tolerated. The pharmacological profile exhibited involves actions on several cellular targets, including Kv7 channels, G-protein-regulated inwardly rectifying K channels and γ-aminobutyric acid type A receptors, but also there is evidence of additional as yet unidentified mechanisms of action involved in the effects of flupirtine. Flupirtine has exhibited effects in a range of cells and tissues related to the locations of these targets. In additional to analgesia, flupirtine has demonstrated pharmacological properties consistent with use as an anticonvulsant, a neuroprotectant, skeletal and smooth muscle relaxant, in treatment of auditory and visual disorders, and treatment of memory and cognitive impairment. Flupirtine is providing important information and clues regarding novel mechanistic approaches to the treatment of a range of clinical conditions involving hyper-excitability of cells. Identification of molecules exhibiting specificity for the pharmacological targets (e.g., Kv7 isoforms) involved in the actions of flupirtine will provide further insight into clinical applications. Whether the broad-spectrum pharmacology of flupirtine or target-specific actions is preferential to gain benefit, especially in complex clinical conditions, requires further investigation. This review will consider recent advancement in understanding of the pharmacological profile and related clinical applications of flupirtine.
Collapse
Affiliation(s)
- Kim Lawson
- Department of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| |
Collapse
|
7
|
Behavioral, cellular and molecular maladaptations covary with exposure to pyridostigmine bromide in a rat model of gulf war illness pain. Toxicol Appl Pharmacol 2018; 352:119-131. [PMID: 29803855 DOI: 10.1016/j.taap.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022]
Abstract
Many veterans of Operation Desert Storm (ODS) struggle with the chronic pain of Gulf War Illness (GWI). Exposure to insecticides and pyridostigmine bromide (PB) have been implicated in the etiology of this multisymptom disease. We examined the influence of 3 (DEET (N,N-diethyl-meta-toluamide), permethrin, chlorpyrifos) or 4 GW agents (DEET, permethrin, chlorpyrifos, pyridostigmine bromide (PB)) on the post-exposure ambulatory and resting behaviors of rats. In three independent studies, rats that were exposed to all 4 agents consistently developed both immediate and delayed ambulatory deficits that persisted at least 16 weeks after exposures had ceased. Rats exposed to a 3 agent protocol (PB excluded) did not develop any ambulatory deficits. Cellular and molecular studies on nociceptors harvested from 16WP (weeks post-exposure) rats indicated that vascular nociceptor Nav1.9 mediated currents were chronically potentiated following the 4 agent protocol but not following the 3 agent protocol. Muscarinic linkages to muscle nociceptor TRPA1 were also potentiated in the 4 agent but not the 3 agent, PB excluded, protocol. Although Kv7 activity changes diverged from the behavioral data, a Kv7 opener, retigabine, transiently reversed ambulation deficits. We concluded that PB played a critical role in the development of pain-like signs in a GWI rat model and that shifts in Nav1.9 and TRPA1 activity were critical to the expression of these pain behaviors.
Collapse
|
8
|
Yan YY, Li CY, Zhou L, Ao LY, Fang WR, Li YM. Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci 2017; 190:68-77. [PMID: 28964813 DOI: 10.1016/j.lfs.2017.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/09/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is maladaptive pain caused by injury or dysfunction in peripheral and central nervous system, and remains a worldwide thorny problem leading to decreases in physical and mental quality of people's life. Currently, drug therapy is the main treatment regimen for resolving pain, while effective drugs are still unmet in medical need, and commonly used drugs such as anticonvulsants and antidepressants often make patients experience adverse drug reactions like dizziness, somnolence, severe headache, and high blood pressure. Thus, in this review we overview the anatomical physiology, underlying mechanisms of neuropathic pain to provide a better understanding in the initiation, development, maintenance, and modulation of this pervasive disease, and inspire research in the unclear mechanisms as well as potential targets. Furthermore, we summarized the existing drug therapies and new compounds that have shown antalgic effects in laboratory studies to be helpful for rational regimens in clinical treatment and promotion in novel drug discovery.
Collapse
Affiliation(s)
- Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
9
|
MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain. Nat Commun 2017; 8:16079. [PMID: 28677679 PMCID: PMC5504285 DOI: 10.1038/ncomms16079] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviates mechanical allodynia in a rat model of neuropathic pain. Plausible targets for the miR-17-92 cluster include genes encoding numerous voltage-gated potassium channels and their modulatory subunits. Single-cell analysis reveals extensive co-expression of miR-17-92 cluster and its predicted targets in primary sensory neurons. miR-17-92 downregulates the expression of potassium channels, and reduced outward potassium currents, in particular A-type currents. Combined application of potassium channel modulators synergistically alleviates mechanical allodynia induced by nerve injury or miR-17-92 overexpression. miR-17-92 cluster appears to cooperatively regulate the function of multiple voltage-gated potassium channel subunits, perpetuating mechanical allodynia. Dysregulation of voltage gated potassium channels is a feature of neuropathic pain. Here in a rat model the authors identify the microRNA cluster miR-17-92 as a regulator of voltage gated potassium channels in the dorsal root ganglion neurons.
Collapse
|
10
|
Flupirtine, a re-discovered drug, revisited. Inflamm Res 2013; 62:251-8. [PMID: 23322112 DOI: 10.1007/s00011-013-0592-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022] Open
Abstract
Flupirtine was developed long before K(V)7 (KCNQ) channels were known. However, it was clear from the beginning that flupirtine is neither an opioid nor a nonsteroidal anti-inflammatory analgesic. Its unique muscle relaxing activity was discovered by serendipity. In the meantime, broad and intensive research has resulted in a partial clarification of its mode of action. Flupirtine is the first therapeutically used K(V)7 channel activator with additional GABA(A)ergic mechanisms and thus the first representative of a novel class of analgesics. The presently accepted main mode of its action, potassium K(V)7 (KCNQ) channel activation, opens a series of further therapeutic possibilities. One of them has now been realized: its back-up compound, the bioisostere retigabine, has been approved for the treatment of epilepsy.
Collapse
|
11
|
Evidence for inhibitory effects of flupirtine, a centrally acting analgesic, on delayed rectifier k(+) currents in motor neuron-like cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:148403. [PMID: 22888361 PMCID: PMC3408763 DOI: 10.1155/2012/148403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/18/2012] [Indexed: 12/25/2022]
Abstract
Flupirtine (Flu), a triaminopyridine derivative, is a centrally acting, non-opiate analgesic agent. In this study, effects of Flu on K+ currents were explored in two types of motor neuron-like cells. Cell exposure to Flu decreased the amplitude of delayed rectifier K+ current (IK(DR)) with a concomitant raise in current inactivation in NSC-34 neuronal cells. The dissociation constant for Flu-mediated increase of IK(DR) inactivation rate was about 9.8 μM. Neither linopirdine (10 μM), NMDA (30 μM), nor gabazine (10 μM) reversed Flu-induced changes in IK(DR) inactivation. Addition of Flu shifted the inactivation curve of IK(DR) to a hyperpolarized potential. Cumulative inactivation for IK(DR) was elevated in the presence of this compound. Flu increased the amplitude of M-type K+ current (IK(M)) and produced a leftward shift in the activation curve of IK(M). In another neuronal cells (NG108-15), Flu reduced IK(DR) amplitude and enhanced the inactivation rate of IK(DR). The results suggest that Flu acts as an open-channel blocker of delayed-rectifier K+ channels in motor neurons. Flu-induced block of IK(DR) is unlinked to binding to NMDA or GABA receptors and the effects of this agent on K+ channels are not limited to its action on M-type K+ channels.
Collapse
|