1
|
Lemke J, Mengers N, Schmidt L, Schulig L, König S, Rosendahl P, Bartz FM, Garscha U, Bednarski PJ, Link A. Lead Optimization of Positive Allosteric K V7.2/3 Channel Modulators toward Improved Balance of Lipophilicity and Aqueous Solubility. J Med Chem 2025; 68:8377-8399. [PMID: 40198203 DOI: 10.1021/acs.jmedchem.4c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The voltage-gated potassium channel KV7.2/3 is gaining attention for its association with several medical indications. While recently reported, potent compounds aimed to fill the therapeutic gap left by market-withdrawn activators, key physicochemical parameters did not meet the requirements of potential drug candidates. Targeting the membrane-located channel requires subtly balancing lipophilicity, activity, and aqueous solubility. This publication describes the lead optimization of a highly active compound toward optimized physicochemical parameters. Out of 42 newly synthesized compounds, 30 showed activity on KV7.2/3 channels, and 15 had also an increased solubility compared the to hit compound. The integration of a three-dimensional bulky structure and the probable onset of chameleonic behavior, led to a 20-fold solubility increase (S = 21.7 vs 1.1 μM) and only slightly reduced potency (pEC50 = 7.42 vs 7.96) for the lead. Additionally, the target engagement of the compound was theoretically enhanced by a reduction of membrane retention.
Collapse
Affiliation(s)
- Jana Lemke
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Nadine Mengers
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Louis Schmidt
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Lukas Schulig
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Stefanie König
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Pascal Rosendahl
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Frieda-Marie Bartz
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Patrick J Bednarski
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| |
Collapse
|
2
|
Beirow K, Schmidt C, Jürgen B, Schlüter R, Schweder T, Bednarski PJ. Investigation of TGF-α-overexpressing mouse hepatocytes (TAMH) cultured as spheroids for use in hepatotoxicity screening of drug candidates. J Appl Toxicol 2024; 44:272-286. [PMID: 37655636 DOI: 10.1002/jat.4538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
The immortalized mouse liver cell line TAMH has been described as a valuable tool for studying hepatotoxic mechanisms, but until now, it has only been reported to grow as a monolayer in culture. However, culturing hepatocytes as three-dimensional (3D) spheroids has been shown to result in improved liver-specific functions (e.g., metabolic capacity) by better mimicking the in vivo environment. This approach may lead to more reliable detection of drug-induced liver injury (DILI) in the early phase of drug discovery, preventing post-marketing drug withdrawals. Here, we investigated the cultivation of TAMH as 3D spheroids, characterizing them with optical and transmission electron microscopy as well as analyzing their gene expression at mRNA level (especially drug-metabolizing enzymes) compared to TAMH monolayer. In addition, comparisons were made with spheroids grown from the human hepatoblastoma cell line HepG2, another current spheroid model. The results indicate that TAMH spheroids express hepatic structures and show elevated levels of some of the key phase I and II drug-metabolizing enzymes, in contrast to TAMH monolayer. The in vitro hepatotoxic potencies of the drugs acetaminophen and flupirtine maleate were found to be very similar between TAMH spheroidal and the monolayer cultures. Both the advantages and disadvantages of TAMH spheroids as an in vitro hepatotoxicity model compared to monolayer model are discussed.
