1
|
Chen Y, Xi J, Lee D, Ramella-Roman J, Li X. Gold Nanocages with a Long SPR Peak Wavelength as Contrast Agents for Optical Coherence Tomography Imaging at 1060 nm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642209. [PMID: 40161769 PMCID: PMC11952295 DOI: 10.1101/2025.03.09.642209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
There has been growing interest in optical coherence tomography (OCT) imaging at a wavelength of 1060 nm. However, potential contrast agents for OCT imaging at this specific wavelength has not been thoroughly investigated. In this study, we present the synthesis and optical characterization of gold nanocages with a small edge length (∼65 nm) and a surface plasmon resonance peak around 1060 nm. These nanocages represent a class of potential contrast agents for OCT at 1060 nm. OCT imaging experiments were conducted on phantoms and in vivo mouse tissues using a 1060-nm swept-source OCT system, demonstrating significant enhancement in imaging contrast due to the presence of the gold nanocages. GRAPHICAL ABSTRACT Gold nanocages with a long SPR peak wavelength as OCT imaging contrast agents at 1060 nm.
Collapse
Affiliation(s)
- Yongping Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Noble Life Science, Sykesville, Maryland 21784, USA
| | - Jiefeng Xi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Du Lee
- Biomedical Engineering Department, Florida International University, Miami, Florida 33174, USA
| | - Jessica Ramella-Roman
- Biomedical Engineering Department, Florida International University, Miami, Florida 33174, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
2
|
Alkatheeri A, Salih S, Kamil N, Alnuaimi S, Abuzar M, Abdelrahman SS. Nano-Radiopharmaceuticals in Colon Cancer: Current Applications, Challenges, and Future Directions. Pharmaceuticals (Basel) 2025; 18:257. [PMID: 40006069 PMCID: PMC11859487 DOI: 10.3390/ph18020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Colon cancer remains a significant global health challenge; however, the treatment outcome for colon patients can be improved through early detection and effective treatment. Nano-radiopharmaceuticals, combining nanotechnology with radiopharmaceuticals, are emerging as a revolutionary approach in both colon cancer diagnostic imaging and therapy, playing a significant role in the management of colon cancer patients. This review examines the use of nano-radiopharmaceuticals in the diagnosis and treatment of colon cancer, highlighting current applications, challenges, and future directions. Nanocarriers of radionuclides have shown potential in improving cancer treatment, including liposomes, microparticles, nanoparticles, micelles, dendrimers, and hydrogels, which are approved by the FDA. These nanocarriers can deliver targeted drugs into malignant cells without affecting normal cells, reducing side effects. Antibody-guided systemic radionuclide-targeted therapy has shown potential for treating cancer. Novel cancer nanomedicines, like Hensify and 32P BioSilicon, are under clinical development for targeted radiation delivery in percutaneous intratumoral injections. Although using nano-radiopharmaceuticals is a superior technique for diagnosing and treating colon cancer, there are limitations and challenges, such as the unintentional accumulation of nanoparticles in healthy tissues, which leads to toxicity due to biodistribution issues, as well as high manufacturing costs that limit their availability for patients. However, the future direction is moving toward providing more precise radiopharmaceuticals, which is crucial for enhancing the diagnosis and treatment of colon cancer and reducing production costs.
Collapse
Affiliation(s)
- Ajnas Alkatheeri
- Department of Radiography and Medical Imaging, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates;
| | - Suliman Salih
- Department of Radiography and Medical Imaging, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates;
- National Cancer Institute, University of Gezira, Wad Madani 2667, Sudan
| | - Noon Kamil
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | - Sara Alnuaimi
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | - Memona Abuzar
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | | |
Collapse
|
3
|
Mossburg KJ, Shepherd SJ, Barragan D, O NH, Berkow EK, Maidment PSN, Rosario Berrios DN, Hsu JC, Siedlik MJ, Yadavali S, Mitchell MJ, Issadore D, Cormode DP. Towards the clinical translation of a silver sulfide nanoparticle contrast agent: large scale production with a highly parallelized microfluidic chip. Eur J Nucl Med Mol Imaging 2025; 52:1177-1188. [PMID: 39528844 PMCID: PMC11753937 DOI: 10.1007/s00259-024-06967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Ultrasmall silver sulfide nanoparticles (Ag2S-NP) have been identified as promising contrast agents for a number of modalities and in particular for dual-energy mammography. These Ag2S-NP have demonstrated marked advantages over clinically available agents with the ability to generate higher contrast with high biocompatibility. However, current synthesis methods for inorganic nanoparticles are low-throughput and highly time-intensive, limiting the possibility of large animal studies or eventual clinical use of this potential imaging agent. METHODS We herein report the use of a scalable silicon microfluidic system (SSMS) for the large-scale synthesis of Ag2S-NP. Ag2S-NP produced using this system were compared to bulk synthesis and a commercially available microfluidic device through characterization, contrast generation, in vivo imaging, and clearance profiles. RESULTS Using SSMS chips with 1 channel, 10 parallelized channels, and 256 parallelized channels, we determined that the Ag2S-NP produced were of similar quality as measured by core size, concentration, UV-visible spectrometry, and in vitro contrast generation. Moreover, by combining parallelized chips with increasing reagent concentration, we were able to increase output by an overall factor of 5,100. We also found that in vivo imaging contrast generation was consistent across synthesis methods and confirmed renal clearance of the ultrasmall nanoparticles. Finally, we found best-in-class clearance of the Ag2S-NP occurred within 24 h. CONCLUSIONS These studies have identified a promising method for the large-scale production of Ag2S-NP, paving the way for eventual clinical translation.
Collapse
Affiliation(s)
- Katherine J Mossburg
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Diego Barragan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel H O
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmaceutical Sciences, St. Joseph's University, Philadelphia, PA, USA
- Department of Physics, St. Joseph's University, Philadelphia, PA, USA
| | - Emily K Berkow
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Derick N Rosario Berrios
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica C Hsu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - David P Cormode
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Fernandes F, Talukdar I, Kowshik M. Cysteamine functionalized gold nanoparticles exhibit high efficiency delivery of genetic materials in embryonic stem cells majorly via clathrin mediated endocytosis. Int J Pharm 2024; 667:124928. [PMID: 39521158 DOI: 10.1016/j.ijpharm.2024.124928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Efficient and safe gene delivery is vital for genetic manipulation of stem cells for regenerative medicine. Gold nanoparticles have been used for various biomedical applications in the past, and are currently being researched as transfection agents. In this study, we report a simple one-pot synthesis of positively charged gold nanoparticles functionalized with cysteamine. The nanoparticles exhibit no cytotoxicity and can bind to both plasmid DNA (pDNA) as well as small interference RNA (siRNA). We observed that a five fold lower concentration of pDNA was sufficient for achieving comparable overexpression as that of a commercial transfection agent. We also observed that about 70 % transient silencing of the target gene was achieved with only 25 nM siRNA delivered by our nano-vehicle. To better understand the fate of the nanoparticle, we attempted to identify its uptake mechanism. The results indicate that while all the mechanisms contribute to the uptake, the clathrin-dependent pathway plays a major role. This is the first study on understanding the mechanism of uptake of CA-AuNPs conjugated to pDNA by embryonic stem cells. This is also the first study, where a successful transfection using gold based nanoparticles has been achieved in ESCs at a concentration as low as 0.5 µg/ml for pDNA and 25ƞM siRNA.