Collapse
Affiliation(s)
- Kristin Beirow
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Christian Schmidt
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Britta Jürgen
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Patrick J Bednarski
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Chen Y, Xiao X, Huang C, Zhu J, Zhou H, Qin H, Bao Y, Zhuang T, Zhang G. Flupirtine and antihistamines exert synergistic anti-nociceptive effects in mice. Psychopharmacology (Berl) 2023; 240:881-897. [PMID: 36752814 DOI: 10.1007/s00213-023-06329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
RATIONALE Drug combinations are commonly used in pain management, which can produce potent analgesic effects with reduced dosage and adverse effects. OBJECTIVE This study was designed to evaluate the anti-nociceptive effects and adverse effects of new combinations of flupirtine (a Kv7 potassium channel opener) and antihistamines (promethazine, fexofenadine) on acute and chronic pain in mice, and the possible mechanisms behind the synergistic analgesic effects were preliminarily investigated. METHODS In acetic acid writhing test, carrageenan-induced inflammatory pain model, and paclitaxel-induced neuropathic pain model, the interaction indexes (γ) between flupirtine and antihistamines were determined by isobolographic analysis. Furthermore, the Kv7 channel blocker XE991 was used to determine whether the effects of single agents and drug combinations on paclitaxel- and carrageenan-induced mechanical allodynia were mediated by Kv7 channels. Finally, hepatotoxicity markers, liver histopathology, and the rotarod test were used to investigate the adverse effects of drugs in combination doses. RESULTS The interaction indexes of flupirtine-promethazine and flupirtine-fexofenadine in all the above three pain models were lower than 1. The analgesic effects of flupirtine (13 mg/kg), promethazine (5 mg/kg), fexofenadine (20 mg/kg), and their combinations were antagonized significantly by XE991 (3 mg/kg). And the adverse effects of flupirtine and antihistamines in combination doses were not significantly different from the vehicle group. CONCLUSIONS Flupirtine and antihistamines produced synergistic analgesic effects in all the above pain models. The analgesic effects of antihistamines were partially mediated by Kv7/M channels, and the activation of Kv7/M channels may be partly responsible for the synergistic analgesic effects between flupirtine and antihistamines.
Collapse
Affiliation(s)
- Yanming Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyi Xiao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Chaonan Huang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huiling Zhou
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huimin Qin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yu Bao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China. .,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China. .,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
4
|
Wurm KW, Bartz FM, Schulig L, Bodtke A, Bednarski PJ, Link A. Carba Analogues of Flupirtine and Retigabine with Improved Oxidation Resistance and Reduced Risk of Quinoid Metabolite Formation. ChemMedChem 2022; 17:e202200262. [PMID: 35687532 PMCID: PMC9541272 DOI: 10.1002/cmdc.202200262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Indexed: 01/10/2023]
Abstract
The KV7 potassium channel openers flupirtine and retigabine have been valuable options in the therapy of pain and epilepsy. However, as a result of adverse reactions, both drugs are currently no longer in therapeutic use. The flupirtine‐induced liver injury and the retigabine linked tissue discolouration do not appear related at first glance; nevertheless, both events can be attributed to the triaminoaryl scaffold, which is affected by oxidation leading to elusive reactive quinone diimine or azaquinone diimine metabolites. Since the mechanism of action, i. e. KV7 channel opening, seems not to be involved in toxicity, this study aimed to further develop safer replacements for flupirtine and retigabine. In a ligand‐based design strategy, replacing amino substituents of the triaminoaryl core with alkyl substituents led to carba analogues with improved oxidation resistance and negligible risk of quinoid metabolite formation. In addition to these improved safety features, some of the novel analogues exhibited significantly improved KV7.2/3 channel opening activity, indicated by an up to 13‐fold increase in potency and an efficacy of up to 176 % compared to flupirtine, thus being attractive candidates for further development.
Collapse
Affiliation(s)
- Konrad W Wurm
- University of Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Frieda-Marie Bartz
- University of Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Lukas Schulig
- University of Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Anja Bodtke
- University of Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Patrick J Bednarski
- University of Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Andreas Link
- University of Greifswald, Institute of Pharmacy, F.-L.-Jahn-Str. 17, 17487, Greifswald, GERMANY
| |
Collapse
|
5
|
Borgini M, Mondal P, Liu R, Wipf P. Chemical modulation of Kv7 potassium channels. RSC Med Chem 2021; 12:483-537. [PMID: 34046626 PMCID: PMC8128042 DOI: 10.1039/d0md00328j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
The rising interest in Kv7 modulators originates from their ability to evoke fundamental electrophysiological perturbations in a tissue-specific manner. A large number of therapeutic applications are, in part, based on the clinical experience with two broad-spectrum Kv7 agonists, flupirtine and retigabine. Since precise molecular structures of human Kv7 channel subtypes in closed and open states have only very recently started to emerge, computational studies have traditionally been used to analyze binding modes and direct the development of more potent and selective Kv7 modulators with improved safety profiles. Herein, the synthetic and medicinal chemistry of small molecule modulators and the representative biological properties are summarized. Furthermore, new therapeutic applications supported by in vitro and in vivo assay data are suggested.