Collapse
Affiliation(s)
- Fiona Fernandes
- Dept. of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India
| | - Indrani Talukdar
- Dept. of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India.
| | - Meenal Kowshik
- Dept. of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India.
| |
Collapse
|
5
|
Khalid A, Tomljenovic-Hanic S. Emerging Fluorescent Nanoparticles for Non-Invasive Bioimaging. Molecules 2024; 29:5594. [PMID: 39683753 DOI: 10.3390/molecules29235594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Fluorescence-based techniques have great potential in the field of bioimaging and could bring tremendous progress in microbiology and biomedicine. The most essential element in these techniques is fluorescent nanomaterials. The use of fluorescent nanoparticles as contrast agents for bioimaging is a large topic to cover. The purpose of this mini-review is to give the reader an overview of biocompatible and biodegradable fluorescent nanoparticles that are emerging nanomaterials for use in fluorescent bioimaging. In addition to the biocompatibility of these nanomaterials, biodegradability is considered a necessity for short-term sustainable bioimaging. Firstly, the main requirements for bioimaging are raised, and a few existing fluorescent nanoprobes are discussed. Secondly, a few inert biocompatible fluorescent nanomaterials for long-term bioimaging that have been, to some extent, demonstrated as fluorescent probes are reviewed. Finally, a few biocompatible and biodegradable nanomaterials for short-term bioimaging that are evolving for bioimaging applications are discussed. Together, these advancements signal a transformative leap toward sustainability and functionality in biomedical imaging.
Collapse
Affiliation(s)
- Asma Khalid
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | | |
Collapse
|
6
|
Ashkarran AA, Lin Z, Rana J, Bumpers H, Sempere L, Mahmoudi M. Impact of Nanomedicine in Women's Metastatic Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301385. [PMID: 37269217 PMCID: PMC10693652 DOI: 10.1002/smll.202301385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Jatin Rana
- Division of Hematology and Oncology, Michigan State University, East Lansing, MI, 48824, USA
| | - Harvey Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Sørensen LK, Gerasimov VS, Karpov SV, Ågren H. Development of discrete interaction models for ultra-fine nanoparticle plasmonics. Phys Chem Chem Phys 2024; 26:24209-24245. [PMID: 39257371 DOI: 10.1039/d4cp00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Plasmonics serves as a most outstanding feature of nanoparticle technology and is nowadays used in numerous applications within imaging, sensing and energy harvesting, like plasmonically enhanced solar cells, nanoparticle bioimaging, plasmon-controlled fluorescence for molecular tracking in living cells, plasmon-controlled electronic molecular devices and surface enhanced Raman spectroscopy for single molecular detection. Although plasmonics has been utilized since ancient times, the understanding of its basic interactions has not been fully achieved even under the emergence of modern nanoscience. In particular, it has been difficult to address the "ultra-fine" 1-10 nm regime, important for applications especially in bioimaging and biomedical areas, where neither classical nor quantum based theoretical methods apply. Recently, new approaches have been put forward to bridge this size gap based on semi-empirical discrete interaction models where each atom makes a difference. A primary aim of this perspective article is to review some of the most salient features of these models, and in particular focus on a recent extension - the extended discrete interaction model (Ex-DIM), where the geometric and environmental features are extended - and highlight a set of benchmark studies using this model concerning size, shape, material, temperature dependence and other characteristics of ultra-fine plasmonic nanoparticles. We also analyze new possibilities offered by the model for designing ultra-fine plasmonic particles for applications in the areas of bioimaging, biosensing, photothermal therapy, infrared light harvesting and photodetection. We foresee that future modelling activities will be closely connected to collaborative experimental work including synthesis, device fabrication and measurements with feedback and validation in a systematic fashion. With this strategy we can expect that modelling of ultra-fine plasmonics particles can be integrated in the development of novel plasmonic systems with unprecedented performance and applicability.
Collapse
Affiliation(s)
- Lasse K Sørensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark.
- University Library, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Valeriy S Gerasimov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.
- Institute of Computational Modelling, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
| | - Sergey V Karpov
- L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia.
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
8
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
9
|
Zhou Y, Yue T, Ding Y, Tan H, Weng J, Luo S, Zheng X. Nanotechnology translation in vascular diseases: From design to the bench. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1919. [PMID: 37548140 DOI: 10.1002/wnan.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Atherosclerosis is a systemic pathophysiological condition contributing to the development of majority of polyvascular diseases. Nanomedicine is a novel and rapidly developing science. Due to their small size, nanoparticles are freely transported in vasculature, and have been widely employed as tools in analytical imaging techniques. Furthermore, the application of nanoparticles also allows target intervention, such as drug delivery and tissue engineering regenerative methods, in the management of major vascular diseases. Therefore, by summarizing the physical and chemical characteristics of common nanoparticles used in diagnosis and treatment of vascular diseases, we discuss the details of these applications from cellular, molecular, and in vivo perspectives in this review. Furthermore, we also summarize the status and challenges of the application of nanoparticles in clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Yue
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huiling Tan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Mossburg KJ, Shepherd SJ, Barragan D, O NH, Berkow EK, Maidment PSN, Berrios DNR, Hsu JC, Siedlik MJ, Yadavali S, Mitchell MJ, Issadore D, Cormode DP. Towards the Clinical Translation of a Silver Sulfide Nanoparticle Contrast Agent: Large Scale Production with a Highly Parallelized Microfluidic Chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.02.569706. [PMID: 38106126 PMCID: PMC10723277 DOI: 10.1101/2023.12.02.569706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ultrasmall silver sulfide nanoparticles (Ag 2 S-NP) have been identified as promising contrast agents for a number of modalities and in particular for dual-energy mammography. These Ag 2 S-NP have demonstrated marked advantages over clinically available agents with the ability to generate higher contrast with high biocompatibility. However, current synthesis methods are low-throughput and highly time-intensive, limiting the possibility of large animal studies or eventual clinical use of this potential imaging agent. We herein report the use of a scalable silicon microfluidic system (SSMS) for the large-scale synthesis of Ag 2 S-NP. Using SSMS chips with 1 channel, 10 parallelized channels, and 256 parallelized channels, we determined that the Ag 2 S-NP produced were of similar quality as measured by core size, concentration, UV-visible spectrometry, and in vitro contrast generation. Moreover, by combining parallelized chips with increasing reagent concentration, we were able to increase output by an overall factor of 3,400. We also found that in vivo imaging contrast generation was consistent across synthesis methods and confirmed renal clearance of the ultrasmall nanoparticles. Finally, we found best-in-class clearance of the Ag 2 S-NP occurred within 24 hours. These studies have identified a promising method for the large-scale production of Ag 2 S-NP, paving the way for eventual clinical translation.
Collapse
|
11
|
Wu DD, Salah YA, Ngowi EE, Zhang YX, Khattak S, Khan NH, Wang Y, Li T, Guo ZH, Wang YM, Ji XY. Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration. iScience 2023; 26:107321. [PMID: 37554468 PMCID: PMC10405259 DOI: 10.1016/j.isci.2023.107321] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Neurological diseases are one of the most pressing issues in modern times worldwide. It thus possesses explicit attention from researchers and medical health providers to guard public health against such an expanding threat. Various treatment modalities have been developed in a remarkably short time but, unfortunately, have yet to lead to the wished-for efficacy or the sought-after clinical improvement. The main hurdle in delivering therapeutics to the brain has always been the blood-brain barrier which still represents an elusive area with lots of mysteries yet to be solved. Meanwhile, nanotechnology has emerged as an optimistic platform that is potentially holding the answer to many of our questions on how to deliver drugs and treat CNS disorders using novel technologies rather than the unsatisfying conventional old methods. Nanocarriers can be engineered in a way that is capable of delivering a certain therapeutic cargo to a specific target tissue. Adding to this mind-blowing nanotechnology, the revolutionizing gene-altering biologics can have the best of both worlds, and pave the way for the long-awaited cure to many diseases, among those diseases thus far are Alzheimer's disease (AD), brain tumors (glioma and glioblastoma), Down syndrome, stroke, and even cases with HIV. The review herein collects the studies that tested the mixture of both sciences, nanotechnology, and epigenetics, in the context of brain therapeutics using three main categories of gene-altering molecules (siRNA, miRNA, and CRISPR) with a special focus on the advancements regarding the new favorite, intranasal route of administration.
Collapse
Affiliation(s)
- Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yasmine Ahmed Salah
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo 11517, Egypt
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zi-Hua Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475000, China
| | - Yan-Mei Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Nursing and Health, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
12
|
Pawlik V, Zhou S, Zhou S, Qin D, Xia Y. Silver Nanocubes: From Serendipity to Mechanistic Understanding, Rational Synthesis, and Niche Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3427-3449. [PMID: 37181675 PMCID: PMC10173382 DOI: 10.1021/acs.chemmater.3c00472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Silver has long been interwoven into human history, and its uses have evolved from currency and jewelry to medicine, information technology, catalysis, and electronics. Within the last century, the development of nanomaterials has further solidified the importance of this element. Despite this long history, there was essentially no mechanistic understanding or experimental control of silver nanocrystal synthesis until about two decades ago. Here we aim to provide an account of the history and development of the colloidal synthesis of silver nanocubes, as well as some of their major applications. We begin with a description of the first accidental synthesis of silver nanocubes that spurred subsequent investigations into each of the individual components of the protocol, revealing piece by piece parts of the mechanistic puzzle. This is followed by a discussion of the various obstacles inherent to the original method alongside mechanistic details developed to optimize the synthetic protocol. Finally, we discuss a range of applications enabled by the plasmonic and catalytic properties of silver nanocubes, including localized surface plasmon resonance, surface-enhanced Raman scattering, metamaterials, and ethylene epoxidation, as well as further derivatization and development of size, shape, composition, and related properties.
Collapse
Affiliation(s)
- Veronica Pawlik
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Shan Zhou
- Department
of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
| | - Siyu Zhou
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dong Qin
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Zhang Z, Lo H, Zhao X, Li W, Wu K, Zeng F, Li S, Sun H. Mild photothermal/radiation therapy potentiates ferroptosis effect for ablation of breast cancer via MRI/PA imaging guided all-in-one strategy. J Nanobiotechnology 2023; 21:150. [PMID: 37158923 PMCID: PMC10169499 DOI: 10.1186/s12951-023-01910-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Nanotheranostics advances anticancer management by providing therapeutic and diagnostic functions, that combine programmed cell death (PCD) initiation and imaging-guided treatment, thus increasing the efficacy of tumor ablation and efficiently fighting against cancer. However, mild photothermal/radiation therapy with imaging-guided precise mediating PCD in solid tumors, involving processes related to apoptosis and ferroptosis, enhanced the effect of breast cancer inhibition is not fully understood. RESULTS Herein, targeted peptide conjugated gold nano cages, iRGD-PEG/AuNCs@FePt NPs ternary metallic nanoparticles (Au@FePt NPs) were designed to achieve photoacoustic imaging (PAI)/Magnetic resonance imaging (MRI) guided synergistic therapy. Tumor-targeting Au@FePt forms reactive oxygen species (ROS), initiated by X-ray-induced dynamic therapy (XDT) in collaboration with photothermal therapy (PTT), inducing ferroptosis-augmented apoptosis to realize effective antitumor therapeutics. The relatively high photothermal conversion ability of Au@FePt increases the temperature in the tumor region and hastens Fenton-like processes to achieve enhanced synergistic therapy. Especially, RNA sequencing found Au@FePt inducting the apoptosis pathway in the transcriptome profile. CONCLUSION Au@FePt combined XDT/PTT therapy activate apoptosis and ferroptosis related proteins in tumors to achieve breast cancer ablation in vitro and in vivo. PAI/MRI images demonstrated Au@FePt has real-time guidance for monitoring synergistic anti-cancer therapy effect. Therefore, we have provided a multifunctional nanotheranostics modality for tumor inhibition and cancer management with high efficacy and limited side effects.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, China
| | - Hsuan Lo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xingyang Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wenya Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ke Wu
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, China
| | - Fanchu Zeng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shiying Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, China.
| |
Collapse
|
14
|
Kaykanat SI, Uguz AK. The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery. BIOMICROFLUIDICS 2023; 17:021502. [PMID: 37153864 PMCID: PMC10162024 DOI: 10.1063/5.0130769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
Targeted drug delivery is proposed to reduce the toxic effects of conventional therapeutic methods. For that purpose, nanoparticles are loaded with drugs called nanocarriers and directed toward a specific site. However, biological barriers challenge the nanocarriers to convey the drug to the target site effectively. Different targeting strategies and nanoparticle designs are used to overcome these barriers. Ultrasound is a new, safe, and non-invasive drug targeting method, especially when combined with microbubbles. Microbubbles oscillate under the effect of the ultrasound, which increases the permeability of endothelium, hence, the drug uptake to the target site. Consequently, this new technique reduces the dose of the drug and avoids its side effects. This review aims to describe the biological barriers and the targeting types with the critical features of acoustically driven microbubbles focusing on biomedical applications. The theoretical part covers the historical developments in microbubble models for different conditions: microbubbles in an incompressible and compressible medium and bubbles encapsulated by a shell. The current state and the possible future directions are discussed.
Collapse
Affiliation(s)
- S. I. Kaykanat
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Türkiye
| | | |
Collapse
|
15
|
Gold nanoparticles-based photothermal therapy for breast cancer. Photodiagnosis Photodyn Ther 2023; 42:103312. [PMID: 36731732 DOI: 10.1016/j.pdpdt.2023.103312] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/01/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
AuNPs-mediated photothermal therapy (PTT) is gaining popularity in both laboratory research and medical applications. It has proven clear advantages in breast cancer therapy over conventional thermal ablation because of its easily-tuned features of irradiation light with inside hyperthermia ability. Notwithstanding this significant progress, the therapeutic potential of AuNPs-mediated PTT in cancer treatments is still impeded by several challenges, including inherent non-specificity, low photothermal conversion effectiveness, and the limitation of excitation light tissue penetration. Given the rapid progress of AuNPs-mediated PTT, we present a comprehensive overview of significant breakthroughs in the recent advancements of AuNPs for PTT, focusing on breast cancer cells. With the improvement of chemical synthesis technology, AuNPs of various sizes and shapes with desired properties can be synthesized, allowing breast cancer targeting and treatment. In this study, we summarized the different sizes and features of four major types of AuNPs in this review: Au nanospheres, Au nanocages, Au nanoshells, and Au nanorods, and explored their benefits and drawbacks in PTT. We also discussed the diagnostic, bioconjugation, targeting, and cellular uptake of AuNPs, which could improve the performance of AuNP-based PTT. Besides that, potential challenges and future developments of AuNP-mediated PTT for clinical applications are discussed. AuNP-mediated PTT is expected to become a highly promising avenue in cancer treatment in the near future.
Collapse
|
16
|
Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D, Pani R, De Vincentis G, De Sio L. 18F-fluorodeoxyglucose ( 18F-FDG) Functionalized Gold Nanoparticles (GNPs) for Plasmonic Photothermal Ablation of Cancer: A Review. Pharmaceutics 2023; 15:319. [PMID: 36839641 PMCID: PMC9967497 DOI: 10.3390/pharmaceutics15020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The meeting and merging between innovative nanotechnological systems, such as nanoparticles, and the persistent need to outperform diagnostic-therapeutic approaches to fighting cancer are revolutionizing the medical research scenario, leading us into the world of nanomedicine. Photothermal therapy (PTT) is a non-invasive thermo-ablative treatment in which cellular hyperthermia is generated through the interaction of near-infrared light with light-to-heat converter entities, such as gold nanoparticles (GNPs). GNPs have great potential to improve recovery time, cure complexity, and time spent on the treatment of specific types of cancer. The development of gold nanostructures for photothermal efficacy and target selectivity ensures effective and deep tissue-penetrating PTT with fewer worries about adverse effects from nonspecific distributions. Regardless of the thriving research recorded in the last decade regarding the multiple biomedical applications of nanoparticles and, in particular, their conjugation with drugs, few works have been completed regarding the possibility of combining GNPs with the cancer-targeted pharmaceutical fluorodeoxyglucose (FDG). This review aims to provide an actual scenario on the application of functionalized GNP-mediated PTT for cancer ablation purposes, regarding the opportunity given by the 18F-fluorodeoxyglucose (18F-FDG) functionalization.