Collapse
Affiliation(s)
- Matteo Borgini
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
6
|
Abstract
Electron transfer plays a vital role in drug metabolism and underlying toxicity mechanisms. Currently, pharmaceutical research relies on pharmacokinetics (PK) and absorption, distribution, metabolism, elimination and toxicity (ADMET) measurements to understand and predict drug reactions in the body. Metabolic stability (and toxicity) prediction in the early phases of the drug discovery and development process is key in identifying a suitable lead compound for optimisation. Voltammetric methods have the potential to overcome the significant barrier of new drug failure rates, by giving insight into phase I metabolism events which can have a direct bearing on the stability and toxicity of the parent drug being dosed. Herein, we report for the first time a data-mining investigation into the voltammetric behaviour of reported drug molecules and their correlation with metabolic stability (indirectly measured via t½), as a potential predictor of drug stability/toxicity in vivo. We observed an inverse relationship between oxidation potential and drug stability. Furthermore, we selected and prepared short- (<10 min) and longer-circulation (>2 h) drug molecules to prospectively survey the relationship between oxidation potential and stability.
Collapse
|
7
|
Fabrication and optimization of polypyrrole/cerium oxide/glassy carbon sensing platform for the electrochemical detection of flupirtine. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Bock C, Surur AS, Beirow K, Kindermann MK, Schulig L, Bodtke A, Bednarski PJ, Link A. Sulfide Analogues of Flupirtine and Retigabine with Nanomolar K V 7.2/K V 7.3 Channel Opening Activity. ChemMedChem 2019; 14:952-964. [PMID: 30861620 DOI: 10.1002/cmdc.201900112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 12/18/2022]
Abstract
The potassium channel openers flupirtine and retigabine have proven to be valuable analgesics or antiepileptics. Their recent withdrawal due to occasional hepatotoxicity and tissue discoloration, respectively, leaves a therapeutic niche unfilled. Metabolic oxidation of both drugs gives rise to the formation of electrophilic quinones. These elusive, highly reactive metabolites may induce liver injury in the case of flupirtine and blue tissue discoloration after prolonged intake of retigabine. We examined which structural features can be altered to avoid the detrimental oxidation of the aromatic ring and shift oxidation toward the formation of more benign metabolites. Structure-activity relationship studies were performed to evaluate the KV 7.2/3 channel opening activity of 45 derivatives. Sulfide analogues were identified that are devoid of the risk of quinone formation, but possess potent KV 7.2/3 opening activity. For example, flupirtine analogue 3-(3,5-difluorophenyl)-N-(6-(isobutylthio)-2-(pyrrolidin-1-yl)pyridin-3-yl)propanamide (48) has 100-fold enhanced activity (EC50 =1.4 nm), a vastly improved toxicity/activity ratio, and the same efficacy as retigabine in vitro.
Collapse
Affiliation(s)
- Christian Bock
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Abdrrahman S Surur
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Kristin Beirow
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Markus K Kindermann
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Lukas Schulig
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Anja Bodtke
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Patrick J Bednarski
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| |
Collapse
|
9
|
Bock C, Beirow K, Surur AS, Schulig L, Bodtke A, Bednarski PJ, Link A. Synthesis and potassium K V7 channel opening activity of thioether analogues of the analgesic flupirtine. Org Biomol Chem 2019; 16:8695-8699. [PMID: 30403254 DOI: 10.1039/c8ob02530d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Flupirtine, an opener of neuronal voltage gated potassium channels (KV7.2/3), has been used as a therapeutic alternative for pain treatment in patients refractory to NSAIDs and opioids. Because flupirtine is associated with rare but fatal drug-induced liver injury that may result from the formation of toxic metabolites upon metabolic oxidation, we synthesized novel derivatives with the goal of identifying equally active and ultimately safer KV7.2/3 channel openers. Four thioether analogues were designed to lack a nitrogen atom that would be a prerequisite for the formation of toxic para-quinone diimines, and form sulfoxide and sulfone metabolites instead. KV7.2/3 channel opening activity and hepatotoxicity data of twelve novel flupirtine analogues, four thioethers and their respective sulfoxide and sulfone metabolites are reported.