Collapse
Affiliation(s)
- Mariano Pontico
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Francesca Petronella
- Institute of Crystallography CNR-IC, National Research Council of Italy, Monterotondo, 00015 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Dario Di Luzio
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Roberto Pani
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
17
|
Sharma G, Razeghi Kondelaji MH, Sharma GP, Hansen C, Parchur AK, Shafiee S, Jagtap JM, Fish B, Bergom C, Paulson E, Hall WA, Himburg HA, Joshi A. X-ray and MR Contrast Bearing Nanoparticles Enhance the Therapeutic Response of Image-Guided Radiation Therapy for Oral Cancer. Technol Cancer Res Treat 2023; 22:15330338231189593. [PMID: 37469184 PMCID: PMC10363893 DOI: 10.1177/15330338231189593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Radiation therapy for head and neck squamous cell carcinoma is constrained by radiotoxicity to normal tissue. We demonstrate 100 nm theranostic nanoparticles for image-guided radiation therapy planning and enhancement in rat head and neck squamous cell carcinoma models. METHODS PEG conjugated theranostic nanoparticles comprising of Au nanorods coated with Gadolinium oxide layers were tested for radiation therapy enhancement in 2D cultures of OSC-19-GFP-luc cells, and orthotopic tongue xenografts in male immunocompromised Salt sensitive or SS rats via both intratumoral and intravenous delivery. The radiation therapy enhancement mechanism was investigated. RESULTS Theranostic nanoparticles demonstrated both X-ray/magnetic resonance contrast in a dose-dependent manner. Magnetic resonance images depicted optimal tumor-to-background uptake at 4 h post injection. Theranostic nanoparticle + Radiation treated rats experienced reduced tumor growth compared to controls, and reduction in lung metastasis. CONCLUSIONS Theranostic nanoparticles enable preprocedure radiotherapy planning, as well as enhance radiation treatment efficacy for head and neck tumors.
Collapse
Affiliation(s)
- Gayatri Sharma
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | - Guru P. Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher Hansen
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul K. Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shayan Shafiee
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Brian Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University, St Louis, MO, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Multifunctional plasmonic micro/nanobeads for sensitive suspension array assay and mass spectrometry analysis. Anal Chim Acta 2022; 1236:340577. [DOI: 10.1016/j.aca.2022.340577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022]
|
19
|
Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood-brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches. J Nanobiotechnology 2022; 20:412. [PMID: 36109754 PMCID: PMC9479308 DOI: 10.1186/s12951-022-01610-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/18/2022] [Indexed: 01/06/2023] Open
Abstract
Besides the broad development of nanotechnological approaches for cancer diagnosis and therapy, currently, there is no significant progress in the treatment of different types of brain tumors. Therapeutic molecules crossing the blood-brain barrier (BBB) and reaching an appropriate targeting ability remain the key challenges. Many invasive and non-invasive methods, and various types of nanocarriers and their hybrids have been widely explored for brain tumor treatment. However, unfortunately, no crucial clinical translations were observed to date. In particular, chemotherapy and surgery remain the main methods for the therapy of brain tumors. Exploring the mechanisms of the BBB penetration in detail and investigating advanced drug delivery platforms are the key factors that could bring us closer to understanding the development of effective therapy against brain tumors. In this review, we discuss the most relevant aspects of the BBB penetration mechanisms, observing both invasive and non-invasive methods of drug delivery. We also review the recent progress in the development of functional drug delivery platforms, from viruses to cell-based vehicles, for brain tumor therapy. The destructive potential of chemotherapeutic drugs delivered to the brain tumor is also considered. This review then summarizes the existing challenges and future prospects in the use of drug delivery platforms for the treatment of brain tumors.
Collapse
Affiliation(s)
- Ksenia Mitusova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Oleksii O Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Timofey E Karpov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
- Sirius University of Science and Technology, Olympic Ave 1, Sirius, 354340, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation.
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation.
| |
Collapse
|
20
|
Li S, Lui KH, Lau WS, Chen J, Lo WS, Li X, Gu YJ, Lin LT, Wong WT. MSOT-Guided Nanotheranostics for Synergistic Mild Photothermal Therapy and Chemotherapy to Boost Necroptosis/Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33712-33725. [PMID: 35822699 DOI: 10.1021/acsami.2c07592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of nanotheranostics for precision imaging-guided regulated cell death-mediated synergistic tumor therapy is still challenging. Herein, a novel multifunctional nanotheranostic agent, iRGD-coated maleimide-poly(ethylene glycol)-poly(lactic acid/glycolic acid)-encapsulated hydrophobic gold nanocages (AuNCs) and hydrophilic epigallocatechin gallate (EGCG) (PAuE) is developed for multispectral optoacoustic tomography (MSOT)-guided photothermal therapy (PTT) and chemotherapy. The portions of necroptotic and apoptotic tumor cells were 52.9 and 5.4%, respectively, at 6 h post-incubation after the AuNC-induced mild PTT treatment, whereas they became 14.0 and 46.1% after 24 h, suggesting that the switch of the cell death pathway is a time-dependent process. Mild PTT facilitated the release of EGCG which induces the downregulation of hypoxia-inducible factor-1 (HIF-1α) expression to enhance apoptosis at a later stage, realizing a remarkable tumor growth inhibition in vivo. Moreover, RNA sequence analyses provided insights into the significant changes in genes related to the cross-talk between necroptosis and apoptosis pathways via PAuE upon laser irradiation. In addition, the biodistribution and metabolic pathways of PAuE have been successfully revealed by 3D MSOT. Taken together, this strategy of first combination of EGCG and AuNC-based photothermal agent via triggering necroptosis/apoptosis to downregulate HIF-1α expression in a tumor environment provides a new insight into anti-cancer therapy.
Collapse
Affiliation(s)
- Shiying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kwok-Ho Lui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Wing-Sum Lau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Juyu Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Xin Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Yan-Juan Gu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Liang-Ting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
21
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
22
|
Hussain I, Sahoo S, Sayed MS, Ahmad M, Sufyan Javed M, Lamiel C, Li Y, Shim JJ, Ma X, Zhang K. Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214429] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Wang A, Qi W, Gao T, Tang X. Molecular Contrast Optical Coherence Tomography and Its Applications in Medicine. Int J Mol Sci 2022; 23:ijms23063038. [PMID: 35328454 PMCID: PMC8949853 DOI: 10.3390/ijms23063038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
The growing need to understand the molecular mechanisms of diseases has prompted the revolution in molecular imaging techniques along with nanomedicine development. Conventional optical coherence tomography (OCT) is a low-cost in vivo imaging modality that provides unique high spatial and temporal resolution anatomic images but little molecular information. However, given the widespread adoption of OCT in research and clinical practice, its robust molecular imaging extensions are strongly desired to combine with anatomical images. A range of relevant approaches has been reported already. In this article, we review the recent advances of molecular contrast OCT imaging techniques, the corresponding contrast agents, especially the nanoparticle-based ones, and their applications. We also summarize the properties, design criteria, merit, and demerit of those contrast agents. In the end, the prospects and challenges for further research and development in this field are outlined.
Collapse
|
24
|
Size and surface coverage density are major factors in determining thiol modified gold nanoparticles characteristics. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA, Genin VD, Genina EA, Tuchin VV. Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1606. [PMID: 35208145 PMCID: PMC8878601 DOI: 10.3390/ma15041606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Cancer remains one of the leading causes of death in the world. For a number of neoplasms, the efficiency of conventional chemo- and radiation therapies is insufficient because of drug resistance and marked toxicity. Plasmonic photothermal therapy (PPT) using local hyperthermia induced by gold nanoparticles (AuNPs) has recently been extensively explored in tumor treatment. However, despite attractive promises, the current PPT status is limited by laboratory experiments, academic papers, and only a few preclinical studies. Unfortunately, most nanoformulations still share a similar fate: great laboratory promises and fair preclinical trials. This review discusses the current challenges and prospects of plasmonic nanomedicine based on PPT and photodynamic therapy (PDT). We start with consideration of the fundamental principles underlying plasmonic properties of AuNPs to tune their plasmon resonance for the desired NIR-I, NIR-2, and SWIR optical windows. The basic principles for simulation of optical cross-sections and plasmonic heating under CW and pulsed irradiation are discussed. Then, we consider the state-of-the-art methods for wet chemical synthesis of the most popular PPPT AuNPs such as silica/gold nanoshells, Au nanostars, nanorods, and nanocages. The photothermal efficiencies of these nanoparticles are compared, and their applications to current nanomedicine are shortly discussed. In a separate section, we discuss the fabrication of gold and other nanoparticles by the pulsed laser ablation in liquid method. The second part of the review is devoted to our recent experimental results on laser-activated interaction of AuNPs with tumor and healthy tissues and current achievements of other research groups in this application area. The unresolved issues of PPT are the significant accumulation of AuNPs in the organs of the mononuclear phagocyte system, causing potential toxic effects of nanoparticles, and the possibility of tumor recurrence due to the presence of survived tumor cells. The prospective ways of solving these problems are discussed, including developing combined antitumor therapy based on combined PPT and PDT. In the conclusion section, we summarize the most urgent needs of current PPT-based nanomedicine.
Collapse
Affiliation(s)
- Alla B. Bucharskaya
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Nikolai G. Khlebtsov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Nanobiotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Boris N. Khlebtsov
- Nanobiotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Galina N. Maslyakova
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
| | - Nikita A. Navolokin
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
| | - Vadim D. Genin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Elina A. Genina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya Str., 410028 Saratov, Russia
| |
Collapse
|
26
|
Lee JW, Choi SR, Heo JH. Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42311-42328. [PMID: 34464527 DOI: 10.1021/acsami.1c10436] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Gold nanoparticles (AuNPs) are used in various biological applications because of their small surface area-to-volume ratios, ease of synthesis and modification, low toxicity, and unique optical properties. These properties can vary significantly with changes in AuNP size, shape, composition, and arrangement. Thus, the stabilization of AuNPs is crucial to preserve the properties required for biological applications. In recent years, various polymer-based physical and chemical methods have been extensively used for AuNP stabilization. However, a new stabilization approach using biomolecules has recently attracted considerable attention. Biomolecules such as DNA, RNA, peptides, and proteins are representative of the biomoieties that can functionalize AuNPs. According to several studies, biomolecules can stabilize AuNPs in biological media; in addition, AuNP-conjugated biomolecules can retain certain biological functions. Furthermore, the presence of biomolecules on AuNPs significantly enhances their biocompatibility. This review provides a representative overview of AuNP functionalization using various biomolecules. The strategies and mechanisms of AuNP functionalization using biomolecules are comprehensively discussed in the context of various biological fields.
Collapse
Affiliation(s)
- Jin Woong Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seok-Ryul Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
27
|
Tee SY, Ye E, Teng CP, Tanaka Y, Tang KY, Win KY, Han MY. Advances in photothermal nanomaterials for biomedical, environmental and energy applications. NANOSCALE 2021; 13:14268-14286. [PMID: 34473186 DOI: 10.1039/d1nr04197e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Materials that exhibit photothermal effect have attracted enormous research interests due to their ability to strongly absorb light and effectively transform it into heat for a wide range of applications in biomedical, environmental and energy related fields. The past decade has witnessed significant advances in the preparation of a variety of photothermal materials, mainly due to the emergence of many nano-enabled new materials, such as plasmonic metals, stoichiometric/non-stoichiometric semiconductors, and the newly emerging MXenes. These photothermal nanomaterials can be hybridized with other constituents to form functional hybrids or composites for achieving enhanced photothermal performance. In this review, we present the fundamental insight of inorganic photothermal materials, including their photothermal conversion mechanisms/properties as well as their potential applications in various fields. Emphasis is placed on strategic approaches for improving their light harvesting and photothermal conversion capabilities through engineering their nanostructured size, shape, composition, bandgap and so on. Lastly, the underlying challenges and perspectives for future development of photothermal nanomaterials are proposed.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Yuki Tanaka
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | | | - Khin Yin Win
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Ming-Yong Han
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
28
|
Chen Y, Xu C, Cheng Y, Cheng Q. Photostability enhancement of silica-coated gold nanostars for photoacoustic imaging guided photothermal therapy. PHOTOACOUSTICS 2021; 23:100284. [PMID: 34354923 PMCID: PMC8322131 DOI: 10.1016/j.pacs.2021.100284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 05/14/2023]
Abstract
Gold nanostars (GNSs) are promising contrast agents for simultaneous photothermal therapy and photoacoustic imaging (PAI) owing to their excellent photothermal conversion efficiency. However, GNSs are easily reshaped under transient high-intensity laser pulses, which can cause a rapid shift in the light absorption peak, resulting in a decrease in both therapeutic and monitoring effects. In this work, we synthesized GNSs without toxic surfactants and coated them with a silica shell to retain their shape, thus maintaining their photostability. The excellent performance of these silica-coated GNSs was verified through both in vitro and in vivo PAI experiments. The silica-coated GNSs exhibited a threefold improvement in photoacoustic stability, as compared with the non-coated GNSs. The proposed silica coating method for GNSs was found to improve the photostability of GNSs, making them efficient, safe, and reliable nanoparticles for PAI.
Collapse
Affiliation(s)
- Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Chang Xu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Yu Cheng
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
29
|
Qiu J, Liu Y, Xia Y. Radiolabeling of Gold Nanocages for Potential Applications in Tracking, Diagnosis, and Image-Guided Therapy. Adv Healthc Mater 2021; 10:e2002031. [PMID: 33470560 PMCID: PMC8289932 DOI: 10.1002/adhm.202002031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Indexed: 12/23/2022]
Abstract
Gold nanocages (AuNCs) have emerged as a novel class of multifunctional nanomaterials with an array of applications in nanomedicine, including drug delivery, controlled release, as well as disease diagnosis and treatment. Labeling AuNCs with radionuclides not only offers additional therapeutic capabilities but also makes it easy to analyze their biodistribution, monitor their uptake by the tissue or organ of interest, and optimize their performance in both diagnosis and treatment. Here, an introduction to the chemical synthesis and optical properties of AuNCs is provided in the beginning. The methods developed for their radiolabeling are then showcased, followed by the use of radiolabeled AuNCs in tracking and quantifying their pharmacokinetics, including biodistribution, tumor uptake, and intratumoral distribution. Finally, their potential applications in targeted imaging and image-guided therapy are discussed.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
30
|
Hubert C, Chomette C, Désert A, Madeira A, Perro A, Florea I, Ihiawakrim D, Ersen O, Lombardi A, Pertreux E, Vialla F, Maioli P, Crut A, Del Fatti N, Vallée F, Majimel J, Ravaine S, Duguet E, Tréguer-Delapierre M. Versatile template-directed synthesis of gold nanocages with a predefined number of windows. NANOSCALE HORIZONS 2021; 6:311-318. [PMID: 33439184 DOI: 10.1039/d0nh00620c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly symmetrical gold nanocages can be produced with a controllable number of circular windows of either 2, 3, 4, 6 or 12 via an original fabrication route. The synthetic pathway includes three main stages: the synthesis of silica/polystyrene multipod templates, the regioselective seeded growth of a gold shell on the unmasked part of the silica surface and the development of gold nanocages by dissolving/etching the templates. Electron microscopy and tomography provide evidence of the symmetrical features of the as-obtained nanostructures. The optical properties of nanocages with 4 and 12 windows were measured at the single particle level by spatial modulation spectroscopy and correlated with numerical simulations based on finite-element modeling. The new multi-step synthesis approach reported here also allows the synthesis of rattle-like nanostructures through filling of the nanocages with a guest nano-object. With the potential to adjust the chemical composition, size and geometry of both the guest particle and the host cage, it opens new routes towards the fabrication of hollow nanostructures of high interest for a variety of applications including sensing devices, catalytic reactors and biomedicine.