Collapse
Affiliation(s)
- Christian Bock
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17487 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The highly structurally similar drugs flupirtine and retigabine have been regarded as safe and effective for many years but lately they turned out to exert intolerable side effects. While the twin molecules share the mode of action, both stabilize the open state of voltage-gated potassium channels, the form and severity of adverse effects is different. The analgesic flupirtine caused drug-induced liver injury in rare but fatal cases, whereas prolonged use of the antiepileptic retigabine led to blue tissue discoloration. Because the adverse effects seem unrelated to the mode of action, it is likely, that both drugs that occupied important therapeutic niches, could be replaced. Reasons for the clinically relevant toxicity will be clarified and future substitutes for these drugs presented in this review.
Collapse
|
11
|
Lawson K. Pharmacology and clinical applications of flupirtine: Current and future options. World J Pharmacol 2019; 8:1-13. [DOI: 10.5497/wjp.v8.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/17/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Flupirtine is the first representative in a class of triaminopyridines that exhibits pharmacological properties leading to the suppression of over-excitability of neuronal and non-neuronal cells. Consequently, this drug has been used as a centrally acting analgesic in patients with a range of acute and persistent pain conditions without the adverse effects characteristic of opioids and non-steroidal anti-inflammatory drug and is well tolerated. The pharmacological profile exhibited involves actions on several cellular targets, including Kv7 channels, G-protein-regulated inwardly rectifying K channels and γ-aminobutyric acid type A receptors, but also there is evidence of additional as yet unidentified mechanisms of action involved in the effects of flupirtine. Flupirtine has exhibited effects in a range of cells and tissues related to the locations of these targets. In additional to analgesia, flupirtine has demonstrated pharmacological properties consistent with use as an anticonvulsant, a neuroprotectant, skeletal and smooth muscle relaxant, in treatment of auditory and visual disorders, and treatment of memory and cognitive impairment. Flupirtine is providing important information and clues regarding novel mechanistic approaches to the treatment of a range of clinical conditions involving hyper-excitability of cells. Identification of molecules exhibiting specificity for the pharmacological targets (e.g., Kv7 isoforms) involved in the actions of flupirtine will provide further insight into clinical applications. Whether the broad-spectrum pharmacology of flupirtine or target-specific actions is preferential to gain benefit, especially in complex clinical conditions, requires further investigation. This review will consider recent advancement in understanding of the pharmacological profile and related clinical applications of flupirtine.
Collapse
Affiliation(s)
- Kim Lawson
- Department of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| |
Collapse
|
12
|
Surur AS, Beirow K, Bock C, Schulig L, Kindermann MK, Bodtke A, Siegmund W, Bednarski PJ, Link A. Flupirtine Analogues: Explorative Synthesis and Influence of Chemical Structure on K V7.2/K V7.3 Channel Opening Activity. ChemistryOpen 2019; 8:41-44. [PMID: 30652063 PMCID: PMC6331712 DOI: 10.1002/open.201800244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Neuronal voltage‐gated potassium channels KV7.2/KV7.3 are sensitive to small‐molecule drugs such as flupirtine, even though physiological response occurs in the absence of ligands. Clinically, prolonged use of flupirtine as a pain medication is associated with rare cases of drug‐induced liver injury. Thus, safety concerns prevent a broader use of this non‐opioid and non‐steroidal analgesic in therapeutic areas with unmet medical needs such as hyperactive bladder or neonatal seizures. With the goal of studying influences of chemical structure on activity and toxicity of flupirtine, we explored modifications of the benzylamino bridge and the substitution pattern in both rings of flupirtine. Among twelve derivatives, four novel thioether derivatives showed the desired activity in cellular assays and may serve as leads for safer KV channel openers.