Collapse
Affiliation(s)
- Céline Hubert
- Univ. Bordeaux, CNRS, ICMCB, UMR 5026, Pessac 33600, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sierra-Martin B, Fernandez-Barbero A. Particles and nanovoids for plasmonics. Adv Colloid Interface Sci 2021; 290:102394. [PMID: 33711675 DOI: 10.1016/j.cis.2021.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
This article reviews and compares the optical properties of metallic nanoparticles and nanovoids, which have received great attention due to their ability to generate and control plasmon resonances. These systems are capable of concentrating and manipulating the fields at nanometer scale, being very attractive as building blocks for emerging applications. Metal particles and nanovoids present different plasmonics modes, strongly dependent on the size, shape and nature of the metal and dielectric. Specific geometrical features, as the presence of rims, make the nanovoids very promising structures to design exotic band spectra because of the coupling between different resonant modes.
Collapse
|
32
|
Wang W, Li X, Tang K, Song Z, Luo X. A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP. J Mater Chem B 2021; 8:5945-5951. [PMID: 32667018 DOI: 10.1039/d0tb00666a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gold nanodevices have attracted extensive interest in the detection of specific targets within cells. However, constructing gold sensing devices that can be activated by the simulation of remote applications remains a huge challenge. Here, we report a Au nanoparticle (AuNP)-capped cage fluorescent biosensor based on controlled-release and Exonuclease III (Exo III) assisted cyclic enzymatic amplification that can be activated by adenosine triphosphate (ATP). In the system, AuNPs were used as the building blocks to cap the pores of Au nanocages (AuNCs) loaded with Rhodamine B (RhB) molecules through the hybridization of DNA. The RhB fluorescent molecules were finally released with the help of Exo III in the presence of ATP for detection purposes. Ultimately, the biosensor leads to a wide linear ATP detection range from 1.0 × 10-9 to 1.0 × 10-7 M with a limit of detection (LOD) down to 0.88 nM. In addition, it also has good selectivity for ATP to distinguish between ATP and ATP analogues such as cytidine triphosphate (CTP), guanosine triphosphate (GTP), and uridine triphosphate (UTP). Therefore, as a convenient and sensitive biosensor, it is expected to be widely used in the biomedical field.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Optic-eletric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | | | | | |
Collapse
|
33
|
Lin M, Wang J, Kim GH, Liu J, Pan L, Lee Y, Oh JW, Jung Y, Seo S, Son Y, Lim J, Park J, Hyeon T, Nam JM. One-Pot Heterointerfacial Metamorphosis for Synthesis and Control of Widely Varying Heterostructured Nanoparticles. J Am Chem Soc 2021; 143:3383-3392. [PMID: 33439007 DOI: 10.1021/jacs.0c11557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite remarkable facileness and potential in forming a wide variety of heterostructured nanoparticles with extraordinary compositional and structural complexity, one-pot synthesis of multicomponent heterostructures is largely limited by the lack of fundamental mechanistic understanding, designing principles, and well-established, generally applicable chemical methods. Herein, we developed a one-pot heterointerfacial metamorphosis (1HIM) method that allows heterointerfaces inside a particle to undergo multiple equilibrium stages to form a variety of highly crystalline heterostructured nanoparticles at a relatively low temperature (<100 °C). As proof-of-concept experiments, it was shown that widely different single-crystalline semiconductor-metal anisotropic nanoparticles with synergistic chemical, spectroscopic, and band-gap-engineering properties, including a series of metal-semiconductor nanoframes with high structural and compositional tunability, can be formed by using the 1HIM approach. 1HIM offers a new paradigm to synthesize previously unobtainable or poorly controllable heterostructures with unique or synergistic properties and functions.
Collapse
Affiliation(s)
- Mouhong Lin
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jian Wang
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Gyeong-Hwan Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jianan Liu
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.,Center for Nanoparticle Research, Institute for Basic Science, Seoul 08826, Korea
| | - Limin Pan
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.,School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.,Center for Nanoparticle Research, Institute for Basic Science, Seoul 08826, Korea
| | - Yeonhee Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jeong-Wook Oh
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yoonjae Jung
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sungjae Seo
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Youngju Son
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.,Center for Nanoparticle Research, Institute for Basic Science, Seoul 08826, Korea
| | - Jongwoo Lim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.,Center for Nanoparticle Research, Institute for Basic Science, Seoul 08826, Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.,Center for Nanoparticle Research, Institute for Basic Science, Seoul 08826, Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
34
|
Wei R, Xu Y, Xue M. Hollow iron oxide nanomaterials: synthesis, functionalization, and biomedical applications. J Mater Chem B 2021; 9:1965-1979. [PMID: 33595050 DOI: 10.1039/d0tb02858d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hollow iron oxide nanoparticles (NPs) are an attractive class of hollow nanostructures that have received significant attention in the biomedical field due to their low toxicity, good biocompatibility, and intrinsic magnetic nature. We review the recent advances in the preparation, surface functionalization, and biomedical applications of hollow iron oxide NPs. Hollow iron oxide NPs are generally synthesized by the following five strategies, including the Kirkendall effect, galvanic replacement, chemical etching, nano template-mediated, and hydrothermal/solvothermal routes. We also summarize the general strategies for iron oxide NP surface functionalization. Moreover, various promising biomedical applications of hollow iron oxide NPs, including magnetic resonance imaging, drug delivery, and cancer therapy, are highlighted in detail. Finally, perspectives of hollow iron oxide NPs are provided.
Collapse
Affiliation(s)
- Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Youzhi Xu
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
35
|
Guan G, Win KY, Yao X, Yang W, Han M. Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Adv Healthc Mater 2021; 10:e2001158. [PMID: 33184997 DOI: 10.1002/adhm.202001158] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/18/2020] [Indexed: 12/11/2022]
Abstract
With the wide utilization of antibiotics, antibiotic-resistant bacteria have been often developed more frequently to cause potential global catastrophic consequences. Emerging photothermal ablation has been attracting extensive research interest for quick/effective eradication of pathogenic bacteria from contaminated surroundings and infected body. In this field, anisotropic gold nanostructures with tunable size/morphologies have been demonstrated to exhibit their outstanding photothermal performance through strong plasmonic absorption of near-infrared (NIR) light, efficient light to heat conversion, and easy surface modification for targeting bacteria. To this end, this review first introduces thermal treatment of infectious diseases followed by photothermal therapy via heat generation on NIR-absorbing gold nanostructures. Then, the usual synthesis and spectral features of diversified gold nanostructures and composites are systematically overviewed with the emphasis on the importance of size, shape, and composition to achieve strong plasmonic absorption in NIR region. Further, the innovated photothermal applications of gold nanostructures are comprehensively demonstrated to combat against bacterial infections, and some constructive suggestions are also discussed to improve photothermal technologies for practical applications.
Collapse
Affiliation(s)
- Guijian Guan
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Khin Yin Win
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| | - Xiang Yao
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Wensheng Yang
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Ming‐Yong Han
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
36
|
Procedures for the Synthesis and Capping of Metal Nanoparticles. Methods Mol Biol 2021. [PMID: 32152967 DOI: 10.1007/978-1-0716-0319-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The increasing impact of metallic nanoparticles on life sciences has stimulated the development of new techniques and multiple improvements to the existing methods of manufacturing nanoparticles with tailored properties. Nanoparticles can be synthesized through a variety of physical and chemical methods. The choice of preparation procedure will depend on the physical and chemical characteristics required in the final product, such as size, dispersion, chemical miscibility, and optical properties, among others. Here we review basic practical procedures used for the preparation of protected and unprotected metallic nanoparticles and describe a number of experimental procedures based on colloidal chemistry methods. These include gold nanoparticle synthesis by reduction with trisodium citrate, ascorbic acid, or sugars in aqueous phase and nanoparticle passivation with alkanethiols, CTAB, or BSA. We also describe microwave-assisted synthesis, nanoparticle synthesis in ethylene glycol, and template-assisted synthesis with dendrimers, and, briefly, how to control nanoparticle shape (star-shaped and branched nanoparticles).