Collapse
Affiliation(s)
- Abdrrahman S Surur
- Institute of Pharmacy University of Greifswald Friedrich-Ludwig-Jahn-Str. 17 17489 Greifswald Germany
| | - Kristin Beirow
- Institute of Pharmacy University of Greifswald Friedrich-Ludwig-Jahn-Str. 17 17489 Greifswald Germany
| | - Christian Bock
- Institute of Pharmacy University of Greifswald Friedrich-Ludwig-Jahn-Str. 17 17489 Greifswald Germany
| | - Lukas Schulig
- Institute of Pharmacy University of Greifswald Friedrich-Ludwig-Jahn-Str. 17 17489 Greifswald Germany
| | - Markus K Kindermann
- Institute of Pharmacy University of Greifswald Friedrich-Ludwig-Jahn-Str. 17 17489 Greifswald Germany
| | - Anja Bodtke
- Institute of Pharmacy University of Greifswald Friedrich-Ludwig-Jahn-Str. 17 17489 Greifswald Germany
| | | | - Patrick J Bednarski
- Institute of Pharmacy University of Greifswald Friedrich-Ludwig-Jahn-Str. 17 17489 Greifswald Germany
| | - Andreas Link
- Institute of Pharmacy University of Greifswald Friedrich-Ludwig-Jahn-Str. 17 17489 Greifswald Germany
| |
Collapse
|
13
|
Surur AS, Bock C, Beirow K, Wurm K, Schulig L, Kindermann MK, Siegmund W, Bednarski PJ, Link A. Flupirtine and retigabine as templates for ligand-based drug design of KV7.2/3 activators. Org Biomol Chem 2019; 17:4512-4522. [DOI: 10.1039/c9ob00511k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Puzzling stability: molecular jigsaw pieces of residues characterized in light of activity, lipophilicity, stability against oxidation, and hepatotoxicity were combined to yield flupirtine analogue 25b.
Collapse
Affiliation(s)
- Abdrrahman S. Surur
- Pharmaceutical and Medicinal Chemistry
- Institute of Pharmacy
- University of Greifswald
- 17487 Greifswald
- Germany
| | - Christian Bock
- Pharmaceutical and Medicinal Chemistry
- Institute of Pharmacy
- University of Greifswald
- 17487 Greifswald
- Germany
| | - Kristin Beirow
- Pharmaceutical and Medicinal Chemistry
- Institute of Pharmacy
- University of Greifswald
- 17487 Greifswald
- Germany
| | - Konrad Wurm
- Pharmaceutical and Medicinal Chemistry
- Institute of Pharmacy
- University of Greifswald
- 17487 Greifswald
- Germany
| | - Lukas Schulig
- Pharmaceutical and Medicinal Chemistry
- Institute of Pharmacy
- University of Greifswald
- 17487 Greifswald
- Germany
| | - Markus K. Kindermann
- Pharmaceutical and Medicinal Chemistry
- Institute of Pharmacy
- University of Greifswald
- 17487 Greifswald
- Germany
| | - Werner Siegmund
- Center of Drug Absorption and Transport (C_DAT) Greifswald
- Germany
| | - Patrick J. Bednarski
- Pharmaceutical and Medicinal Chemistry
- Institute of Pharmacy
- University of Greifswald
- 17487 Greifswald
- Germany
| | - Andreas Link
- Pharmaceutical and Medicinal Chemistry
- Institute of Pharmacy
- University of Greifswald
- 17487 Greifswald
- Germany
| |
Collapse
|
14
|
Peta V, Tse C, Perazzo H, Munteanu M, Ngo Y, Ngo A, Ramanujam N, Verglas L, Mallet M, Ratziu V, Thabut D, Rudler M, Thibault V, Schuppe-Koistinen I, Bonnefont-Rousselot D, Hainque B, Imbert-Bismut F, Merz M, Kullak-Ublick G, Andrade R, van Boemmel F, Schott E, Poynard T. Serum apolipoprotein A1 and haptoglobin, in patients with suspected drug-induced liver injury (DILI) as biomarkers of recovery. PLoS One 2017; 12:e0189436. [PMID: 29287080 PMCID: PMC5747433 DOI: 10.1371/journal.pone.0189436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/26/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is a clear need for better biomarkers of drug-induced-liver-injury (DILI). AIMS We aimed to evaluate the possible prognostic value of ActiTest and FibroTest proteins apoliprotein-A1, haptoglobin and alpha-2-macroglobulin, in patients with DILI. METHODS We analyzed cases and controls included in the IMI-SAFE-T-DILI European project, from which serum samples had been stored in a dedicated biobank. The analyses of ActiTest and FibroTest had been prospectively scheduled. The primary objective was to analyze the performance (AUROC) of ActiTest components as predictors of recovery outcome defined as an ALT <2x the upper limit of normal (ULN), and BILI <2x ULN. RESULTS After adjudication, 154 patients were considered to have DILI and 22 were considered to have acute liver injury without DILI. A multivariate regression analysis (ActiTest-DILI patent pending) combining the ActiTest components without BILI and ALT (used as references), apolipoprotein-A1, haptoglobin, alpha-2-macroglobulin and GGT, age and gender, resulted in a significant prediction of recovery with 67.0% accuracy (77/115) and an AUROC of 0.724 (P<0.001 vs. no prediction 0.500). Repeated apolipoprotein-A1 and haptoglobin remained significantly higher in the DILI cases that recovered (n = 65) versus those that did not (n = 16), at inclusion, at 4-8 weeks and at 8-12 weeks. The same results were observed after stratification on APAP cases and non-APAP cases. CONCLUSIONS We identified that apolipoprotein-A1 and haptoglobin had significant predictive values for the prediction of recovery at 12 weeks in DILI, enabling the construction of a new prognostic panel, the DILI-ActiTest, which needs to be independently validated.