Collapse
|
37
|
Recent Progress in Plasmonic Hybrid Photocatalysis for CO2 Photoreduction and C–C Coupling Reactions. Catalysts 2021. [DOI: 10.3390/catal11020155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plasmonic hybrid nanostructures have been investigated as attractive heterogeneous photocatalysts that can utilize sunlight to produce valuable chemicals. In particular, the efficient photoconversion of CO2 into a stable hydrocarbon with sunlight can be a promising strategy to achieve a sustainable human life on Earth. The next step for hydrocarbons once obtained from CO2 is the carbon–carbon coupling reactions to produce a valuable chemical for energy storage or fine chemicals. For these purposes, plasmonic nanomaterials have been widely investigated as a visible-light-induced photocatalyst to achieve increased efficiency of photochemical reactions with sunlight. In this review, we discuss recent achievements involving plasmonic hybrid photocatalysts that have been investigated for CO and CO2 photoreductions to form multi-carbon products and for C–C coupling reactions, such as the Suzuki–Miyaura coupling reactions.
Collapse
|
38
|
Chen F, Si P, de la Zerda A, Jokerst JV, Myung D. Gold nanoparticles to enhance ophthalmic imaging. Biomater Sci 2021; 9:367-390. [PMID: 33057463 PMCID: PMC8063223 DOI: 10.1039/d0bm01063d] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of gold nanoparticles as diagnostic tools is burgeoning, especially in the cancer community with a focus on theranostic applications to both cancer diagnosis and treatment. Gold nanoparticles have also demonstrated great potential for use in diagnostic and therapeutic approaches in ophthalmology. Although many ophthalmic imaging modalities are available, there is still a considerable unmet need, in particular for ophthalmic molecular imaging for the early detection of eye disease before morphological changes are more grossly visible. An understanding of how gold nanoparticles are leveraged in other fields could inform new ways they could be utilized in ophthalmology. In this paper, we review current ophthalmic imaging techniques and then identify optical coherence tomography (OCT) and photoacoustic imaging (PAI) as the most promising technologies amenable to the use of gold nanoparticles for molecular imaging. Within this context, the development of gold nanoparticles as OCT and PAI contrast agents are reviewed, with the most recent developments described in detail.
Collapse
Affiliation(s)
- Fang Chen
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University, CA 94305, USA.
| | | | | | | | | |
Collapse
|
39
|
Sahu AK, Das A, Ghosh A, Raj S. Understanding blue shift of the longitudinal surface plasmon resonance during growth of gold nanorods. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abd966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
We have investigated in detail the growth dynamics of gold nanorods with various aspect ratios in different surrounding environments. Surprisingly, a blue shift in the temporal evolution of colloidal gold nanorods in aqueous medium has been observed during the growth of nanorods by UV–visible absorption spectroscopy. The longitudinal surface plasmon resonance peak evolves as soon as the nanorods start to grow from spheres, and the system undergoes a blue shift in the absorption spectra. Although a red-shift is expected as a natural phenomenon during the growth process of all nano-systems, our blue shift observation is regarded as a consequence of competition between the parameters of growth solution and actual growth of nanorods. The growth of nanorods contributes to the red-shift which is hidden under the dominating contribution of the growth solution responsible for the observed massive blue shift.
Collapse
|
40
|
Pennarossa G, Arcuri S, De Iorio T, Gandolfi F, Brevini TAL. Current Advances in 3D Tissue and Organ Reconstruction. Int J Mol Sci 2021; 22:E830. [PMID: 33467648 PMCID: PMC7830719 DOI: 10.3390/ijms22020830] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Teresina De Iorio
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| |
Collapse
|
41
|
Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2021; 27:6015-6056. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as "Nano-bullets" for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India,Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Anchal Singhal
- Department of chemistry, St. Joseph College, Banglore, India
| | - Uma Narang
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sweta Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
42
|
Zafar M, Ijaz M, Iqbal T. Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01465-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nat Commun 2021; 12:34. [PMID: 33397947 PMCID: PMC7782787 DOI: 10.1038/s41467-020-20276-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Colloidal gold nanoparticles (GNPs) serve as promising contrast agents in photoacoustic (PA) imaging, yet their utility is limited due to their absorption peak in the visible window overlapping with that of hemoglobin. To overcome such limitation, this report describes an ultrapure chain-like gold nanoparticle (CGNP) clusters with a redshift peak wavelength at 650 nm. The synthesized CGNP show an excellent biocompatibility and photostability. These nanoparticles are conjugated with arginine-glycine-aspartic acid (RGD) peptides (CGNP clusters-RGD) and validated in 12 living rabbits to perform multimodal photoacoustic microscopy (PAM) and optical coherence tomography (OCT) for visualization of newly developed blood vessels in the sub-retinal pigment epithelium (RPE) space of the retina, named choroidal neovascularization (CNV). The PAM system can achieve a 3D PAM image via a raster scan of 256 × 256 pixels within a time duration of 65 s. Intravenous injection of CGNP clusters-RGD bound to CNV and resulted in up to a 17-fold increase in PAM signal and 176% increase in OCT signal. Histology indicates that CGNP clusters could disassemble, which may facilitate its clearance from the body. This manuscript presents ultrapure chain-like gold nanoparticle clusters with red shifted absorption and shows their potential for in vivo imaging in living rabbits. The nanoparticles demonstrate a 17-fold increase in photoacoustic microscopy signal and 176% increase in optical coherence tomography signal.
Collapse
|
44
|
Zheng X, Wang J, Rao J. The Chemistry in Surface Functionalization of Nanoparticles for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
45
|
Biglione C, Glitscher EA, Arora S, Klemke B, Giulbudagian M, Laux P, Luch A, Bergueiro J, Calderón M. Galvanic Replacement as a Synthetic Tool for the Construction of Anisotropic Magnetoplasmonic Nanocomposites with Synergistic Phototransducing and Magnetic Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56839-56849. [PMID: 33290035 DOI: 10.1021/acsami.0c18096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetoplasmonic nanomaterials, which combine light and magnetic field responsiveness in an advantageous manner, are attractive candidates for bio-nanoapplications. However, the synthetic access to such hybrid particles has been limited by the incompatibility of the iron- and gold-based lattices. In this work, we provide the first insights into a new synthetic strategy for developing magnetoplasmonic anisotropic nanocomposites with prominent phototransducing properties. In our approach, magnetic nanocubes based on an alloy of iron oxide, zinc, and silver were constructed. In a key second stage, the galvanic replacement of silver with gold atoms yielded satellite-like magnetoplasmonic anisotropic structures. Superior magnetic and photoconverting properties were observed for the novel magnetoplasmonic nanocomposites when compared with the pure parent structures. Moreover, the synergy between the magnetic and optical stimuli was examined, showing shape-dependent contributions in the magnetization experiments. More importantly, an excellent cell ablation capability upon laser irradiation was observed for the magnetoplasmonic nanocomposites compared to the pure magnetic or plasmonic controls. Further demonstration of these novel theragnostic agents as MRI contrast agents is also reported even during the light-irradiation event. Thus, the described particles showed promising properties for bioapplications emerging from the novel synthetic methodology.