Collapse
Affiliation(s)
| | - Chantal Tse
- Department of Biochemistry, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
| | - Hugo Perazzo
- Department of Hepatology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
| | - Mona Munteanu
- Department of Research, Biopredictive, Paris, France
| | - Yen Ngo
- Department of Research, Biopredictive, Paris, France
| | - An Ngo
- Department of Research, Biopredictive, Paris, France
| | - Nittia Ramanujam
- Department of Biochemistry, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
| | - Lea Verglas
- Department of Biochemistry, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
| | - Maxime Mallet
- Department of Hepatology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
| | - Vlad Ratziu
- Department of Hepatology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
- University Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale UMR 938, Paris, France
| | - Dominique Thabut
- Department of Hepatology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
- University Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale UMR 938, Paris, France
| | - Marika Rudler
- Department of Hepatology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
| | - Vincent Thibault
- Department of Virology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
| | | | - Dominique Bonnefont-Rousselot
- Department of Biochemistry, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
| | - Bernard Hainque
- Department of Biochemistry, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
| | - Françoise Imbert-Bismut
- Department of Biochemistry, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
| | - Michael Merz
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, Novartis Global Drug Development, Basel, Switzerland
| | - Gerd Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, Novartis Global Drug Development, Basel, Switzerland
| | - Raul Andrade
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Málaga, Spain
| | - Florian van Boemmel
- Clinic for Hepatology and Rheumatology, Hepatology Section, University Hospital Leipzig, Leipzig, Germany
| | - Eckart Schott
- Clinic for Hepatology and Rheumatology, Hepatology Section, University Hospital Charité, Berlin, Germany
| | - Thierry Poynard
- Department of Hepatology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France
- University Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale UMR 938, Paris, France
- * E-mail:
| | | | | |
Collapse
|
15
|
TAMH: A Useful In Vitro Model for Assessing Hepatotoxic Mechanisms. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4780872. [PMID: 28074186 PMCID: PMC5198153 DOI: 10.1155/2016/4780872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
In vitro models for hepatotoxicity can be useful tools to predict in vivo responses. In this review, we discuss the use of the transforming growth factor-α transgenic mouse hepatocyte (TAMH) cell line, which is an attractive model to study drug-induced liver injury due to its ability to retain a stable phenotype and express drug-metabolizing enzymes. Hepatotoxicity involves damage to the liver and is often associated with chemical exposure. Since the liver is a major site for drug metabolism, drug-induced liver injury is a serious health concern for certain agents. At the molecular level, various mechanisms may protect or harm the liver during drug-induced hepatocellular injury including signaling pathways and endogenous factors (e.g., Bcl-2, GSH, Nrf2, or MAPK). The interplay between these and other pathways in the hepatocyte can change upon drug or drug metabolite exposure leading to intracellular stress and eventually cell death and liver injury. This review focuses on mechanistic studies investigating drug-induced toxicity in the TAMH line and how alterations to hepatotoxic mechanisms in this model relate to the in vivo situation. The agents discussed herein include acetaminophen (APAP), tetrafluoroethylcysteine (TFEC), flutamide, PD0325901, lapatinib, and flupirtine.
Collapse
|