Collapse
Affiliation(s)
- Catalina Biglione
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Emanuel A Glitscher
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Smriti Arora
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Bastian Klemke
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meiter Platz 1, 14109 Berlin, Germany
| | - Michael Giulbudagian
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Julian Bergueiro
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marcelo Calderón
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
46
|
Lynch I, Afantitis A, Exner T, Himly M, Lobaskin V, Doganis P, Maier D, Sanabria N, Papadiamantis AG, Rybinska-Fryca A, Gromelski M, Puzyn T, Willighagen E, Johnston BD, Gulumian M, Matzke M, Green Etxabe A, Bossa N, Serra A, Liampa I, Harper S, Tämm K, Jensen ACØ, Kohonen P, Slater L, Tsoumanis A, Greco D, Winkler DA, Sarimveis H, Melagraki G. Can an InChI for Nano Address the Need for a Simplified Representation of Complex Nanomaterials across Experimental and Nanoinformatics Studies? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2493. [PMID: 33322568 PMCID: PMC7764592 DOI: 10.3390/nano10122493] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Chemoinformatics has developed efficient ways of representing chemical structures for small molecules as simple text strings, simplified molecular-input line-entry system (SMILES) and the IUPAC International Chemical Identifier (InChI), which are machine-readable. In particular, InChIs have been extended to encode formalized representations of mixtures and reactions, and work is ongoing to represent polymers and other macromolecules in this way. The next frontier is encoding the multi-component structures of nanomaterials (NMs) in a machine-readable format to enable linking of datasets for nanoinformatics and regulatory applications. A workshop organized by the H2020 research infrastructure NanoCommons and the nanoinformatics project NanoSolveIT analyzed issues involved in developing an InChI for NMs (NInChI). The layers needed to capture NM structures include but are not limited to: core composition (possibly multi-layered); surface topography; surface coatings or functionalization; doping with other chemicals; and representation of impurities. NM distributions (size, shape, composition, surface properties, etc.), types of chemical linkages connecting surface functionalization and coating molecules to the core, and various crystallographic forms exhibited by NMs also need to be considered. Six case studies were conducted to elucidate requirements for unambiguous description of NMs. The suggested NInChI layers are intended to stimulate further analysis that will lead to the first version of a "nano" extension to the InChI standard.
Collapse
Affiliation(s)
- Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Antreas Afantitis
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| | - Thomas Exner
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, 4057 Basel, Switzerland;
| | - Martin Himly
- Department Biosciences, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria;
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (P.D.); (I.L.); (H.S.)
| | - Dieter Maier
- Biomax Informatics AG, Robert-Koch-Str. 2, 82152 Planegg, Germany;
| | - Natasha Sanabria
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa; (N.S.); (M.G.)
| | - Anastasios G. Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| | - Anna Rybinska-Fryca
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (A.R.-F.); (M.G.); (T.P.)
| | - Maciej Gromelski
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (A.R.-F.); (M.G.); (T.P.)
| | - Tomasz Puzyn
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (A.R.-F.); (M.G.); (T.P.)
| | - Egon Willighagen
- Department of Bioinformatics—BiGCaT, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
| | - Blair D. Johnston
- Department Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Mary Gulumian
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa; (N.S.); (M.G.)
- Haematology and Molecular Medicine, University of the Witwatersrand, 1 Jan Smuts Ave, Johannesburg 2000, South Africa
| | - Marianne Matzke
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford OX10 8BB, UK; (M.M.); (A.G.E.)
| | - Amaia Green Etxabe
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford OX10 8BB, UK; (M.M.); (A.G.E.)
| | - Nathan Bossa
- LEITAT Technological Center, Circular Economy Business Unit, C/de La Innovació 2, 08225 Terrassa, Barcelona, Spain;
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (D.G.)
| | - Irene Liampa
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (P.D.); (I.L.); (H.S.)
| | - Stacey Harper
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall 105 SW 26th St., Corvallis, OR 97331, USA;
| | - Kaido Tämm
- Institute of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia;
| | - Alexander CØ Jensen
- The National Research Center for the Work Environment, Lersø Parkallé 105, 2100 Copenhagen, Denmark;
| | - Pekka Kohonen
- Misvik Biology OY, Karjakatu 35 B, 20520 Turku, Finland;
| | - Luke Slater
- Institute of Cancer and Genomics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Andreas Tsoumanis
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (D.G.)
| | - David A. Winkler
- Institute of Molecular Sciences, La Trobe University, Kingsbury Drive, Bundoora 3086, Australia;
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- CSIRO Data61, Pullenvale 4069, Australia
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (P.D.); (I.L.); (H.S.)
| | - Georgia Melagraki
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| |
Collapse
|
47
|
Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. JOURNAL OF NANOTHERANOSTICS 2020. [DOI: 10.3390/jnt1010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of the present educational review on superparamagnetic iron oxide nanoparticles (SPIONs) is to inform and guide young scientists and students about the potential use and challenges associated with SPIONs. The present review discusses the basic concepts of magnetic resonance imaging (MRI), basic construct of SPIONs, cytotoxic challenges associated with SPIONs, shape and sizes of SPIONs, site-specific accumulation of SPIONs, various methodologies applied to reduce cytotoxicity including coatings with various materials, and application of SPIONs in targeted delivery of chemotherapeutics (Doxorubicin), biotherapeutics (DNA, siRNA), and positron emission tomography (PET) imaging applications.
Collapse
|
48
|
Li S, Shi X, Wang H, Xiao L. A multifunctional dual-shell magnetic nanocomposite with near-infrared light response for synergistic chemo-thermal tumor therapy. J Biomed Mater Res B Appl Biomater 2020; 109:841-852. [PMID: 33135302 DOI: 10.1002/jbm.b.34749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 01/29/2023]
Abstract
The synergistic tumor therapy in single nanoplatform has always been the goal for high efficacy tumor treatment while still remains great challenge. This paper reports a versatile nanotheranostic platform enlisting magnetic iron oxide nanoparticles, polydopamine (PDA), gold nanocages (Au nanocage) and metal organic framework (MOF, MIL101-NH2 ) in order to achieve synergistic chemothermal tumor therapy both in vitro and in vivo. The prepared magnetic photothermal nanoparticles (MPNPs) exhibit high drug loading capacity (31.34 mg/g), superior photo-thermal capacity (11.5°C enhancement in 180 s), low bio-toxicity, good magnetic resonance with a low dosage of 22 μg/g, as well as high antitumor efficacy in vivo. Such a novel and multifunctional nanoplatform is expected to find promising applications in target tumor synergistic therapy.
Collapse
Affiliation(s)
- Sheng Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, PR China.,School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, PR China
| | - Haibo Wang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Ling Xiao
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, PR China
| |
Collapse
|
49
|
Im SW, Ahn HY, Kim RM, Cho NH, Kim H, Lim YC, Lee HE, Nam KT. Chiral Surface and Geometry of Metal Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905758. [PMID: 31834668 DOI: 10.1002/adma.201905758] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Indexed: 05/15/2023]
Abstract
Chirality is a basic property of nature and has great importance in photonics, biochemistry, medicine, and catalysis. This importance has led to the emergence of the chiral inorganic nanostructure field in the last two decades, providing opportunities to control the chirality of light and biochemical reactions. While the facile production of 3D nanostructures has remained a major challenge, recent advances in nanocrystal synthesis have provided a new pathway for efficient control of chirality at the nanoscale by transferring molecular chirality to the geometry of nanocrystals. Interestingly, this discovery stems from a purely crystallographic outcome: chirality can be generated on high-Miller-index surfaces, even for highly symmetric metal crystals. This is the starting point herein, with an overview of the scientific history and a summary of the crystallographic definition. With the advance of nanomaterial synthesis technology, high-Miller-index planes can be selectively exposed on metallic nanoparticles. The enantioselective interaction of chiral molecules and high-Miller-index facets can break the mirror symmetry of the metal nanocrystals. Herein, the fundamental principle of chirality evolution is emphasized and it is shown how chiral surfaces can be directly correlated with chiral morphologies, thus serving as a guide for researchers in chiral catalysts, chiral plasmonics, chiral metamaterials, and photonic devices.
Collapse
Affiliation(s)
- Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
50
|
Sun L, Gao X, Wu D, Guo Q. Advances in Physiologically Relevant Actuation of Shape Memory Polymers for Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1825487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luyao Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xu Gao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qiongyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|